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Higher-order Klein bottle topological insulator in three-dimensional acoustic crystals
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Topological phases of matter are classified based on symmetries, with nonsymmorphic symmetries like
glide reflections and screw rotations being of particular importance in the classification. In contrast with
extensively studied glide reflections in real space, introducing space-dependent gauge transformations can
lead to momentum-space glide reflection symmetries, which may even change the fundamental domain for
topological classifications, e.g., from a torus to a Klein bottle. Here, we discover a class of three-dimensional
(3D) higher-order topological insulators, protected by a pair of momentum-space glide reflections. It supports
gapless hinge modes, as dictated by the quadrupole moment and Wannier Hamiltonians defined on a Klein bottle
manifold, and we introduce two topological invariants to characterize this phase. Our predicted topological hinge
modes are experimentally verified in a 3D-printed acoustic crystal, providing direct evidence for 3D higher-order
Klein bottle topological insulators. Our results not only showcase the remarkable role of momentum-space glide
reflections in topological classifications but also pave the way for experimentally exploring physical effects
arising from momentum-space nonsymmorphic symmetries.

DOI: 10.1103/PhysRevB.109.134107

I. INTRODUCTION

Discovering topological phases of matter has been one
of the major themes in condensed matter physics and mate-
rial sciences [1–3]. These phases are categorized according
to symmetries, such as internal symmetries or crystal sym-
metries [4]. Among crystal symmetries, nonsymmorphic
symmetries play an important role in the classification [5–9].
Such symmetries involve fractional lattice translations in real
space, whereas their actions in momentum space are always
symmorphic. In the past decade, rapid technological advances
in engineering tight-binding models with high controllability
in metamaterials have aroused considerable interest in study-
ing topological phases under gauge fields [10–21]. Especially
in time-reversal-invariant metamaterials, one can readily de-
ploy Z2 gauge fields, i.e., hopping amplitudes endowed with
phases of ±1. The gauge fluxes can modify the symmetry
algebra projectively. Particularly, it was found that the non-
trivial projective symmetry algebra between translation and
(symmorphic) reflection in real space could give rise to a
momentum-space glide reflection, which involves fractional
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translations in momentum space [19]. Such a symmetry can
even change the fundamental domain from a Brillouin torus
to a Brillouin Klein bottle (which is nonorientable).

Crystal symmetries also play a crucial role in the
classification of higher-order topological phases (HOTPs),
which support (n−m)-dimensional gapless edge modes, with
1 < m � n for an n-dimensional system [22–36]. Since the
symmorphic action of these symmetries in momentum space
does not affect the orientability of the fundamental domain for
topological classifications, previous HOTPs were constructed
based on an orientable base space (e.g., a torus) [22–36].
Given the fundamental importance of base space orientabil-
ity for topological classifications, it is crucial to investigate
whether there exists a momentum-space glide-reflection-
induced nonorientable base space in three dimensions (3D),
so that a class of higher-order topological insulators (HOTIs)
beyond the existing paradigm of topological classifications
arises.

Here, we report on the theoretical prediction and experi-
mental realization of a 3D higher-order Klein bottle topolog-
ical insulator (HOKBTI) protected by a pair of momentum-
space glide-reflection symmetries. We find that these exotic
symmetries impose a constraint on the quadrupole moment
and the Wannier-sector polarizations, allowing us to introduce
two Z2 invariants to characterize the topology of the system
from two different perspectives. Notably, we demonstrate that
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FIG. 1. (a) Schematic illustration of a tight-binding model for
the HOKBTI. The red bonds indicate the hopping with the phase
of −1 compared with the hopping through blue bonds. (b) and (c)
Schematics of reflection symmetries with respect to (b) x-normal and
(c) y-normal planes. In (b), the lattice is reflected about the red plane
by Mx followed by applying a gauge transformation [GMx = (−1)z].
The gauge transformation is described by imposing the phases in the
brackets on the corresponding hopping. It follows that the combined
operation Mx = GMx Mx does not change the hopping configuration,
and thus, the Hamiltonian remains invariant through this operation.
In (c), GMy = (−1)z+1τ3σ3.

this 3D Klein bottle insulator supports gapless modes at one-
dimensional (1D) hinges. These gapless modes are not chiral
and thus are completely different from the chiral hinge modes
in conventional 3D HOTIs [28]. We further experimentally
realize this topological state in acoustic crystals.

II. THEORETICAL MODEL

We start by considering a generic tight-binding Hamilto-
nian in square lattices containing four degrees of freedom in
each unit cell. With momentum-space glide-reflection sym-
metries mx and my, the Bloch Hamiltonian in momentum
space H(k) satisfies

mxH(k)m−1
x = H(−kx, ky, kz + π ), (1)

myH(k)m−1
y = H(kx,−ky, kz + π ), (2)

where k = (kx, ky, kz ) is the Bloch wave vector. Let us con-
sider a simple model shown in Fig. 1(a) to demonstrate
how the symmetries appear. The model is constructed based
on the two-dimensional (2D) Benalcazar-Bernevig-Hughes
(BBH) model [22], where there are four sites in each unit
cell and each plaquette carries a π flux. The 2D models are
stacked into a 3D model by introducing hopping along z.
To ensure that each vertical plaquette also carries a π flux,
we impose a phase of −1 on the hopping amplitude along

z for two diagonal sites in each unit cell (Fig. 1). Such a
model respects the vertical reflections Mx and My, satisfy-
ing {Lz,Mν} = 0 (ν = x, y), where Lz is the unit translation
along z. Specifically, for the particular gauge configuration
(e.g., the one in Fig. 1), these reflection operations must
contain a complementary gauge transformation. As shown
in Fig. 1(b) [Fig. 1(c)], after reflecting the lattice with re-
spect to the x-normal (y-normal) plane, we need to further
apply the gauge transformation GMx (r) = (−1)z [GMy (r) =
(−1)z+1τzσz] [r = (x, y, z) is the position vector of sites] to
transform it into the original lattice. The spatial dependence of
the gauge transformation thus results in the anticommutative
relation between reflection and translation. When consid-
ering their actions on momentum space, momentum-space
glide reflections represented by mx = τ0σ1 and my = τ2σ2

appear (see Appendix A for derivation). One can clearly see
the effects of mx and my if we explicitly write the Bloch
Hamiltonian as

H(k) = (tx + t ′
x cos kxax )�3 + t ′

x sin kxax�0

+ (ty + t ′
y cos kyay)�1 + t y

′ sin kyay�2

+ 2tz cos kzaz�4, (3)

where {� j} is a set of tensor products of Pauli matrices τα and
σβ (which act on internal degrees of freedom), specifically,
�0 = τ0σ2, �4 = τ0σ3, and �i = τiσ1, with i = 1, 2, 3, tν and
tν

′ (ν = x, y) are the intracell and intercell hopping strength
along ν, respectively, and tz is the hopping strength along z
[Fig. 1(a)] (we set tz = 0.5 hereafter), and aν (ν = x, y, z) is
the lattice constant along ν.

