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The bond-dependent Kitaev model offers a playground in which one can search for quantum spin liquids.
In these Kitaev materials, a symmetric off-diagonal � term emerges, hosting a number of remarkable features,
which has been particularly challenging to fully understand. One primary question that arises after recognizing
a new phase is how information will spread in it. Out-of-time-ordered commutators and entanglement entropy
describe processes whereby information about the initial condition of a unitarily evolving system propagates
over the system. A possible way to investigate dynamics in such systems is by considering one-dimensional
models. We investigate here the one-dimensional spin-1/2 XY model in a transverse field with a � interaction
with periodic boundary conditions imposed. We will show that the � interaction constructs an asymmetric “light-
cone” with different butterfly velocities. In addition, it leads to faster information propagation in the spiral phase
and slower propagation in the ferromagnetic and paramagnetic phases. Interestingly, we observe a pronounced
effect in the entanglement entropy, explicitly showing up as a two-stage linear growth in time as fast/slow then
slow/fast for quenches originating from the spiral phase. We hope our work paves the way for studying more
about the spreading of information in one-dimensional Kitaev materials, which can in turn help to discover
unknown aspects of higher-dimensional models.
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I. INTRODUCTION

Ongoing discoveries in transition-metal compounds have
led to an enrichment of novel phases, including spin-orbit-
entangled electronic phases [1,2]. In this context, the quantum
spin liquid was introduced, in which elementary excitations
are fractionalized charge-neutral particles [3–5]. This sub-
ject began with the seminal work of Jackeli and Khaliullin
[6], which introduced a realistic method for realizing the
spin-1/2 Kitaev model, i.e., an exactly solvable model on a
two-dimensional honeycomb lattice. Afterwards, the potential
for applications in quantum computers [7,8] caused an intense
growth in the study of Kitaev quantum spin liquid materials,
such as the layered compounds α-RuCl3 [9,10] and A2IrO3

(A = Na, Li) [11,12], which exhibit magnetic order at low
temperatures. However, in real materials additional spin in-
teractions are inevitably present due to the lattice symmetries,
suggesting the existence of an off-diagonal exchange between
nearest neighbors, referred to as the �-interaction [13]. This
term is believed to have a dominant effect over the Heisenberg
term, and it has emerged as another source of frustration
where its interplay with other interactions constructs a variety
of complex orders [14–18].

The phenomenology becomes much richer in a nonequi-
librium setting where questions about information spreading

*h.cheraghi1986@gmail.com

arise. While most efforts on Kitaev quantum spin liquid mod-
els focus on the quantum critical lines, it is still unclear how
information scrambles or entanglement entropy grows follow-
ing a perturbation. The obstacle here is that there are strict
difficulties in studying strongly correlated two-dimensional
systems for both analytical and numerical treatments. On the
other hand, one-dimensional systems are often easier to ana-
lyze and simulate, making them a favorable choice in many
scenarios, even when exact or controllable approaches are
not available. In this regard, the effects of the � interaction
on one-dimensional spin-1/2 models have garnered a lot of
interest [18–23]. The model under investigation here has three
equilibrium phases: ferromagnetic (FM), paramagnetic (PM),
and a spiral pitched phase.

While considering probes of quantum chaos, out-of-time-
order commutators (OTOCs) [24] were found to be beneficial
quantitative tools for characterizing scrambling. Scrambling
in quantum systems is a process that describes how local
information spreads and becomes inaccessible at later times.
It generically characterizes the delocalization of quantum in-
formation after time evolution in many-body systems. The
Lieb-Robinson bound [25] provides an upper limit on the
speed of information propagation in lattice systems with
short-range interactions, bounded within a “light-cone” from
the local dynamics, leading in turn to entanglement “area
laws” [26,27], topological order [28,29], and the decay of
correlations [30]. In this setting, the OTOC typically grows
as C(r, t ) ∝ eλL (t−r/vb), where λL and vb are referred to,
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respectively, as quantum analogs of the Lyapunov exponent
[24] and the butterfly velocity [31,32]. This spreading can
occur at exponentially slow [33] or fast [34] rates. With the
feasibility of observation in experiments [35–41], OTOCs
have attracted a lot of interest in physics across many different
fields [42–55]. However, some questions emerge when the
� interaction is present, such as whether the signaling speed
remains below the maximum group velocity.

It is well established that a deep understanding of the dy-
namics of the coherence in a quantum system can be obtained
by considering the behavior of entanglement entropy follow-
ing a quantum quench [56,57], which provides one window on
information spreading. The entanglement entropy originates
from entanglement between the subsystem and its comple-
ment. Time evolution typically generates correlations between
subsystems as time goes on, resulting in an irreversible growth
in the entanglement entropy [58,59]. The particular way in
which the entanglement entropy grows in time is closely as-
sociated with the nature of the system. In integrable models
linear growth is observed [56], in nonintegrable models there
is a linear growth that is much faster than the energy diffusion
[58], in disordered systems following a quench there is a
logarithmic growth from an unentangled initial state [60] and
a logarithmic logarithmic growth [61,62], in many-body local-
ized systems there is an unbounded logarithmic growth [63],
and for long-range interacting spin systems a slow logarithmic
growth is seen [64]. These characteristics enable one to distin-
guish quantum phases via the dynamics of the entanglement
entropy. This in turn leads to the natural question of which
aspects of the entanglement growth of the XY model undergo
changes in the presence of the � interaction.

