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A d-dimensional elastic manifold at depinning is described by a renormalized field theory, based on the
functional renormalization group (FRG). Here, we analyze this theory to 3-loop order, equivalent to third
order in ε = 4 − d , where d is the internal dimension. The critical exponent reads ζ = ε

3 + 0.04777ε2 −
0.068354ε3 + O(ε4). Using that ζ (d = 0) = 2−, we estimate ζ (d = 1) = 1.266(20), ζ (d = 2) = 0.752(1), and
ζ (d = 3) = 0.357(1). For Gaussian disorder, the pinning force per site is estimated as fc = Bm2ρm + f 0

c ,
where m2 is the strength of the confining potential, B a universal amplitude, ρm the correlation length of the
disorder, and f 0

c a nonuniversal lattice-dependent term. For charge-density waves, we find a mapping to the
standard φ4 theory with O(n) symmetry in the limit of n → −2. This gives fc = Ã(d )m2 ln(m) + f 0

c , with
Ã(d ) = −∂n[ν(d, n)−1 + η(d, n)]n=−2, reminiscent of logarithmic conformal field theories.

DOI: 10.1103/PhysRevB.109.134203

I. INTRODUCTION

Many disordered elastic systems undergo a depinning
transition. Examples are magnetic domain walls [1–8], earth-
quakes [9–16], contact lines [17–24], vortex lattices [25–29],
charge-density waves (CDWs) [14,25,30–32], and many
more, see the recent review [33].

They all evolve via an overdamped Langevin equation for
the position u(x, t ) of site x at time t :

η∂t u(x, t ) = ∇2u(x, t ) + m2[w − u(x, t )] + F (x, u(x, t )).
(1)

The second term on the right-hand side stems from a confining
potential of strength m2, centered at w. Increasing w adia-
batically slowly drives the system. The last term F (x, u) is a
short-range correlated random force, possibly the u derivative
of a random potential. It is assumed to be Gaussian with
variance (connected part):

F (x, u)F (x′, u′)
c = δd (x − x′)
0(u − u′). (2)

The overbar denotes a disorder average.
The field theory of depinning is by now well established

(see the review [33]). It relies on a functional renormalization
group (FRG) for the disorder correlator 
(u), starting from
the microscopic disorder 
0(u). This idea, already present in
the seminal works of Wilson [34] and Wegner and Houghton
[35], was recognized as crucial by Fisher [36–38], Middleton
and Fisher [39], Narayan and Fisher [40–42], and Balents and
Fisher [43] as well as Nattermann et al. [44] and Leschhorn
et al. [45]. Later, Chauve et al. [46] and Le Doussal et al.
[47,48] showed that, both in equilibrium and at depinning,
a consistent field theory exists up to 2-loop order. This field
theory allows us to deal with the many nontrivial observables
arising for pinned manifolds and especially to treat quanti-
tatively avalanches [49–59], including their distributions of
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size, velocity, and shape in good agreement with simulations
[50,51,60] and experiments [6].

Systems at depinning are characterized by a jerky motion
for their centers of mass uw:

uw := 1

Ld

∫
dd x u(x, t ). (3)

Here, L is the size of the system, and the integral is evaluated
once all motion has stopped. The index w refers to the posi-
tion of the confining potential, which is adiabatically slowly
moved forward. The central ingredient of the field theory is
the renormalized force correlator, defined by the connected
average:


(w − w′) := m4Ld (w − uw )(w′ − uw′ )
c
. (4)

On one hand, it can be calculated in a loop expansion, equiv-
alent to an expansion in ε = 4 − d , where d is the internal
dimension of the manifold. On the other hand, the prescription
in Eq. (4) can be tested in simulations [61,62] and experiments
[8,63–65]. For equilibrium, the loop expansion was extended
to 3-loop order in Refs. [66,67]. Here, we report 3-loop results
for the β function and the critical force at depinning. Our first
central result is the roughness exponent ζ :

ζ = ε

3
+ 0.047 770 971 5ε2 − 0.068 354 4(2)ε3 + O(ε4).

(5)
It can numerically be measured by considering the finite-size
scaling of the 2-point function in the limit of m → 0:∫

x,y
[u(x) − u(y)]2 ∼ L2d+2ζ , (6)

or for a finite m:

[u(x) − u(y)]2 ∼ m−2ζ for m|x − y| � 1. (7)

The second relevant observable is the critical force per site
(force density):

fc := m2(w − uw ) ≡ −F (x, u(x, t )). (8)
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FIG. 1. 
̃(w) for mL = 4 (blue, top curve) and mL = 6 (red).

The last equality is verified by integrating the equation of
motion in Eq. (1), assuming periodic boundary conditions. We
show below that

fc = m2(w − uw ) = f 0
c − Bm2ρm, (9)

B = 1 − 0.309 98ε + 0.570 136ε2 + O(ε3). (10)

Here, f 0
c has a lattice-dependent (but m-independent) value, B

is a universal amplitude, m2 is given by the experiment, and
ρm is a length scale in the driving direction set by the disorder,
see Fig. 2:

ρm := 
(0)

|
′(0+)| � ρ̃m−ζ . (11)

An example for 
(w) is given in Fig. 1. For small m, fc

converges to m2−ζ times a system-specific amplitude ρ̃, set by
the microscopic disorder. While ρm needs to be measured, the
confining potential strength m2 is imposed in the simulation
or experiment. Should it be unknown or insufficiently well
known in the experiment [68], it can be extracted from the
linear part of the force-extension curve.

The amplitude B in Eq. (10) is universal, independent of
microscopic details. This is a quite astonishing result, as it
is rarely possible to have a universal amplitude rather than a
universal exponent. As we will see below, the reason this hap-
pens here is that the diagrammatic result does not resum into
a power law in m, but instead, it depends logarithmically on

FIG. 2. 
(w) for mL = 6 (blue) and L = 1024. The tangent at
w = 0 defines the correlation length ρm.

m, and varying B ln m gives back B. The final result contains
a power law since it is still multiplied by ρm. We explain this
in detail in Sec. IV.

The situation is even more extraordinary for CDWs, for
which ζ = 0. As we discuss in Sec. V, CDWs can be mapped
onto the O(n) model in the limit of n → −2. For this case,
Eqs. (9) and (10) reduce to

fc

m2
= const. − Ã(d ) ln(m), (12)

Ã(d ) = −∂n[ν(d, n)−1 + η(d, n)]n=−2. (13)

Here, ν(d, n) and η(d, n) are the critical exponents ν and η of
the O(n) model in dimension d = 4 − ε. Equations (12) and
(13) are reminiscent of logarithmic conformal field theories
(log-CFTs) [69,70]: When two operators collide as a function
of an external control parameter, here, n, the renormalization
group (RG) flow becomes nondiagonalizable and replaced by
a rank-2 Jordan-block form, leading to a universal amplitude
in front of a logarithm, very much as in Eqs. (12) and (13).

The remainder of this paper is organized as follows: In
Sec. II, we start with the RG analysis for depinning. After
a brief reminder of how to perform a FRG and the problems
involved, we derive and analyze in Sec. III the RG β function,
the critical exponent ζ , and the shape of the renormalized
disorder correlator. The critical force is treated in Sec. IV. We
then specialize to CDWs in Sec. V, which allows us to use
high-order RG calculations for the O(n) model. Section VI
confirms our analytical calculations with numerical simula-
tions. Conclusions are offered in Sec. VII. Technical details
and results for specific cases are given in various appendices.

II. RG ANALYSIS

A. Field theory of the depinning transition, response function

Here, we briefly review the basics of perturbation theory
and renormalization for depinning as written in Eq. (1). For
a detailed introduction, we refer the reader to section 3 of
Ref. [33]. The idea is to discretize the equation of motion in
Eq. (1) as

u(x, t + δt ) = u(x, t ) + δt

η
[∇2u(x, t ) + m2[w − u(x, t )]

+ F (x, u(x, t ))]. (14)

For x and t fixed, this is achieved by writing, for the ex-
pectation 〈O〉 of any observable O depending on u(x, t + δt )
[71–76]:

〈O(u(x, t + δt ))〉

= η

δt

∫ i∞

−i∞

dũ(x, t )

2π i

∫ ∞

−∞
du(x, t + δt ) O(u(x, t + δt ))

× exp
(

ũ(x, t )
( η

δt
[u(x, t + δt ) − u(x, t )] + ∇2u(x, t )

+ m2[w − u(x, t )] + F (x, u(x, t ))
))

. (15)

The integral over ũ(x, t ) enforces Eq. (14), as in
∫ ∞
−∞

dk
2π

eikx =
δ(x); the final integral over u(x, t + δt ) ensures that the latter
takes its appropriate value, proving Eq. (15).
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Note that we have used the so-called Itô discretization,
where the right-hand side of Eq. (14) is evaluated at time t . If
one were to take t + δt/2 or t + δt , a nontrivial factor would
appear.

The strategy forward is now clear: Define the path-integral
measure:∫

D[ũ]D[u] :=
∏

x

∏
t

η

δt

∫ i∞

−i∞

dũ(x, t )

2π i

∫ ∞

−∞
du(x, t + δt ),

(16)
and action:

S[u, ũ, F ] =
∫

x,t
ũ(x, t )[(η∂t − ∇2 + m2)(u(x, t ) − w)

− F (x, u(x, t )) − η(x, t )]. (17)

The proper definition of η∂t is as given in Eq. (15). While
ũ(x, t ) in the path integral is purely imaginary, it can be con-
tinued analytically if the integration path remains convergent.

