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Bulk-edge correspondence for the nonlinear eigenvalues problem of the Haldane model
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Recently, there is an interest in studying the bulk-edge correspondence for nonlinear eigenvalue problems
in a two-dimensional topological system with spin-orbit coupling. By employing the method of the auxiliary
eigenvalues as introduced in T. Isobe et al., Phys. Rev. Lett. 132, 126601 (2024), the nonlinear bulk-edge
correspondence was established. In this paper, taking the Haldane model as an example, we address that such a
correspondence will appear in two-dimensional topological systems without spin-orbit coupling. The resulting
edge states are characterized by the Chern number of the auxiliary energy band. A full phase diagram containing
topological nontrivial phase, topological trivial phase, and metallic phase is obtained. Our work generalizes the
study of the bulk-edge correspondence for nonlinear eigenvalue problems in two-dimensional systems.
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I. INTRODUCTION

For decades, the novel nature of the topological phase of
matter has sparked significant interest among researchers in
the field of condense matter topology. Specifically, topolog-
ical band theory plays a critical role in revealing a variety
of topological phases by integrating the energy band theory
and the concept of topology [1–12]. One of the most fas-
cinating phenomena in topological systems is the bulk-edge
correspondence (BEC), which showcases the appearance of
edge states triggered by the bulk topology [13,14]. One can
employ the quantum transport to check this correspondence.
The topological systems with nonzero quantized topological
invariant presents nonzero quantized Hall conductance in the
transport measurement [15,16]. Besides, the BEC shows ex-
treme robustness against the disorders [17–32].

Extending the topological band theory to nonlinear sys-
tems brings about exotic phenomena as well. Precisely,
Refs. [33–41] have recently studied the interaction between
topology and nonlinearity of the eigenvectors, clarifying the
occurrence of topological synchronization brought about by
the interplay between nonlinearity and topology [37]. In spite
of extensive efforts made as described above, the interac-
tion between the topology and nonlinear eigenvalues, which
represent another form of nonlinearity [42–44], has been sel-
dom investigated. Very recently, Isobe et al. studied the BEC
for the two-dimensional nonlinear eigenvalue systems with
spin-orbit coupling [45]. The nonlinear BEC was established
by introducing the auxiliary eigenvalues. The work provides
a motivation for us to study whether there are nonlinear
eigenvalues of BEC in two-dimensional systems beyond the
spin-orbit coupling mechanism. We note that the Haldane
model [1] is a topological system without spin-orbit coupling.
The predicted nontrivial topological quantum anomalous Hall
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effect has been experimentally observed [46,47]. The study
of nonlinear eigenvalue BEC without spin-orbit coupling is a
natural extension of the research work by Isobe et al. With the
Haldane model as a medium, in this paper we will address the
aforementioned issue.

This paper is organized as follows. Section II introduces
the nonlinear eigenvalue problem of the Haldane model. Sec-
tion III presents the numerical results about edge states and
phase diagrams, and the analytical phase boundary. Section IV
presents our discussions and summary.

II. NONLINEAR EIGENVALUES PROBLEM
OF HALDANE MODEL

Here, we take the same strategy as told in Ref. [45], i.e.,
employing the method of the auxiliary eigenvalues to an-
alyze the nonlinear BEC of the Haldane model. Similarly,
we discuss the BEC between the gapless edge states and
the auxiliary topological bands by introducing the auxiliary
eigenvalues. The nonlinear eigenvalue problem of the Haldane
model is established by the following nonlinear equation:

H (k)|ψ〉 = ωS(ω, k)|ψ〉, (1)

where H (k) is the Hamiltonian matrix of the Haldane model,
S(ω, k) is the overlap matrix, k is the momentum, |ψ〉 is
the eigenvector, and ω is the nonlinear parameter. H (k) is
given by

H (k) =
(

d3 d1 − id2

d1 + id2 −d3

)
. (2)

The Hamiltonian elements d1, d2, and d3 are

d1 =
∑

n=1,2,3

t1 cos(k · an),

d2 =
∑

n=1,2,3

t1 sin(k · an),

d3 = M −
∑

n=1,2,3

2t2 sin(ϕ) sin(k · bn),
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where t1 is the unit of energy and

a1 =
(

0

−1

)
, a2 =

(√
3

2
1
2

)
, a3 =

(
−

√
3

2
1
2

)
,

b1 =
(√

3

0

)
, b2 =

(
−

√
3

2
3
2

)
, b3 =

(
−

√
3

2

− 3
2

)
(3)

are lattice vectors, t2eiϕ is the hopping strength between two
same type sites, and M is the strength of on-site potential.