Our results reveal that the � interaction can induce an
asymmetric light-cone in the dynamics of the OTOC. This
behavior also marks a difference between the spiral phase
and the FM and PM phases. In the spiral phase, the but-
terfly velocity for the positive separations is always larger
than the maximum group velocity, whereas for the remaining
two phases the opposite situation holds. One could quickly
conclude that the � interaction slows the speed of information
propagation in the FM and PM phases. However, it actually
increases the destruction of the information in the spiral phase.
Interestingly, the � interaction causes wavefront changes un-
der the influence of changing temperature, and as a result
the parameters related to describing the OTOC behavior for
early and long times will also change for different tempera-
tures. In addition, we demonstrate that the dynamical behavior
of the entanglement entropy at zero temperature shows that
control of the initial growth rate is possible via the � inter-
action. Furthermore, quenches started from the spiral phase
provide a two-stage growth that can be used as a signal to
recognize this phase. We will also discuss the value of the
central change on the critical phase lines as well as within the
phases.

This paper is organized as follows. In Sec. II, we present
how one can calculate the OTOC and entanglement entropy.
An introduction to the model and its critical lines can be
found in Sec. III. In Sec. IV, we formulate how the OTOC
and entanglement entropy are obtained for this model. Results
and discussion are located in Sec. V. Finally, in Sec. VI we
conclude.

II. OTOCs AND ENTANGLEMENT ENTROPY

A. OTOCs

The spreading of local perturbations is considered as one
measure of information propagation in quantum systems, for
which out-of-time-ordered commutators (OTOCs) are a cen-
tral quantity, introduced as two-time correlation functions in
which operators are not chronologically ordered in time. Typ-
ically one operator is fixed at a time 0 and the other evolves
from 0 to a time t . Let us consider two unitary operators Wj

and Vj+r describing local perturbations to a lattice model at
sites j and j + r, respectively. The OTOCs are defined as the
average of the squared commutator [32,35], i.e., as

C(r, t ) = 1
2 〈[Wj (t ),Vj+r (0)]†[Wj (t ),Vj+r (0)]〉, (1)

where for a given Hamiltonian H , the time evolution of Wj

is given by Wj (t ) = eiHtWj (0)e−iHt . This means that as the
operator Wj (t ) evolves in time, a correlation develops with
the perturbation at Vj+r (0) as the operator “spreads.” In the
following, the operators Wj and Vj+r are both also Hermitian,
allowing us to rewrite C(r, t ) as C(r, t ) = 1 − Re[F (r, t )] in
which F (r, t ) is the out-of-time ordered correlator,

F (r, t ) = 〈Wj (t )Vj+rWj (t )Vj+r〉. (2)

It is conventional that if C(r, t ) vanishes or F (r, t ) goes
to a large value in the long-time limit, the system sig-
nals the absence of scrambling, that is, no information has
traveled from the site j to j + r in time t . The average
〈O〉 = Tr(e−βH O)/Tr(e−βH ) takes over the thermal ensemble
with β = 1/T , the inverse temperature with the Boltzmann
constant kB = 1. These quantities can detect the spread of
quantum information beyond quantum correlations, in partic-
ular in quantum chaos where they signal growth bounded by
a thermal Lyapunov exponent [24].

The � interaction breaks the mirror symmetry, hence the
only case that we can investigate under the Jordan-Wigner
transformation applied to periodic boundary conditions is
Czz(r, t ) with Wj (t ) = σ z

j (t ) and Vj+r = σ z
j+r . This restricts

us from studying other cases, σ
x,y
j , since their calculations

are based on the existence of the mirror symmetry and em-
ployment of the “double trick” [65]. Near the wavefront of
the spreading operators, integrable quantum systems unveil an
exponential increase with time given by the Hausdorff-Baker-
Campbell formula. This conjectured universal form describes
the ballistic broadening of the OTOC given by [65–67]

C(r, t ) ∼ e−λL (r/vb−t )1+d t−d
. (3)

The shape of the wavefront is controlled by a single parameter
d , associated with the growth rate λL, i.e., the Lyapunov
exponent, and the butterfly velocity vb. There are some sug-
gestions for d , including d = 1 for a random circuit model
[68], d = 1/2 for a noninteracting translation invariant model
[66], and d = 0 for a Sachdev-Ye-Kitaev model [69]. We use
Eq. (3) to access an estimate for the butterfly velocities on
both sides of the light cone as vR

b and vL
b , which refer to the

right and left butterfly velocities, respectively.
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B. Entanglement entropy