For a generic Hamiltonian H(k), at a fixed ky, the sym-
metry constraint in Eq. (1) changes the base space of a torus
to a Klein bottle [similarly for the constraint in Eq. (2)], as
shown in Fig. 2(a), like the 2D Klein bottle insulator [19].
We now analyze how the gapless hinge modes are topologi-
cally protected for the generic Hamiltonian from two different
perspectives. For the first one, we consider the quadrupole
moment, which is widely used to characterize the quadrupole
insulator [37–40]. In Appendix B, we prove that the two
symmetries impose a constraint on the quadrupole moment
that

qs = 0 mod 1, (4)

where qs = qxy(kz ) + qxy(kz + π ), with qxy(kz ) being the
quadrupole moment at the momentum kz along z. The relation
tells us that qs can only take integer values. If we further
require that qxy(k′

z ) is continuous as k′
z changes from kz to

kz + π , then qs can take either 0 or 1 up to an integer multiple
of 2 due to the gauge uncertainty. This enables us to define a
Z2 index as

χq = qs mod 2, (5)

which is quantized to 0 or 1. Note that χq is independent of kz

since χq(kz + δkz ) cannot suddenly change by one compared
with χq(kz ) and thus must be equal to χq(kz ).

The invariant identifies whether the quadrupole moment
qxy(kz

′) travels across 0.5 for an odd number of times as
we change kz

′ from kz to kz + π . Specifically, when χq =
1, the value is crossed for an odd number of times [e.g.,
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FIG. 2. (a) Momentum-space glide reflection symmetry,
mxH(k)m−1

x = H(−kx, ky, kz + π ) (top) and myH(k)
m−1

y = H(kx, −ky, kz + π ) (bottom), resulting in the Brillouin
Klein bottle at each slice with a fixed ky (top) or kx (bottom). (b)
Schematic illustration of how the Klein bottle base space arises
for the Wannier Hamiltonian. (c) The quadrupole moment qxy (kz )
vs kz for the Hamiltonian in Eq. (3) with tx = ty = 0.1 (blue
line) and tx = ty = 1.1 (red line). (d) Energy spectra vs kz for the
Hamiltonian in Eq. (3) at tx = ty = 0.1 with open and periodic
boundary conditions in the x − y plane and along z, respectively. The
blue and red lines represent the hinge modes localized at diagonal
hinges (solid blue circles) and off-diagonal hinges (solid red circles),
respectively. In (c) and (d), t x

′ = t y
′ = 1.

Fig. 2(c)]. While one can continuously deform the Hamilto-
nian to decrease the number of crossings, there always exists
one crossing that cannot be removed due to the constraint in
Eq. (4). Consequently, one can always find kz0 ∈ [kz, kz + π ]
such that qxy(kz0) = 0.5, which guarantees the existence of
gapless hinge modes. For example, for the specific simple
model in Eq. (3), one finds two gapless branches in energy
spectra describing the states spatially localized on a pair of di-
agonal hinges and the states localized on off-diagonal hinges,
respectively [Fig. 2(d)]. The gapless hinge modes appear at
kz = ±π/2, where qxy = 0.5 [Fig. 2(c)]. In addition, due to
the glide-reflection symmetry, the spectrum in the range of
kz ∈ [π, 2π ) can be obtained by shifting the spectrum in the
range of kz ∈ [0, π ) by π . The hinge modes are clearly differ-
ent from the chiral hinge modes in the conventional 3D HOTIs
[28], which are characterized by the winding number of the
quadrupole moment [41,42]. Our topological state, as proved
in Appendix B, does not possess any nonzero winding of the
quadrupole moment. Moreover, due to the absence of any ad-
ditional conditions to constrain qxy(kz ) = qxy(kz + π ) mod 1,
we cannot define the winding number of qxy(kz ) in a half of
the Brillouin zone.

When χq = 0, the value of 0.5 is crossed for an even num-
ber of times [e.g., Fig. 2(c)]. In this case, we can continuously
deform the Hamiltonian so that qxy(kz ) = 0 for all kz, and
thus, there do not exist gapless hinge modes protected by the
quadrupole moment. Because of the constraint in Eq. (4), the
topological invariant cannot change continuously and can only
change abruptly when the energy gap closes, thereby serving
as a well-defined topological invariant.

Secondly, we will show that the nontrivial higher-
order Klein bottle topology can also be encoded in
Wannier Hamiltonians, which have been widely used for
studying higher-order topologies [22,23,28,36,43]. In Ap-
pendix C, we prove that, for a generic Hamiltonian
respecting the two momentum-space glide-reflection sym-
metries, the Wannier Hamiltonians HWy and HWx de-
rived from occupied bands also preserve the two sym-
metries, that is, mxHWy (kx, kz )m−1

x = HWy (−kx, kz + π )
and myHWx (ky, kz )m−1

y = HWx (−ky, kz + π ). The symmetry
changes the base space from the Brillouin torus to the Bril-
louin Klein bottle, the gray region where the corresponding
edges are glued together with the arrows matching [Fig. 2(b)].
Thus, HWy and HWx are each defined on a Klein bottle. In the
following, we will establish the bulk-hinge correspondence
based on the Wannier-sector polarization pν (kz ) (ν = x, y) of
a Wannier band, which represents the edge polarizations in a
quadrupole insulator [22,23].

In Appendix C, we prove that, owing to the momentum-
space glide reflections, such polarizations satisfy the rela-
tion pν (kz ) + pν (kz + π ) = 0 mod 1 (ν = x, y), ensuring that
χν = [pν (kz ) + pν (kz + π )] mod 2 is quantized to 0 or 1 [like
qxy(kz

′), pν (kz
′) should be continuous from kz

′ = kz to kz +
π ]. When χν = 1 (χν = 0), the polarization pν (kz

′) crosses
0.5 for an odd (even) number of times as kz

′ varies from kz to
kz + π . We then define a Z2-valued topological invariant as

χ = χxχy. (6)

When both χx and χy are equal to one, χ = 1 so that
the system is in a topologically nontrivial phase. For ex-
ample, for the Hamiltonian in Eq. (3), when |tx| < 1 and
|ty| < 1 (suppose that t x

′ = t y
′ = 1), both px and py cross 0.5

at kz0 = ±π/2, leading to a topological phase with χ = 1.
In other regions of system parameters, the system is in a
trivial phase with χ = 0. For this specific simple model, in
fact, px(kz0) = py(kz0) = 0.5, indicating that H(kz = kz0) is
effectively a quadrupole insulator with gapless corner modes
[22]. In the 3D case, it implies the existence of gapless hinge
modes. When more complicated terms are added to the model,
one may not find a common kz0 such that px(kz0) = py(kz0) =
0.5. However, the gapless hinge modes are still protected if
χ = 1 and the symmetries are respected (Appendix D).

The above analysis establishes the bulk-hinge correspon-
dence for our 3D HOKBTI for a generic Hamiltonian from
two different perspectives. For the concrete model in Eq. (3),
the two topological invariants defined in Eqs. (5) and (6) co-
incide, thereby giving the same phase diagram. We note that,
in some cases, with long-range hoppings, anomalous phases
arise which can only be characterized by the topological in-
variant χq (see Appendix D for discussions).
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FIG. 3. Simulated results of the positive and negative couplings. (a) The dipole mode supported in a single cavity. (b)–(e) Acoustic pressure
field distributions for different linking structures. One can also find the resonant frequency and type of the dipole mode beside the structure.

