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The phase diagram of the one-dimensional hexagonal Harper (HH) model reveals the presence of two metallic
phases and one insulating phase, separated by critical lines and a bicritical point. In our work, we investigate
transport in the different phases by considering both the isolated and open system scenario. For the case of the
isolated system, we study the single-particle dynamics at the bicritical point and along the critical lines. We find
that the single-particle wave packet dynamics is superdiffusive in the critical regions with the transport at the
bicritical point faster than that along the critical lines. In addition, we study domain wall (DW) dynamics via
unconventional multiparticle states in the two metallic phases. The DW state is constructed by partially filling
half of the chain while the other half is kept empty; the dynamics of this state reveals distinct behavior in the deep
metallic regime of the two metallic phases. Interestingly, the distinct behavior is absent if one instead considers
a fully filled half chain. For the open system scenario, we study transport in the nonequilibrium steady state
(NESS). We observe that in the critical regions, transport is subdiffusive in nature. Moreover, we find that the
transport scaling exponents for the open system scenario are the same at the bicritical point and along the critical
lines, unlike the closed system case. In addition, we observe an even-odd size effect on the NESS density and
current and on the optimal system-bath coupling parameter (corresponding to the maximum current) in the deep
metallic regime of the HH model.
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I. INTRODUCTION

Over the years a number of works have focused on un-
derstanding nonequilibrium quantum dynamics particularly
in the context of transport, thermalization, and many-body
localization in low-dimensional many-body quantum systems
[1–6]. These studies have turned out to be crucial for under-
standing how a system relaxes toward a stationary state and
the transport of conserved charges across it. In the case of
integrable systems with an infinite number of local conserved
quantities, the transport is ballistic in nature and the system
acquires a stationary state described by the generalized Gibbs
ensemble. However, in the presence of strong spatial disorder,
transport is suppressed, which results in the localization phe-
nomena [7–9]. Interestingly, a class of nonintegrable systems
with correlated disorder, such as quasiperiodic models, has
been found to exhibit anomalous transport [10–12].

Recent studies on quasiperiodic systems, in particu-
lar the Aubry-André-Harper (AAH) model, have attracted
tremendous interest due to the system’s anomalous transport
properties and the localization transition [10,11,13–16]. One
of the interesting feature of the AAH model is that at the
critical point the eigenspectrum and eigenstates exhibit mul-
tifractality. The transport at the critical point is hampered
since the single-particle eigenstates are not completely de-
localized throughout the system. Recently, it was shown that
the transport at the critical point of the AAH model exhibits
contrasting behavior for the isolated and open system scenar-
ios with the transport being superdiffusive and subdiffusive,
respectively [12]. Moreover, it was found that the transport
becomes diffusive with respect to any quasiperiodic disorder

in the presence of (local) dephasing [17]. While the transport
behavior for the AAH model has been studied extensively,
it is worth exploring whether these results hold for the other
quasiperiodic systems.

The quasiperiodic one-dimensional (1D) AAH model is
a particular case of the extended Harper model, where the
latter is an effective 1D Hamiltonian describing the motion
of a charged particle on a square (with next-nearest-neighbor
hopping) or triangular lattice in the presence of a uniform
magnetic field [18–20]. In the present work, we focus on
an effective 1D Harper model which emerges from a two-
dimensional (2D) tight-binding model on a honeycomb lattice
with anisotropic hopping parameters in the presence of the
magnetic field. We call this the hexagonal Harper (HH) model.
Interestingly, unlike the 1D AAH model where the quasiperi-
odicity is present in the on-site term, in the HH model the
quasiperiodicity is present in the hopping term while there
is no on-site term. The phase diagram as a function of the
anisotropy term differs from that of the extended Harper
model. The phase diagram (see Fig. 1) exhibits two metallic
regions and an insulating region, each of the phases separated
by critical lines, and also a bicritical point where all three
phases meet [21,22].

One of the primary reasons to study the HH model is that
the dynamic aspects of this model have not received much at-
tention in the literature thus far. The studies so far have found
the spectrum for the anisotropic case [23], the characterization
of the gap from the calculation of the bulk Chern number
[21], and the characterization of the various phases via the
fidelity, fidelity susceptibility, von Neumann entropy (VNE),
and multifractal analysis [19,20,22,24,25]. Surprisingly, these
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FIG. 1. The phase diagram of 1D HH model has been plotted by
considering the analysis of average inverse participation ratio while
setting the parameters φ = (

√
5 − 1)/2 and kx, ky = 0. The bicritical

point is found at ta = 1 = tb, where the two metallic phases and one
insulating phase meet. For tb �= ta, tb < 1 is the metallic regime 1
while ta < 1 is the metallic regime 2. The three critical lines are
as follows: metal-1-insulator line (tb = 1, ta > 1), metal-2-insulator
line (ta = 1, tb > 1), and metal-1-metal-2 critical line (ta = tb < 1).

static quantifiers are incapable of distinguishing between the
two metallic regimes. This motivates us to investigate whether
the dynamical features of these two metallic regimes are
identical. A second point of interest is to determine whether
the transport scaling exponents differ at the different critical
regimes of the 1D HH model for the closed and open system
scenarios.

In the isolated system scenario, we find that the single-
particle dynamics in the critical regions is superdiffusive.
Interestingly, the scaling features for the two-point fermionic
correlators differ at the bicritical point compared to the metal-
insulator transition line and the metal-1-metal-2 transition
line with the spread of the two-point correlators faster at the
bicritical point. In the open scenario, we observe subdiffusive
transport in the critical regions with the same scaling expo-
nents along the entire critical regions. However, the transport
scaling exponent for both the isolated and open transport
differs between the HH and AAH models.