We aim to study the entanglement entropy after a global
quench in our system at zero temperature [70]. For a com-
posite system with a Hilbert space H = HA ⊗ HB in a pure
quantum many-body state ρ = |�0〉〈�0|, the entanglement
entropy between subsystems A and B can be quantified by
SA/B = −Tr(ρA/B ln ρA/B), where the reduced density matrices
are ρA/B = TrB/A(ρ) [71]. We focus on the case in which
|�0〉 is the ground state of our Hamiltonian. In this situation,
the system is initially prepared in the ground state of the
Hamiltonian. At t = 0, one parameter of the system is sud-
denly changed from its initial value to a final value and then
the system evolves with the final Hamiltonian. In general,
the entanglement entropy of a finite block A of la sites in
an infinite system of free spinless fermions can be computed
by [71]

Sl (t ) = −
2la∑

x=1

λx ln(λx ), (4)

where λx are the eigenvalues of the 2la × 2la correlation
matrix M:

M =
(

	 T
T † R

)
. (5)

	, T , and R are la × la matrices built from two-point cor-
relation functions 	nm = 〈c†

ncm〉, Tnm = 〈c†
nc†

m〉, and Rnm =
δnm − 	mn. Here c†

n (cn) is the fermionic creation (annihila-
tion) operator. It has been illustrated that for one-dimensional
integrable models, the entanglement entropy does indeed
spread ballistically [56], growing like the boundary area of
the subsystem A, and not like its volume, which is known
as the “area law.” Noncritical ground states of short-range
interacting spin chains with a finite correlation length have
a constant entanglement entropy. At a quantum critical point,
when the subsystem A is a finite interval of length L/2, the
entanglement entropy slightly violates the area law by a loga-
rithmic correction as SL/2(L) = (ceff/3) log(L) + b, where ceff

is the effective central charge [26,72] and b is a nonuniversal
constant.

III. XY -� MODEL

The XY model is one of the benchmark integrable models
that is equivalent to the Kitaev chain. We consider a 1D
spin-1/2 XY chain in a transverse field in the presence of a
generalized � interaction. The Hamiltonian H = HXY + H�

reads

HXY = J
L∑

n=1

[(
1 + δ

2

)
σ x

n σ x
n+1 +

(
1 − δ

2

)
σ y

n σ
y
n+1

]

+ h
L∑

n=1

σ z
n , and

H� = �

L∑
n=1

(
σ x

n σ
y
n+1 + γ σ y

n σ x
n+1

)
, (6)

where σ
x,y,z
n are the usual Pauli matrices. Also, J , δ, and h

are the antiferromagnetic coupling, the anisotropy parameter,

and the strength of the uniform transverse field, respectively.
In addition, � characterizes the amplitude of the off-diagonal
exchange interactions, while γ denotes the relative coefficient
of the off-diagonal exchange couplings. These parameters
decide the phases and properties of this model. We impose
periodic boundary conditions so that σL+1 = σ1, with L the
length of the spin chain.

The Hamiltonian is analytically solved by a Jordan-
Wigner transformation σ+

n = exp[iπ
∑

m<n c†
mcm]cn and σ z

n =
2c†

ncn − 1 [73], followed by a Fourier transformation cn =
(1/

√
L)

∑
k exp[ikn]ck where the possible values of k should

be given for a fixed value of L, and finally Bogoliubov trans-
formations [23] given by

ck = cos(k )ηk − sin(k )eiθk η
†
−k , and

c†
−k = cos(k )η†

−k + sin(k )e−iθk ηk. (7)

Following these transformations, the diagonalized
Hamiltonian reads

H =
∑

k

εk (η†
kηk − 1/2) (8)

with εk = Pk +
√

A2
k + B2

k + Q2
k , where

Ak = 2[J cos(k) + h],

Bk = 2Jδ sin(k),

Pk = 2�(γ − 1) sin(k), and

Qk = 2�(γ + 1) sin(k). (9)

According to the conditions θ−k = θk and −k = −k , the
Bogoliubov angles will be

tan(2θk ) = 2BkQk

Q2
k − B2

k

, and

tan(2k ) = sgn(k)

√
B2

k + Q2
k

Ak
, (10)

where sgn(k) is the sign function defined as 1 for k � 0
and −1 for k < 0. The � interaction accords this model sev-
eral nontrivial quantum phase transitions and properties. The
ground-state phase diagram of the model consists of three
phases: the gapped ferromagnetic and paramagnetic phases
separated by hc1 = 1 for γ > δ2/(4�2), and the gapless spiral
phase characterized by a quasi-long-range order separated
from the FM phase by γc1 = δ2/(4�2) for h � 1 and from
the PM phase by hc2 =

√
1 − δ2 − 4�2γ for γ < δ2/(4�2).

With this rich phase diagram, it is interesting to study how
information spreads in this model in these different phases.