III. RESULTS AND DISCUSSION

We now experimentally realize the state in an acoustic
crystal. To achieve this, it is necessary to engineer the cou-
plings between two acoustic cavities in such a way that each
plaquette in the crystal carries a π flux [44–46]. In our exper-
iments, we fabricated identical air cuboid cavities that were
coupled by narrow tubes using 3D-printing technology with
photosensitive resin. The negative coupling in the x − y plane
was realized by shifting the connecting location [see Figs. 3(a)
and 3(b)] compared with that for the positive coupling. Ad-
ditionally, the positive and negative couplings along z were
achieved using tilted straight and bent tubes, respectively [see
Figs. 3(c) and 3(d)]. Note that our experiment realized neg-
ative hoppings both in the x-y plane and along z, in contrast
with previous work where only the negative hopping in the
x-y plane was achieved [37–39]. Based on the above design,
a 3D acoustic sample was manufactured to implement the
tight-binding model in Eq. (3), with the cavities representing
the lattice sites and the connecting tubes representing the
hoppings. The fabricated acoustic crystal sample is shown in
Fig. 4(a) which contains 4 × 4 × 21 unit cells. In each unit
cell, there are four cavities.

To experimentally probe the hinge modes, we place an
acoustic source at a bottom end of a hinge [position S1 in
Fig. 4(a)] and then use a detector to scan the acoustic signals
in each cavity along the hinge. With the probed acoustic
pressure field distribution, we perform the Fourier transform
to obtain the acoustic dispersion with respect to kz. The left
panel of Fig. 5(a) shows the measured dispersion of the
hinge states with positive group velocities around kzh = π/2.
The experimental results are consistent with the simulated
results described by gray dots. Note that the simulated dis-
persions obtained by the commercial COMSOL Multiphysics
solver package show the existence of gapless hinge modes,
which agree well with our theoretical results in Fig. 2(d). To
measure the dispersion with negative group velocities around
kzh = 3π/2 at the same hinge, we relocate the acoustic source
to the top end of the same hinge (position S2). The measured

dispersion is displayed in the right panel of Fig. 5(a), which
agrees with the simulated results. Furthermore, by placing
the source at either the top or bottom end of a neighboring
hinge (position S3 and S4), the measured results reveal the
other branch of hinge modes localized at that specific hinge
[Fig. 5(b)].

In Fig. 5(c), we further present the simulated (left) and
measured (right) acoustic pressure field distribution when an
acoustic source with the frequency of 2.5 kHz is placed at the
position S2. In the simulation, we introduce a complex acous-
tic velocity given by v = 343(1 + αi) m/s with α = 0.007
to account for system losses. Despite the presence of these
losses, the propagation of an acoustic wave along the hinge is
clearly observed, indicating the existence of hinge states. Our
experimental results also confirm the propagation of signals
along the hinge, which aligns well with the simulation results
(see Appendixes E 2 and E 3 for further discussion on the
effects of loss and the field distribution in the x − y plane).
Furthermore, in Fig. 6, we show the experimental results at
other frequencies outside the typical hinge mode range, where
we observe that the acoustic wave can hardly propagate along

(b)

1
1

2

2 ℎ

S2

S1

S3

S4

(a)

FIG. 4. (a) A photo of the three-dimensional (3D)-printed acous-
tic crystal sample. The four green stars show the positions of four
acoustic sources labeled S1–S4. (b) Schematic illustration of a unit
cell for the acoustic crystal. The blue and red rectangular tubes be-
tween resonators represent the couplings with positive and negative
signs, respectively.
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FIG. 5. (a) and (b) Measured acoustic dispersions (colored) of
the hinge states with positive or negative group velocities. The gray
dots represent the simulated bulk and hinge dispersions. (c) Simu-
lated (left) and measured (right) acoustic pressure field distributions
of the hinge states at the frequency of 2.5 kHz. In (c) and (d), the
color bars are normalized to the maxima so that the value changes
from 0 to 1.

the hinge. In Fig. 7, we present the measured transmission
spectrum, providing additional evidence for the presence of
the hinge states.

IV. CONCLUSIONS

In summary, we have theoretically proposed and experi-
mentally observed a type of HOTI in a 3D acoustic crystal.
Such a topological state arises beyond the conventional classi-
fication because of the gauge field-induced momentum-space
nonsymmorphic symmetry. We introduce two topological in-
variants for this 3D HOKBTI. The phase is stable against
weak disorder (see Appendix F). Our experiments further
confirm the gapless hinge modes. Inspired by Refs. [47,48],

FIG. 6. Measured acoustic pressure field distributions at the fre-
quency of (a) 2.34 kHz and (b) 2.68 kHz.

we also find an anomalous HOKBTI where the gapless hinge
modes only appear in entanglement spectra (see Appendix G).
This paper thus provides an avenue for studying previously
overlooked topological matters induced by gauge fluxes and
exotic projective symmetry algebra.

Note added. Recently, we became aware of two preprints
[49,50] where first-order topological states arising from
momentum-space nonsymmorphic symmetry are experimen-
tally observed.
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APPENDIX A: GENERALIZED REFLECTION SYMMETRY
WITH GAUGE FIELDS

In this appendix, we will present the generalized reflec-
tion symmetry realized by the composition of reflection and
gauge transformations in both real and momentum space. In
momentum space, the symmetry becomes a glide-reflection
symmetry.

1. Generalized reflection symmetry in real space

We write down a generic Hamiltonian in real space as

H =
∑
r,d

∑
αβ

Tαβ (d )| r + d, α〉〈r, β |, (A1)

where Tαβ (d ) denotes the hopping term from |r, β〉 to
|r + d, α〉 and α = 1, 2, 3, 4 labels four degrees of freedom
at each site. The two generalized reflection symmetries along
x and y are defined by operators Mx and My, respectively:

Mx = GMx Mx, (A2)

My = GMy My, (A3)

where Mx and My realize the traditional reflection
of lattice sites along x and y, respectively, that is,
Mx|r, α〉 = mx

′|−x, y, z, α〉 and My|r, α〉 = my
′|x,−y, z, α〉,

with r = (x, y, z) labeling a unit cell and mx
′ and my

′ reflecting
internal degrees of freedom in a unit cell. For example, for the
specific model in Eq. (3), mx

′ and my
′ reflect sites in a unit cell,

that is, mx
′|r, 1〉 =|r, 2〉, mx

′|r, 3〉 =|r, 4〉, my
′|r, 1〉 =|r, 4〉,

and my
′|r, 2〉 =|r, 3〉, where α labels a site in each unit

cell (see Fig. 1 for our notation scheme). For the model,
GMx = (−1)z and GMy = (−1)zG0, with G0 = −τ3σ3, realize
the gauge transformations. Different from traditional gauge
transformations, this gauge transformation is dependent on
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FIG. 7. (a) Loss of the acoustic waves along the z direction. Red triangles and black squares denote the experimental and simulated results
(which are normalized by their maximum values), respectively. Their fitting curves (solid lines) have almost the same slopes, indicating
consistent attenuation behavior. (b) The measured transmission spectrum of hinge (blue) and bulk (black) states by putting the source at the
corner and center of bottom surface and detector at the corner and center of the top surface, respectively. The gray region highlights the bulk
band gap.

the position of unit cells. For a generic Hamiltonian, we
summarize the operations as

Mx| r, α〉 = (−1)zmx|−x, y, z, α〉, (A4)

My| r, α〉 = (−1)zmy|x,−y, z, α〉, (A5)

where m2
x = m2

z = 1. For the specific model, mx = m
′
x = τ0σ1

and my = G0m
′
y = τ2σ2.