The expectation of an observable O (which can now de-
pend on any of the variables in the measure) reads

〈O〉 =
∫

D[ũ]D[u] exp(−S[u, ũ, F ]) O. (18)

The final step is to average over disorder, which by assump-
tion is Gaussian with variance given in Eq. (2). Denoting
this by an overline, we obtain the disorder-averaged action
exp(−S[u, ũ]) := exp(−S[u, ũ, F ]), with

S[u, ũ]

=
∫

x,t
ũ(x, t )

[
(η∂t−∇2+m2)[u(x, t )−w]−η(x, t )

]

− 1

2

∫
x,t,t ′

ũ(x, t )
0(u(x, t )−u(x, t ′))ũ(x, t ′). (19)

For simplicity of notations, we put η → 1 in the remainder
of this paper. The response function is defined as the answer
of the system to a perturbation by the force f (x, t ), which we
add to the right-hand side of Eq. (1):

R(x′, t ′|x, t ) := δ

δ f (x, t )
u(x′, t ′) = 〈u(x′, t ′)ũ(x, t )〉. (20)

While the overbar indicates a disorder average, the angular
brackets denote averages with respect to the action in Eq. (17).
In a translationally invariant system, R(x′, t ′|x, t ) only de-
pends on x′ − x and t ′ − t and is denoted by

R(x′ − x, t ′ − t ) := R(x′, t ′|x, t ). (21)

The most convenient representation is the spatial Fourier
transform. For the free theory, it reads

R(k, t ) = 〈u(k, t+t ′)ũ(−k, t ′)〉
= exp(−(k2 + m2)t )(t ). (22)

This form allows us to integrate over time, even in the pres-
ence of a nontrivial time behavior, as we will see arising in the
next section.

B. Complications due to the nonanalyticity of the disorder

To perform the calculations, we define a graphical notation
for the disorder vertex:

(23)

The arrows represent the response fields ũ(x, t )ũ(x, t ′); the
dashed line the disorder 
(u(x, t ) − u(x, t ′)); and integration
over x, t , and t ′ is implicit. (The spatial coordinate x is not
written.)

Let us illustrate the problem with one of the many 2-loop
diagrams:

(24)

An arrow between two points represents the response function
in Eq. (22), with the momentum it carries indicated and time
advancing in the direction of the arrow. An arrow entering
into a vertex corresponds to a Wick contraction and yields a
derivative. Labeling the space coordinates at the bottom left
by x, bottom right by y, and top by z, the diagram reads (up to
a global prefactor):∫

k,p

∫
t1

∫
t2

∫
t3

∫
t4


′(u(x, t2) − u(x, t1))

× 
′(u(y, t4) − u(y, t3))
′′(u(z, t5) − u(z, t6))

× R(k, t3 − t1)R(k + p, t2 − t3)

× R(p, t5 − t2)R(p, t5 − t4). (25)

Since the response functions decay exponentially fast,
they imply that t1 ≈ t2 ≈ t3 ≈ t4 ≈ t5, whereas t6 and thus
u(z, t5) − u(z, t6) are arbitrary time and arbitrary position dif-
ferences, respectively. Denoting this possibly large difference
in position by w, 
′′(u(z, t5) − u(z, t6)) → 
′′(w) can take
any (allowed) value. This is not the case for the other argu-
ments, e.g.,


′(u(x, t2) − u(x, t1)) → 
′(u) for u > 0 small

� 
′(0+), (26)

since t2 > t1 due to the causality of the response functions
R, and u(x, t ) increases monotonically with time (Middleton
theorem [77], see sec. 3.3 of Ref. [33]). The delicate factor is


′(u(y, t4) − u(y, t3)) � 
′(0+)sign(t4 − t3), (27)

where we have again expanded for small times. It can have
both signs. The integral to be performed is proportional to∫

k,p

∫ t5

−∞
dt2

∫ t2

−∞
dt3

∫ t3

−∞
dt1

∫ t5

−∞
dt4 exp(−[m2+k2](t3−t1))

× exp(−[m2+(k+p)2](t2−t3))

× exp(−[m2 + p2](t5 − t2))

× exp(−[m2 + p2](t5 − t4))sign(t4 − t3). (28)
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Without a sign function, all integrals can be evaluated via a
single rule:∫ t

−∞
dt ′ exp(−[m2 + k2](t − t ′)) = 1

m2 + k2
. (29)

In contrast, Eq. (28) leads to the unusual combination:∫
k,p

1

[k2 + m2][(k + p)2 + m2]2[p2 + m2]

−
∫

k,p

1

[k2 + m2][(k + p)2 + m2]2[(k + p)2 + p2 + 2m2]
.

(30)

The first line is a standard diagram:

(31)

In contrast, the second line of Eq. (30) is a genuinely new
contribution. What we will see in the following is that, up to
3-loop order, for the effective disorder correlator and the force
at depinning, all these new diagrams cancel. In contrast, in dy-
namic diagrams, i.e., those correcting the dynamic exponent z,
these contributions appear.

In the next section, we list all diagrams contributing to the
renormalization of 
(w) up to 3-loop order. Each dynamic
diagram, as plotted in Eq. (24), reduces to a static (momen-
tum) diagram upon dropping the temporal information, i.e.,
dropping the direction in which an arrow goes as well as the
times at the vertex. Graphically this amounts to the temporal
reduction:

(32)

To alleviate the notations, we only draw the temporally re-
duced (static) representation for each diagram in the next
section. This should not be confounded with the momentum
integral itself. Surprisingly, for each correction to the disorder,
the only momentum integral which survives after summation
over all temporal configurations is the temporally reduced
diagram read as a momentum integral, as in Eq. (31).

C. Diagrams correcting the disorder

Denoting by δ(�) the contributions at �-loop order, the cor-
rections to the disorder up to 3-loop order shown in Fig. 3 are
given by

δ(1)
(w) = (a), (33)

δ(2)
(w) = (A) + (B), (34)

δ(3)
(w) = (h) + (i) + ( j) + (k) + (l ) + (m) + (n)

+ (o) + (p) + (q). (35)

The different diagrams are given in Fig. 4. To simplify the
expressions and for easier comparison with the statics, we
write the diagrams as minus a total second derivative, .such

(a) = (A) = (B) =

(h) = (i) = (j) =

(k) = (l) = (m) =

(n) = (o) = (p) =

(q) =

FIG. 3. Diagrams at 3-loop order (without insertion of lower-
order counterterms).

that the expression would be the correction to the potential
correlator R(w) [i.e., 
(w) = −R′′(w)]. The additional terms
at depinning, as compared with the statics, are underlined. We
note that not all terms can be integrated explicitly, the notable
exception being ∼
′′(w)2.

III. THE β FUNCTION AND ITS FIXED POINT

A. The β function

Using the above diagrams and the integrals tabulated in
Appendix A, we write the dimensionfull effective disorder
correlator 
eff (w):


eff (w) = 
0(w) + δ(1)
(w) + δ(2)
(w)

+ δ(3)
(w) + · · · (36)

The right-hand side is a function of the bare disorder 
0(w),
its derivatives, and m. The β function for the renormal-
ized (effective) dimensionfull disorder correlator 
eff (w) as
a function of the bare disorder 
0(w) is defined as

∂�
eff (w) := −m∂m
eff (w)|
0

= ε[δ(1)
(w) + 2δ(2)
(w) + 3δ(3)
(w) + · · · ].

(37)

There are two steps left: first, rewrite Eq. (36) as a rule:


0(w) → 
eff (w) − δ(1)
(w) − δ(2)
(w) − δ(3)
(w),
(38)

where, as above, δ(i)
(w) are functions of the bare disorder

0(w) (and its derivatives). Applying this rule three times to
∂�
eff (w) gives ∂�
eff (w) as a function of 
eff (w) instead of

0(w).

In a second step, define


̃(w) := εI1m2ζ 
eff (wm−ζ ). (39)

This rescaling with εI1 and the roughness exponent ζ allows
us to obtain a fixed point. Rescaling with εI1 ∼ m−ε instead
of m−ε eliminates cumbersome numerical factors.

134203-4



ROUGHNESS AND CRITICAL FORCE FOR DEPINNING … PHYSICAL REVIEW B 109, 134203 (2024)

FIG. 4. All diagrams correcting the disorder up to 3-loop order. All 
 are bare 
0, with the index suppressed for compactness of notation.

While we calculated the corrections to 
(w), we report its integrated form δR(w) := − ∫ w

0 dw′ ∫ w′
0 dw′′ δ
(w) for compactness. This is

the correction to the potential correlator R(w). The nonunderlined terms are present in the statics [66]; the underlined ones are additional
contributions at depinning. We note that the following expressions are proportional to each other: (o) ∼ (l ) and (h) ∼ ( j). The momentum
integrals, which correspond to the icons in the same line, are given in Appendix A.
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This yields the β function for the renormalized dimensionless disorder 
̃(w):

∂�
̃(w) = (ε − 2ζ )
̃(w) + ζw
̃′(w) − ∂2
w

{
1

2
[
̃(0) − 
̃(w)]2

}

− ∂2
w

((
−1

2
− ε

4
+ C3ε

)
{
̃′(0+)2
̃(w) + [
̃(w) − 
̃(0)]
̃′(w)2}

)

− ∂2
w

(
3

4
ζ (3)[
̃′(w)4 − 2
̃′(0+)2
̃′(w)2 + 8
̃′(0+)2
̃′′(0)
̃(w)]

+ 2
̃′(w)2{
̃′(0+)2 + [
̃(w) − 
̃(0)]
̃′′(w)}

+C3

{
[
̃(w) − 
̃(0)]2
̃′′(w)2 − 1

2

̃′(w)4 + [
̃(0) − 
̃(w)]
̃′(w)2
̃′′(w) − 6
̃′(0+)2
̃′′(0)
̃(w)

})

+ 2
̃′(0+)2
̃′′(w)2 + O(
̃5), (40)

C3 = ψ ′( 1
3

)
6

− π2

9
. (41)

The first two terms are a consequence of the rescaling
Eq. (39), while the remaining ones are the direct loop cor-
rections: The 1-loop term is on the first line, the 2-loop terms
on the second line, followed by the 3-loop contributions.