Throughout this paper, we set J = 1 as the energy scale
and fix the parameters δ = 0.6 and � = 0.6, which still al-
lows us to reach all phases. Nothing qualitative depends on
this choice, which simplifies the presentation of the results.
Therefore, only h and γ are left as free parameters for which
the ground-state phase diagram is depicted in Fig. 1.
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FIG. 1. Effective central charge ceff vs h and γ obtained by fitting
SL/2(L). A gapless conformal field theory with ceff = 1/2 is visible
on the critical line between the FM and PM phases, while on the
other critical lines the central charge is zero. In addition, within the
FM and PM phases it is 0, while within the spiral phase its value is 1.
Here and also in other figures we fix J = 1.0, δ = 0.6, and � = 0.6.
Note that, as we see in the spiral phase, there are some fluctuations,
especially around h = 1, which arise from finite-size effects. Thus,
by increasing the system size, tending to the thermodynamic limit
L → ∞, they will vanish.

IV. METHODS

A. OTOC

We are interested in the OTOCs for the case when the
perturbations W and V are given by single-site Pauli matrices
such as σ z

j . Consequently, one can write

Fzz(r, t ) = 〈
σ z

r (t )σ z
0σ z

r (t )σ z
0

〉
. (11)

Since the model is exactly solvable by means of the
Jordan-Wigner transformation, it is convenient to express
the Pauli matrix by fermionic operators as σ z

j = −AjBj ,

with Aj = c†
j + c†

j , Bj = c†
j − c†

j , where c†
j (c j) is the

fermionic creation (annihilation) operator. Let us rewrite the
Hamiltonian in k space as H = ∑

k>0 Hk in the eigenbasis
{|0k0−k〉, |1k1−k〉, |1k0−k〉, |0k1−k〉}. This helps us to write the
density of states at the time t = 0 in the form

ρk (t = 0) = 1

�k

⎡
⎢⎢⎢⎣

d11 d12 0 0
d21 d22 0 0
0 0 d33 0
0 0 0 d44

⎤
⎥⎥⎥⎦ (12)

with �k = 2[cosh(β�
(1)
k ) + cosh(βP(1)

k )] and

d11/22 = cosh
(
β�

(1)
k

) ± cos
(
2

(1)
k

)
sinh

(
β�

(1)
k

)
,

d12/21 = −e∓iθ (1)
k sin

(
2

(1)
k

)
sinh

(
β�

(1)
k

)
,

d33/44 = e∓βP(1)
k , (13)

where �k =
√

A2
k + B2

k + Q2
k .

On the other hand, the unitary time-evolution operator will
drive

Uk (t ) = e−2itJ cos(k)

⎡
⎢⎢⎢⎣

k11 k12 0 0

k21 k22 0 0

0 0 k33 0

0 0 0 k44

⎤
⎥⎥⎥⎦ (14)

with

k11/22 = cos
(
t�(2)

k

) ± i cos
(
2

(2)
k

)
sin

(
t�(2)

k

)
,

k12/21 = −ie∓iθ (2)
k sin

(
2

(2)
k

)
sin

(
t�(2)

k

)
,

k33/44 = e∓itP(2)
k . (15)

The indices (1) and (2) refer to the pre- and postquench
Hamiltonians, respectively. Note that in the basis, the
fermionic operators read

ck =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 0
0 0 0 0
0 1 0 0

⎤
⎥⎥⎦ , c†

k =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 1
1 0 0 0
0 0 0 0

⎤
⎥⎥⎦,

c−k =

⎡
⎢⎢⎣

0 0 0 1
0 0 0 0
0 −1 0 0
0 0 0 0

⎤
⎥⎥⎦ , c†

−k =

⎡
⎢⎢⎣

0 0 0 0
0 0 −1 0
0 0 0 0
1 0 0 0

⎤
⎥⎥⎦,

(16)

and therefore their time evolution can now be obtained from
Ok (t ) = U †

k (t )OkUk (t ). With these at hand, one can calculate
the required time-dependent correlation functions, which are

〈An(t )Am〉 = 1

L

∑
k

eik(m−n)〈U †
k (t )(c†

k + c−k )Uk (t )(c†
−k + ck )〉,

〈Bn(t )Bm〉 = 1

L

∑
k

eik(m−n)〈U †
k (t )(c†

k − c−k )Uk (t )(c†
−k − ck )〉,

〈An(t )Bm〉 = 1

L

∑
k

eik(m−n)〈U †
k (t )(c†

k + c−k )Uk (t )(c†
−k − ck )〉,

〈Bn(t )Am〉 = 1

L

∑
k

eik(m−n)〈U †
k (t )(c†

k − c−k )Uk (t )(c†
−k + ck )〉.

(17)

m and n denote the position of the operators in the spin chain.