To further investigate the quantum many-body dynamics in
the metallic phases we study the domain wall (DW) dynam-
ics. Recently, a significant emphasis has been placed on the
preparation of the inhomogeneous initial states for the study
of the correlation spreading in quantum many-body systems
[26–28]. The typical domain wall state is constructed by fol-
lowing the prescription of the ground state approach (GSA)
as discussed in [29,30]. However, for the case of quasiperi-
odic systems, the GSA fails to produce the desired initial
state (see Appendix B). Alternate approaches considering the
exotic states such as the GSG (Ghosh-Singh-Gangadharaiah)
state [26], rainbow state [31], and Dicke state [32] have been
explored both theoretically and experimentally to construct
the desired initial states. These choices have become feasible
due to the advances in experimental controllability [32–36].
We prepare the DW with the GSG state and the entangled

state. We observe that in the deep metallic regime, the metallic
phase 1 and phase 2 exhibit different transient behavior which
has not been reported previously. Furthermore, we observe
similarities in particle transport between one of the metallic
phases in the HH model and the metallic phase of the AAH
model.

We also find an that an intriguing odd-even size effect
emerges in the NESS particle density and current within both
the metallic phases under open system conditions. Specifi-
cally, the particle density acquires a constant (at 0.5) value
for the even system sizes, while for odd system sizes, it can be
manipulated by tuning the hopping parameters. Interestingly,
we find that for the deep metallic regime, there is an optimal
system-bath coupling parameter for which the nonequilibrium
steady state (NESS) current is maximum. Moreover, the opti-
mal system-bath coupling parameter can be determined by the
anisotropic hopping parameters.

The outline of the paper is as follows. In Sec. II, we discuss
the HH model Hamiltonian. This is followed by the study
of single-particle dynamics in the different critical regions in
Sec. III. In Sec. IV, we study the cross-correlation dynamics
by considering the multiparticle GSG state and the multi-
particle entangled state. We characterize the metallic phases
by their transport properties in Sec. V. The open transport
scenario has been considered in Sec. VI, in which we study
the NESS particle density and the NESS current. Finally, we
conclude our work in Sec. VII.

II. MODEL HAMILTONIAN AND THE PHASE DIAGRAM

In the context of quantum Hall effect physics, the study
of electrons in a 2D periodic potential has received much
attention [19,21,23,37,38]. Two such popular models include
the 2D square lattice with next-nearest-neighbor hopping and
the 2D triangular lattice with the nearest-neighbor hopping
[19,23,38]. The 1D Hamiltonian derived from the above 2D
Hamiltonian is called the generalized Harper model (GHM).
Consider, for example, the GHM corresponding to the trian-
gular lattice given by

H = − t

[ ∑
s

({
1 + λ exp

[
2π i

(
s + 1

2

)
φ

]}
c†

s+1cs + H.c.

)

+ μ
∑

s

cos 2πsφc†
s cs

]
, (1)

where φ corresponds to the magnetic flux per unit cell,
and λ and μ are the nearest-neighbor hopping terms corre-
sponding to each bond of the original 2D triangular lattice
model. The phase diagram of the above 1D model in terms
of the parameters λ and μ consists of two metallic phases
and one insulating phase [19]. Here, we consider an alter-
native 2D lattice model consisting of a hexagonal lattice
with anisotropic hopping in the presence of a perpendic-
ular magnetic field. The anisotropic hexagonal model is
given by [21,22]

H = −
∑

n+m=even

[tac†
n,m+1cn,m + tbe−2π i(n+m)φ

× c†
n+1,mcn,m + tcc†

n−1,mcn,m] + H.c., (2)
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where c†
n,m (cn,m) is the creation operator at site (n, m), and

ta, tb, and tc are the hopping amplitudes along the three dif-
ferent directions (see Fig. 13 in Appendix A), while 2φ is the
magnetic flux enclosed per plaquette of the lattice. The phase
factor associated with the magnetic flux φ is taken to be the
inverse of the golden mean. This model yields an effective
1D model (for details see Appendix A) that also exhibits two
metallic phases and one insulating phase; however, the phase
diagram is completely different (see Fig. 1). The 1D model is
given by

HHarper =
∑

s

(
�l

sc
†
2s−1c2s + �r

s c†
2s+1c2s + H.c.

)
, (3)

where the left and the right hopping parameters are given by
�l

s = −taeikx − tbeiky+i4πsφ and �r
s = −tceikx , respectively. The

operator c†
s /cs represents the creation/annihilation operator at

site s, respectively. Note that while the GHM given by Eq. (1)
involves quasiperiodicity in both the hopping and on-site term,
the HH model has no on-site term while the quasiperiodicity
is present in the hopping term.

In the earlier study [22], the phase diagram of this model
was characterized by the fidelity, fidelity susceptibility, and
VNE. It was shown that the fidelity and fidelity susceptibility
acquire maximum value at the critical regions characterizing
the phase boundaries or critical lines; on the other hand the
rescaled VNE approaches unity in the metallic phase while it
vanishes in the insulating phase. Here, as a complementary
approach we utilize the inverse participation ratio (IPR) in
order to characterize the phase diagram of this 1D Harper
model, and it is defined as

IPRn =
L∑

i=1

|ψn(i)|4, (4)

where |ψn〉 is the nth normalized single-particle eigenstate.
In the delocalized regime, IPRn ∝ L−1, and in the localized
regime, IPRn ∝ L0. We computed the IPR averaged over all
eigenstates as a function of tb/tc and ta/tc while taking tc = 1.
The interplay between ta and tb results in a rich phase diagram
consisting of two metallic phases separated by a critical line
and an insulating phase. The metallic phases and insulating
phase are separated from each other by the critical lines.
The critical lines meet at the point (ta, tb) = (1, 1), known
as the bicritical point of this system shown in Fig. 1. In
contrast to our model, which requires both parameters to
be nonzero in order for a phase transition to occur, for the
triangular lattice model, it is adequate to increase one param-
eter while maintaining the other at zero to trigger a phase
transition [19,22].