Because of the position dependence of the gauge transfor-
mations, we can prove that

{Lz,Mν} = 0, (A6)

where Lz is the translation operator along z and ν = x, y. The
anticommutation relation can be easily derived through the
following calculations:

LzMx| r, α〉 = (−1)zLzmx|−x, y, z, α〉
= (−1)zmx|−x, y, z + 1, α〉, (A7)

MxLz| r, α〉 = −(−1)zmx|−x, y, z + 1, α〉 = −LzMx| r, α〉.
(A8)

Similarly, one can obtain the anticommutation relation be-
tween Lz and My.

We can also prove that Eqs. (A3) and (A4) hold if the
anticommutation relation is satisfied. Specifically, we write
the relation as

LzMνL−1
z M−1

ν = −1, (A9)

which leads to

−1 = LzGMν
MνL−1

z M−1
ν G−1

Mν

= LzGMν
L−1

z G−1
Mν

= GMν
(r − dz)G−1

Mν
(r). (A10)

Here, ν = x, y and dz is a unit vector along z. In the
derivation, we have used the fact that MνLz = LzMν and

LzGMν
L−1

z = GMν
(r − dz ), which can be easily de-

rived by applying the operator to |r, α〉. We thus
derive that GMν

(r − dz ) = −GMν
(r), which gives

GMν
|r, α〉 = (−1)z(−1)θνα |r, α〉, with θνα taking the values of

0 or 1. As a result, Eqs. (A3) and (A4) are obtained.

2. Glide-reflection symmetry in momentum space

In this subsection, we will present the formalism of Mx and
My on the Hamiltonian in momentum space. We now write the
tight-binding model Hamiltonian as

H =
∑

k

∑
αβ

[H(k)]αβ |k, α〉〈k, β |, (A11)

where |k, α〉 with k = (kx, ky, kz ) denotes the momentum
space basis, that is, |k, α〉 = 1√

N

∑
r eik·r|r, α〉, with N being

the total number of unit cells. Here, the matrix elements in
H(k) are determined by

[H(k)]αβ =
∑

d

Tαβ (d )e−ik·d . (A12)

Now we consider the action of Mx on the hopping term
with the site jump d, which is expressed as

Mx

∑
r

| r + d, α〉〈r, β |M−1
x

=
∑

r

(−1)dz mx|−x − dx, y + dy, z + dz, α 〉

× 〈−x, y, z, β |m−1
x

=
∑

k

exp{−i[−kxdx + kydy + (kz + π )dz]}mx

× |k, α〉〈k, β |m−1
x . (A13)
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We see that the terms on (kx, ky, kz ) are changed to the func-
tion of (−kx, ky, kz + π ), leading to

MxHM−1
x =

∑
k

∑
αβ

[H(−kx, ky, kz + π )]
αβ

mx|

× k, α〉〈k, β |m−1
x . (A14)

Thanks to the Mx symmetry, the Hamiltonian satisfies

MxHM−1
x = H,

which gives rise to the glide-reflection symmetry mx in mo-
mentum space, i.e.,

mxH(−kx, ky, kz + π )m−1
x = H(k). (A15)

Similarly, one can derive the glide-reflection symmetry my,
that is,

myH(kx,−ky, kz + π )m−1
y = H(k). (A16)

APPENDIX B: THE QUADRUPOLE MOMENT

In this appendix, we will prove that the quadrupole mo-
ment satisfies the relation qxy(kz ) + qxy(kz + π ) = 0 mod 1
enforced by two glide-reflection symmetries, which ensures
that the topological invariant is well defined. We also prove
that the winding number of the quadrupole moment is zero.
In a 2D Lx × Ly lattice system, the quadrupole moment qxy is
defined as

qxy = 1

2π
Im(log〈q̂xy〉), (B1)

where

q̂xy = exp

⎡
⎣ 2π i

LxLy

∑
r,α

xy

(
ĉ†

r,α ĉr,α − 1

2

)⎤
⎦, (B2)

and ĉ†
r,α (ĉr,α) is the fermion creation (annihilation) operator

at the αth site in the unit cell r = (x, y), and 〈q̂xy〉 is the
expectation value of q̂xy over the many-body ground state at
half-filling.

1. The relation on the quadrupole moment

Theorem 1. For a 3D Hamiltonian on a square lattice with
translational symmetry, we define the quadrupole moment for
a 2D system H (kz ) at kz as

qxy(kz ) = 1

2π
Im(log〈q̂xy〉kz

), (B3)

where 〈. . .〉kz
calculates the expectation value over the many-

body ground state of the 2D Hamiltonian H (kz ) at a fixed kz.
If the 3D Hamiltonian respects Mx and My symmetry, then

qxy(kz ) + qxy(kz + π ) = 0 mod 1. (B4)

Proof . We first write down the Hamiltonian in the second
quantization language:

Ĥ =
∑

kz

Ĥ (kz ) =
∑

kz

∑
r,r′

∑
α,α′

hr,α;r′,α′;kz ĉ
†
r,α,kz

ĉr′,α′,kz , (B5)

where ĉ†
r,α,kz

(ĉr′,α′,kz ) creates (annihilates) a fermionic particle
(with momentum kz along z) of the αth component in the site
r = (x, y) (here, we view the sites in a unit cell as internal
degrees of freedom), and h is the hoping matrix.

When we apply generalized reflection operators to the cre-
ation and annihilation operators, we obtain

M̂xĉ†
r,α,kz

M̂
−1
x = ĉ†

DM̂x
(r,α),kz+π

, (B6)

M̂xĉr,α,kzM̂
−1
x = ĉDM̂x

(r,α),kz+π , (B7)

M̂yĉ†
r,α,kz

M̂
−1
y = (−1)θα ĉ†

DM̂y
(r,α),kz+π

, (B8)

M̂yĉr,α,kzM̂
−1
y = (−1)θα ĉDM̂y

(r,α),kz+π , (B9)

where DM̂x/y
realize the real-space transformation of Mx/y

on (r, α) in the 2D plane, and θα takes the value of 0 or
1 (for the specific model in the main text, θ1 = θ4 = 1 and
θ2 = θ3 = 0). The combination of M̂x and M̂y is a generalized
rotational operator R̂ = M̂xM̂y. Applying it to the creation
and annihilation operators leads to

R̂ĉ†
r,α,kz

R̂
−1 = (−1)θα ĉ†

DR̂(r,α),kz
, (B10)

R̂ĉr,α,kz R̂
−1 = (−1)θα ĉDR̂(r,α),kz , (B11)

where DR̂ = DM̂x
DM̂y

.