Let us compare this β function to the 3-loop result in
equilibrium, obtained in Ref. [66]. We see that the flow equa-
tions differ by anomaly terms [terms proportional to 
′(0+)2].
All additional terms (at depinning, as compared with equilib-
rium) are underlined in Fig. 4. Let us already point out that, in
equilibrium, the random-field (RF) fixed point (FP) discussed
in the next section has a trivial exponent of ζ = ε/3 to all
orders.

B. Fixed point

Equation (40) has a discrete set of fixed points (FP), among
which one is fully attractive and represents the dominant
random-field universality class, see, e.g., Ref. [33]. While we
could in principle follow the flow to this attractive fixed point,
it is better to directly write down the fixed-point equation,
which gives ζ and 
̃(w) to 3-loop order. While at 1-loop order
we can do this analytically, much of the information for 2-loop
and 3-loop order must be obtained numerically. Useful ana-
lytic constraints are obtained by integrating Eq. (40) over w:

0 =
∫ ∞

0
∂�
̃(w)dw

= (ε − 3ζ )
∫ ∞

0

̃(w)dw −

(
1 − 2C3ε + ε

2

)

̃′(0+)3

+ 3[2 − 3C3 + 2ζ (3)]
̃′(0+)3
̃′′(0)

+ 2
̃′(0+)2
∫ ∞

0

̃′′(w)2dw. (42)

We used that 
̃(w) is decaying fast to zero for w → ∞;
thus, all boundary terms at infinity vanish. Here, limw→∞
w
̃(w) = limw→∞ 
̃′(w) = · · · = 0. We make the ansatz


̃(w) = ε

3
y(w) + ε2

18
y2(w) + ε3y3(w), (43)

ζ = ε

3
+ ζ2ε

2 + ζ3ε
3 + · · · , (44)

y(0) = 1, y2(0) = 0, y3(0) = 0. (45)

(The numerical factors 1
3 and 1

18 are for historical reasons, to
agree with the conventions of Ref. [47]).

C. 1-loop order

After integrating the 1-loop solution twice, this yields (see,
e.g., Ref. [33], sec. 2.6)

w2

2
− y(w) + ln(y(w)) + 1 = 0. (46)

This is a simple expression for w(y). Mathematica knows the
inverse function y(w) as a ProductLog:

y(w) = −W

(
− exp

(
−w2

2
− 1

))
. (47)

Its series expansion is

y(w) = 1 − w + w2

3
− w3

36
− w4

270
− w5

4320
+ w6

17 010

+ 139w7

5 443 200
+ w8

204 120
+ 571w9

2 351 462 400

− 281w10

1 515 591 000
+ · · · . (48)

Integrals we need later are

a1 :=
∫ ∞

0
dw y(w) = 0.775 304 245 188 337 8, (49)

a2 :=
∫ ∞

0
dw y′′(w)2 = 0.447 507 639 805 221 35. (50)

Simple analytical integral representations are obtained by con-
verting the w integrals into y integrals:

a1 =
√

2
∫ 1

0

√
y − ln(y) − 1 dy, (51)

a2 = 2

3
+

√
2

∫ 1

0

y
√

y − ln (y) − 1

(y − 1)5

× [(y − 1)(y + 5) − 2(2y + 1) ln (y)] dy. (52)
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D. 2-loop order

As a first consequence of the integral relation in Eq. (42), we find to order ε2

−ζ2

∫ ∞

0
y(w) dw −

[
y′(0)

3

]3

= 0. (53)

Equation (42) at 2-loop order then yields

ζ2 = 1

27a1
= 0.047 770 971 546 823 057 794 614 541 634 509 315 938 52

= 0.143 312 914 640 469 173 383 843 624 903 527 947 815 6

3
. (54)

We then need y2(w). A good approximation is obtained by
solving the 2-loop β function perturbatively around 0 and then
producing a fit for y2(w)/y(w)2:

y2(w) ≈ (−1.140 12w − 1.312 45w2 − 0.927 184w3

− 0.509 678w4 − 0.237 76w5 − 0.098 335 7w6

− 0.037 020 5w7 − 0.012 913 5w8

− 0.004 228 06w9

− 0.001 312 26w10 + · · · )y(w)2. (55)

A second approximation stems from the observation that
y2(w) ≈ const. wy′(w), which would arise when the second-
order solution just changes its amplitude, and this amplitude
change is absorbed via a rescaling, sending w → w[1 +
O(ε)]. We can therefore write (with more terms used in
practice)

y2(w) ≈ [1.140 12 + O(w)]wy′(w). (56)

Another approximation is to do a Taylor expansion on
y2(w)/[wy′(w)] and then use the diagonal Padé for its ap-
proximation. We show for illustration a relative low-order
approximant:

y2(w) = 1.140 12 − 0.597 926w + 0.093 139 3w2 + · · ·
1 − 0.342 252w + 0.046 522 1w2 + · · ·

×wy′(w). (57)

Later, we need

a3 :=
∫ ∞

0
y2(w) dw = −0.636 336(1 ± 7 × 10−5). (58)

The error bar is from a numerical solution of the FP equation
combined with the approximations in Eqs. (55)–(57).

E. 3-loop order

The integral relation in Eq. (42) to next order reads

0 = −ζ3a1 − ζ2

6
a3

−
(

−2C3 + 1

2

)
y′(0)3

33
− 3

y′(0)2

32

y′
2(0)

18

+ 3[2 − 3C3 + 2ζ (3)]
y′(0)3

33

y′′(0)

3

+ 2
y′(0)2

32

a2

32
. (59)

Inserting everything we calculated above, we find [78]

ζ3 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−0.068 354 5 from Eq. (55) at order 30,

−0.068 354 7 from Eq. (55) at orders 30–40,

−0.068 354 436 from Eq. (56) at order 30,

−0.068 354 414 from Eq. (57) from Padé15,15,

−0.068 354 4 with a3 from shooting for y2(w).
(60)

Solving the β function numerically via shooting, we find

ζ3 = −0.068 354 4. (61)

This value is especially consistent with the last value in
Eq. (60). The relative difference of the above values is better
than 10−5.

We can also create a series expansion for y3(w), as we did
for y2(w). Doing this and using shooting with 
(w = 4) = 0
[instead of 
(∞) = 0], we find (probably less reliable)

ζ3 = −0.068 380 3. (62)

Neglecting this last value, our confidence for ζ3 is

ζ3 = −0.068 354 4(2). (63)

F. Numerical values and resummation

Figure 5 shows both the direct sum as well as various
approximations. From the various Padé approximants, the
best one is Padé2,1:

ζ (ε) ≈ ε

1
3 + 0.524 731ε

1 + 1.430 88ε
+ O(ε4). (64)

It is the only Padé approximant which is monotone
for large ε.

A similar approximant can be used for a Padé-Borel resum-
mation. To this aim, we define

ζ Borel(t ) :=
∞∑

n=1

ζntn

n!
. (65)
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FIG. 5. ζ (ε) in different schemes: 1-loop (black, dashed), direct
2-loop (cyan), direct 3-loop (green), as well as two Padé appoxi-
mants: Padé1,2 (red) and Padé2,1 (blue). For the latter, we also show
the Padé-Borel resummation as explained in the main text. The black
dots are the result of numerical simulations for d = 2, 3, and the
exact values ζ = 5

4 in d = 1 as well as ζ = 2 in d = 0.

This series stops at order t3 (3-loop order). As above, the Padé
approximant which behaves well for large t is Padé2,1:

ζ Borel
Padé2,1

(t ) =
t
3 + 0.182 872t2

1 + 0.476 96t
. (66)

Using this, we obtain an approximation [79] for ζ :

ζ Padé-Borel(ε) :=
∫ ∞

0

dt

ε
ζ Borel

Padé2,1
(t ) exp

(
− t

ε

)
. (67)

Let us use this as a reference for the best 3-loop ap-
proximation. We remark that, in d = 3, there is a marked
improvement, and the ε-expansion result is now spot on the
numerical solution, probably even more precise than the latter.
In d = 2, the improvement in precision is also noticeable,
with a relative deviation of <4%. In d = 1, the relative error
is now at 12%, while d = 0 is out of reach.

To improve the precision, we can use the information in
d = 0, where ζ = 2 (with

√
ln corrections); this fixes the

TABLE I. Comparison of the various approximations for ζ and
numerical values.