III. SINGLE-PARTICLE DYNAMICS
IN THE CRITICAL REGIONS

The spreading of a single-particle wave packet in
quasiperiodic models has been studied extensively near
the critical point [10,12,39–41]. In such scenarios, the
probability distribution of the particle deviates from the
Gaussian distribution resulting in anomalous diffusion.
In previous works involving the single-particle cases, the
focus of attention has been on the survival probability, the

density-density correlator, and the spreading of the wave
packet via the second moment. In this section, we focus
our attention on the analysis of the transport behavior via
single-particle dynamics in the critical regions for the HH
model. We consider the bicritical point and the critical lines
and focus on the single-particle dynamics via the cross
correlation 〈c†

xcL/2〉 as well as the diagonal correlation 〈c†
xcx〉.

For this purpose, we consider a system of length
L with open boundary conditions and an initial state
|00 . . . 01L/20 . . . 0〉, i.e., a single particle localized at the cen-
ter of the lattice system. For this initial state, the two-point
correlator is given by

Ci, j =
{

1, if i = j = L/2,

0, otherwise.

The probability to find a particle at time t is given by P(x, t ) =
|ψ (x, t )|2 = 〈c†

x (t )cx(t )〉, which can be calculated as follows,

〈c†
x (t )cy(t )〉 =

∑
k, j,l,m

[U †] jkUkxUlm[U †]ymei(εk−εl )t

× 〈c†
j (0)cm(0)〉,

where Ukx = 〈k|x〉 and εk is the eigenvalue of H for the kth
single-particle eigenstate |k〉.

We find that the spatial profile of the wave packet broadens
over time, with a power-law decay of the tail. Furthermore,
we notice enhanced wave packet spread at the bicritical
point as compared to the other critical regions. In addition,
we observe that the cross correlation decays slower at the
critical lines compared to the bicritical point, a behavior
consistent with the above consideration. The cross correlation
and the diagonal correlation at the critical regions exhibit the
following scaling law,

〈c†
x (t )cx(t )〉 or 〈c†

x (t )cL/2(t )〉 ∼ t−α f (x/tα ). (5)

From Figs. 2 and 3, we find that the wave packet spreading is
superdiffusive in nature. We notice that at the bicritical point,
the wave packet spreads with the scaling exponent α ≈ 0.72,
while on the critical lines α ≈ 0.65 (as shown in Figs. 2 and 3
for the cross and the diagonal correlations, respectively). The
spread of correlation allows us to distinguish the bicritical
point from the other critical regions. The distinct nature of
the bicritical point is consistent with the earlier studies where
the spectral features of the bicritical point characterized via
level spacing were found to be different as compared to those
from the other critical regions [19,20,22]. Interestingly, we
find that superdiffusive transport in the critical regions of the
1D HH model is faster than the superdiffusive transport at
the critical point of the AAH model which has the scaling
exponent α ≈ 0.55 [12].

IV. METALLIC PHASE CHARACTERIZATION
VIA THE DW DYNAMICS

A. Initial DW setup via the multiparticle states

To study the nonequilibrium dynamics, we set up the initial
DW profiles constructed via the multiparticle states rather than
the GSA. In particular, we have considered two types of exotic
multiparticle states; the first one is the GSG state as defined by
Ghosh et al. [26], the second the entangled state as considered
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FIG. 2. For the isolated system case, the rescaled cross correla-
tions 〈c†

x (t )cL/2(t )〉 have been plotted as a function of position for the
different times in the three different critical regions, which clearly
deviates from the Gaussian distribution in all the above scenarios.
The cross correlations scale with the exponent α ≈ 0.72 at the bicrit-
ical point (1,1), as shown in (a), (b). For the critical line separating
two metallic phases (0.25,0.25) in (c), (d) and for the critical line
separating metallic and insulating phase (1,10) in (e), (f) the scaling
exponent turns out to be α ≈ 0.65. L = 4501.

by Jin et al. [27]. Typically, the DW studies in the past was
performed via the ground state approach in the clean system
scenario where the DW state was prepared by considering the
system in the ground state for the left and the right half of the
system separately for a fixed particle density [30]. However,
for the quasiperiodic scenario, the GSA only works for the
DW state having one half of the chain fully filled while the
other half empty. The GSA fails to create the other nontrivial
DW setups involving one side partially filled and the other side
empty for quasiperiodic systems (see Appendix B for further
details).

First, we consider the GSG state which is defined by [26]

|	1〉 =
L∏

l=1

βl e
λl c

†
l |0〉, (6)

FIG. 3. For the isolated scenario, the rescaled diagonal correla-
tions 〈c†

x (t )cx (t )〉 with positions have been plotted for different times
in the three critical regimes and similarly to the cross correlation, the
diagonal correlation deviates from the Gaussian behavior in the criti-
cal regions. The diagonal correlation follows the power-law behavior
with the scaling exponent α ≈ 0.72 in (a), (b) at the bicritical point
(1,1). For the critical line separating two metallic phases (0.25,0.25)
in (c), (d) and at the critical line separating metallic and insulating
phase (1,10) for (e), (f), the power-law scaling exponent is α ≈ 0.65.
L = 4501.

