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Higher-order topological insulators in three dimensions without crystalline counterparts
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Quasicrystals allow for symmetries that are impossible in crystalline materials, such as eightfold rotational
symmetry, enabling the existence of novel higher-order topological insulators in two dimensions without
crystalline counterparts. However, the specific structure of the Z2 topological invariant in two dimensions makes
it impossible to be generalized to the three-dimensional case. Consequently, it remains unclear whether three-
dimensional higher-order topological insulators without crystalline counterparts can exist. Here, we demonstrate
the existence of a second-order topological insulator by constructing and exploring a three-dimensional model
Hamiltonian in a stack of Ammann-Beenker tiling quasicrystalline lattices. The topological phase has eight
chiral hinge modes that lead to quantized longitudinal conductances of 4e2/h. We show that the topological
phase is characterized by the winding number of the generalized quadrupole moment. We further establish the
existence of a second-order topological insulator with time-reversal symmetry, characterized by a generalized
Z2 topological invariant. Finally, we propose a model that exhibits a higher-order Weyl-like semimetal phase,
demonstrating both hinge and surface Fermi arcs. Our findings highlight that quasicrystals in three dimensions
can give rise to higher-order topological insulators and semimetal phases that are unattainable in crystals.
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I. INTRODUCTION

Higher-order topological phases represent a significant ex-
pansion of conventional first-order topological phases and
have experienced considerable advancements in recent years
[1–20]. These phases possess edge states of dimension (n −
m) (1 < m � n) in an n-dimensional system, which is in stark
contrast to first-order cases that support (n − 1)-dimensional
edge states. For instance, in two dimensions (2D), second-
order topological insulators such as the quadrupole insulator
exhibit four corner states [1,2]. In three dimensions (3D),
second-order topological insulators give rise to four chiral (or
helical pairs of) hinge modes [8]. Furthermore, higher-order
Weyl semimetals in 3D display bulk Weyl nodes that feature
both surface and hinge Fermi arcs [21–25].

Apart from crystalline systems, higher-order topological
states have also been found in noncrystalline systems such
as quasicrystals [26–31], amorphous lattices [32–35], and hy-
perbolic lattices [36,37], despite the absence of translational
symmetries. Remarkably, these systems in 2D can support
higher-order topological phases that cannot exist in crystals.
For example, a quasicrystal in 2D with eightfold rotational
symmetry can possess eight corner modes [26,27], in stark
contrast to crystalline counterparts with two, four, or six cor-
ner modes [1,12,16,17]. Similar cases occur in amorphous
lattices protected by an average symmetry [35]. Although
significant progress has been made, it remains unclear whether
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topological insulators without crystalline counterparts can
exist in 3D. The challenge lies in establishing the bulk-
boundary correspondence in the case of 3D quasicrystals.
Previously, a higher-order topological phase in a 2D qua-
sicrystal was characterized by a Z2 topological invariant
determined by the sign of the Pfaffian of a transformed Hamil-
tonian at high-symmetry momenta that is an antisymmetric
matrix [26,27]. However, this invariant cannot be generalized
to characterize the chiral hinge modes in 3D. Fortunately, the
winding number of the quadrupole moment can be employed
to characterize the chiral hinge modes when their number is
equal to four [19,33]. However, this winding number always
vanishes in the 3D quasicrystalline lattices with eightfold ro-
tational symmetry.

In this work, we theoretically predict the existence of
a second-order topological insulator by constructing and
exploring 3D model Hamiltonians in a stack of Ammann-
Beenker tiling quasicrystals with eightfold rotational symme-
try [see Fig. 1(a)]. We find that there are eight gapless chiral
hinge modes [see Fig. 1(b)] leading to longitudinal conduc-
tances of 4e2/h. These topological states are not allowed in
crystalline materials due to the absence of eightfold rotational
symmetries. To establish the bulk-edge correspondence, we
propose the winding number of a generalized quadrupole mo-
ment and find that it can characterize the chiral hinge modes.
Moreover, we show the existence of second-order topological
insulators in 3D quasicrystals with time-reversal symmetry
(TRS) that support eight helical pairs of hinge states, giv-
ing rise to the longitudinal conductance of 8e2/h. We find
that such a phase is protected by a generalized Z2 topo-
logical invariant defined based on transformed site positions
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FIG. 1. (a) Schematic illustration of a stack of Ammann-Beenker
tiling quasicrystalline lattices on which our tight-binding models are
constructed. (b) The zero-energy local density of states (DOS) of the
Hamiltonian (1) on a stack of quasicrystalline lattices, illustrating the
existence of midgap hinge states.