Method d = 0 d = 1 d = 2 d = 3

Numeric/exact 2 5
4 0.753(2) 0.355(10)

1-loop 4
3 1 2

3
1
3

Direct 2-loop 2.097 67 1.429 94 0.857 75 0.381 10
Direct 3-loop −2.277 02 −0.415 63 0.310 92 0.312 75
Padé1,2 0.330 33 0.384 54 0.412 60 0.307 99
Padé2,1 1.447 01 1.081 23 0.716 15 0.352 99
Padé-Borel2,1 1.478 06 1.100 53 0.725 39 0.355 12
Improved 2 1.265 67 0.753 41 0.357 16
Twice improved 2 1.25 0.751 82 0.356 58

coefficient of an additional quartic term:

ζ improved(ε) = ζ Padé-Borel(ε) + 0.002 038 84ε4. (68)

With this correction, the prediction in d = 1 becomes 1.266,
very close to the analytically known value of ζ = 5

4 [80].
Using in addition ζ (d = 1) = 5

4 , we find

ζ twice improved(ε) = ζ Padé-Borel(ε) + 0.001 264 88ε4

+ 0.000 193 49ε5. (69)

This is summarized in Table I. Our best predictions and error
estimates for the unknown dimensions d = 2 and 3 thus are

ζ best
d=2 = 0.752(1), (70)

ζ best
d=3 = 0.357(1). (71)

G. The β function in minimal subtraction

The minimal subtraction scheme takes a prominent role
in high-order RG calculations. How can this be implemented
here? The idea is to make an ansatz for 
r (w) as a functional
of 
0(w) and then to write the effective 
eff (w) in Eq. (36)
as a function of 
r (w), keeping only singular terms (mini-
mal subtraction). Since 
eff (w) is an observable, it must be
finite when expressed in terms of 
r (w). This uniquely fixes

r (
0). Let us make the ansatz:


r (w) = 
0(w) + δ(1)
(w) + S ◦ δ(2)
(w) + δ(3)
(w)

+ 1
8 (F ◦ IA)I1

(
7
[

0(w) − 
0(0)

]

′

0(w)2
′′
0 (w) + 
′

0(0)2
{
6
′′

0 (0)
0(w) + [
0(w) − 
0(0)]
′′
0 (w)

}
+
′

0(w)4 + 2[
0(0) − 
0(w)]2
0
(3)(w)
′

0(w)
) + · · · (72)

Here, S extracts the singular (in ε) part of a diagram, while F extracts its finite part (S + F ) ◦ I ≡ I . The expression in big
parentheses is what is obtained if one inserts the 1-loop expression into the 2-loop expression (repeated counterterm). This
operation is successful, as


eff (w) = 
r (w)+4C3−1

8

(
2[
r (0)−
r (w)]
′′′

r (w)
′
r (w) − 
′′

r (w){
′
r (0)2+5
′

r (w)2 + 2[
r (w)−
r (0)]
′′
r (w)}). (73)
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The ensuing β function is longer than that in Eq. (40), and we refrain from putting it here. It is more interesting to look at the
difference:

∂�
̃(w) − ∂�
r (w)|
r=
̃ = −4C3−1

4
∂2
w

{
ε[
̃(0) − 
̃(w)][
̃′(0)2 + 
̃′(w)2]

}
− 4C3−1

8
∂2
w

(

̃′(w)4 + 2[
̃(w) − 
̃(0)]
̃′(w)2
̃′′(w)

+ 2[
̃(0) − 
̃(w)]
{
[
̃(w) − 
̃(0)]
̃′′(w)2 − 6
̃′(0+)2
̃′′(0)

})
. (74)

A consistency check is that this yields the same ζ3. Integrating this equation over all w yields∫ ∞

0
∂�
̃(w) − ∂�
r (w)|
r=
̃dw = 4C3−1

2
ε
̃′(0+)3 + 9(1−4C3)

4

̃′(0+)3
̃′′(0). (75)

Using Eqs. (43) and (48) shows that this vanishes at the required order ε4. Thus, ζ is independent of the scheme up to 3-loop
order.

IV. THE CRITICAL FORCE

While renormalization of the disorder was already considered in the original 2-loop calculation [46,47], the dependence of
the critical force at depinning was only considered in simulations [62] but not via RG. Here, we address this issue. We give
explicit results for each of the dynamic diagrams involved up to 2-loop order.

A. 1 loop

The diagram in question is

= ũ(x, t2)
∫

t1,k

′

0(u(x, t2) − u(x, t1))exp(−(t2 − t1)(k2 + m2))(t1 < t2)

� ũ(x, t2)
∫

t1,k
[
′

0(0+) + 
′′
0 (0+)(t2 − t1)u̇(x, t2) + · · ·]exp(−(t2 − t1)(k2 + m2))(t1 < t2)

= ũ(x, t2)
∫

k


′
0(0+)

k2 + m2
+ 
′′

0 (0+)

(k2 + m2)2
u̇(x, t2) + · · · (76)

The first term is the correction to the critical force, the second term the correction to friction. In summary,

δ f (1)
c = 
′(0+)Itp, (77)

(78)

See Appendix A 2 for the integral.

B. 2 loop

At 2-loop order, there are seven contributions to the critical force. Including all combinatorial factors, these read

δ(2) fc = F1 + F2 + F3 + F4 + F5 + F6 + F7, (79)

(80)

(81)

(82)
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(83)

(84)

(85)

(86)

The nontrivial diagram F3 is

F3 = 
′(0+)
′′(0+)
∫

k,q

∫
t1,t2,t3

exp(−k2t1 − (k + q)2t2 − q2t3 − m2(t1 + t2 + t3))sign(t3 − t1)

=
∫

k,q

k2 − q2

(k2+m2)(q2+m2)(k2+q2+2m2)((k+q)2+m2)
= 0. (87)

Further cancelations read

F2 + F5 + F6 = 0, F4 + F7 = 0. (88)

Thus,

7∑
i=1

Fi = F1 = −
′(0+)
′′(0)Iss. (89)

The sunset diagram Iss reads

(90)

It is evaluated in Appendix A 4:

Iss = m2

[
− 3

2ε2
− 9

4ε
− 3(7 − 4C3)

8
+ · · ·

]
(εI1)2. (91)

C. 3 loop

At 3-loop order, there are nine diagrams, shown in Fig. 6.
Diagram (r) reads

(92)
The integral is calculated in Appendix A 9:

(93)

After some tedious calculations, one surprisingly finds that all
remaining contributions vanish:

(s) = (t ) = (u) = (v) = (w) = (x) = (y) = (z). (94)

D. Critical force to 3-loop order and flow equation

Up to UV-cutoff dependent terms,

fc = 
′
0(0+)Itp − 
′

0(0+)
′′
0 (0+)Iss

+ [2
′′′
0 (0)
′

0(0)2 + 3
′
0(0)
′′

0 (0)2]Ir + · · · (95)

(b) (C) (D)

(r) (s) (t)

(u) (v) (w)

(x) (y) (z)

FIG. 6. All spatial diagrams for corrections of Fc and η; the first
three diagrams (without label) are the 1- and 2-loop contributions.
The remaining nine diagrams (r) to (z) are 3-loop contributions.
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The following flow is finite (the �-dependent terms have
disappeared under the m variation):

− m∂m〈u − w〉
≡ m∂m[ fcm−2]

= −εm−2
{

′

0(0+)Itp − 2
′
0(0+)
′′

0 (0+)Iss

+ 3[2
′′′
0 (0)
′

0(0)2 + 3
′
0(0)
′′

0 (0)2]Ir + O
(

4

0

)}
.

(96)

The following step is to replace 
0(w) by 
eff (w) using
Eq. (38). In the next step, we use a generalization of Eq. (39):


eff (w) = m−2ζ

εI1λ2

̃(λwmζ ). (97)

The factor of λ is a number which can be chosen freely due
to the invariance of the β function under this rescaling. [The
reader can easily check that 
̃(w) solves the RG flow Eq. (40),
independently of λ.] Here, λ is fixed by the experiment or sim-
ulation. The easiest way to achieve this is to divide Eq. (97)
by its first w derivative:

m−ζ

λ


̃(0)

|
̃′(0+)| = 
eff (w)

|
′
eff (w)| =: ρm. (98)

The scale ρm is the correlation length of the effective disorder
in the driving direction, measured in Sec. VI. Equation (98)

can be written as

m−ζ

λ
= ρm

ρ̃
, ρ̃ := 
̃(0)

|
̃′(0)+| . (99)

The last combination ρ̃ is a theoretical object, depending on
the choice of scheme to solve the FRG equation, see the ansatz
in Eq. (43). Using Eq. (99) to eliminate λ, we rewrite Eq. (97)
as


eff (w) = ρ2
m

εI1

̃

(
w

ρm

)
. (100)

For the perturbative calculation of fc, there are two important
points: First, the integrals Itp, Iss, and Ir can be combined into
the dimensionless combinations:

Itp

m2εI1
= 2

(ε − 2)ε
, (101)

Iss

m2(εI1)2
= − 3

2ε2
− 9

4ε
− 3

8
(7 − 4C3) + · · · , (102)

Ir

m2(εI1)3
= − 1

ε3
− 17

6ε2
+ 36C3 − 67

12ε
+ · · · (103)

Second, a global factor of m−ζ /λ = ρm/ρ̃ appears from the
single 
′(0+), whereas 
′′(0) and 
′(0+)
′′′(0+) do not give
additional factors of m±ζ or λ. Therefore, Eq. (96), expressed
in terms of the renormalized dimensionless disorder 
̃ and
scales m and ρ, reads

m∂m[ fcm−2] = 2

2 − ε

m−ζ

λ
{−
̃′(0+) + 3
̃′(0+)
̃′′(0)[1 + ε(1−C3) + · · · ]

+(C3−6)
̃′(0+)[3
̃′′(0)2 + 2
̃′′′(0)
̃′(0+)] + · · · + O(
̃4)}

= Ãm−ζ

λ
= Ãρm

ρ̃
. (104)

We grouped all terms for a given loop order in the same line and expanded as far as necessary in ε. Inserting the RF fixed point,
we find

Ã = 2

2 − ε
{−
̃′(0+) + 3
̃′(0+)
̃′′(0)[1 + ε(1−C3) + · · · ]

+ (C3−6)
̃′(0+)[3
̃′′(0)2 + 2
̃′′′(0)
̃′(0)] + · · · + O(
̃4)}

= ε

3
+ 0.007 784 584ε2 + 0.017 038 7ε3 + O(ε4). (105)

To solve Eq. (104), we use that ρm ∼ m−ζ , to obtain

fc

m2
= − Ã

ζ

ρm

ρ̃
+ m-independent term. (106)

This is equivalent to

fc = f0 − Bρmm2 + O(m2), (107)

B := Ã
ζ ρ̃

= 1 + 0.070 061ε + 0.012 713 8ε2 + O(ε3), (108)

ρ̃ = 1 − 0.190 020ε + 0.273 97ε2 + O(ε3). (109)

This is plotted on Fig. 7. Note that we added a term f0 ∼
�d−2
′

0(0+) due to the leading UV divergence of the tadpole
diagram in Eq. (C5) which diverges with the UV cutoff �

as �d−2 times the bare 
′
0(0+); since this is a strong UV

divergence, we used 
′(0+) at the start of the RG flow, i.e.,
the microscopic 
′

0(0+).
We tried resummations for Ã, B, and ζB ≡ Ã/ρ̃. The

series for B has only positive terms; thus, the result increases
at each order, and we do not know how to resum. The com-
bination ζB reported in Fig. 8 is alternating, and both the
diagonal Padé resummation and the diagonal Padé-Borel re-
summation lie close to each other and the 1-loop result. We
report all 3-loop values in Table II. The prediction for B from
the extrapolation of ζB uses the best numerically available
values for ζ .