where L is the total system size, λl = αl e−iφl /βl (αl and βl

being real), and φl is phase at each site. The state is normal-
ized by setting α2

l + β2
l = 1. Moreover, one can manipulate

the occupation at each site by tuning αl and βl such that
α2

l − β2
l = 2ml where ml = 〈c†

l cl〉 − 0.5 and 〈c†
l cl〉 is the oc-

cupation probability at the lth site. For this product state the
two-point correlation matrix elements Ci j = 〈	|c†

i c j |	〉 are
given by

Ci, j =
{

α2
i , if i = j,

αiβiα jβ jei(φi−φ j )Pi j, if i �= j,

where Pi j (for|i − j| > 1) is given by

Pi j =
max{i, j}+1∏

k=min{i, j}+1

(
β2

k − α2
k

)
. (7)
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By setting φl = 0, we obtain λl = αl
βl

and the multiparticle
state becomes

|ψ1〉 =
∏

l

(βl |0〉 + αl |1〉); (8)

therefore, at each site l the occupancy probability can be
controlled by αl . The GSG state provides the flexibility to
control the occupation at each site. For αl = 1 and βl = 0,
we have the fully filled state |111 . . . 1〉. A more complicated
state, such as the Néel state |1010 . . .〉, is obtained by setting
α2l−1 = 1, α2l = 0, and βl = 0. Also one can form a DW
state for filling fraction α2

l where l < L (full length of the
system).

The second type of multiparticle state that we consider is a
spatially entangled state expressed in terms of two parameters,
nd the particle density and lc the number of sites over which
the coherence length is maintained [27]. The state can be
written as

|ψ〉 = 1√( lc
nd lc

) ∑
l

|φl〉, (9)

where l = 1, 2, . . .
( lc

nd lc

)
. The elements of the (two-point) cor-

relation matrix are given by

Cm,n =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

nd , if m = n,

lc−|m−n|
lc

clc
1,1+|m−n|, if m �= n, |m − n| � lc,

and m, n � L,

0, otherwise,

where clc
j,k = tr[ρc†

j ck] is the two-point correlation of the sub-
system of length lc, and ρ = |ψ〉〈ψ |.

Here we are considering the single particle to be spread
over the lc sites; i.e., the density nd = 1/lc and the entangled
state for each particle can be expressed as follows,

|ψ〉 = 1√
lc

lc∑
k=1

c†
k |0〉. (10)

Correspondingly, clc
j,k is given by

clc
i, j = 1/lc for all i, j, (11)

and total wave function is given by

|	2〉 =
∏
i=1

|ψi〉. (12)

By this multiparticle state one can control the particle density
via the coherence length. In Appendixes C and D we study the
dynamics corresponding to this state.

B. DW dynamics via the GSG state approach

The metallic and insulating phases, as well as the crit-
ical regions in the phase diagram of the extended Harper
model, have been characterized in the literature with the help
of multiple techniques, for example the fidelity susceptibil-
ity, von Neumann entropy, and multifractal analysis, all of
which are complementary analyses [20,22,24,25]. However,
the aforementioned methodologies do not distinguish the two

FIG. 4. Here, the domain wall melting has been plotted in the
deep metallic regime of both metallic phases at time t = 100 for
system size L = 600. (a) The initial domain wall state is prepared for
different particle density (〈c†

xcx〉 = ml + 0.5) at the left half while the
right half being empty. (b) The front profile of the rescaled density
exhibits the initial density dependence in MP1 (10, 0.005). (c) For
MP2 (0.005,10), the rescaled density front for different initial density
propagates with the same front profile.

metallic phases [22]. As an alternate approach, we study the
DW dynamics in the metallic regimes. We consider two types
of DW state. The first one is the uncorrelated DW state, in
which half of the chain is entirely filled, and the remaining
region is empty. The second scenario involves a correlated
DW state with partial filling in one half while the other
half is empty. Interestingly, we find that the dynamics of
the uncorrelated DW state is the same for both the metallic
phases; however the dynamics corresponding to the corre-
lated DW state exhibits different behavior in the two metallic
regimes.

We begin by studying the rescaled density in the two
metallic phases with a particular focus on the deep metallic
regimes, i.e., tb 	 1 for metallic phase 1 (MP1) and ta 	
1 for metallic phase 2 (MP2). In both the metallic phases
the front propagation speed is the same; however, the shape
of the rescaled density front for the correlated DW state is
different (see Fig. 4). The rescaled density profile of the cor-
related DW state exhibits the initial DW height dependence
in MP1 [see Fig. 4(b)] while this remains absent in MP2
[Fig. 4(c)]. However, the uncorrelated DW state exhibits the
same dynamics in both the metallic phases. For the corre-
lated DW state, the correlation in the initial state constrains
the dynamics in MP1 and results in a distinct particle den-
sity profile [27], while in MP2 the effect of correlation is
not there.

Next, we investigate the transport dynamics in all regimes
of the phase diagram via the total number of transferred
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FIG. 5. For the fully filled DW constructed by the initial GSG
state, the total number of transferred particles NR(t ) as a function of
ta and tb for different times t has been plotted. L = 600.

particles, NR, from the left to the right half,

〈N̂R(t )〉 =
L∑

x=L/2

〈c†
x (t )cx(t )〉. (13)

For this analysis we first consider a fully filled DW state
and find that the total number of transferred particles is equal
in both the metallic regimes as plotted in Fig. 5. Similarly to
the front propagation studies, the distinction between the two
metallic phases is revealed by considering the partially filled
DW state. In particular, we find that the rate of transfer of
particles is different in the two metallic regimes as shown in
Fig. 6.