in quasicrystals. Finally, we present a model that showcases
the existence of higher-order Weyl-like semimetal phase in
3D quasicrystals. This phase exhibits both hinge Fermi arcs
and surface arcs, which are characterized by the generalized
quadrupole moment and Bott index, respectively. Notably, un-
like higher-order Weyl semimetals in crystals, the quasicrystal
exhibits the presence of eight hinge arc states.

II. MODEL HAMILTONIAN

To demonstrate the presence of 3D topological insula-
tors that do not have crystalline counterparts, we stack 2D
quasicrystalline lattices to create a 3D lattice, as shown in
Fig. 1(a), and introduce a tight-binding model on the lattice
described by the Hamiltonian

Ĥc =
∑

r

[
Mĉ†

r τzσ0ĉr +
∑

d

ĉ†
r+dTc(d̂ )ĉr

]
, (1)

where ĉ†
r = (ĉ†

r,1, ĉ†
r,2, ĉ†

r,3, ĉ†
r,4) with ĉ†

r,α (ĉr,α) creating (an-
nihilating) a particle of the αth component at the lattice site
of position r, and τν and σν with ν = x, y, z are Pauli ma-
trices acting on internal degrees of freedom. The first term
describes the on-site mass term and the second one describes
the hopping between two connected sites r and r + d [see
Fig. 1(a)] depicted by the hopping matrix Tc(d̂ ), with d̂ be-
ing the unit vector of d. For the intralayer hopping, Tc(d̂ ) =
[t0τzσ0 + it1τx(d̂xσx + d̂yσy) + gcos(pθ/2)τyσ0]/2 with p =
8 for the Ammann-Beenker tiling quasicrystals and θ being
the polar angle of the vector d, and for the interlayer hop-
ping, Tc(d̂ ) = (t0τzσ0 + it1τxσz )/2. Here, t0 and t1 are system
parameters, which will henceforth be set to one as the units
of energy for simplicity without loss of generality. While the
term gcos(pθ/2)τyσ0 breaks the TRS and eightfold rotational
symmetry, their combination symmetry is preserved, which
protects the eight chiral hinge modes. Without the hopping
along z, the system reduces to a 2D quasicrystal model with
eight zero-energy corner modes [26,27]. The hopping along z
clearly breaks chiral symmetry so that the 3D model is not a
simple stacking of 2D models.

To map out the phase diagram with respect to the mass M,
we numerically calculate the zero-temperature two-terminal

FIG. 2. (a) The longitudinal conductance G (in units of e2/h)
along z (gray and black lines) and the winding number of the gener-
alized quadrupole moment WQ (blue lines) vs M for the Hamiltonian
(1). The color lines, ranging from light to dark, refer to the results for
systems with 2377, 4257, and 6449 sites in each plane, respectively.
Inset: The generalized quadrupole moment vs kz at M = −3.6 and
M = −2. (b) The calculated energy spectrum with respect to kz

for the Hamiltonian (1) with 2377 sites in each plane under open
boundary conditions (OBCs) at M = −2. The chiral hinge states,
which are fourfold degenerate, are highlighted as black lines. The
bulk energy gap is shown in the inset. Here, g = 0.5.

longitudinal conductance G along the z direction based on the
Landauer formula,

G = e2

h
T (EF ). (2)

Here, T (EF ) represents the transmission probability from one
lead to the other at the energy EF for the 3D quasicrystal
system connected to two infinite leads along z. We calculate
the transmission probability T (EF ) at zero energy using the
nonequilibrium Green’s function method [38–40].