We tried to improve the extrapolation by linking to the
exactly known critical force in dimension d = 0. As can be
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FIG. 7. The amplitude B in Eq. (108). 1-loop (blue solid), 2-loop
(red, dashed), and 3-loop (green, dot-dashed).

seen in Appendix D, there is an additional ln m divergence
which prevents us from exploiting this result.

V. CRITICAL FORCE FOR CDWs

A. Summary of known results

In Refs. [30,81], it was shown that CDWs at depinning
map onto the O(n) model in the limit of n → −2. The latter
further maps onto loop-erased random walks [30,81–83]. The
dynamic exponent z in CDWs equals the fractal dimension of
loop-erased random walks. In φ4 theory, this fractal dimension
is given by the dimension of the traceless rank-2 tensor:

T i j = φiφ j − δi j 1

n

n∑
k=1

(φk )2. (110)

An interesting question is whether the critical force also has
a representation in φ4 theory. We show below that this is the
case, and the critical force formally behaves as a logarithmic
opeartor in a log-CFT.

FIG. 8. The combination Bζ ≡ Ã/ρ̃. 1-loop (blue solid), 2-loop
(red, dashed), and 3-loop (green, dot-dashed).

TABLE II. Values for B using either a direct resummation of B
in Eq. (108) (first line) or the combination ζB (second), which is then
divided by the numerically known value of ζ (third line). The fourth
line is an estimate, based on the trend of the direct extrapolation,
and our lack of confidence in the precision of the results. For the
numerical value see Sec. VI D.

d = 1 d = 2 d = 3 d = 4

B (direct) 1.32 1.19 1.08 1
ζB (Padé-Borel) 1.21 0.78 0.374 0
B (using ζB) 0.96 1.036 1.048 1
B (estimate and error bars) 1.3(4) 1.1(1) 1.06(2) 1
B (numerics) 1.8(2) – – –

B. Critical force for CDWs

We first consider the CDW side. Following the conventions
of Ref. [81], we parameterize the disorder-force correlator

(u) for CDWs as


(u) = 
(0) − g

2
u(1 − u). (111)

The fixed point for the β function in Eq. (40) is


(0) = ε

36
+ ε2

108
− ε3

648
(1 + 18C3) + O(ε4), (112)

g = ε

3
+ 2ε2

9
+ ε3

9
[1 − 2C3 − 2ζ (3)] + O(ε4). (113)

Thus, 
′′′(0+) = 0, and Eq. (95) for the critical force simpli-
fies to

(114)

C. �(2) as a function of n

The vector φ4 theory related to CDWs is [81]

S[ �φ] =
∫

x

1

2
[ �φ(x)2] + m2

2
�φ(x)2 + g

8
[ �φ(x)2]2. (115)

In these conventions, comparable quantities are related, e.g.,
the coupling constants g in Eqs. (111) and (115) are identical.
Using the same RG scheme, also all RG functions, and the
coupling at the fixed point given in Eq. (113) are identical. In
this framework, we now evaluate the effective action �[φ] =
m2

2 φ2 + O(g), equivalent to �(2) = m2 + O(g). The result up
to 4-loop order reads

(116)
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(117)

By inspection, one sees that fc is related to the dominant
contribution in the limit of n → −2:

(118)

where the 4-loop contribution was not checked at depinning.
We conjecture that, to all orders in perturbation theory:

fc = − ∂

∂n
�(2)

∣∣∣∣
n=−2

. (119)

We now use that

�(2)(m) = �(2)(1)m(1/ν)+η. (120)

Since we retain the coefficient in front of φ2, the anomalous
dimension η of the field is taken out. Equation (119) implies
that

m∂m
[

fcm−2
] = − ∂

∂n

[
m∂

∂m
�(2)(1)m(1/ν)+η−2

]
n=−2

= − ∂

∂n

[(
1

ν
+ η − 2

)
�(2)(1)m(1/ν)+η−2

]
n=−2

= − ∂

∂n

[
1

ν
+ η

]
n=−2

. (121)

Let us see where these contributions come from in the RG.
According to Ref. [84],

1

ν
+ η = 2 + γ1 (eq. (19) of Ref. [84]), (122)

γ1 = μ∂μ ln Z1 (eq. (14) of Ref. [84]), (123)

S =
∫

x
Z1

m2

2
�φ(x)2 + Z2

2
[ �∇φ(x)]2

+ Z4
16π2

4!
gμε[ �φ(x)2]2 (eq. (8) of Ref. [84]). (124)

Thus, fc is entirely given by the RG factor Z1 and does not
invoke a renormalization of the field.

Let us finally use Eq. (121) and the 6-loop results of
Ref. [85]:

m∂m[ fcm−2] = ε

6
+ ε2

36
+ 1

72
[1 − 8ζ (3)]ε3 + −70ζ (3) + 2800ζ (5) − 6π4 + 25

6480
ε4

+
[

7ζ (3)2

162
− 115ζ (3)

3888
+ 29ζ (5)

648
− 833ζ (7)

432
+ 5π6

8748
− 7π4

77 760
+ 7

7776

]
ε5

+
[

344ζ (3)3

729
+ 443ζ (3)2

1296
+ 953

486
ζ (5)ζ (3) + 7π4ζ (3)

9720
− 305ζ (3)

23 328
+ 1511ζ (5)

23 328
− 17 815ζ (7)

46 656

+ 60451ζ (9)

6561
+ 697ζ3,5

540
− 168 317π8

244 944 000
+ 47π6

489 888
− 23π4

93 312
− 5

15 552

]
ε6 + O(ε7). (125)

We find that this agrees up to 3-loop order with the result
obtained for depinning.

We finally need to resum this asymptotic series. A relevant
dimension is d = 3, for which we find (with possibly strongly

underestimated error bars)

−∂n

[
1

ν
+ η

]
n=−2,ε=1

= 0.1585(5) (126)
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FIG. 9. Ãc/ε for charge density wave (CDW), given by
Eq. (125). The error bars are probably an underestimation, as they
do not catch the singularity at d = 2.

In dimension d = 2, we can try to use CFT data in Eq. (121).
As we show in Appendix B 1, this expression diverges when
taking the limit of n → −2. We conjecture that, for d � 2, the
critical force acquires an additional singularity not captured
by the 4 − ε expansion. While our extrapolations are shown
in Fig. 9 down to d = 0, we should thus not trust it for d � 2.

We saw above that the critical force for CDWs can be
calculated in the O(n) model by deriving �(2) with respect
to n. This means that the operator in question is not living
inside the theory at n = −2 but in the larger set of theories
around n = −2. This sometimes happens in log-CFTs. Here,
we give one prescription to obtain fc directly inside the theory
at n = −2:

−g

6
φ1(x)3e−S → fcφ1(x). (127)

This means, to evaluate the insertion − g
6φ1(x)3 inside the

interacting field theory and retain the perturbative corrections
proportional to φ1, their amplitude is fc. This can be achieved
by calculating the 2-point function of φ1(x)3, with φ1(y). The
logic behind this and alternative constructions are discussed
in Appendix B 2.

D. CDWs and log-CFT

We start this section with a reminder of logarithms in
self-avoiding polymers [69]. The reader not familiar with
the subject is invited to consult Appendix E or the original
publication [69], where the math is worked out. The general
idea is that there are two operators E and Ẽ , which at a critical
value nc of a control parameter n have the same full scaling
dimension xE (nc) = xẼ (nc) and moreover become identical
as operators. Approaching nc, there are then two differences
(or derivatives) one may consider: the difference between the
operators E and Ẽ and the difference between their scaling di-
mensions xE (n) − xẼ (n). It is a matter of conventions whether
these differences vanish or are finite. If they vanish, we should
divide by n − nc, equivalent to taking a derivative. Let us write

the relations in the conventions of Appendix E, where the
differences are finite. Define

C := lim
n→nc

[xE (n) − xẼ (n)]E

≡ lim
n→nc

[xE (n) − xẼ (n)]Ẽ, (128)

D := lim
n→nc

E − Ẽ . (129)

In Appendix E, we show that this implies

〈D(0)D(r)〉 = −−2α ln(r) + const.

r2x(0)
, (130)

〈C(0)D(r)〉 = α

r2x(0)
, (131)

〈C(0)C(r)〉 = 0, (132)

α := A(0)[x′
E (0) − x′

Ẽ (0)]

≡ Ã(0)[x′
E (0) − x′

Ẽ (0)]. (133)

These relations show that logarithms in CFTs are rather com-
mon and appear when one considers derivatives of operators
with respect to a control parameter, here n. This is indeed what
has been done in Eq. (119).

VI. NUMERICAL SIMULATIONS

Let us finally verify our analytical predictions with numer-
ical simulations.

A. Implementation

We simulate a discretized version of the equation of motion
in Eq. (1) for a string (d = 1), using code written in Julia [86].
The lattice constant is set to 1, so that the interface position
ux ∈ R is a vector of size L, with index x = {1, . . . , L}. The
random forces F (x, ux ) are drawn from a Gaussian distribu-
tion with mean zero and variance one, independent for each x,
and ux ∈ Z. For noninteger values of ux, the force is interpo-
lated linearly between the closest two integer neighbors. The
lattice Laplacian is defined by

∇2ux := ux−1 + ux+1 − 2ux, (134)

with u0 := uL and uL+1 := u1. The total force acting on site x
is

Ftot (ux ) := m2(w − ux ) + ∇2ux + F (x, ux ). (135)

The position ux of the interface at site x is increased if the
force acting on it is positive. Due to Middleton’s [77] theorem,
to find the pinning configurations, one can move a monomer
until the force acting on it vanishes [87]. This is much more
efficient than directly integrating the equation of motion in
Eq. (1).