The total number of transferred particles NR(t ) at small
time in the deep metallic phase exhibits linear growth with
respect to time (Fig. 7), i.e.,

NR(t ) ∝ tνα, (14)

FIG. 6. The total number of transferred particles NR(t ) as a func-
tion of ta and tb for different times t has been plotted for the partially
filled DW state made by the initial GSG state. L = 600.

FIG. 7. Here, we have plotted the rescaled total number of trans-
ferred particles (NR × l ) and the rescaled particle current (JR × l )
as a function of time t for the different particle densities (ml ) for
metallic phase 1 (10, 0.005) in (a) and (c) and for metallic phase 2
(0.005, 10) in (b) and (d).

where ν = 〈c†
x (0)cx(0)〉 = 1/l is the initial filling fraction,

and α = 1 for both MP1 and MP2; the difference is that while
for MP1 the proportionality constant depends on the filling
fraction, it is independent for MP2 [see Figs. 7(a), 7(b)].
Furthermore, we find that MP1 has a lower total number of
transferred particles than MP2. Figures 7(c) and 7(d) show
that the DW height dependence is also seen in the rescaled
current in MP1, but not in MP2. In addition, we observe that
in MP2 compared to MP1, the transient current has larger am-
plitude. We obtain similar results involving distinct dynamics
of MP1 and MP2 (see Appendix C) for a different type of
entangled state other than the GSG state.

Thus both the GSG and the entangled states are able to
distinguish the two metallic phases. Moreover, we find that
the transport behavior of the MP1 of the HH model is similar
to the transport in the metallic phase of the AAH model, as
shown in Appendix D.

V. THE NESS TRANSPORT FOR THE OPEN SYSTEM

In earlier studies on the open quantum system involving the
AAH model it was established that the NESS transport at the
critical point exhibits anomalous diffusive behavior [11,12].
Here we determine that the transport scaling exponents in the
critical regions of the 1D HH model correspond to subdiffu-
sive transport however, the exponents differ from that of the
AAH model.

We find that in the open scenario, unlike in the isolated
scenario case, the DW transport behavior in the deep metallic
regime of the two metallic phases is identical. In addition, we
find an interesting even and odd system size dependence of
the correlators 〈c†

j c j〉 in both the metallic phases.
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In an open system, the NESS transport can be characterized
by the current, J , scaling with respect to the system size L,
i.e., J ∼ L−α . For 0 < α < 1, the transport is superdiffusive
while for α > 1, the transport is subdiffusive [42]. In the two
limiting scenarios, α = 0 and α = 1, the transport is ballistic
and diffusive, respectively. We utilize the Lindblad master
equation (LME) formalism to study the NESS behavior of
the two-point correlator of the system. The time evolution
equation of the system density matrix ρs(t ) is given by the
usual LME [6,11,17,43],

dρs

dt
= −i[H, ρs] + L1ρs + LLρs, (15)

where the effect of the reservoir on the dynamics of the system
is captured by Li, which is given by

Liρs = γ (1 − fi )
(
ciρsc

†
i − 1

2 {c†
i ci, ρs}

)
+ γ fi

(
c†

i ρsci − 1
2 {c†

i ci, ρs}
)
, (16)

where i = 1, L and γ is the system-bath coupling parameter.
The correlation matrix C at time t is given by

Ci j (t ) = 〈c†
i (t )c j (t )〉 = tr[ρs(t )c†

i c j], (17)

and we can obtain Ci j (t ) (see Appendix E) by solving the
equation

dC

dt
= −(TC + CT †) + P, (18)

where T = iH + γ

2 R with R11 = RLL = 1, and P11 =
γ f1, PLL = γ fL, while all the other Pi j and Ri j vanish. For
the steady state solution, Eq. (18) reduces to the Lyapunov
equation,

TC + CT † = P. (19)

From the NESS correlation matrix, C, we obtain the form of
the current operator as

Jj, j+1 = i�̃ j (c
†
j c j+1 − c†

j+1c j )

= 2Im(�̃ jCj, j+1), (20)

where �̃ j is defined as

�̃ j =
{

taeikx + tbeiky+i4π jφ, j = odd,

tce−ikx , j = even,

and the correlation term Cj, j+1 = 〈c†
j c j+1〉.

The current scaling with the system size for different
phases is plotted in Fig. 8. In the metallic regime the transport
is ballistic, i.e., J ∼ L0, while the current in the insulating
regime decreases exponentially with the system size, i.e.,
J ∼ e−L. Interestingly, unlike the isolated scenario, here
we find that the scaling exponents for the current at the
critical point and the critical lines are identical (α ≈ 1.26),
which is however different from the open system transport
scaling exponent at the critical point of the AAH model
(α ≈ 1.4) [12].

In addition, we have studied the effect of the system-bath
coupling parameter, γ , on the steady state current. We find
that in the deep metallic regime there is an unusual even-
odd size effect on the steady state current. Interestingly, we
find that for odd system size the maximum current in MP2

101 102 103 104
10-15

10-10

10-5

100

FIG. 8. NESS current (J) as a function of system size (L) has
been plotted for different phases. Here, ta = 10, tb = 0.25 is for the
insulating phase, ta = 1 = tb is the bicritical point, ta = 0.25 = tb is
on the metal-1-metal-2 critical line, ta = 10, tb = 1 is on the metal-
insulator transition line (setting φ =

√
5−1
2 , γ = 1).