B. Entanglement entropy

As previously mentioned, in this section we aim to study
the entanglement entropy following global quenches where
the initial state is a ground state. The ground state can be
found from the condition that η±k|GS〉 = 0 if ε±k � 0 and
η

†
±k|GS〉 = 0 if ε±k < 0. In this respect, the ground state in

general will be

|GS〉 =
∏

k /∈∪(�+,�− )

|0k, 0−k〉 ⊗
∏

k∈�+

η
†
k |0k, 0−k〉

⊗
∏

k∈�−

η
†
−k|0k, 0−k〉 (18)

134303-4



INFORMATION PROPAGATION IN ONE-DIMENSIONAL … PHYSICAL REVIEW B 109, 134303 (2024)

in which �± denotes a k range with ε±k < 0, where �+ =
−�− = � . Here |0k, 0−k〉 is the vacuum of the Bogoliubov
quasiparticles η±k|0k, 0−k〉 = 0. We can now attain the time-
dependent two-point correlation functions through

	nm = 1

L

∑
k

cos[k(m − n)]|vk (t )|2

+ 1

L

∑
k∈�

{cos[k(m − n)][|uk (t )|2 − |vk (t )|2]

+ i sin[k(m − n)]} (19)

and

Tnm = i

L

∑
k

sin[k(m − n)]uk (t )v∗
k (t )

− 2i

L

∑
k∈�

sin[k(m − n)]uk (t )v∗
k (t ). (20)

We also have

vk (t ) = −eiθ (1)
k

{
sin

(


(1)
k

)
cos

(
t�(2)

k

)
− i sin

(
t�(2)

k

)[
sin

(


(1)
k

)
cos

(
2

(2)
k

)
− cos

(


(1)
k

)
sin

(
2

(2)
k

)
ei�θk

]}
(21)

and

uk (t ) = cos
(


(1)
k

)
cos

(
t�(2)

k

)
+ i sin

(
t�(2)

k

)[
cos

(


(1)
k

)
cos

(
2

(2)
k

)
+ sin

(


(1)
k

)
sin

(
2

(2)
k

)
e−i�θk

]
, (22)

with �θk = θ
(2)
k − θ

(1)
k .

V. RESULTS AND DISCUSSION

Following the calculations outlined in the previous section,
we can find the OTOCs and entanglement entropy for a range
of scenarios. In this section, we discuss the results of these
calculations, first looking at the OTOCs.

A. The OTOC

We focus here on Czz(r, t ) within the different phases as
a function of the temperature. First we consider the case in
which there is no quench, i.e., the initial density matrix is the
ground state of the time-evolving Hamiltonian. We have also
investigated quenches in which the initial density matrix and
the Hamiltonian belong to different phases. The results of this
latter case can be found in Appendix A.

Before starting to study how the OTOC evolves in time,
in Fig. 2 we plot the maximum of the quasiparticle group
velocity vg = ∂εk/∂k,

vg = 2�(γ − 1) cos(k)

+ 2 sin(k)

�k
[[J2(δ2 − 1) + �2(γ + 1)2] cos(k) − Jh].

(23)

This is compared to the envelope on the OTOC function [25].
Here we can immediately identify that the maximum group

FIG. 2. Density plot of the maximum of the group velocity vs h
and γ . The dashed black lines show the critical lines.

velocity is dependent on both γ and h when the rest of the
parameters are fixed. In addition, the largest value of vmax

g is
in the spiral phase around h = 1.0.

In Fig. 3, Czz(r, t ) is plotted at infinite temperature β = 0.0
for three different phases: (a) and (d) the spiral phase, (b) and
(e) the FM phase, and (c) and (f) the PM phase. The results
illustrate how the different phases affect the evolution of the
OTOC and the spreading velocity of the butterfly effect. Here,
we choose the system size L = 100. The density plots explic-
itly indicate asymmetric propagation in the system in all three
phases, which originates from the presence of the � interac-
tion. The values of the left butterfly velocities are very close
to the values of the maximum group velocities. In contrast,
for propagation to the right, this matching is absent. Conse-
quently, the maximum group velocities clearly do not give any
absolute bound. We note that an asymmetry in propagation has
also been reported for the helical multiferroic chains around
the ballistic wavefront where the topologically nontrivial
quantum phases allow for electric-field controlled anisotropic
propagation [74]. Additionally, asymmetric OTOC and light
cones also emerge in the nonequilibrium dynamics of Abelian
anyons in a 1D system [75].

Interestingly, in the spiral phase [Fig. 3(a)], the right but-
terfly velocity always has a bigger value than the maximum
group velocity, while in the other two phases the opposite is
true. This can be interpreted as a signature of slow or fast oper-
ator spreading in these phases. Therefore, the results support
that vb depends on the � interaction. In addition, Fig. 3(b)
indicates that the system in the FM phase reveals a narrower
light cone compared to the other phases, with a slower spread-
ing of the local operator, which expresses slower information
propagation. To show the difference in propagation in the two
directions, we have also drawn Czz(r, t ) for r = ±1,±2 in
Figs. 3(d)–3(f). The mismatch is clearly evident, for example,
between r = 1 and −1 for each case. Furthermore, the value
of Czz(r, t ) for the first peak for the positive r is always bigger
than the corresponding negative one.