Under the action of M̂x, q̂xy(kz ) transforms as

M̂xq̂xy(kz )M̂
−1
x exp

⎧⎨
⎩ 2π i

LxLy

∑
r,α

xy

[
ĉ†

DM̂x
(r,α),kz+π

ĉDM̂x
(r,α),kz+π − 1

2

]⎫⎬
⎭

× exp

⎡
⎣ 2π i

LxLy

∑
r,α

(Lx + 2x0 − 1 − x)yĉ†
r,α,kz+π

ĉr,α,kz+π

⎤
⎦exp

(
−2π i

LxLy

∑
r

2xy

)

× exp

⎡
⎣− 2π i

LxLy

∑
r,α

xy

(
ĉ†

r,α,kz+π
ĉr,α,kz+π − 1

2

)⎤
⎦

× exp

⎡
⎣2π i(Lx + 2x0 − 1)

LxLy

∑
r,α

y

(
ĉ†

r,α,kz+π
ĉr,α,kz+π − 1

2

)⎤
⎦ = q̂†

xy(kz + π )p̂y(kz + π ). (B12)
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Here, (x0, y0) is the position coordinate of the bottom left corner of the lattice, and p̂y is a many-body order parameter about
polarization, which is given by

p̂y(kz ) = exp

⎡
⎣2π i(Lx + 2x0 − 1)

LxLy

∑
r,α

y

(
ĉ†

r,α,kz
ĉr,α,kz − 1

2

)⎤
⎦. (B13)

Since x0 is a fixed finite constant, p̂y reduces to the standard definition of the polarization in the thermodynamic limit [51].
Under the action of R̂, p̂y transforms as

R̂p̂y(kz )R̂
−1 = exp

⎡
⎣2π i(Lx + 2x0 − 1)

LxLy

∑
r,α

y

(
ĉ†

DR̂(r,α),kz
ĉDR̂(r,α),kz − 1

2

)⎤
⎦

= exp

⎡
⎣−2π i(Lx + 2x0 − 1)

LxLy

∑
r,α

y

(
ĉ†

r,α,kz
ĉr,α,kz − 1

2

)⎤
⎦ = p̂†

y(kz ), (B14)

where we have considered the half-filled case.
Let |GS(kz )〉 be the ground state of H (kz ) at half-

filling. Since the system respects the M̂x symmetry,
M̂x|GS(kz )〉 is the ground state of H (kz + π ), that is,
|GS(kz + π )〉 = M̂x|GS(kz )〉. The expectation value of
q̂xy(kz + π ) can be reduced as follows:

〈q̂xy〉kz+π
= 〈GS(kz + π ) |q̂xy(kz + π )|GS(kz + π )〉
= 〈

M̂xGS(kz ) |q̂xy(kz + π )|M̂xGS(kz )
〉

= 〈GS(kz ) |M̂−1
x q̂xy(kz + π )M̂x|GS(kz )〉

= 〈GS(kz ) |q̂†
xy(kz ) p̂y(kz )|GS(kz )〉, (B15)

where in the last step, we have used Eq. (B12). Although
|GS(kz )〉 is generally not an eigenstate of p̂y(kz ), we have the
following result based on the perturbation theory [51,52]:

p̂y(kz )|GS(kz )〉 = 〈p̂y〉kz
|GS(kz )〉 + O

(
1

Ly

)
. (B16)

Therefore, in the thermodynamic limit with an infinitely
large Ly, we have

〈q̂xy〉kz+π
= 〈q̂xy〉∗kz

〈p̂y〉kz
. (B17)

Since the system also respects the R̂ symmetry, R̂|GS(kz )〉
is still the ground state of H (kz ). Based on Eq. (B14), the
expectation value of p̂y satisfies

〈p̂y〉kz
= 〈GS(kz ) | p̂y(kz )|GS(kz )〉
= 〈

R̂GS(kz ) | p̂y(kz )|R̂GS(kz )〉
= 〈GS(kz ) |R̂−1

p̂y(kz )R̂|GS(kz )〉
= 〈GS(kz ) | p̂†

y(kz )|GS(kz )〉 = 〈p̂y〉∗kz
, (B18)

which enforces 〈p̂y〉kz
= ±1. To have a well-defined

quadrupole moment, we require that the total polarization
vanishes so that 〈p̂y〉kz

= 1.
As a result, we arrive at

〈q̂xy〉kz+π
= 〈q̂xy〉∗kz

. (B19)

Based on the result, we obtain

qxy(kz ) + qxy(kz + π )

= 1

2π
Im(log〈q̂xy〉kz

) + 1

2π
Im(log〈q̂xy〉kz+π

)

= 1

2π
Im(log〈q̂xy〉kz

) + 1

2π
Im(log〈q̂xy〉∗kz

)

= 0 mod 1. (B20)

2. The vanishing of the winding number of the quadrupole
moment

We now prove that, in the presence of a pair of momentum-
space glide-reflection symmetries, the winding number of the
quadrupole moment vanishes.

Due to the constraint of the quadrupole moment in Eq. (B4)
enforced by momentum-space glide-reflection symmetries,
we have qxy(kz ) + qxy(kz + π ) = n, where n is an integer. The
winding number of the quadruple moment is given by

Wq =
∫ 2π

0

dqxy(kz )

dkz
dkz =

∫ π

0
dqxy(kz ) +

∫ 2π

π

dqxy(kz )

=
∫ π

0
dqxy(kz ) +

∫ π

0
d[qxy(kz + π )]

=
∫ π

0
dqxy(kz ) +

∫ π

0
d[n − qxy(kz )] = 0. (B21)

It indicates that the nontrivial gapless hinge modes in
HOKBTIs are not chiral modes; the chiral modes are char-
acterized by the nonzero Wq [41,42].

3. Effects of terms breaking momentum-space glide-reflection
symmetries

In the proof in the Appendix B 1, the momentum-space
glide-reflection symmetries are essential. Without these sym-
metries, qs = qxy(kz ) + qxy(kz + π ) is no longer quantized,
and the higher-order Klein bottle topology is not protected. To
illustrate this, we add a term H� = �τ0σ3 (which breaks both
reflection symmetries) in the Hamiltonian in Eq. (3). Since qs

is not required to be an integer, we can continuously vary �

to remove the crossing of qxy(kz ) at 0.5 with respect to kz, as
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FIG. 8. Quadrupole moments, energy gaps, and energy spectra
for the Hamiltonian in Eq. (3) with the term H� = �τ0σ3. (a) The
quadrupole moment qxy (kz) vs kz for different �. (b) The bulk energy
gap (blue line), x-normal surface energy gap (red line) and y-normal
surface energy gap (green line) vs �. The energy spectrum with open
boundary conditions along x and y and periodic boundary conditions
along z for (c) � = 0 and (d) � = 1.2, respectively. We also set
ax = ay = az = 1.

shown in Fig. 8(a). As a result, the gapless hinge modes are
removed through the adiabatic deformation [see the energy
spectrum in Fig. 8(d)]. It is important to note that, as we
change �, the bulk energy gap, the x-normal surface gap, and
y-normal surface gap remain open, as shown in Fig. 8(b).

APPENDIX C: WANNIER-SECTOR POLARIZATIONS

In this appendix, we will present two theorems regarding
the Wannier Hamiltonian and Wannier-sector polarizations.