If monomer x is at position u ≡ ux, we can estimate the
total force acting on it at position u + δu as

Ftot (u + δu) = Ftot (u) + ∂Ftot (x, u)

∂u
δu. (136)

This estimate is valid if ux + δu is smaller than the next inte-
ger, and we use the right-hand derivative at integer ux. In our
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algorithm, ∂Ftot (x,u)
∂u = ∂uF (x, u) − m2 − 2. If Eq. (136) is pos-

itive when evaluated at the next integer, shift u to this value. If
this is not the case, we move by δu = −Ftot (u)/ ∂Ftot (x,u)

∂u , such
that at the end of the move Ftot vanishes.

B. Measurement of �(w)

We measure 
(w) and its second cumulant (variance). To
get rid of boundary effects, we need to choose the system size
big enough. From FRG, we know that 
(w) becomes inde-
pendent of L in the limit mL → ∞. In that limit, the spatial
correlation function [u(x) − u(y)]2 decays exponentially as
exp(−m|x − y|), which we associate with a correlation length
ξ = 1

m . This means that


(w,w′) := m4

Ld

∫
x

∫
y

[uw(x) − w][uw′ (y) − w′]
c

= m4
∫

y
[uw(x) − w][uw′ (y) − w′]

c

≈ m4ξ d [uw(x) − w][uw′ (x) − w′]
c
, (137)

where we used the spatial exponential decay with correlation
length ξ � L. Since the disorder forces F (x, u) are statisti-
cally invariant under translations in u, Eq. (137) only depends
on |w − w′|, and we write it as


(w − w′) := 
(w,w′). (138)

We see that Eq. (137) does not depend on L if ξ � L. As
we saw in the analytic part and will later confirm in the
simulations, the function 
(w) decays itself approximately
exponentially 
(w) ≈ 
(0) exp(−ρmw), which allows us to
define an effective disorder correlation length ρm by (see
Fig. 1)

ρm := 
(0)

|
′(0+)| . (139)

This is close to the more natural-looking definition:

ρ ′
m :=

∫
w

w
(w)∫
w


(w)
. (140)

We use the definition in Eq. (139) rather than in Eq. (140) for
two reasons: First, the latter is difficult to use analytically due
to the integral; second, in simulations or experiments, the tail
of 
(w) has large statistical errors, which gives a large overall
error for ρ ′

m.
The variance of 
 := 
(u), which quantifies the statistical

error, can (for each u) be estimated from

var(
) := 
2 − 

2

N
, (141)

where N is the number of independent samples.
To use Eq. (141), we need to get rid of statistically depen-

dent samples. This is achieved by using

var(
) := 
2 − 

2

Neff
, Neff ≈ N

3ρ/δw
, (142)

where N is the number of samples, δw the step size in the sim-
ulation between samples taken for 
, and ρm the correlation

FIG. 10. u(x) − u0 for L = 64, and mL = 8. Between successive
samples, the control parameter w is increased by ρm, starting at
w = w0. We see that augmenting w by the correlation length ρm (in
the u direction), u(x) takes a different configuration at a substantial
fraction of sites.

length defined in Eq. (139). This is a conservative estimate,
assuming that a new independent sample is generated if w

is advanced by 3ρm. It can indeed be seen in the example in
Fig. 10 that, when advancing w to w + 3ρm, the whole line
has moved, which reinforces this argument.

To show explicitly in the simulations the independence of

(w) on L in the limit of large mL, we need to eliminate
the factors of m. By definition, uw(x) − w scales as m−ζ ,
and 
(w) ∼ m4−d u2 ∼ m4−d−2ζ , where we used ξ = 1/m in
Eq. (137). This allows us to define the dimensionless correla-
tor 
̃(w):


̃(w) := md−4+2ζ 
(wmζ ). (143)

Note that this definition is not unique, as one can rescale

̃(w) → λ−2
̃(wλ). Before considering the results of the
numerical simulations, there is a last point we need to address:
Eq. (137) contains a connected average, so one should mea-
sure uw(x) − w first. This can be avoided, by sampling the
combination:


(0) − 
(w) = 1

2

m4

Ld

∫
x

∫
y

[uw(x) − w − uw′ (y) + w′]2
c
.

(144)

It is this combination we display in Figs. 11 and 12. Figure 11
shows that the limit of L → ∞ exists, at fixed mL. While a

FIG. 11. 
̃(0) − 
̃(w) for mL = 4.
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FIG. 12. 
̃(0) − 
̃(w) for mL = 2, 4, and 6, in a system of size
L = 1024.

system of size L = 64 is certainly too small, L = 512 is large
enough to exhibit this limiting behavior. Figure 12 analyzes
what happens when mL is taken larger, at fixed system size
L = 1024. The conclusion is that one should use mL � 6
to have negligible finite-size effects, physically caused by
system-spanning avalanches.

C. Comparison of �(w) to the theory

We now compare the shape of 
(w) obtained from simula-
tions to results from field theory, see Fig. 14. This is delicate,
as a direct ε expansion is badly converging. At 2-loop order,
we can use a Padé approximant:


(w) = ε
1(w) + ε2
2(w) + O(ε3)

= ε

1(w) + αε
2(w)

1 + ε(α − 1)
2(w)

1(w)

+ O(ε3). (145)

Our strategy is to use α to improve convergence; more specif-
ically, we choose α, such that, in d = 0, we recover as
precisely as possible the exact solution of Ref. [88]. As can be
seen in Fig. 13, this is achieved for α = 0.35. Using this value
of α, we predict the shape of 
(w) in d = 1, see Fig. 13. This
approach works well at two loops for which it was used in
Ref. [8]. In contrast, we were not able to properly resum the ε

expansion for 
(w) at 3-loop order. Our failed attempts, using
Padé resummation and rescaling invariance for optimization,
are documented in Appendix F.

We finally compare our simulation result (for mL = 6,
L = 1024) in dimension d = 1 to the simulation results from
Ref. [89] in d = 1 (L = 8192). As can be seen in Fig. 13,
both simulations agree well. We also show simulation results
in d = 2. From experiments [8] and continuity of the curves,
we expect 
(w) in d = 2 to lie between its counterparts in
dimensions d = 1 and 4. As Fig. 13 shows, this does not seem
to be the case. We expect the system size used in Ref. [89] to
be too small for 
(w) to be in the asymptotic regime.

D. Critical force

We finally compare predictions to simulations for the criti-
cal force, defined as

fc = m2(w − uw ). (146)

FIG. 13. Shape comparison: 1-loop functional renormalization
group (FRG; black, bottom curve), exact solution in dimension
d = 0 (blue solid, top curve), Padé resummed 2-loop result from
Eq. (145) in d = 0 for α = 0.35 (cyan, dotted), the same Padé in
d = 1 (magenta, dashed), the same Padé in d = 2 (green, dashed),
our simulations in dimension d = 1 (magenta, solid), and the same
Padé in d = 3 (gray, dot-dashed).

For large enough mL, it does not depend on L for the same
reasons as 
(w). Equation (108) predicts that

fc = f 0
c − Bm2ρm + O(m2), (147)

where ρm is

ρm = 
(0)

|
′(0+)| =: ρ̂ m−ζ . (148)

To find ρ̂ (a numerical value of the simulation), we plot ρ̂ =
ρmmζ , which we evaluate for small m. In Fig. 15, we find that

ρ̂ = 0.531 ± 0.05. (149)

In Fig. 16, we then plot fcmζ−2 against mζ−2, which yields

b ≡ Bρ̂ = 0.970 ± 0.05. (150)

As we see in Fig. 16, for small m, the critical force fc(m) de-
pends linearly on m2−ζ . From that, we deduce that the O(m2)
in Eq. (107) is seemingly very small or absent. Together with
the results for ρ̂ shown in Fig. 16, this gives our final result

FIG. 14. Shape comparison of 
(w) − 
1-loop(w), with colors as
in Fig. 13.
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FIG. 15. ρ̂ as a function of m−ζ , for different mL, and different
system sizes. The larger systems are to the right.

for B as

B = 1.8 ± 0.2. (151)

This is in reasonable agreement with the values reported in
Sec. IV D. Note that B does not depend on the elastic coeffi-
cient c. This is demonstrated in Appendix G.

VII. CONCLUSIONS

In this paper, we calculated the roughness exponent ζ to
3-loop order. Using analytic information in dimension d = 0
and Borel resummation allows us to give excellent values
for the roughness ζ in all dimensions, including d = 1. The
predictive power for the shape of the renormalized disorder
correlator is weaker: We estimate it to be good in dimension
d = 3, satisfactory in d = 2, but insufficient in dimension
d = 1. It is not clear how to implement a Borel resummation
for a whole function.

We further considered the critical force at depinning and
showed that it has a universal amplitude predicted by the
field theory. Our numerical simulations in dimension d = 1
confirm this prediction. This may prove useful in analyzing
finite-size corrections in experiments.

We finally considered CDWs, which are related to loop-
erased random walks and the O(n) model at n = −2.

FIG. 16. fc as a function of m2−ζ for mL = 4. The fit used
to extrapolate to m = 0 is via an exponential function fc =
f 0
c exp(−bm2−ζ ), with the two fit parameters f 0

c and b. The slope
indicated with a dashed line is −b ≡ Bρ̂, as given in Eq. (150).

We find that the amplitude of the critical force at depin-
ning has a logarithmic dependence on the regularization
scale and that this can be understood in the framework of
log-CFT.