In fact, solving Eq. (1) is equivalent to solving
P(ω, k)|ψ〉 = 0, where P(ω, k) = H (k) − ωS(ω, k) [43].
To analyze the BEC of Eq. (1), it is helpful to introduce the
auxiliary eigenvalues λ, and the nonlinear eigenvalue problem
becomes

P(ω, k)|ψ〉 = λ|ψ〉. (4)

We shall remember that λ is an auxiliary quantity that only has
physical meaning at λ = 0. Therefore, the above eigenvalue
problem is transformed into finding the solution of λ = 0.

In Ref. [45], in establishing the above analysis process,
the authors made an existence assumption of λ = 0, such that
one can observe the emergence and disappearance of gapless
edge states at λ = 0. For the nonlinear eigenvalue problem of
the Haldane model, we argue that the assumption of λ = 0
is valid as well. At first, the energy spectrum of the Haldane
model presents inversion symmetry. We consider a grip ge-
ometry of the Haldane lattice [see sketch in Fig. 1(a)], leaving
a periodic boundary condition in the x direction and open
boundary condition in the y direction (armchair edge). Hence,
the lattice constant is 3a. The armchair edge spectrum E (kx )
as a function of the momentum kx is plotted in Fig. 1(b). Here,
the spectrum E (kx ) is obtained from H (k). As seen that the
spectrum is symmetric with respect to E (kx ) = 0, presenting
the inversion symmetry, and the edge states inevitably cross
E (kx ) = 0. Second, we choose an overlap matrix S only de-
pending on the nonlinear parameter ω, which is given by

S(ω) =
(

1 − Ms(ω) 0

0 1 + Ms(ω)

)
, (5)

where Ms(ω) = M1 tanh(ω)/ω. The overlap matrix multiply-
ing −ω, i.e., the nonlinear term −ωS(ω) here, acts as the
chemical potentials dependent on the sites and the parameter
ω. For R sites, the chemical potentials are −ω + ωMs(ω),
and for B sites, the chemical potentials are −ω − ωMs(ω).
To study the topological properties of such systems with sites
and parameter dependent chemical potentials, we can estab-
lish the nonlinear eigenvalue equation as shown in Eq. (1)
and introduce the auxiliary eigenvalues. Therefore, the eigen-
value problems of such systems naturally become nonlinear
eigenvalue problems. From the expression of ω ± ωMs(ω),
we know that they are monotonic with the change of ω. When
the nonlinearity is weak, i.e., ω is small, the eigenvalues of
S(ω) are slow varying with respect to ω. Therefore, the up and
down translation of the λ spectrum caused by the nonlinear
effect is small, and we can observe the physical edge states
at λ = 0. In addition, the choice of S(ω) has been proved
to be feasible to establish the nonlinear BEC in Ref. [45]. If
ω = 0, there is no nonlinear effect, and Eq. (1) is reduced to an

FIG. 1. (a) Sketch of the Haldane lattice. R and B are two types
of sublattice sites. an=1,2,3 and bn=1,2,3 are lattice vectors. The bond
length is set as a = 1. t1 is the hopping strength between nearest-
neighbor sites (set as the unit of energy), and t2e−iϕ is the hopping
strength between two same type sites. The on-site potential at the R
site is M and the one at the B site is −M. (b) Armchair edge energy
spectrum of the Haldane under t2 = t1, ϕ = π/2, and M = 0. Here,
the spectrum E (kx ) is obtained from H (k).

ordinary eigenvalue problem. We know that there is a topo-
logical nontrivial-trivial transition in the ordinary eigenvalue
problem of the Haldane model [1]. In the following, without
loss of generality, we fix the parameters t2 = M1 ≡ t1 and
ϕ = π/2 to analyze the nonlinear BEC of the Haldane model,
and explore the phenomena caused by the nonlinear effect.

III. NONLINEAR BULK-EDGE CORRESPONDENCE

We start by analyzing the auxiliary λ spectrum under dif-
ferent M. Similarly, the λ spectra in the following are plotted
by selecting a strip geometry with armchair edge in the y
direction. To plot λ-ω spectra, we choose kx = 0 as an ex-
ample. Under M = 2t1, the corresponding λ spectrum as a
function of the nonlinear parameter ω is plotted in Fig. 2(a).
As seen, there are edge states crossing λ = 0 under moderate
values of ω. To see the edge state clearly, we plot the λ as
a function of kx under M = 2t1 and ω = 0.5 in Fig. 2(d).
Intuitively, λ = 0 is within the bulk gap in the λ spectrum and
there are a pair of edge states at λ = 0, presenting nontrivial

134201-2



BULK-EDGE CORRESPONDENCE FOR THE NONLINEAR … PHYSICAL REVIEW B 109, 134201 (2024)