We have continued our study for Czz(r, t ) by considering
the impact of the � interaction on the spread of the informa-
tion. Here we focus on a fixed site, the case r = 1.0. As is clear
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FIG. 3. Density plot of Czz(r, t ) vs separation, r, and time, t , for (a) h = 0.5, γ = −0.8; (b) h = 0.5, γ = 0.8; and (c) h = 1.5, γ = 0.8.
The yellow lines are a guide to the eye to show how fast the correlations spread, the dashed lines show the butterfly velocities, and the solid
lines are the maximum group velocities. The absolute values of the maximum group velocity vmax

g , the butterfly velocities of right vR
b and left

vL
b , are (a) vmax

g ≈ vL
b ≈ 2.208, vR

b ≈ 2.642; (b) vmax
g ≈ vL

b ≈ 1.574, vR
b ≈ 1.25; and (c) vmax

g ≈ vL
b ≈ 2.453, vR

b ≈ 2.127. In the lower panels,
Czz(r, t ) is plotted at fixed separations r = ±1, ±2 vs time for (d) h = 0.5, γ = −0.8; (e) h = 0.5, γ = 0.8; and (f) h = 1.5, γ = 0.8. Here the
numerical simulations are done for L = 100, inverse temperature β = 0, and J = 1.0, δ = 0.6, � = 0.6.

from Fig. 4, Czz(r, t ) typically increases in a short time from
zero to its maximum value and then decreases, vanishing at
long times in an oscillating manner. In fact, by increasing the
value of γ in the FM [Fig. 4(b)] and PM [Fig. 4(c)] phases,
a slower decay is found. This means that the γ interaction
prevents a quick loss of information in the system. However,
this preservation of the information is very remarkable for
the case γ = 1.0, where the system stays in a symmetric
situation. The opposite case emerges for the spiral phase in
which the increase of the absolute value of γ makes for a
quicker decay [Fig. 4(a)]. However, we see that the OTOCs
comprised of local operators show no sign of scrambling,
limt→∞ Czz(r, t ) = 0. The insets of Fig. 4 also clearly display
that the decay rate at short times after the first growth is
strongly affected by an increase in γ , and the rate of decay
will be higher. In Appendix B we present an example of the
fitting used to estimate the parameters vb, λL, and d for the
different phases for r = ±1.

We have also considered the effect of different tempera-
tures in the system. Results for β = 0.1, 100 are illustrated in
Fig. 5. As before, the data are for � = 0.6, and the calculations
are done for a system size L = 100. We see that the tempera-
ture has no effect on the shape of the light cone. However, it
can change the value of Czz in the PM phase, although in the
FM and spiral phases this effect appears only in the short-
time behavior at small separations. It is worth mentioning
that for the case in which � = 0.0, it has been indicated that
the temperature has a negligible effect on OTOCs with local
operators [65], except for the case γ = 0.0, h = 1.0 [76]. Here
we can conclude that a temperature-dependent description of
the wavefront, especially in the PM phase, is still possible in
the presence of the � term. On the other hand, any “universal”
description needs to be essentially temperature-independent.
For this reason, the growth of the decay rates at long times of
Czz in our model do not follow the reported universalities [65];
cf. Appendix B.

FIG. 4. Dynamics of Czz(r, t ) for r = 1, L = 100, and β = 0.0 as (a) h = 0.5, γ = −0.4, −0.6, −0.8, −1.0; (b) h = 0.5, γ =
0.4, 0.6, 0.8, 1.0; and (c) h = 1.5, γ = 0.4, 0.6, 0.8, 1.0. The insets indicate the early time evolution.
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(a) (b)

(c) (d)

(e) (f )

FIG. 5. Density plot of Czz(r, t ) vs separation, r, and time, t , for a chain with size L = 100 as (a),(b) h = 0.5, γ = −0.8; (c),(d) h = 0.5,
γ = 0.8; and (e),(f) h = 1.5, γ = 0.8. The left and right columns, respectively, belong to β = 0.1 and 100.

B. Entanglement entropy

Entanglement entropy, as a fundamental concept, provides
a key route to understanding many-body quantum systems in
and out of equilibrium. Indeed, it measures gross quantum-
mechanical correlations between different parts of a system.
In equilibrium, the ground-state phase diagram of the model
is depicted against h and γ in Fig. 1. As can be seen, on
the critical line between the FM and PM phases, the central
charge is 1/2 while on other critical lines it has a zero value.
Intriguingly, within the spiral phase, the central charge is one
that is consistent with the fact that the low-energy excitations
of the gapless region belong to the same universality class
as the Tomonaga-Luttinger liquid. In addition, within the FM
and PM phases, ceff is zero, described by Ising-like excita-
tions. However, some fluctuations are visible in the spiral
phase caused by finite-size effects. In the thermodynamic limit
these fluctuations will vanish. To confirm our results, we also
studied the entanglement entropy as a function of different
system sizes and different subsystems at fixed system size.
These results are in Appendix C.