Figure 2(a) displays the numerically computed conduc-
tance G as a function of M, remarkably illustrating the
existence of a region with a quantized value of 4e2/h. Specif-
ically, as we increase M from −4, the conductance suddenly
rises at M ≈ −3.1, indicating the occurrence of a topological
phase transition. In fact, the transition point is associated with
the bulk energy gap closing, as shown in the inset of Fig. 2(b).
In the topological region, we find that the conductance be-
comes more perfectly quantized at 4e2/h as we enlarge the
system size [see Fig. 2(a)], confirming the existence of the
topological phase in the thermodynamic limit. To further con-
firm the origin of the quantized conductance from chiral hinge
modes, we plot the energy spectrum of the system at M = −2
with respect to the momentum kz under open boundaries in
the x and y directions. The figure clearly shows the presence
of gapless chiral hinge modes, which result in the quantized
conductance. For each chiral mode, there is fourfold degener-
acy due to the C8T symmetry, the combination of the eightfold
rotational and the time-reversal operations. Such hinge states
are not allowed in a crystal since the eightfold rotational
symmetry is not permitted in a crystalline lattice.

We now propose using the winding number of the gen-
eralized quadrupole moment with respect to kz to establish
the bulk-edge correspondence for the higher-order topological
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insulator,

WQ =
∫ 2π

0
dkz

∂Qxy(kz )

∂kz
, (3)

where Qxy(kz ) is the generalized quadrupole moment at kz.
The winding number has been used to characterize the higher-
order topological insulator with four chiral hinge modes
[19,33]. The quadrupole moment is defined as [41–44]

Qxy(kz ) =
[

1

2π
Im ln det(Uo

†D̂Uo) − Q0

]
mod 1, (4)

where Uo = (|ψ1〉, |ψ2〉, . . . , |ψNocc〉) is a matrix consisting
of occupied eigenstates of the first-quantization Hamiltonian
at kz under periodic boundary conditions (see Appendix A),
D̂ = diag{e2π ixl yl /L2}2Nocc

l=1 with (xl , yl ) being the real-space co-
ordinate of the lth degree of freedom, and Q0 is contributed
by the background positive charge distribution. If we use
the original real-space coordinates of the quasicrystal lattice
to calculate the quadrupole moment, we always obtain zero
results, as clarified in Ref. [35] for the amorphous case. To
obtain the generalized quadrupole moment, we perform the
transformations of site positions from (xl , yl ) to (x′

l , y′
l ) so

that one-half or one-and-a-half of a quadrant of sites is trans-
formed into a quadrant [35] (see, also, Appendix A). While D̂
and Q0 are changed accordingly, we use the same bulk states
Uo to evaluate the generalized quadrupole moment as well as
its winding number.

Figure 2(a) shows the winding number WQ with respect to
M, which exhibits the quantized value of one in the topologi-
cal regime and zero in the trivial regime, thereby establishing
the bulk-edge correspondence of the 3D quasicrystal state. For
clarity, we also display the generalized quadruple moment as
a function of kz at Mz = −2 and Mz = −3.6, illustrating the
presence and absence of the winding, respectively.

III. MODEL WITH TIME-REVERSAL SYMMETRY

We now construct a model with TRS incorporating eight
degrees of freedom per site described by the Hamiltonian

Ĥh =
∑

r

Mĉ†
r τzs0σ0ĉr +

∑
d

ĉ†
r+dTh(d̂ )ĉr, (5)

where ĉ†
r = (ĉ†

r,1, . . . , ĉ†
r,8) with ĉ†

r,α creating a fermion of
the αth component at site r, and {sν} with ν = x, y, z is
another set of Pauli matrices besides {σν} and {τν}. For the in-
tralayer hopping, Th(d̂ ) = [t0τzs0σ0 + it1τxs0(d̂xσx + d̂yσy) +
gcos(4θ )τysyσ0]/2, and for the interlayer hopping along z,
Th(d̂ ) = (t0τzs0σ0 + it1τxs0d̂zσz + it3d̂zτysxσ0)/2. The Hamil-
tonian now respects the TRS. Similar to the case without TRS,
we set t0 = t1 = t3 = 1 as the units of energy.