FIG. 2. Auxiliary λ spectrum of the Haldane model, shown with
blue dots. The horizontal black lines are reference lines at λ =
0. (a)–(c) present λ-ω spectra under kx = 0 with M = 2t1, M =
3
√

3t1, and M = 6t1, respectively. (d)–(f) present λ-kx spectra under
ω = 0.5, ω = 0, and ω = 0.5, respectively.

topological property. With M = 3
√

3t2, the λ spectrum versus
ω is presented in Fig. 2(b). We can see that the bands of λ = 0
close at ω = 0. Equivalently, the bands in the λ spectrum
touch at λ = 0 and kx = 0 [see Fig. 2(e) for details]. For larger
M, such as M = 6t1, we plot the λ spectrum with respect to ω

in Fig. 2(c). It shows that there is no edge state because λ = 0
is within a distinct gap of the λ spectrum, presenting trivial
topological property. Similarly, we can see the feature in the
λ-kx spectrum as well. As Fig. 2(f) shows, λ = 0 is within
the band gap of the auxiliary λ spectrum, but no edge state
crosses it.

According to conventional principle of bulk-edge corre-
spondence [13,14], the emergence of edge states can be
forecasted by the energy band Chern number, and the mag-
nitude of the Chern number counts the number of the paired
edge states. Next, we check the correspondence between the
Chern number of the bulk band of λ and the emergent edge
states at λ = 0. The Chern number of the band in the auxiliary
λ spectrum below λ = 0, namely C1(ω), is defined as

C1(ω) = 1

2π

∮
∂1BZ

A1(k, ω) dk, (6)

where ∂1BZ means the boundary of the first Brillouin zone, and
A1(k, ω) = −i〈ψ1(k, ω)|∇k|ψ1(k, ω)〉 with |ψ1(k, ω)〉 being
the corresponding eigenvector. If a topological system has
more than two bands, multiple auxiliary bands may appear

FIG. 3. (a) and (b): Armchair edge λ spectra under ω = 2 with
M = 2t1 in (a) and M = 6t1 in (b), respectively. The horizontal black
lines are the λ = 0 reference lines. (c) and (d): Band structures of ω

versus kx extracted from λ = 0 with M = 2t1 in (a) and M = 6t1 in
(b), respectively. The gray regions show the band gaps. The horizon-
tal red lines are the ω = 2 reference lines.

below λ = 0. In this case, one needs to calculate the sum of
the Chern numbers of the auxiliary bands to characterize the
topological phases. For the two-band system, there is only
one band below λ = 0. Therefore, it is enough to use C1(ω)
to characterize the topological phases. We analytically and
numerically calculate C1(ω = 2) of the band below λ = 0
in Fig. 2(d) and Fig. 2(f), and find C1 = 1 and C1 = 0, re-
spectively. Here the analytical C1 can be available by the
singularity expansion method [48,49]. It means that the cor-
respondence between the number of paired edge states and
the Chern number of the band below λ = 0 is valid in the
nonlinear eigenvalue problem of the Haldane model.

What we have discussed before are the cases where ω are
relatively small, and we find that when ω is relatively large,
the system will enter the metallic phase, which can not be
characterized by the Chern number of the auxiliary energy
band. We note that in Ref. [45], the authors have studied
the BEC for the two-dimensional and three-dimensional non-
linear eigenvalue systems with spin-orbit coupling, and the
corresponding phase diagrams show that there is no metallic
phase in such systems. Here, the underlying metallic phase in
our nonlinear eigenvalue system without spin-orbit coupling
is an obvious difference from their findings. Taking ω = 2
and M = 2t1 as an example, we plot the λ spectrum as a
function of kx under the armchair edge in Fig. 3(a). As can
be seen, the states at λ = 0 have been embeded into the
bulk of the system (see the horizontal black reference lines).
We name this state the metallic phase. The metallic phase
appears invthe C1 = 0 case as well. Considering ω = 2 and
M = 6t1, we plot the corresponding λ spectrum in Fig. 3(b).
It is seen that the states at λ = 0 are embeded into the bulk
of the system. Moreover, this metallic characteristic can be
observed in the ω-kx spectrum as well. Figure 3(c) presents
the band structure of ω as the varying of kx under M = 2t1.
The data are extracted from λ = 0. As it shows, the edge
states only exist in small regions of the nonlinear parameter ω

[the shadow region in Fig. 3(c)] where there are bulk energy
gaps, and the presence of the edge state can be interpreted by
C1 = 1. It means that there exists nonlinear BEC between the
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FIG. 4. Phase diagram of the nonlinear Haldane model. The red
region denotes the topological nontrivial phase with C1 = 1. The
blue region denotes the topological trivial phase with C1 = 0. The
gray region denotes the metallic phase.