It would be interesting to also obtain the corrections to
the dynamical exponent z, and we made some progress in
this direction. The diagrams which need to be evaluated are
much more involved, as sums of squared independent loop
momenta appear in the denominator [see Eq. (30)], and the
number of independent diagrams may well be a hundred.
For this reason, we decided to postpone their analysis to the
future.

With the 3-loop result at hand, another open question can
be tackled, namely, the large-order behavior of functional field
theories, i.e., theories where the coupling constant is not a
number but a function. We hope to report progress in this
direction soon.
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APPENDIX A: LOOP INTEGRALS

Here, we give all loop integrals necessary for the main text.
Some of them are calculated directly, while the remaining
ones can be found in Ref. [66].

1. The integral I1

The integral I1 is defined as

(A1)

It is calculated as follows:

I1 =
∫

k

∫ ∞

0
dα α exp(−α(k2 + m2))

=
(∫

k
exp(−k2)

) ∫ ∞

0
dα α1−(d/2) exp(−αm2)

=
(∫

k
exp(−k2)

)
m−ε�

(ε

2

)
. (A2)

This gives us the normalization constant for higher-loop cal-
culations:

(εI1) = m−ε

[∫
k

exp(−k2)

]
ε�

(ε

2

)
. (A3)

2. The tadpole diagram Itp

Using that

(A4)

we get by integration that

(A5)
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3. The integral IA

(A6)

In the first line, we gave the raw result obtained via computer
algebra [66]. The reflection properties of the � function com-
bined with the duplication and triplication formulas [90] give
nontrivial relations, which following Refs. [66,67] are used to
combine all nontrivial terms into a single number C3:

ψ ′
(

5

6

)
− ψ ′

(
1

3

)
= 4π2 − 5ψ ′

(
1

3

)
+ ψ ′

(
2

3

)
, (A7)

ψ ′
(

1

3

)
+ ψ ′

(
2

3

)
= 4π2

3
, (A8)

ψ ′
(

1

6

)
+ ψ ′

(
5

6

)
= 4π2, (A9)

C3 = ψ ′( 1
3

)
6

− π2

9
≈ 0.585 977. (A10)

4. The sunset diagram

(A11)

This diagram can be reduced to IA given in Eq. (A6):

(A12)

Using Eq. (A6), this implies

Iss = m2

[
− 3

2ε2
− 9

4ε
− 3(7 − 4C3)

8
+ · · ·

]
(εI1)2. (A13)

5. The integral Im ≡ Io

(A14)

6. The star integral Ii

(A15)

7. The integral I j

(A16)

8. The integral Il

(A17)

9. The integral Ir

(A18)

This integral can be reduced to known integrals via a deriva-
tive with respect to m2:

(A19)

Integrating yields

(A20)

10. The integral I1 for a finite system

Define

Idiscrete
1 (m, L, d ) := 1

Ld

∑
�n

1[(
2π �n

L

)2 + m2
]2

= 1

m4Ld

∑
�n

1[(
2π �n
mL

)2 + 1
]2 . (A21)

If mL � 1, this can be approximated by an integral
∑

�n →∫
dd �n:

Idiscrete
1 (m, L, d ) = (mL)d

m4Ld

∫
dd �n

(2π )d

1

(�n2 + 1)2

= m−ε

∫
dd �n

(2π )d

1

(�n2 + 1)2
. (A22)
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This integral is given in Eq. (A2). On the other hand,

Idiscrete
1 (m, L, d )

= L4−d
∑

�n

1

[(2π �n)2 + (mL)2]2

= L4−d
∫

s>0
s

[ ∞∑
n=−∞

exp(−s(2πn)2)

]
exp(−s(mL)2)

= L4−d
∫

s>0
s ϑ3(0, exp(−4π2s))d exp(−s(mL)2).

(A23)

Therefore,

I1(mL, d ) := m4Ld Idiscrete
1 (m, L, d )

= (mL)4
∫

s>0
s ϑ3(0, exp(−4π2s))d

× exp(−s(mL)2)

=
∫

s>0
s ϑ3

(
0, exp

(
− 4π2s

(mL)2

))d

exp(−s).

(A24)

For small mL, one has

lim
x→0

I1(x, d ) = 1. (A25)

In the limit of large mL, this gives

I1(mL, d ) � 1

(4π )d/2
�

(
4 − d

2

)
(mL)d , (A26)

�
(

4−d
2

)
(4π )d/2

=

⎧⎪⎨
⎪⎩

1
4 in d = 1
1

4π
in d = 2

1
8π

in d = 3.

(A27)

APPENDIX B: DETAILS FOR CDWs

1. f c for CDWs in the limit of d → 2

In d = 2, we have

ν = 1

2 − 2h1,3
= 1

4

[
1 + π

arccos
(

n
2

)
]
, (B1)

η = 4h(1/2),0

= 5

4
− 3 arccos

(
n
2

)
4π

− π

arccos
(

n
2

) + π
. (B2)

Sadly,

−∂n

[
1

ν
+ η

]
d=2

∼ 1√
n + 2

. (B3)

This may be related to the naturally appearing explicit factor
of 1/(2 − ε). The latter comes when relating diagrams for
fc to derivatives of known diagrams correcting the disorder.
Undoing this integration then leads to a factor of 1/(2 − ε) =
1/(d − 2), see, e.g., Eq. (A5).

2. The critical force as an observable inside the theory at n = −2

We find that Eq. (119) can be calculated as follows in the
theory at n = −2:

− g

2

〈
φ2(x)φ1(x)2 exp

(
−g

8

∫
( �φ2)2

)〉
0

∣∣∣∣
n=−2

= fc φ2. (B4)

In principle, one should retain only 1PI diagrams, but this
does not seem to be necessary. The reason is probably that
disconnected and 1PR diagrams have additional factors of
(n + 2). The idea behind this contraction is to apply ∂nφ

2 to
the interaction, which leads to something like φ2

1 ( �φ2). The
additional component is represented by φ2

1 ; the problem is that
it should not be equal to the other fields in the interaction.
Thus, the idea is to start constructing �(2) by selecting one
external leg with component number 2 and then restricting the
multiplying factor of �φ2 to a distinct component. The reason
for pulling out only one external (uncontracted) field is that,
otherwise, we could either derive the same vertex twice or two
vertices once each, which would complicate the writing.

An alternative formula is

−g

8

〈
[φ1(x)−φ2(x)]

[
φ1(x)2+φ2(x)2]

× exp

(
−g

8

∫
( �φ2)2

)〉
0

∣∣∣∣
n=−2

= fc(φ1 − φ2), (B5)

i.e., we drop the space dependence as usual. Another alterna-
tive is

−g

6

∑
i

φi(x)3e−S → fc

∑
i

φi. (B6)

Still another alternative is

−g

6
φ1(x)3e−S → fcφ1. (B7)

This is given in the main text.

3. The critical force with complex fields

This can also be done with N complex fields in the limit of
N → −1. We use the action:

S =
∫

x
∇ �φ∗(x)∇ �φ(x) + m2 �φ∗(x) �φ(x)

+ g

2
[ �φ∗(x) �φ(x)]2. (B8)

We find up to 4-loop order

− g

2
φ∗

1 (x)φ∗
2 (x)φ2(x)e−S ∣∣

N=−1 → fcφ
∗
1 . (B9)

Another option is (gain checked up to 4-loop order):

−g

4
φ∗

1 (x)φ∗
1 (x)φ1(x)e−S

∣∣∣∣
N=−1

= fcφ
∗
1 . (B10)

The rationale connecting these two observables is that

− g

2
φ∗

1 (x)
∑

i

φ∗
i (x)φi(x)e−S

= − g

2
φ∗

1 (x)φ∗
1 (x)φ1(x)e−S
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− g

2
(N − 1)φ∗

1 (x)φ∗
2 (x)φ2(x)e−S

→ fcφ
∗
1 [2 + (N − 1)] → 0 at N = −1. (B11)

APPENDIX C: UV-CUTOFF-DEPENDENT
CONTRIBUTIONS TO THE CRITICAL FORCE

In the preceding sections, all diagrams were calculated
within dimensional regularization, i.e., without an explicit
short-distance, i.e. ultraviolet (UV) cutoff. However, this is
incorrect, as all diagrams have a strong UV divergence. Here,
we wish to show that these additional UV-cutoff-dependent
terms are either independent of m, or at least this dependence
vanishes when we take � large.

There are two relatively simple ways to put an UV cutoff:

(C1)

(C2)

a = 1

�2
, (C3)

where � is a UV scale, of the same engineering dimension as
m. The soft cutoff gives

Isoft
tp

εI1|m=1
= −

(
2 − d

2

)
�d−2 exp(am2)Ed/2

(
m2

�2

)
(d − 4)�

(
3− d

2

)
= �d−2

(d−2)�
(
3 − d

2

) + 2md−2

(d−4)(d−2)
+ O(�−1),

(C4)

where E is the ExpIntegralE function.
The hard cutoff gives

Ihard
tp

εI1|m=1
= −4�d sin

(
πd
2

)
2F1

(
1, d

2 ; d+2
2 ; −�2

m2

)
π (4 − d )(d − 2)dm2

= 4�d−2 sin
(

πd
2

)
π (d − 4)(d − 2)2

+ 2md−2

(d − 4)(d − 2)
+ · · ·

(C5)

The strong UV divergence can be extracted by applying a �

derivative:

�∂�

Ihard
tp

εI1|m=1
= 4 sin

(
πd
2

)
π (d − 4)(d − 2)

�d

m2 + �2

∼ �d−2 + O(m2)�d−4. (C6)

The first term is m independent; the second disappears in
dimension d < 4 for � → ∞.