1. Wannier band and Wannier Hamiltonian

First, we define the Wilson-loop operator Wy(kx, ky0, kz )
along the ky loop as [23]

Wy(kx, ky0, kz ) =V †(kx, ky0, kz )

⎡
⎣ky0+2π←ky0∏

ky

P(kx, ky, kz )

⎤
⎦

× V (kx, ky0, kz ), (C1)

where V (k) = (|u1
k〉,|u2

k〉) is the matrix consisting of two oc-
cupied eigenvectors of H(k), and P(k) = V (k)V †(k) is the
corresponding projection operator. Since Wy is a unitary ma-
trix in the thermodynamic limit, its eigenvalue takes the form
of exp(iν j

y ), with j = ± labeling two bands. The correspond-
ing eigenstate is |ν j

y (k)〉, that is,

Wy(k)
∣∣ν j

y (k)
〉 = exp

(
iν j

y

)∣∣ν j
y (k)

〉
, (C2)

with k = (kx, ky0, kz ). We thus define ν±
y as a function of

(kx, kz ) as the y-Wannier bands. Note that, while |ν±
y (k)〉 may

be dependent on the initial point ky0, ν±
y is independent of it

[23].
Second, we define the y-Wannier band basis as

|w±
y (k)

〉 =
∑

n=1,2

|un
k〉[ν±

y,k]n
, (C3)

with [ν±
y,k]n being the nth element in the eigenstate |ν±

y (k)〉.
Thus, we define the y-Wannier Hamiltonian HWy (kx, kz )
based on Eq. (17) as

HWy (kx, kz ) =
∑
j=±

ν j
y (kx, kz )

∣∣w j
y (k)

〉〈
w j

y (k)
∣∣. (C4)

In the following, we will prove that the Wannier Hamilto-
nian obeys the glide-reflection symmetry in momentum space.

Theorem 2. If the system Hamiltonian H(k) respects two
glide reflection symmetries mx and my, then the Wannier
Hamiltonian HWy and HWx also respect the corresponding
symmetry, that is,

mxHWy (kx, kz )m−1
x = HWy (−kx, kz + π ), (C5)

myHWx (ky, kz )m−1
y = HWx (−ky, kz + π ). (C6)

Proof . Since the Hamiltonian H(k) respects the glide-
reflection symmetry along x, mxV (k) is the set of occupied
eigenvectors of H(−kx, ky, kz + π ). Inserting the identity I =
m−1

x mx into Eq. (C1), we obtain

Wy(kx, kz ) = V †(kx, ky0, kz )

⎡
⎣ky0+2π←ky0∏

ky

m−1
x mxP(kx, ky, kz )

⎤
⎦

× m−1
x mxV (kx, ky0, kz )

= B†
mx

V †(k′)m−1
x

⎡
⎣ky0+2π←ky0∏

ky

P(−kx, ky, kz + π )

⎤
⎦

× V (k′)Bmx

= B†
mx
Wy(−kx, kz + π )Bmx , (C7)

where k′ = (−kx, ky0, kz + π ) and Bmx =
V †(−kx, ky0, kz + π )mxV (kx, ky0, kz ) is a sewing ma-
trix. This leads to ν±

y (kx, kz ) = ν±
y (−kx, kz + π ) and

|ν±
y (−kx, ky0, kz + π )〉 = Bmx |ν±

y (kx, ky0, kz )〉. The y-Wannier
band basis thus satisfies

mx|w±
y (k)

〉 = mxV (k)|ν±
y (k)

〉
= V (−kx, ky0, kz + π )Bmx |ν±

y (k)
〉

= V (−kx, ky0, kz + π )|ν±
y (−kx, ky0, kz + π )

〉
= |w±

y (−kx, ky0, kz + π )
〉
. (C8)

As a result, we arrive at Eq. (C5), implying that the
topology of the y-Wannier Hamiltonian HWy (kx, kz ) is char-
acterized over the topological domain of the Klein bottle,
as shown in Fig. 2(b). We note that, while HWy (kx, kz ) also
depends on ky0, the topology is completely determined by
HWy at any fixed ky0. This is attributable to the fact that the
eigenvalues ν±

y are independent of ky0, and thus, there are no
topological phase transitions as we vary ky0.
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FIG. 9. Energy spectra, quadrupole moment, and polarizations for the model with long-range hoppings. (a) Then energy spectrum with
respect to kz for a system with open boundary conditions along x and y and periodic boundary conditions along z. The blue line represents
the hinge modes localized at the upper left and lower right hinges, and the red line represents the hinge modes localized at the upper right
and lower left hinges [also see Fig. 2(d)]. (b) The quadrupole moment qxy as a function of kz. (c) The Wannier-sector polarizations px (red
line) and py (blue line) with respect to kz. The insets are the zoomed-in view in the interval kz ∈ [0.475π, 0.485π ]. Here, tx = 0.3, ty = 0.6,
t x

′ = t y
′ = 1, tz = 0.5, t1 = 0.1, t2 = 0.4, and t3 = 0.4. We also set ax = ay = az = 1.

Similarly, based on the Wilson-loop operator
Wx(kx0, ky, kz ) along the kx loop, we define the x-Wannier
band basis |w±

x (k)〉 and the x-Wannier Hamiltonian
HWx (ky, kz ). Based on the glide reflection symmetry along y,
we can also derive Eq. (C6).

2. The relation on Wannier-sector polarizations

Theorem 3. The Wannier-sector polarization of the y-
Wannier band (similarly for the x-Wannier band) is defined

as

px(kz ) = − 1

(2π )2

∫
BZ

dkxdkyA
ν−

y

x,k, (C9)

where A
ν−

y

x,k = −i〈w−
y (k)|∂kx |w−

y (k)〉 is the Berry connection
over the y-Wannier bands ν−

y . If the system Hamiltonian H(k)
respects two glide-reflection symmetries mx and my, then

pν (kz ) + pν (kz + π ) = 0 mod 1, (C10)

with ν = x, y.
Proof. Based on Eq. (C8), we derive

[px(kz ) + px(kz + π )] mod 1 =
{

i

(2π )2

∫
BZ

dkxdky[〈w−
y (k)|∂kx |w−

y (k)〉 + 〈w−
y (k1)|∂kx |w−

y (k1)〉]
}

mod 1

=
{

i

(2π )2

∫
BZ

dkxdky[〈w−
y (k)|∂kx |w−

y (k)〉 + 〈w−
y (k2)|m−1

x ∂kx mx|w−
y (k2)〉]

}
mod 1

=
{

i

(2π )2

∫
BZ

dkxdky[〈w−
y (k)|∂kx |w−

y (k)〉 + 〈w−
y (k2)|∂kx |w−

y (k2)〉]
}

mod 1 = 0, (C11)

where k1 = (kx, ky, kz + π ) and k2 = (−kx, ky, kz ). Similarly,
one can also derive that

[py(kz ) + py(kz + π )] mod 1 = 0. (C12)

APPENDIX D: EFFECTS OF LONG-RANGE HOPPINGS

In the main text, we consider the Hamiltonian with only
nearest-neighbor intercell hopping terms that respect two
glide-reflection symmetries. There, the system reduces to the
2D BBH model at kz = ±π/2, where px(kz ) = py(kz ) = 0.5.
In this section, we will show that this feature is not generic,
and without it, the topological phase is still well protected.
While long-range hopping terms are not present in our experi-
ments, we will include some long-range hopping terms that
respect the two glide-reflection symmetries to illustrate the

fact for theoretical interest. In addition, we will demonstrate
the existence of anomalous phases which can only be charac-
terized by χq by studying a model with long-range hoppings.