Here we study the impact of the � interaction using two
strategies: with quenches between different phases (see Figs. 6
and 7), and the entanglement entropy growth for a given
quench under different system sizes (see Figs. 8 and 9). As
depicted, we consider quench protocols where at t = 0 the
state of the whole system is prepared as the ground state of
the prequench Hamiltonian at zero temperature. Then, the
postquench Hamiltonian instantaneously drives the time evo-
lution of the system.

In Fig. 6, we show the entanglement entropy for a system
with size L = 100 where quenches are done in the transverse
field h for constant values of γ . In this setting, the system
is quenched from the spiral and the FM phases into the PM
phase and vice versa. As we can see, except for the quench
from the FM into the PM phase [Fig. 6(b)], increasing the
value of γ reduces remarkably the value of the entanglement
entropy. For the quench from the FM into the PM phase, a
small reduction in the entanglement entropy is found. On the
other hand, the initial growth rate shows a different behavior.
Quenches between the spiral and the PM phases uncover a
decrease of the growth rate, while in quenching between the
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(a) (b)

(c) (d)

FIG. 6. Dynamics of SL/2(t )/L for L = 100 as (a),(b) h1 = 0.5,
h2 = 2.0; (c),(d) h1 = 2.0, h2 = 0.5 for initial states in (a) the spiral
phase, (b) the FM phase, and (c) and (d) the PM phase.

FM and the PM phases, an increase of the growth rate emerges
when increasing γ . However, the decrease of the growth rate
is significant for the quench originating from the spiral phase,
as is clear from Fig. 6(a).

In contrast, when quenches are caused by changing γ

with the transverse field constant (Fig. 7), regardless of the
initial and final phases, an increase in γ causes an enhance-
ment of the entanglement entropy at long times. In particular,
quenches starting from the spiral phase increase the initial
growth rate, while quenches from the other phases into the
spiral phase reduce the initial growth rate. These imply that
γ can function as a quench control parameter that is able to
control the initial growth rate in the system.

In the one-dimensional XY model, the respective entan-
glement entropies are expected to rise linearly with time
during unitary evolution [77]. Here, in Figs. 8 and 9, the time
evolution of the entanglement entropy is shown for several

(a) (b)

(c) (d)

FIG. 7. Dynamics of SL/2(t )/L for L = 100 as (a),(b) h = 0.5
and (c),(d) h = 1.2. The quenches are from (a) the FM and (c) the
PM phases to the spiral phase, and from the spiral phase to (b) the
FM and (d) the PM phases.

(a) (b)

(c) (d)

FIG. 8. Dynamics of SL/2(t ) for different system sizes as L =
80, 120, 160, 200 (from red to cyan) as (a) h1 = 0.5, h2 = 2.0,
γ = −0.8; (b) h1 = 0.5, h2 = 2.0, γ = 0.8; (c) h1 = 2.0, h2 = 0.5,
γ = −0.8; and (d) h1 = 2.0, h2 = 0.5, γ = 0.8. The black dashed
lines are a guide for the eyes, representing the initial growth rate
SL/2(t ) ∼ t .

system sizes L = 80, 120, 160, 200 for different quenches
covering the phase diagram. Our main goal is to determine
how the initial entanglement entropy grows with time. As is
clearly displayed, the linear growth is visible in all quenches,
SL/2(t ) ∼ t . The highlight is that for quenches starting from
the spiral phase, the entanglement entropy shows a two-step
linear growth. This growth, depending on the phase that is
quenched into, can be first slow and then fast or vice versa,
and consequently could be used as a sign to detect the spiral
phase. There is a linear time regime followed by nonlinear be-
havior. Indeed, the ballistic growth continues up to a crossover
time t∗ where it begins to saturate. In general, we see in our

(a) (b)

(c) (d)

FIG. 9. Dynamics of SL/2(t ) for different system sizes as L =
80, 120, 160, 200 (from red to cyan) as (a) γ1 = −0.8, γ2 = 0.8,
h = 0.5; (b) γ1 = 0.8, γ2 = −0.8, h = 0.5; (c) γ1 = −0.8, γ2 = 0.8,
h = 1.2; and (d) γ1 = 0.8, γ2 = −0.8, h = 1.2. The black dashed
lines are a guide for the eyes, representing the initial growth rate
SL/2(t ) ∼ t .

134303-8



INFORMATION PROPAGATION IN ONE-DIMENSIONAL … PHYSICAL REVIEW B 109, 134303 (2024)

numerical data that the crossover time does not always obey
t∗ = L/(2vmax

g ). This happens because sometimes the modes
with maximum velocity can carry less information than others
[77–79].