Let us now apply this to the 2-loop sunset integral:

�∂�Iss ∼ 3�d

m2 + �2

∫
k

(|k| � �)(|k + �| � �)

(k2 + m2)[(k + �)2 + m2]
. (C7)

The last factor has no long-distance, i.e. infrared (IR) singular-
ity at k → 0 or k → �. It can globally be bounded by �d−4;
for k → 0, it goes as md−2�−2. All these terms are IR finite
in the limit of � → ∞, m → 0.

For the 3-loop integral, in a hard-cutoff scheme:

(C8)

where the open circle indicates the momentum vector put to
�. For the first, the momentum � traverses both loops, such
that

(C9)

Only the last diagram can give a contribution:

(C10)

We expect the factor of m−ε/ε coming from the subdivergence
in the lower loop to be canceled by a counterterm of the
disorder.

APPENDIX D: CRITICAL FORCE IN d = 0

In d = 0, according to Ref. [91]:

fc �
√

2 ln(m−2) + γE√
2 ln(m−2)

+ · · · , Eq. (70) of Ref. [91],

ρm � 1

m2
√

2 ln(m−2)
, Eq. (58) of Ref. [91],


(w) = m4ρ2
m
̃

(
w

ρm

)
, Eq. (60) of Ref. [91]. (D1)

This gives in d = 0 the two combinations of the main text:

Ãm2ρm = Ã√
2 ln(m−2)

, (D2)

| fc| =
√

2 ln(m−2) + γE√
2 ln(m−2)

+ · · · (D3)

To our disappointment, the singularities of these two terms are
different, so that we cannot obtain the amplitude Ã in d = 0.

APPENDIX E: A WORKED-OUT EXAMPLE:
LOGARITHMIC OPERATORS FOR SELF-AVOIDING

POLYMERS

Following Cardy [70], (see Ref. [69] for an extended re-
view), we consider the logarithms appearing for self-avoiding
polymers. To this aim, we introduce the polymer density in
the φ4 field theory for polymers [92], which transforms as a
singlet under O(n) [93]:

Ei := φ2
i , E := 1

n

n∑
i=1

φ2
i . (E1)

Next, we consider the traceless vector:

Ẽi := φ2
i − 1

n

n∑
j=1

φ2
j ≡ Ei − E . (E2)
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Alternatively, one can use the traceless tensor operator, which
sits in the same multiplet:

Ẽi j := φiφ j − 1

n
δi j

n∑
k=1

φ2
k . (E3)

In these notations,

xE (n) = dimμ(E ) = d − yE = d − 2 − γφ2 + η, (E4)

xẼ (n) = dimμ(Ẽ ) = d − yẼ = d − 2 − γφφ + η. (E5)

Then

〈E (r)E (0)〉 = 1

n
[〈E1(r)E1(0)〉 + (n − 1)〈E1(r)E2(0)〉]

� A(n)

n
r−2xE (n), (E6)

〈Ẽi(r)Ẽi(0)〉 = n − 1

n
[〈E1(r)E1(0)〉 − 〈E1(r)E2(0)〉]

� n − 1

n
Ã(n)r−2xẼ (n). (E7)

Since the expressions in the square brackets become identical
in the limit of n → 0:

A(0) = Ã(0) , xE (0) = xẼ (0) . (E8)

Consider

〈E (r)E (0)〉 + 〈Ẽi(r)Ẽi(0)〉 = 〈E1(r)E1(0)〉, (E9)

〈E (r)E (0)〉 − 1

n − 1
〈Ẽi(r)Ẽi(0)〉 = 〈E1(r)E2(0)〉. (E10)

This implies that

〈E1(r)E2(0)〉 = 1

n

[
A(n)r−2xE (n) − Ã(n)r−2xẼ (n)

]
= A(n)r−2xE (n) 1

n

{
1 − Ã(n)

A(n)
r2[xE (n)−x̃E (n)]

}

= A(0)r−2xE (n)

{
A′(0) − Ã′(0)

A(0)
+ 2 ln(r)[x′

Ẽ (0) − x′
E (0)]

}
+ O(n), (E11)

〈E1(r)E1(0)〉 − 〈E1(r)E2(0)〉 = n

n − 1
〈Ẽi(r)Ẽi(0)〉 = r−2xẼ (n)Ã(n), (E12)

〈E1(r)E1(0)〉 = A(0)r−2xE (n)

{
1 + A′(0) − Ã′(0)

A(0)
+ 2 ln(r)[x′

Ẽ (0) − x′
E (0)]

}
+ O(n). (E13)

As a consequence, the ratio reads

〈E1(r)E2(0)〉
〈E1(r)E1(0)〉 − 〈E1(r)E2(0)〉

= A′(0)−Ã′(0)

A(0)
+ 2 ln(r)[x′

Ẽ (0)−x′
E (0)] + O(n). (E14)

Denoting a self-avoiding polymer by a colored circle, the left-
hand side can be written as

(E15)
The numerator is the probability that two ring polymers at-
tached at x and y do not intersect. The denominator is the
probability that the ends of two polymers attached at x and
y are at a distance x − y. According to Eq. (E13), this ratio
contains a logarithmic contribution, with a universal ampli-
tude given by the derivatives of the critical exponents. Explicit
numerical values are given in Ref. [84].

Let us finally introduce the logarithmic pair. Following
Cardy [69], we define in the limit of n → 0

C := lim
n→0

[xE (n) − xẼ (n)]E

≡ lim
n→0

[xE (n) − xẼ (n)]Ẽ, (E16)

D := lim
n→0

E − Ẽ . (E17)

This implies

〈D(0)D(r)〉 = lim
n→0

1

n

[
A(n)r−2xE (n) − Ã(n)r−2xẼ (n)

]
= −−2α ln(r) + const.

r2x(0)
, (E18)

FIG. 17. Shape comparison of 1-loop functional renormalization
group (FRG) result (black, thick, solid), improved 2-loop FRG result
as given by Eq. (145) (magenta dashed), simulation in dimension
d = 1 (magenta), exact solution in dimension d = 0 (blue), and
3-loop improved FRG results as given by Eq. (F1) for values of
dimension d = 0, 1, . . . , 3. The last four curves (orange, dot-dashed)
are indistinguishable.
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TABLE III. Simulations results for ρ̂ := ρmmζ (Sec. VI D) and
fc for different values of c, L = 128, and mL/

√
c = 4.

c 0.5 1 2 4

fc 1.14 ± 0.05 0.97 ± 0.05 0.87 ± 0.05 0.78 ± 0.05
ρ̂ 0.57 ± 0.05 0.54 ± 0.05 0.44 ± 0.05 0.42 ± 0.05
B 2 ± 0.2 1.8 ± 0.2 1.98 ± 0.2 1.86 ± 0.2

〈C(0)D(r)〉 = lim
n→0

[xE (n) − xẼ (n)]〈E (0)[E (r) − Ẽ (r)]〉

= α

r2x(0)
, (E19)

〈C(0)C(r)〉 = lim
n→0

[xE (n)−xẼ (n)]2〈E (0)E (r)〉 = 0. (E20)

α = A(0)[x′
E (0) − x′

Ẽ (0)] ≡ Ã(0)[x′
E (0) − x′

Ẽ (0)]. (E21)

Here, (C,D) forms a logarithmic pair. Denoting the dilation
operator by D, away from the point of degeneracy n = 0:

D ◦ E = xE (n) E, (E22)

D ◦ Ẽ = xẼ (n) Ẽ . (E23)

This implies, with x := xE (0) ≡ xẼ (0),

D ◦ C = x C, (E24)

D ◦ D = lim
n→0

xE (n)E − xẼ (n)Ẽ

= lim
n→0

[xE (n) − xẼ (n)]E + xẼ (n)[E − Ẽ]

= C + xD. (E25)

Written in matrix form, the dilatation operator has a (nondi-
agonalizable) block-Jordan form:

D ◦
( C
D

)
=

(
x 0
1 x

)( C
D

)
. (E26)

APPENDIX F: IMPROVMENT OF 3-LOOP RESULT

There are two improvements we tried in our com-
parison between theory and simulations: The first is a
Padé-resummation, as in Eq. (145), continued to 3-loop order.
This strategy failed.

Our second attempt at improvement consisted of replacing


(w) → λ−2
(wλ),

λ = 1 + αε + βε2 + O(ε3). (F1)

FIG. 18. Dependence of ρ̂ on c.

This transformation is an exact property of the RG equation.
We then Taylor-expand Eq. (F1) to order ε3 and drop the
higher-order terms. Let us stress that there is no natural choice

for λ or choice of setting 
(0)
!= ε/3, which forces higher-

order corrections to vanish at w = 0. It is one particular
choice, maybe not the best. This procedure helps us enforce
some physical properties of 
(w), the most important one
being that it has its maximum at w = 0 and then decays lin-
early for small w. We succeeded to achieve this, but we were
unable to tune α and β to get close to the analytical solution
of Ref. [88] in dimension d = 0 or our simulation results in
dimension d = 1. Moreover, whenever we achieved a mono-
tonic decay around w = 0, the result for 
(w) achieved by
this transformation did not seem to depend on the dimension
d , and the resulting curves lay way beyond the 1-loop curve,
as can be seen on Fig. 17.

APPENDIX G: INDEPENDENCE OF B ON THE ELASTIC
COEFFICIENT c

To demonstrate that the universal amplitude B defined
in Eq. (108) is independent of the elastic coefficient c, we
perform simulations for different values of c. The results are
presented in Table III and Fig. 18. Within error bars, B does
not change with c. Figure 18 shows the dependence of the
rescaled correlation length ρ̂ := ρmmζ on c. We observe an
increase of ρ̂ for c < 1, which can be explained as follows.
Making c and m smaller (we fix mL = 4

√
c) renders the inter-

face fluctuations larger, allowing it to explore more disorder
configurations. As a consequence, ρ̂ slightly increases. This
shows numerically that, while B is universal, ρ̂ is not.
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