First, we add the following three next-nearest-neighbor
intercell hopping terms in the Hamiltonian in Eq. (3):

HNNN(k) = t1 sin kzaz cos kyayτ0σ3 + t2 sin kzaz sin kxaxτ1σ0

+ t3 sin kzaz sin kyayτ1σ3, (D1)

which respects the two glide-reflection symmetries. With
these terms, we cannot reduce the model to the BBH model
at a certain kz. However, we find that the presence of these
terms does not change the phase diagram identified by the
topological invariants χ and χq. The topological phase also
manifests in the presence of gapless hinges modes, as shown
in Fig. 9(a). The gapless modes for this set of system
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FIG. 10. (a) The phase diagram of χ and χq as a function of γ for the Hamiltonian in Eq. (D2). In the gray regions, χ and χq are not equal.
(b) The energy spectrum vs γ for the system under open boundary conditions along x and y and periodic boundary conditions along z. The
energy spectrum vs kz at (c) γ = −0.75 and (d) γ = 0.05. Here, b2 = 1.2, g0 = 0.65, tx = 1, ty = 1, and tz = 0.5.

parameters arise at kz = 0.4808π , which is slightly different
from the case with kz = 0.5π for the model in the main text.
In fact, at this kz, qxy = 0.5 [see Fig. 9(b)]. In other words, if
χq = 1 (qxy crosses 0.5 for odd number of times as we change
kz from −π to 0), then there must exist a kz where gapless
hinge modes exist. In this case, although the topological in-
variant χ defined using Wannier-sector polarizations is equal
to one, px(kz ) and py(kz ) do not cross 0.5 at the same kz [see
Fig. 9(c)].

Second, we consider a model with some next-next-
nearest-neighbor intercell hopping terms and demonstrate that
involving these terms may render χ inaccurate [43]. However,
in that case, χq is still correct. The model reads

H2(k) = (g0 − γ − tx − tx cos kx + b2 cos 2ky)τ3σ2

− tx sin kxτ3σ3 + (γ + ty cos ky)τ1σ0

+ (ty sin ky + b2 sin 2ky)τ3σ1 + 2tz cos kzτ2σ0,

(D2)

where we have set ax = ay = az = 1. The Hamilto-
nian respects two momentum-space glide-reflection
symmetries mx = τ1σ3 and my = τ1σ1, i.e.,
mxH2(k)m−1

x = H2(−kx, ky, kz + π ) and myH2(k)m−1
y =

H2(kx,−ky, kz + π ).
Figure 10(a) displays χ and χq with respect to γ . We see

that the equivalence between χ and χq is violated in the gray
regions. In fact, it is the quadrupole moment χq that correctly
describes the higher-order Klein bottle topological state. This
is confirmed by Fig. 10(b), where the gapless hinge modes
only exist in the region with χq = 1. We further plot the en-
ergy spectrum with respect to kz at γ = −0.75 and γ = 0.05
in Figs. 10(c) and 10(d), respectively. We see the existence of
gapless hinge modes in the latter with χq = 1, irrespective of
the value of χ .

APPENDIX E: EXPERIMENTAL DISCUSSIONS

1. Design of negative and positive couplings

In this section, we will provide the experimental parame-
ters. Specifically, each unit cell shown in Fig. 4(b) contains
four cavities with the length l = 70 mm, width w = 40 mm,
and thickness d = 10 mm. Other parameters are w1 = 12
mm, d1 = 4 mm, w2 = 3 mm, and d2 = 3 mm. The lattice
constants in the x − y plane and along z are a = 160 mm and
h = 30 mm, respectively. The tilted and bent tubes connect-

ing neighboring layers along z have the same cross-section
(18 × 10 mm2).

In addition, we will illustrate the design of negative or
positive couplings between neighboring cavities. For a con-

nected double-cavity system, the Hamiltonian H = (
f0 κ

κ f0
),

where f0 is the eigenfrequency of a single cavity and κ is the
coupling strength of the two cavities. Two split eigenmodes
thus occur at frequencies of f± = f0 ± κ corresponding to
the eigenvectors 1√

2
(1,±1)T; the eigenvectors with signs +

and − represent in-phase and out-of-phase modes, respec-
tively. When κ > 0 (κ < 0), the in-phase mode has higher
(lower) frequency than the out-of-phase mode. In Fig. 3, we
provide our numerical simulation results for different linking
schemes. We see that the out-of-phase dipole mode has higher
frequency than the in-phase one for the linking schemes in
Figs. 3(b) and 3(d), indicating that the coupling between the
two cavities is negative. In contrast, the out-of-phase mode
has lower frequency than the in-phase one for the linking
schemes in Figs. 3(c) and 3(e), implying that the coupling is
positive.

To demonstrate the positive or negative couplings, we fab-
ricate four samples corresponding to the above connecting
schemes and place an acoustic point source on the right side
[Fig. 11(a)] of a cavity to excite an acoustic pressure field. We
then detect the pressure responses at four typical positions.
In the middle panels of Fig. 11, we see the appearance of
two resonance peaks in the measured amplitude spectra in the
range of 2.3–2.6 kHz near the eigenfrequencies (gray arrows).
For the in-phase (out-of-phase) mode, positions A and C or B
and D have 0 (π ) phase difference. The phase spectra in the
lower panels of Figs. 11(a) and 11(c) [Figs. 11(b) and 11(d)]
illustrate that the in-phase mode has lower (higher) frequency
than the out-of-phase mode, indicating that we implement the
negative (positive) coupling κ .

2. Effects of loss and measured transmission spectrum

In this subsection, we will discuss the effect of loss on the
acoustic propagation and present the measured transmission
spectrum.

In an acoustic experiment, the loss during propagation
of acoustic waves is inevitable. Hence, in the simula-
tion, we introduce the complex acoustic velocity given by
v = 343(1 + αi) m/s, with α = 0.007, to describe the system
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FIG. 11. Demonstration of positive and negative couplings between two acoustic cavities. (a) and (b) Negative and positive couplings in
the x − y plane. (c) and (d) Negative and positive couplings along the z direction. Upper panels: Pictures of the two coupled acoustic cavities
and experimental setups. An acoustic point source is placed on the right side of a cavity to excite an acoustic pressure field, and the pressure
responses are detected at four typical positions marked as A–D. The two cavities are coupled by a narrow tube with different geometric
configurations to realize either positive or negative couplings. Middle panels: Measured amplitude responses at four positions A (black),
B (red), C (blue), and D (green). The gray arrows point out the numerically calculated resonant frequencies. Lower panels: Corresponding
measured phase spectra.

losses. In the main text, we show that the measured results
agree well with the simulated ones for the pressure field
distributions. We now plot the loss of the acoustic waves as
a function of the layer index at the frequency of 2.5 kHz in
Fig. 7(a). We see that the experimental results are consistent
with the simulated ones. It illustrates that the acoustic wave
intensity undergoes ∼15 dB attenuation along the z direction
after propagating through 16 layers. The average attenuation
rate is thus <1 dB, which is close to the measurements of
hinge states in other papers [33].

In addition, we present the measured transmission spec-
trum by placing a source at the bottom of the sample and
detecting the signal at the top surface. To measure the bulk
transmission spectrum, the source and detector are placed
at the center of bottom and top surfaces, respectively. The
spectrum exhibits an obvious band gap 2.47–2.54kHz (gray
region), as shown by the black line in Fig. 7(b). To measure
the hinge transmission spectrum, we place the source and de-
tector at the corners of bottom and top surfaces, respectively.
The measured transmission exhibits a significant increase in
the frequency range of 2.36–2.65 kHz, providing additional
evidence for the existence of hinge states.

