
PHYSICAL REVIEW B 109, 125432 (2024)

Dual semi-Dirac cones in three-dimensional photonic crystals
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Semi-Dirac cones, characterized by linear-parabolic dispersions, endow photonic crystals with many fascinat-
ing properties, such as topological transitions and anisotropic electromagnetic responses. While most preceding
investigations concentrated on two-dimensional systems, our exploration of three-dimensional photonic crystals
comprising a cubic lattice of core-shell spheroids unveils unusual dispersions in three-dimensional systems—
dual semi-Dirac cones. The dual semi-Dirac cones arising from a pair of coexisting triply degenerate modes can
be analyzed by effective-Hamiltonian and effective-medium theory, accompanied by topological transitions in
equal-frequency surfaces and significant changes in electromagnetic responses. We find that the photonic crystal
exhibits highly anisotropic wave transport properties, i.e., drastically different transport properties for waves of
different wave-vector directions, within the frequency region between the two semi-Dirac frequencies. However,
at the frequencies of semi-Dirac points, the photonic crystal behaves as an effective double-zero medium for
two propagation directions, but as a single-zero medium for the remaining direction, specifically for orthogonal
polarizations. Our findings contribute valuable insights into three-dimensional artificial materials, presenting
features absent in two-dimensional systems.
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I. INTRODUCTION

Dirac cones, also known as Dirac conical dispersions,
prominent in electronic band structures of materials like
graphene, yield exceptional electron transport properties [1,2],
including quantum Hall effect, zitterbewegung, Klein tun-
neling, etc. It turns out that certain classical wave systems,
such as photonic crystals (PhCs), also exhibit Dirac con-
ical dispersions [3–7]. As a photonic analog of graphene,
two-dimensional (2D) triangular/honeycomb PhCs have dis-
played Dirac cones around K and K ′ points in their band
structures, arising from structural symmetry induced mode
degeneracy [3–7]. Through accidental degeneracy, conical
dispersions distinct from symmetry-protected ones, termed
Dirac-like cones, can be engineered in the band structures
of PhCs [8–31], which cannot be mapped into the Dirac
Hamiltonian and carry zero Berry phase [14]. PhCs possessing
a Dirac-like cone at the Brillouin zone center are of particular
interest, because they offer a feasible and promising avenue
for realizing ultralow-loss zero-index materials (ZIMs) with
both effective permittivity and permeability being zero (i.e.,
εeff = 0, μeff = 0) at the Dirac-point frequency. Such Dirac
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cone based ZIMs showcase extraordinary physical properties,
and have enabled diverse applications, including cloaking
[8,17,18], directive emission [15,16], and photonic doping and
antidoping [19–22], as well as exceptional rings and complex
Dirac-like cones in non-Hermitian systems [25–28].

By introducing optical anisotropy to PhCs, semi-Dirac
cones at the Brillouin zone center, characterized by a unique
form of linear-parabolic dispersions resulting from acci-
dental dependency, have been demonstrated [32–38]. The
PhCs featuring these semi-Dirac cones exhibit fascinating
properties like electromagnetic topological transitions and
highly anisotropic electromagnetic responses [32]. More in-
terestingly, they are linked to anisotropic ZIMs, acting as
double-zero ZIMs (with εeff = 0 and μeff = 0) along one
propagation direction, but single-zero ZIMs (with εeff = 0
or μeff = 0) along the perpendicular direction at the semi-
Dirac frequency [32]. This distinctive property has triggered
intriguing applications including beam splitters [32,33], di-
rective emission [34,35], asymmetric light transmission [36],
cloaking [37], and coherent perfect absorption [38]. However,
investigations into the photonic semi-Dirac cones have thus
far been confined to 2D systems, leaving the fundamental
physics and electromagnetic properties of semi-Dirac cones
in three-dimensional (3D) PhCs unexplored.