(MP1) turns out to be independent of tb (ta), while the corre-
sponding optimal values of the system-bath couplings exhibit
linear dependence on the hopping parameter, γopt ∝ tb in MP2
(ta in MP1) as shown in Fig. 9(a). On the other hand, for
the even system size in MP2 (MP1), the maximum current,
Jmax ∝ 1

tb
(Jmax ∝ 1

ta
), is reached at the bath coupling param-

eter γopt ≈ 2 [see Fig. 9(b)]. Furthermore, we find that for
the large system-bath coupling parameter, i.e., γ > γopt, the
current exhibits power-law suppression with respect to the
coupling parameter, J ∝ γ −1. In the other limit, γ < γopt,
the NESS current grows linearly with the system-bath cou-
pling; i.e., J ∝ γ for both the even and odd system sizes.
To characterize the behavior of the local density, we have
plotted the NESS particle density for a specific site in Fig. 10
and particle density profile for different phases in Fig. 11.
While in the insulating phase, localization implies strongly
suppressed flow of particle density [see Fig. 11(a)], in the
critical regions, the particle density decreases continuously
from one side to the other [see Fig. 11(b)]. In the metallic
regime, we again find odd-even system size dependence of
the particle density. For the even system size we find that
the particle density fluctuates around 〈c†

xcx〉 = 0.5, with the
fluctuations suppressed deep in the metallic regime as can be
seen from Fig. 11(c). The fluctuations are suppressed with
the decrease of parameter ta deep in the metallic regime.
Furthermore, for the even system size scenario, we find that
the particle density remains constant for the different tb values
which is shown for the deep metallic regime of the metallic
phase 2 [see the inset Fig. 11(c)]. On the other hand, for the
odd system size, the particle density fluctuation is suppressed
again by the ta parameter which can be seen from Fig. 11(d);
however, the particle density value increases with the increase
of the tb parameter value and reaches the maximum value
〈c†

xcx〉 = 1 shown in the inset of Fig. 11(d). This emerging
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FIG. 9. In the deep regime of MP2 where ta = 0.005, the NESS
current as a function of the system-bath coupling parameter has been
plotted for the odd and even system size. (a) For the odd system size
(L = 151), the maximum current for different points in the metallic
regime is obtained at the different optimal system-bath coupling
values. The linear dependence of optimal system-bath coupling as a
function of tb parameter has been shown in the inset. (b) For the even
system size (L = 150), the NESS current for different tb parameter
values becomes maximum at a constant system-bath coupling param-
eter and the inset depicts the maximum current’s linear dependence
with tb.

even-odd effect can be understood by taking into account the
inherent structure of the Hamiltonian composed of alternating
bonds, �l and �r , which couples with the bath asymmetrically
or symmetrically depending upon the odd or even number
of sites, respectively (see Fig. 12). As a result of symmetric
coupling (i.e., the end bonds are the same), the average NESS
density for the even system size takes the value of the mean
of the two baths while for the odd system size due to the
asymmetric coupling the strength of the hopping plays a cru-
cial role. In the limit tb 
 tc (tb 	 tc), the left (right) bath
density controls the average NESS density in the wire fully
as shown in Fig. 11(d).

FIG. 10. The NESS local particle density has been plotted as a
function of parameters ta and tb for (a) L = 150 considering the even
system size, and (b) L = 151 for the odd system size, respectively.
Here, we have fixed the site index x = 30 and the parameter γ = 1.

VI. SUMMARY

In the present work, we have studied various aspects of the
transport phenomena in the HH model for isolated and open
system scenarios. For the isolated case, the cross correlation
and diagonal correlation exhibit nonuniversal scaling laws
with exponents in the critical regions different from those ob-
tained for the AAH model. By considering the single-particle
dynamics we show that the two-point correlation has a faster
spread at the bicritical point compared to the other critical
regions.

FIG. 11. The particle density profile in the NESS is shown in the
different phases. (a) NESS density for different ta and tb values in
the insulating regime, (b) at the metal-insulator transition line (ta =
10, tb = 1), at the bicritical point (ta = 1, tb = 1), and at the metal-
metal critical line (ta = 0.25, tb = 0.25). The local density has been
plotted in metallic phase 2 with the constant tb parameter for the even
(L = 150) and odd (L = 151) system size in (c) and (d), respectively,
where in the inset of (c) and (d) we consider the local density for the
constant ta parameter (γ = 1).
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FIG. 12. Schematic diagram of the system coupling with the bath
for an even and odd system size and the system Hamiltonian is
considered for the deep metallic regime of MP2. For an odd system
size, the system couples with bath asymmetrically, while for the even
system size, the system couples symmetrically with the bath.

One of the most important aspects of our study in the
isolated system scenario is the establishment of a clear dis-
tinction between the two metallic phases by utilizing exotic
initial states for preparing the system in an inhomogeneous
DW state. In particular, we have obtained a scaling law for
the total number of transferred particles while tracking the
dynamics of the system from an initial domain wall (DW)
state constructed via the GSG state and the entangled state.
We find that for low filling fraction, the transport behavior for
both the GSG state and the entangled state case are different in
the deep metallic regimes of the MP1 and MP2. Our approach
provides an alternative to study such phases from the transport
perspective.

In the open system scenario, the current in the NESS ex-
hibits subdiffusive transport along the critical lines and at the
bicritical point. We find that unlike the transport in the iso-
lated scenario, the open system transport has the same scaling
exponent for the different critical regions. Interestingly, the
transport exhibits an unusual even-odd effect on the system
size. For the even system size the maximum current is found
at a fixed system-bath coupling, γopt ≈ 2tc, while for the odd
system size, the maximum current varies with the optimal
system-bath coupling γopt ∝ tb (ta) for MP2 (MP1). Moreover
transport is found to be identical in the two metallic phases for
the open system scenario.