Previously, we develop a Z2 invariant to characterize the
higher-order topology in an amorphous system with TRS sup-
porting four helical pairs of hinge modes in Ref. [33]. The
topological invariant νQ is defined based on

(−1)νQ = Pf[A(π )]

Pf[A(0)]

√
det[A(0)]

det[A(π )]
, (6)

where Pf[·] denotes the Pfaffian of an antisymmetric ma-
trix and A(kz ) ≡ Uo(−kz )†D̂TUo(kz ) with T = iσyκ , Uo(kz ) =

FIG. 3. (a) The longitudinal conductance G (in units of e2/h)
(gray and black lines) and the topological invariant νQ (blue line)
for the Hamiltonian with TRS in Eq. (5). The gray to black lines
correspond to systems with 1137, 2377, and 4257 sites in the (x, y)
plane. (b) The energy spectrum vs kz for the Hamiltonian with TRS
with 2377 sites in each plane under OBCs at M = −2. The helical
hinge states, which are eightfold degenerate, are highlighted as black
lines. Here, g = 0.5.

[|ψ1(kz )〉, |ψ2(kz )〉, . . . , |ψNocc (kz )〉] being a matrix consisting
of occupied eigenstates of Hamiltonian (5) at the momentum
kz. Similar to the case without TRS, we need to perform the
transformation of site positions for the D̂ matrix to evaluate
the generalized topological invariant.

In Fig. 3(a), we plot the zero-temperature longitudinal
conductance G and the generalized Z2 topological invariant.
The figure clearly illustrates the existence of a topological
regime identified by the quantized conductance of 8e2/h and
the quantized nontrivial value of the topological invariant. The
conductance is attributed to the eight helical pairs of hinge
modes, as shown in Fig. 3(b), which are degenerate due to the
C8sx symmetry.

When t3 = 0, the Hamiltonian (5) commutes with sy so
that it can be written as a direct sum of two copies of the
Hamiltonian (1) with opposite signs of g. We therefore can
calculate the winding number of the generalized quadrupole
moment in each subspace using the transformed site positions
so as to evaluate the generalized spin quadrupole moment
winding number [33] to characterize the system’s topology. In
fact, despite the absence of the symmetry when t3 is nonzero,
we can still compute the generalized spin winding number and
find that the results coincide with the generalized Z2 invariant.

IV. HIGHER-ORDER WEYL-LIKE SEMIMETAL

We now proceed to introduce a model in the stack of 2D
quasicrystals that exhibits both the first-order surface modes
and second-order hinge modes. The Hamiltonian reads

ĤW (M ) =
∑

r

ĉ†
r T0ĉr +

∑
d

ĉ†
r+dTW (d̂ )ĉr, (7)

where T0 = Mτzσ0 + tcτ0σz and TW (d̂ ) is the hopping
matrix that reads TW (d̂ ) = [t0τzσ0 + it1(cos θτxσx +
sin θτxσy) + gcos(4θ )τyσ0]/2 for the intralayer hopping
and TW (d̂ ) = t0τzσ0/2 for the interlayer hopping. Similar to
the previous cases, we set t0 = t1 = 1. The interlayer hopping
changes the mass M to M + t0 cos kz. Therefore, we can
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max

min

FIG. 4. (a) The generalized quadrupole moment Qxy (blue line)
and the Bott index (black line) vs kz for the Hamiltonian (7). (b) The
energy spectrum with respect to kz for the Hamiltonian (7) under
OBCs in the (x, y) plane. The black lines represent the eightfold
degenerate zero-energy hinge states. (c) The kz-resolved local DOS
at zero energy, illustrating the existence of hinge states and surface
states at different kz. (d) The spectral DOS at the x-normal boundaries
vs the Fourier momentum qy calculated by the kernel polynomial
method, showing that Fermi arcs connect two degenerate points,
whose positions are indicated by the light-blue and green lines. (e)
The structure factor in Fourier space qy showing that the positions of
the Bragg peaks precisely agree with those of the Fermi arcs in qy.
Here, we consider a system with 2377 sites in the (x, y) plane and
g = 0.5.