VI. CONCLUSIONS

To shed light on the role that � interactions play in the
behavior of higher-dimensional systems, in this paper we have
considered an exactly solvable 1D spin-1/2 XY model in the
presence of a transverse field and � interaction. The ground-
state phase diagram of our model consists of three different
phases: a spiral phase, ferromagnetism, and paramagnetism.
We analytically computed the OTOC and the entanglement
entropy to reveal how the information propagates, depending
on the initial phase. Here we also investigated the OTOC at
different temperatures, while the entanglement entropy was
considered only for the ground state as the initial state.

Our calculations for the butterfly velocities illustrated that
the left-moving butterfly velocities agree with the maximum
group velocities, while the right-moving ones do not. This
implies that the maximum group velocity is not a strict bound
for information propagation. We also found that the right
butterfly velocity is larger than the maximum group velocity
in the spiral phase, but smaller in the other two phases. This
indicates that the operator spreading is faster in the spiral
phase and slower in the other phases. Moreover, we observed
that the FM phase has a smaller light cone than the other
phases, which reflects the slower information propagation in
this phase. We further showed that temperature does not affect
the shape of the light cone.

We then investigated the effect of the � interaction on
the entanglement entropy of the system following quenches
across critical lines. Our results show that depending on the
quench, � is able to increase or decrease the value of the en-
tanglement entropy. In addition, it can be used as a parameter
to control the initial entanglement growth in the system. We
demonstrated that the dynamics of the entanglement entropy
can expose signals for the existence of the spiral phase. In
quenches from the spiral phase, the entanglement entropy
grows initially as a two-step linear growth. We also focused on
the central charge within and on the boundaries of the spiral
phase. We indicated that on the critical lines between the spiral
phase with the FM and PM phases the central charge is 0,
while within the spiral phase it is equal to 1. This is the same
as the Luttinger liquid phase, revealing that the spiral phase
acts like a critical region. Further studies on the dynamics of
systems including � interactions, especially an extension to
1D nonintegrable systems as well as 2D systems, would be
interesting routes to follow up this work.
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APPENDIX A: OTOCS FOLLOWING QUENCHES

Here we will consider OTOCs where the initial state is
not the ground state of the time-evolving Hamiltonian, i.e.,

(a) (b)

(c) (d)

FIG. 10. An example of density plot of Czz(r, t ) vs separation, r,
and time, t , under different quenches as (a) h1 = 2.0, h2 = 0.5, γ =
0.4; (b) h1 = 1.5, h2 = 0.5, γ = 0.4; (c) h1 = 2.0, h2 = 0.5, γ =
−0.4; and (d) h1 = 1.5, h2 = 0.5, γ = −0.4. Here the size of the
system is L = 100 and β = 0.0. Asymmetric propagation is clearly
visible in the figures.

quenches. Our results show that when we do a quench in
the system, the initial state does not effect how information
spreads [55]. In contrast, the final Hamiltonian controls the
different behavior observed. As an example, in Fig. 10 we
have plotted the density plot of Czz(r, t ) versus r and t , under
different quenches from the PM phase into the FM phase with
h2 = 0.5, γ = 0.4 as (a) h1 = 2.0 and (b) h1 = 1.5, and into
the spiral phase with h2 = 0.5, γ = −0.4 as (c) h1 = 2.0 and
(d) h1 = 1.5, for a chain with size L = 100 at β = 0.0.

FIG. 11. An example of the fitting with L = 100, β = 0.0 using
Eq. (3) within three phases for (a) r = 1.0 and (b) r = −1.0. The
black dashed lines indicate fitting functions.
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FIG. 12. The entanglement entropy at the equilibrium as a func-
tion of the different subsystems la for a fixed chain with L = 200
(a) within the three phases and (b) on the three critical lines, and as a
function of the different system sizes (c) within the three phases and
(d) on the three critical lines.

APPENDIX B: FITS FOR LIEB-ROBINSON BOUND
AND THE LYAPUNOV EXPONENT

The early time behavior and examples of the fitting pro-
cedure for the OTOC within the three phases at β = 0.0 are
displayed in Fig. 11. The fitting directly reveals different val-
ues for vb, λL, and d .

APPENDIX C: EQUILIBRIUM BEHAVIOR
OF THE ENTANGLEMENT ENTROPY

In Figs. 12(a) and 12(b), we have plotted the entanglement
entropy for different subsystems where the system size is
kept at L = 200. Differences are seen only within the spi-
ral phase and on the critical line between the FM and PM
phases. Furthermore, in order to find the results for the cen-
tral charge within the phases [Fig. 12(c)] and on the critical
lines [Fig. 12(d)], we have investigated here the entanglement
entropy for different system sizes. From the numerical fitting,
we find the central charges 1 for the spiral phase, 1/2 for
the critical line between the FM and PM phases, and 0 in all
other phases and critical lines. Consequently, we claim that
the spiral phase behaves critically.
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