We also analyzed the NESS density in different phases.
The density profile exhibits completely different behavior in
the metallic, insulating, and critical regions. Interestingly, the
MP1-MP2 transition line exhibits a density profile similar to
the critical phase density profile; however, the two metallic
phases do not exhibit any distinct behavior, unlike the iso-
lated system. We have also studied the dynamics along the
MP1-MP2 transition line in this work, which has not been
previously reported. The analysis of the transport phenom-
ena in the MP1-MP2 critical line is identical to that of the
metal-insulator transition line in both of the scenarios consid-
ering the isolated and the open system. The above analysis
of the present study sheds light on the intricate transport
behavior of the 1D HH model characterizing the distinct
phases and their dynamics. Similar transport behavior can be
expected from the triangular lattice model [Eq. (1)]. Experi-
mentally such a model can be realized in the ultracold atoms
and photonic lattice setup [44–48] where our results can be
verified.

FIG. 13. Visualization of hexagonal Harper model through brick
wall geometry.

APPENDIX A: 1D HEXAGONAL HARPER HAMILTONIAN

The Hamiltonian of the 2D hexagonal model is given by

H = −
∑

m+n=even

[tbe−i2πφ(m+n)c†
n+1,mcn,m

+ tac†
n,m+1cn,m + tcc†

n−1,mcn,m] + H.c. (A1)

For a visual representation of the translational invariance
present in the model, it is convenient to use the brick wall
geometry as shown in Fig. 13. Consider the eigenstate of H
expressed in the following form,

|ψ〉 =
∑
n′,m′

An′,m′c†
n′,m′ |0〉. (A2)

Plugging it into the eigenvalue equation and rearranging terms
we obtain

E |ψ〉 = −
∑

m+n=even

(
tbei2πφ(m+n)An+1,m + taAn,m+1

+ tcAn−1,m)c†
n,m|0〉 −

∑
m+n=odd

(tbe−i2πφ(m+n−1)An−1,m

+ taAn,m−1 + tcAn+1,m

)
c†

n,m|0〉. (A3)

We reparametrize the indices in terms of the new indices s =
−(m + n) and d = m − n with An,m → As,d . Comparing the
coefficients for even s we obtain

EAs,d = −(tbe−i2πφsAs−1,d−1 + taAs−1,d+1 + tcAs+1,d+1).

(A4)

We next define Ãs,kd = ∑
d eikd dAs,d , where kd = (kx −

ky)/2. The above equation thus reduces to the following form,

EÃs,kd = − [(tbe−i2πφs+ikd + tae−ikd )Ãs−1,kd

+ tce−ikd Ãs+1,kd ]. (A5)
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Similarly, comparing the coefficients for odd s and expressing
the equation in the momentum space yields

EÃs,kd = − [(tbei2πφ(s+1)−ikd + taeikd )Ãs+1,kd

+ tceikd Ãs−1,kd ]. (A6)

Corresponding to the equations (A5) and (A6), the following
effective 1D Hamiltonian can be constructed for each of the
kd modes,

HHarper =
∑

s=even

[(−tbei2πφs−ikd − taeikd )c†
s−1cs

− tceikd c†
s+1cs] + H.c. (A7)

=
∑

s

[(−tbei4πφs−ikd − taeikd )c†
2s−1c2s

− tceikd c†
2s+1c2s] + H.c. (A8)

The Hamiltonian given in Eq. (A8) is an equivalent 1D ef-
fective Hamiltonian of the hexagonal Harper model which
yields all the results discussed in the paper. To bring it to
the specific form used in Refs. [22,23], we perform the fol-
lowing gauge transformation: c2s → eikx/2c2s and c2s±1 →
e−iky/2c2s±1 (here we have considered the open boundary con-
dition). This transformation yields Eq. (3) which is used in the
main text:

H =
∑

s

[(−tbei4πφs+iky − taeikx )c†
2s−1c2s

− tceikx c†
2s+1c2s] + H.c. (A9)

APPENDIX B: FAILURE IN CREATING AN INITIAL
CLEAN DW STATE VIA THE GSA

The ground state of the 1D HH model of length L with (av-
erage) filling fraction n

L can be written as |	n
GS〉 = �n

k=1a†
k |0〉,

where a†
k creates a fermionic state in kth lowest-energy state

of the single-particle eigenvalue spectrum [29]. There is no
site-dependent control over the filling in GSA. As can be
seen from Fig. 14, only a fully filled DW can be constructed
perfectly in any of the metallic regimes considering the HH
model (a quasiperiodic system). Moreover, we cannot obtain
perfect/clean DW for a partial filling fraction in the HH model
as shown in Fig. 14; i.e., there are abrupt fluctuations of
the initial particle density due to the quasiperiodicity of the
hopping parameters.

APPENDIX C: DW DYNAMICS CONSIDERING
THE ENTANGLED STATE APPROACH

Here, we have analyzed the dynamics from the initial
DW setup constructed via the entangled state as discussed
in Sec. IV A. We clearly observe that the entangled state in
the deep metallic regime exhibits a unique transport behavior
similar to the GSG state (see Fig. 15). We have also plotted
the particle density as a function of time in Fig. 16, which
also exhibits exactly the same behavior as in the case of
the DW dynamics initialized via the GSG state. The above
analysis indicates that the DW dynamics of the HH model
can be studied in general by considering these kinds of ex-
otic initial multiparticle states, i.e., the GSG state or the

FIG. 14. The initial DW constructed by the GSA in the metallic
regime of the HH model is plotted. The fully filled DW (ν = 1)
is shown for the parameters (ta = 10, tb = 0.005) while the par-
tially filled (ν = 0.25) DW has been plotted with colors orange and
red for parameters (ta = 10, tb = 0.005) and (ta = 10, tb = 0.25), re-
spectively. The initial DW profile exhibits strong fluctuations in the
partially filled case.

entangled state, and irrespective of the nature of the initial
state we obtain the same dynamical behavior once the DW
setup is successfully done. However, the GSA fails in creat-
ing the perfect initial DW state with partial fillings for the
quasiperiodic systems, i.e., the AAH and the HH model in
general.