ω-kx spectrum and the energy band Chern number as well.
For strong nonlinearity, there is no edge state but bulk states
(see the ω = 2 horizontal red line for example), showing the
metallic feature of the system. In addition, similar nonlinear
BEC and metallic characteristic can be seen in the M = 6t1
case as well. We plot the corresponding band structure of ω

as a function of kx in Fig. 3(d). The data are still extracted
from λ = 0. Intuitively, there exists nonlinear BEC. When ω

is small, there is a bulk energy gap [the shadow region in
Fig. 3(d)], and the absence of an edge state can be interpreted
by C1 = 0. For strong nonlinearity, such ω = 2 (the horizontal
red reference line), the corresponding states are embed into
the bulk of the system, presenting the metallic property.

By analyzing the band structures of the λ and ω spectra un-
der more discrete parameter points, the phase of the nonlinear
Haldane model is plotted in the ω-M parameter space, which
is shown in Fig. 4. We determine that the nonlinear system
contains three phases: the topological nontrivial phase with
C1 = 1 (red region), the topological trivial phase with C1 = 0
(blue region), and the metallic phase (gray region). The black
dashed lines are the phase boundaries between the metallic
phase and the topological phases. From the phase diagram,
we can intuitively see that the topological nontrivial phase is
more sensitive to the nonlinearity compared to the topological
trivial phase. The topological nontrivial phase only exists in
the cases where the nonlinear parameters ω are weak (less
than one), while the trivial phase can survive in the cases
where ω are strong (far larger than one). When the nonlinear
parameter ω is fixed at a finite nonzero value, as the increase
of the on-site potential strength, the system can undergo the
transition from the C1 = 1 phase to the metallic phase, and
finally to the C1 = 0 phase. It is also feasible to continuously
tune both the nonlinear parameters and the strength of the
potential, achieving a direct transition from C1 = 1 to C1 = 0
without experiencing the metallic phase.

The metallic phase, topological nontrivial phase, and the
topological trivial phase can be detected by the transport
conductance G as well. According to the Landauer formula
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FIG. 5. Transport conductance G as a function of the auxiliary
eigenvalue λ. (a) M = 2t1 and ω = 0.2; (b) M = 2t1 and ω = −0.2;
(c) M = 2t1 and ω = 2; (d) M = 2t1 and ω = −2; (e) M = 6t1 and
ω = 1; (f) M = 8t1 and ω = −1. The insets enlarge the transport
conductance near λ = 0.

[50,51], G is obtained from

G = 2e2

h
Tλ, (7)

where Tλ is the transmission coefficient and 2e2/h is the unit
of G. Taking different M and ω, we plot the corresponding
transport conductance G as a function of the auxiliary eigen-
value λ in Figs. 5(a)–5(f). Specifically, Figs. 5(a) and 5(b)
show that there are quantized conductance G = 2e2/h at λ =
0, presenting the topological nontrivial feature. In Figs. 5(c)
and 5(d), the curves show that there are macroscopic nonquan-
tized conductance at λ = 0, revealing the metallic property of
the nonlinear Haldane model under the current parameters. In
Figs. 5(e) and 5(f), there are quantized transport conductances
at λ = 0 as well, but G = 0, which reflects the topological
trivial property of the system under the current parameters.
The results of the transport conductance are self-consistent
with our phase diagram. Although we only select six sets
of parameters to analyze the transport conductance, for other
parameters, the results are self-consistent with our phase dia-
gram as well.

IV. SUMMARY

Herein, we have studied the nonlinear eigenvalue problem
of the Haldane model in the absence of spin-orbit coupling.
Similar to Ref. [45], we find that there is nonlinear bulk-edge
correspondence as well. Meanwhile, when the nonlinearity
is within a threshold, the emergence and disappearance of
the edge states can be characterized by the Chern number
of the auxiliary energy band as well, but differently, we find
that when the nonlinearity exceeds the threshold, this non-
linear system will enter the metallic phase, which has no
analog in the Haldane model and the two-dimensional and
three-dimensional nonlinear eigenvalue systems with spin-
orbit coupling [45] as well. Compared to the topological
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trivial phase, the topological non-trivial phase is more frag-
ile to the nonlinearity, because it only appears in the cases
where the nonlinearity is relative weak. Our work enriches
the study of the bulk-edge correspondence of nonlinear eigen-
values of two-dimensional systems. Noting that the Haldane
model has been experimentally realized [47], we expect that
nonlinear bulk-edge correspondence of the Haldane model

can be observed on similar experimental platforms in the near
future.
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