view the system as a stack of 2D systems on quasicrystalline
lattices with the mass controlled by kz. Without tc, the chiral
symmetry � = τxσz (for the first-quantization Hamiltonian)
is preserved so that each slice of a system at a fixed kz cannot
develop a quantum anomalous Hall insulating phase. In fact,
in this case, the system can develop a fourfold degenerate
point at the transition point between a normal insulator and a
quadrupole insulator as kz varies, similar to the Dirac point in
the regular case [45–47]. To generate the Weyl-like semimetal
phase, we add the term tcτ0σz to break the chiral symmetry,
but leave the particle-hole symmetry � = τxσxκ preserved.
As a result, both the generalized quadrupole insulator and
quantum anomalous Hall insulator can exist, similar to the
higher-order Weyl semimetal [21–23].

Indeed, adding the tc term splits each fourfold degenerate
point into two twofold degenerate ones. The split regions
develop the quantum anomalous Hall insulating phases char-
acterized by the Bott index, as shown in Fig. 4(a). Here, the
Bott index is defined as [48]

Bott = 1

2π
Im Tr ln(UyUxU

†
y U †

x ), (8)

where Ux and Uy are given by U †
o e2π ix̂/LxUo and U †

o e2π iŷ/LyUo,
respectively, where x̂ and ŷ are position operators. Apart
from the first-order topological phases, the middle region with
|kz| � 1.2 corresponds to the quadrupole insulator with the
generalized quadrupole moment of 0.5, which is calculated
using the transformed site positions. In this region, there exist
eight hinge states at zero energy, as shown in Fig. 4(b).

To illustrate the real-space distribution of the hinge and
surface states, we plot the kz-resolved local DOS at zero
energy in Fig. 4(c). We see that the midgap states in the
middle region in kz are mainly spatially localized on the
hinges, while the states in the anomalous Hall region are
localized on the surfaces. In contrast to the higher-order Weyl
semimetal in a crystal [21–23], this phase exhibits the local
DOS with eightfold rotational symmetry as enforced by the
C8T symmetry of the Hamiltonian. Our phase is also different
from the first-order quasicrystal Weyl-like semimetal with
only anomalous surface states [49]. We therefore establish
the bulk-edge correspondence for a higher-order Weyl-like
semimetal in a stack of 2D quasicrystals without crystalline
counterparts.

To further reveal Fermi arcs arising from surface
and hinge states, we calculate the spectral DOS at
the energy E [49], ρ(x, qy, E , kz ) = ∑

r∈Sx
〈qy, r, α|δ[E −

HW (kz )]|qy, r, α〉, where Sx denotes the set of surface sites
on a x-normal surface, and |qy, r, α〉 is the plane wave with
the momentum qy. The quantity measures the DOS of the
system that an incident plane wave of energy E can couple
to on the surface corresponding to an angle-resolved diffrac-
tion measurement [49]. Figure 4(d) shows the spectral DOS
at zero energy, illustrating the appearance of Fermi arcs of
varying intensities with respect to qy that connect the pro-
jections of two degenerate points at kz ≈ 2.2. The spectral
DOS distribution corresponds to the Bragg peaks of the struc-
ture factor [49], I (qy) ∝

∑
qx

|∑R eiq·R|2, with lattice sites R
and the Fourier momentum q = (qx, qy). Figure 4(e) shows
that the positions of the Bragg peaks in qy perfectly agree
with those of the Fermi arcs in Fig. 4(d). See, also, Ap-
pendix B for the bulk spectral DOS revealing the existence
of the Weyl-like degenerate points.