In this work, we unveil unique band structures—dual semi-
Dirac cones in 3D PhCs, which are absent in 2D systems.
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The dual semi-Dirac cones are the consequences of two sets
of triply accidental degeneracy of electric dipolar (ED) and
magnetic dipolar (MD) modes within a 3D PhC composed of a
simple cubic lattice of core-shell spheroids with a longer semi-
iaxis along the x direction. The dual semi-Dirac dispersion
manifests on the kx − ky and kx − kz planes, while exhibiting
triply degenerate Dirac-like dispersion on the ky − kz plane.
Significantly, these semi-Dirac cones are correlated with
topological transitions in equal-frequency contours (EFCs),
confirmed by the effective-Hamiltonian and effective-medium
descriptions, elucidating drastic changes in electromagnetic
responses. We find that the wave transport behaviors within
the PhC are highly anisotropic within the frequency region
between the two semi-Dirac frequencies. Moreover, at the
two semi-Dirac frequencies, the PhC behaves as an effective
double-zero ZIM for the y and z propagation directions, but as
a single-zero ZIM for the x direction, specifically for orthogo-
nal polarizations. Our work unveils unique band structures in
3D systems, holding potential for advanced electromagnetic
wave manipulation.

II. DUAL SEMI-DIRAC CONES
AND EIGENMODE ANALYSIS

We start from a 3D PhC composed of a simple cubic lattice
of core-shell spheres with a lattice constant of a in air environ-
ment, which has been demonstrated to manifest a Dirac-like
conical dispersion at the Brillouin center (i.e., the � point)
[9,22]. The core (radius rc) and shell (radius rs) are made
of perfect electric conductors (PECs) and dielectrics with
relative permittivity εs, respectively. Figure 1(a) illustrates the
PhC unit cell in the left panel, while the middle panel displays
the corresponding photonic band structure obtained through
finite-element software COMSOL MULTIPHYSICS by solving the
following eigenfunction [39]:

∇ ×
[

1

ε(r)
∇ × H(r)

]
=

(
2π f

c

)2

H(r), (1)

where H(r) is the magnetic field, f is the eigenfrequency, c is
the speed of light in free space, and ε(r) is the macroscopic
dielectric function describing the PhC.

Here the parameters are set as follows: rc = 0.0857a, rs =
0.36a, and εs = 3.15. The photonic band structure exhibits a
pronounced Dirac-like conical dispersion featuring four linear
bands and two flat bands around the normalized frequency of
fDa/c = 0.782. These bands correspond to three ED modes
(upper) and three MD modes (lower) aligned along the x, y,
and z directions, as shown in the right panel of Fig. 1(a). The
corresponding arrow maps illustrate the electric fields of these
modes. The dipolar modes refer to the modes with one nodal
plane within the PhC unit cell [39]. The ED mode is charac-
terized by oscillating electric fields along a specific direction,
which induces a magnetic current loop. On the other hand,
the MD mode is characterized by an electric displacement
current loop within the PhC unit cell, which induces a MD
moment orthogonal to the current loop [40]. For brevity, we
denote the ED (or MD) mode oriented along the i (i ∈ x, y, z)
direction as the EDi (or MDi) mode. The linear bands corre-
spond to transverse dipolar modes with moment perpendicular
to the Bloch wave vector, while the flat bands correspond to

longitudinal dipolar modes. We note that the three ED (or
MD) modes are inherently degenerate at the � point due to
the Oh symmetry of the PhC. However, the degeneracy of ED
and MD modes results from the fine tuning of material and
structural parameters, finally leading to the formation of an
accidentally degenerate Dirac-like point at the � point.

Previous studies on 2D PhCs [32–38] suggest that through
introducing proper optical anisotropy into the above 3D PhC,
the band structure can be reshaped, leading to the transfor-
mation of the Dirac-like cone into a semi-Dirac cone. To
achieve this, we first alter the external shape of the dielectric
shell to a spheroid with semiaxes rsx �= rsy = rsz, resulting
in the reduction of the symmetry of the PhC to D4h. Such
a spheroid breaks the lattice symmetry along the x and y/z
directions, and simultaneously maintains the lattice symmetry
along the y and z directions. In this scenario, the original
degenerate ED (or MD) modes will split into a single EDx
(or MDx) mode and doubly degenerate EDy and EDz (or
MDy and MDz) modes. As a result, the Dirac-like cone
vanishes along with the linear dispersions. Subsequently, we
engineer the structural parameters rc, rsx, and rsy/sz to recon-
struct the accidental degeneracy of ED and MD modes, giving
rise to linear dispersions along specific Bloch wave-vector
directions. In this way, semi-Dirac cones characterized by
linear-parabolic dispersions can be obtained, as demonstrated
in the forthcoming examples.