FIG. 15. The total number of transferred particles NR(t ) as a
function of parameters ta and tb has been plotted for the different
times t considering the DW dynamics initiated by the entangled state
approach (by setting L = 600).
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FIG. 16. The rescaled particle density spread has been shown for
the entangled DW state. (a) Here, the initial DW state for different
coherence length has been plotted, where the right side is filled and
left side is empty. (b) For MP1, the DW front profile exhibits the
coherence length dependence which is associated with the particle
density. (c) For MP2, the DW with different coherence length propa-
gates with the same profile.

APPENDIX D: DW DYNAMICS IN AAH MODEL
VIA THE ENTANGLED STATE APPROACH

We have also studied the DW dynamics for the case of the
AAH model by considering the entangled state approach for
the initial state preparation. We observe that the metallic phase
of the AAH model exhibits a behavior similar to the MP1 as
shown in Fig. 17, and in particular, the two-point correlator
scales as

〈c†
m(t )cm(t )〉 ∝ να, (D1)

NR(t ) ∝ να, (D2)

where α �= 1. Moreover, despite considering a disorder in the
on-site term, it does not exhibit the behavior of the metallic
phase 2 of the HH model.

APPENDIX E: LINDBLAD EQUATION

Considering the system with the Hamiltonian H =∑
i, j Hi jc

†
i c j connected with the bath at each site, the Lindblad

equation describing the time evolution of the state of the
system can be written as

dρs

dt
= −i[H, ρs] +

∑
i

Liρs, (E1)

where the Lindbladian operator characterizing the dissipation
process turns out to be the fermionic annihilation operator,

FIG. 17. Here, for the case of entangled DW state, the rescaled
particle density profile at time t = 100 and the total number of
transferred particles in the metallic phase of AAH model have been
shown. In (a) the rescaled density profile exhibits the dependence on
the initial density. (b) The total number of transferred particles as a
function of time has been plotted. λ = 0.15, L = 600.

Li = ci; then,

Liρs = γ (1 − fi )
(
ciρsc

†
i − 1

2 {c†
i ci, ρs}

)
+ γ fi

(
c†

i ρsci − 1
2 {c†

i ci, ρs}
)
. (E2)

Next, the above equation can be divided into two parts as
follows: Li = γ (1 − fi )L1

i + γ fiL2
i . Furthermore, our goal is

to calculate the two-point correlator, Cm,n(t ) = 〈c†
m(t )cn(t )〉.

Next, we would like to utilize some basic identities given by

tr[A, B]C = −trB[A,C], (E3)

[c†
i c j, ck] = −δikc j, (E4)

[c†
i c j, c†

k ] = δ jkci, (E5)

in calculating the Cm,n(t ). The time evolution of Cmn(t ) is
given by

d

dt
Cm,n(t ) = d

dt
tr[ρs(t )c†

mcn]

= tr

[
∂ρs

∂t
c†

mcn

]
. (E6)

Substituting Eq. (E1) in Eq. (E6) and using the above identi-
ties Eqs. (E3)–(E5), we obtain

d

dt
Cm,n(t ) = tr

[
−i[H, ρs]c

†
mcn +

L∑
i=1

Liρsc
†
mcn

]

= i〈[H, c†
mcn]〉 +

L∑
i=1

〈Lic
†
mcn〉. (E7)

Upon simplifying the first term in Eq. (E7), we obtain

[H, c†
mcn] =

∑
i j

Hi j[c
†
i c j, c†

mcn]

= −
∑

j

Hn jc
†
mc j +

∑
i

Himc†
i cn.
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Next, for calculating the Lic†
mcn, we simplify L1

i (c†
mcn)

and L2
i (c†

mcn), which result in

L1
i (c†

mcn) = ci(c
†
mcn)c†

i − 1
2 {c†

i ci, (c†
mcn)}

= 1
2 c†

i [c†
mcn, ci] + 1

2 [ci, c†
mcn]ci

= −c†
mcn

1
2 (δin + δim) (E8)

and

L2
i (c†

mcn) = cnc†
m

1
2 (δin + δim). (E9)

Then,

Lic
†
mcn = − γi(1 − fi ) 1

2 (δin + δim)c†
mcn

+ γi fi
1
2 (δin + δim)cnc†

m

= − γi

2
(δin + δim)c†

mcn + γi fiδimδmn. (E10)

Finally, by substituting all the above simplified terms in
Eq. (E7), we obtain

d

dt
Cm,n(t ) =

∑
j

(
−iHn j − δ jn

γ j

2

)
c†

mc j −
∑

i

×
(
−iHim + δim

γi

2

)
c†

i cn + γi fiδimδmn. (E11)

By considering T = iH + 1
2 R with R = diag(γ1, γ2, . . . , γL )

and P = diag(γ1 f1, γ2 f2, . . . , γL fL ), we obtain the more com-
pact form,

d

dt
C(t ) = −(TC + CT †) + P. (E12)

For a boundary-driven system, the baths are connected to
the system at the ends only; hence R11 = γ1, RLL = γL and
P11 = γ1 f1, PLL = γL fL, and all other matrix elements of R
and P are zeros. The above matrix Eq. (E12) has been solved
numerically to study the correlation dynamics and transport
phenomena in the open system scenario.
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Steinigeweg, and M. Žnidarič, Finite-temperature transport in
one-dimensional quantum lattice models, Rev. Mod. Phys. 93,
025003 (2021).
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