V. CONCLUSION

In summary, we have demonstrated the existence of 3D
second-order topological insulators and higher-order Weyl-
like semimetals in a stack of 2D quasicrystals with eightfold
rotational symmetry. We have also established the bulk-
edge correspondence in these systems. Importantly, it is
worth noting that such phases cannot appear in a 3D crystal
due to the absence of eightfold rotational symmetry. More-
over, our findings can be generalized to other quasicrystals,
such as Stampfli-tiling quasicrystals with 12-fold rotational
symmetry. These intriguing phases could potentially be
experimentally observed not only in realistic quasicrys-
talline materials, but also in metamaterials such as phononic
[50], photonic [51], electric circuit [52], and microwave
systems [53].

Note added. Recently, we became aware of a related work
[54] where higher-order Dirac semimetals in 3D quasicrystals
have been studied.
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FIG. 5. (a) Schematic illustration of how the PBCs are realized in
the Ammann-Beenker tiling quasicrystalline lattices. Examples show
that the sites B and C at a boundary are connected to the sites B′ and
C′ at the other boundary, respectively. The corner site A is connected
to both sites A′ and A′′. (b) The quadrupole moment Qxy as a function
of kz for the Hamiltonian (1) in the main text at M = −2 calculated
using the original lattice site positions in a quasicrystal. We see
that the quadrupole moment always vanishes. (c), (d) Schematic
illustration of how the lattice site positions are transformed from
(c) to (d) to obtain a generalized quadrupole moment. Specifically,
for a lattice site with the polar angle of θ inside the quasicrystalline
lattice, if mπ � θ � mπ + π/4 (m = 0 or 1), then we change the
angle to θd = mπ + 2(θ − mπ ), and if mπ + π/4 � θ � (m + 1)π ,
then we change it to θd = [2θ + (m + 1)π ]/3.
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APPENDIX A: DETAILS ON CONSTRUCTIONS OF
PERIODIC BOUNDARY CONDITIONS AND SITE

POSITION TRANSFORMATIONS

In the main text, we have applied periodic boundary condi-
tions (PBCs) in the (x, y) plane to calculate the generalized
quadrupole moment and the Bott index. Figure 5 shows
how the PBCs are realized in the Ammann-Beenker tiling

FIG. 6. (a) The bulk spectral DOS at zero energy calculated by
considering the bulk sites as the coupling sites. It is calculated in
a quasicrystalline lattice with 2377 sites. (b) The structure factor in
Fourier space qy.

quasicrystalline lattices. Specifically, the sites at a boundary
are connected to the sites at the other boundary. For example,
the sites B and C at a boundary are connected to the sites B′
and C′ at the other boundary, respectively. The corner sites are
connected to the other two corner sites, e.g., the corner site A
is connected to both sites A′ and A′′.

In the main text, we use the winding number of the gener-
alized quadrupole moment and the generalized Z2 topological
invariant to characterize the topological phases. Their cal-
culations involve the evaluation of the D̂ matrix dependent
on the site positions. If we use original lattice site positions
in a quasicrystal, we obtain zero quadrupole moment [see
Fig. 5(b)]. To obtain the generalized quadrupole moment, we
perform the transformation of site positions [35]. Specifically,
we move the sites in the light-green (blue) region in Fig. 5(c)
to the first or third (second or fourth) quadrant in Fig. 5(d),
while keeping its distance from the center unchanged. After
that, we modify the D̂ matrix accordingly.

APPENDIX B: WEYL-LIKE POINTS REVEALED
BY THE BULK SPECTRAL DOS

In the main text, we have shown that the Fermi arcs appear
in the spectral DOS resolved in the Fourier momentum qy

when we consider surface sites as the coupling sites. In this
Appendix, we provide the spectral DOS at zero energy by
considering the bulk sites as the coupling sites in Fig. 6 and
find that the Weyl-like degenerate points manifest in the spec-
tral DOS as bright spots. The figure also illustrates that the
positions of Bragg peaks of the structure factor in qy perfectly
agree with those of Weyl-like points.
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