3. Measured acoustic pressure field distribution
in the x − y plane

In Fig. 5(c), we have shown the measured acoustic pres-
sure field distribution on the surface. In this subsection, we
present the measured field distribution in the x − y plane at
the 11th layer in Fig. 12(a). We see the localization of the
field distribution near a corner, which agrees well with the

simulated eigenfield distribution shown in Fig. 12(b). The
results provide additional evidence for the existence of hinge
states.

4. Measured acoustic pressure field distributions
at other frequencies

In Fig. 5(c), we have shown the measured acoustic pressure
field distribution when an acoustic source with the frequency
of 2.50 kHz is placed at the position S2 [see Fig. 4(a)]. In this
subsection, we further present the measured acoustic pressure
field distributions at the frequencies of 2.34 and 2.68 kHz by
placing the source at the same position in Fig. 6. The figure
illustrates that the acoustic wave cannot propagate along the
hinge due to the exciting frequency beyond the frequency
range (2.36–2.65 kHz) of the typical hinge states. The re-
sults contrast with the result in Fig. 5(c) at the frequency of

FIG. 12. (a) Measured and (b) simulated pressure field distribu-
tions of the hinge states in the x-y plane in Fig. 4(c) at the frequency
of 2.5 kHz. The fields are normalized to their maxima.
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FIG. 13. (a) The energy spectrum vs kz for the Hamiltonian in Eq. (3) including the on-site disorder term Hd under open boundary
conditions in the x-y plane. Here, we only consider one random configuration with W = 0.05. The blue and red lines denote the hinge modes
localized at diagonal and off-diagonal hinges, respectively. (b) The configuration averaged χq as a function of W . χq suddenly drops from
1 at W ≈ 1.46 (dotted line), indicating the occurrence of a phase transition. (c) The configuration averaged local density of state ρ(E , r) at
zero energy for disordered systems with W = 0.05 under open boundary conditions in the x-y plane. The distribution of disorder respects two
reflection symmetries. Here, tx = ty = 0.1, and the size in the x-y plane is 10 × 10. The number of random configurations in (b) and (c) is 100.
We also set ax = ay = az = 1.

2.50 kHz, where the propagation of the wave is observed due
to the existence of hinge states at this frequency.

APPENDIX F: EFFECTS OF WEAK DISORDER

In this appendix, we will study the effect of weak disorder
by introducing on-site disorder which preserves momentum-
space glide-reflection symmetries.

The disorder term is expressed as

Hd = W
∑
r,α

hr|r, α〉〈r, α|, (F1)

where hr is a random variable which is uniformly distributed
in the range of [−1, 1], and W is the disorder strength. To
ensure that the topology is well defined, we require that {hr}
respect the two reflection symmetries. Figure 13(a) displays
the energy spectrum of one random sample by considering the
disorder without breaking the translational symmetry along z.
Clearly, gapless hinge modes persist, indicating the stability
of the topologically nontrivial phase against weak disorder.
Figure 13(b) further plots the configuration averaged χq as
a function of W , showing that the phase is stable against
weak disorder. In addition, we consider the disorder in 3D that
breaks the translational symmetry and find that gapless states
at zero energy are mainly localized at the hinges, as revealed
by the local density of state in Fig. 13(c), further indicating
the stability of our phase against weak disorder.

APPENDIX G: ANOMALOUS HOKBTIS

In this appendix, we will introduce a 3D tight-binding
model (respecting momentum-space nonsymmorphic sym-
metries) that exhibits an anomalous HOKBTI that harbors
gapless hinge modes only in the entanglement spectrum. We
write down its Bloch Hamiltonian in momentum space as

H3(k) = − txτ3σ1 + tyτ1σ1 + t x
′ cos kxτ0σ1 − t x

′ sin kxτ3σ2

+ t y
′ cos kyτ2σ2 + t y

′ sin kyτ1σ2 + 2tz cos kzτ0σ3,

(G1)

where we have set ax = ay = az = 1. The Hamiltonian
respects two glide-reflection symmetries mx = τ0σ1 and
my = τ2σ2, i.e., mxH3(k)m−1

x = H3(−kx, ky + π, kz + π )
and myH3(k)m−1

y = H3(kx + π,−ky, kz + π ). Here, we set

t
′
x = t

′
y = 1 and tz = 0.5.

FIG. 14. (a) The phase diagram as a function of tx and ty for the
Hamiltonian in Eq. (G1). The light red region represents the topolog-
ically nontrivial phase with χq = 1 hosting gapless hinge modes in
the energy spectrum. The dark gray regions depict the topologically
nontrivial phase with χq = 1 supporting gapless hinge modes only
in the entanglement spectrum. (b) Schematics for calculating the
entanglement spectrum in the quarter subsystem A in the x-y plane.
(c) The energy spectrum and (d) the entanglement spectrum with
respect to kz for the Hamiltonian with tx = 1.2 and ty = 0.1 [marked
as a solid yellow circle in (a)].
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Although the glide momenta are different from those of the
original glide-reflection symmetries, we can also prove that
the relation of the quadrupole moment in Eq. (B4) remains
valid. For the new Z2 gauge field, we need to introduce new
gauge transformations, and the action of reflection opera-
tors on the creation and annihilation operators expressed as
Eqs. (B6)–(B9) is changed to

M̂xĉ†
r,α,kz

M̂
−1
x = (−1)yĉ†

DM̂x
(r,α),kz+π

, (G2)

M̂xĉr,α,kzM̂
−1
x = (−1)yĉDM̂x

(r,α),kz+π , (G3)

M̂yĉ†
r,α,kz

M̂
−1
y = (−1)x(−1)θα ĉ†

DM̂y
(r,α),kz+π

, (G4)

M̂yĉr,α,kzM̂
−1
y = (−1)x(−1)θα ĉDM̂y

(r,α),kz+π , (G5)

where θα takes the value of 0 or 1. Clearly, the new gauge
transformations have no effects on ĉ†

r,α,kz
ĉr,α,kz , so Eqs. (B12)

and (B14) remain unchanged. As a result, Eq. (B4) remains
valid, and we can utilize χq to characterize the higher-order
topology in this model.

Figure 14(a) displays the phase diagram as a function of
tx and ty based on χq. We find that, in the circle region, t2 =
t2
x + t2

y < 2, χq = 1, indicating that the system is in a topo-
logically nontrivial phase. Remarkably, gapless hinge modes
in the energy spectrum only arise in the light red region with
|tx| < 1 and |ty| < 1. For the dark gray regions, no gapless
hinge modes exist in the energy spectrum [see Fig. 14(b)
with tx = 1.2 and ty = 0.1]. Based on Ref. [47], we utilize the
entanglement spectrum to characterize the higher-order topol-
ogy. The entanglement spectrum is determined by eigenvalues
of the correlation matrix in a quarter subsystem A in the x-y
plane [see Fig. 14(b)] defined as [53]

[CA(kz )]riα,r jβ
= 〈ψG|ĉ†

ri,α,kz
ĉr j ,β,kz |ψG〉, (G6)

where |ψG〉 denotes the many-body ground state of the Hamil-
tonian in Eq. (G1) at half-filling. Figure 14(d) displays the
entanglement spectrum as a function of kz with the same pa-
rameters in Fig. 14(c), and we can find that nontrivial gapless
hinge modes appear in the entanglement spectrum. In fact,
one can observe gapless hinge modes in the entanglement
spectrum for the whole circle region.
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