Figure 1(b) shows the first example of the anisotropic 3D
PhC, showcasing a semi-Dirac cone achieved through the
degeneracy of three orthogonal modes: two ED modes (i.e.,
EDz and EDy) and one MD mode (i.e., MDx). The relevant
structural parameters are set as rc = 0.075a, rsx = 0.4a, and
rsy = rsz = 0.32a, as depicted in the PhC unit cell (left panel).
The band structure (middle panel) clearly shows a semi-Dirac
cone emerging around the frequency fSDa/c = 0.807. In the
vicinity of this frequency, dispersion curves consist of two
linear bands along the �Y direction, and two overlapped
parabolic bands along the �X direction, tangent to a flat band
at this frequency. The two linear bands correspond to the
transverse ED and MD modes, while the flat band corresponds
to the longitudinal mode, as indicated by the arrow maps
of electric fields in the right panel. Conversely, the second
example in Fig. 1(c) demonstrates a semi-Dirac cone resulting
from the triple degeneracy of EDx, MDy, and MDz modes.
The left, middle, and right panels display the unit cell (with
rc = 0.071a, rsx = 0.4a, and rsy = rsz = 0.32a), band struc-
ture, and the arrow maps of electric fields for the degenerate
modes, respectively. Similarly, a semi-Dirac cone comprising
two linear bands along the �Y direction and two overlapped
parabolic bands along the �X direction, accompanied by a flat
band, is obtained at fSDa/c = 0.792. Consequently, two dis-
tinct types of semi-Dirac cones are realized in 3D anisotropic
PhCs.

Now, a crucial question arises: Is it feasible to achieve
both types of semi-Dirac cones within a single PhC, thereby
realizing dual semi-Dirac cones? The above two examples
suggest that there appears to be no inherent physical barrier
(e.g., orthogonality of eigenmodes) to achieving this goal.
Nevertheless, it remains a very challenging task due to the dif-
ficulty of engineering additional modes while simultaneously
preserving the existing semi-Dirac cone. Fortunately, through
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FIG. 1. The unit cell configurations and band structures of 3D cubic-lattice PhCs exhibiting (a) a Dirac-like cone composed of sixfold
accidental degeneracy of the ED and MD modes, (b) a single semi-Dirac cone created by triply accidental degeneracy of the EDz, EDy, and
MDx modes, (c) a single semi-Dirac cone created by triply accidental degeneracy of the EDx, MDy, and MDz modes, and (d) dual semi-Dirac
cones arising from two sets of triply degenerate modes. Left: Illustration of PhC unit cells. Middle: Photonic band structures. Right: Arrow
maps of electric fields for the degenerate modes in the �Y direction with gradually increasing the frequency, close to the Dirac-like and
semi-Dirac cones. The axis parallel to the ED or MD moment direction is marked in red.
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FIG. 2. The dispersion surfaces near the semi-Dirac points on the
(a) kx − ky and (b) ky − kz planes based on the numerical simulations.
Different colors are used for a clear illustration of different dispersion
surfaces. The dispersion surfaces manifest two semi-Dirac cones on
the kx − ky plane, and two Dirac-like cones on the ky − kz plane.

meticulous parameter optimization, we have successfully
designed an anisotropic PhC that exhibits dual semi-Dirac
cones. Figure 1(d) shows the unit cell with rc = 0.0855a,
rsx = 0.4a, and rsy = rsz = 0.35a (left); band structure
(middle); and the arrow maps of electric fields for the degen-
erate modes (right). Notably, two semi-Dirac points emerge
at frequencies fSD1a/c = 0.773 and fSD2a/c = 0.778. Both
semi-Dirac cones consist of triply degenerate modes, show-
casing linear dispersions along the �Y direction and parabolic
dispersions along the �X direction. Importantly, they are
created by different modes: the semi-Dirac cone at fSD1 re-
sults from the accidental degeneracy of EDx, MDy, and MDz
modes, while the semi-Dirac cone at fSD2 is created by EDz,
EDy, and MDx modes. This 3D anisotropic PhC unveils un-
usual band structures that are absent in 2D systems.

Here, it is worth summarizing the design strategy of the
PhC exhibiting dual semi-Dirac cones. The utilization of a
PEC core offers an additional freedom (i.e., radius rc) that
can effectively engineer dispersions. The PEC core enhances
the effective permittivity for ED modes as no electric field
is allowed inside it (akin to capacitor models with PEC in-
clusions), resulting in a reduction of eigenfrequencies of ED
modes. Simultaneously, the PEC core imposes zero tangen-
tial electric fields on its surface, strongly affecting the loop
of electric fields that generates the effective MD moment.
Consequently, the eigenfrequencies of MD modes generally
increase with increasing rc. Throughout the design process,
meticulous adjustment of four key parameters, i.e., εs, rc, rsx,
and rsy/sz, governs the engineering of ED and MD modes. We
find that the modes’ order strongly relies on the values of εs

and rc. The ED modes tend to exhibit higher eigenfrequencies
in cases of large εs, while the MD modes tend to exhibit higher
eigenfrequencies in cases of large rc. Significantly, band flip-
ping behaviors happen during the tuning of these parameters.
This enables the proximity of the EDx (or MDx) mode to the
MDy/z (or EDy/z) mode by choosing appropriate values for
εs and rc. Subsequently, through comprehensive optimization
of all four parameters, the realization of dual semi-Dirac cones
is achievable.

III. TOPOLOGICAL TRANSITION AND
EFFECTIVE-MEDIUM DESCRIPTION

Figure 2 shows a full view of dispersion surfaces in
the vicinity of the two semi-Dirac points in k space. The

dispersion surfaces on the kx − ky and ky − kz planes are
shown in Figs. 2(a) and 2(b), respectively. Linear dispersions
along the ky and kz directions, but a quadratic dispersion in
the kx direction, at two distinct frequencies, are observed.
This signifies the emergence of dual semi-Dirac cones. It
is interesting to note that two conical dispersions, arising
from triply degenerate modes, are observed on the ky − kz

plane around the two semi-Dirac points, resembling the Dirac-
like cones observed in 2D PhCs [8]. It is noteworthy that
these unique dispersions can be elucidated through an effec-
tive Hamiltonian on the basis of ED and MD modes [9,13,41]
(see Appendix A).

To clearly show the changes in dispersion as the op-
erating frequency varies across the two semi-Dirac points,
Fig. 3 displays EFCs for three distinct frequencies f a/c =
0.768, 0.775, 0.782, delineated by black dashed lines in
Fig. 3(a). Figure 3(b) shows the EFCs on the kx − ky (left)
and ky − kz (right) planes. We note that each k plane contains
two EFCs associated with orthogonal modes. The numerical
labels correspond to bands derived from the band structure
in Fig. 3(a). A notable observation is the topological trans-
formation of EFCs on the kx − ky plane, transitioning from
closed ellipses ( f a/c = 0.768) to open hyperbolas ( f a/c =
0.775), and then returning to closed ellipses again ( f a/c =
0.782). This behavior unveils an intriguing behavior of elec-
tromagnetic topological transition [32,42] occurring at the two
semi-Dirac points. Such a topological transition is absent for
the EFCs on the ky − kz plane. Instead, the EFCs tend to
coverage towards points at the two semi-Dirac frequencies,
indicating the Dirac-like dispersions on the ky − kz plane.

The topological transition behavior can also be compre-
hended based on the effective-medium description. When
examining modes nearby the � point, the PhC can be char-
acterized by a uniform medium with an effective relative

permittivity tensor ¯̄εeff = (εx,eff
εy,eff

εz,eff

)
and an effective

relative permeability tensor ¯̄μeff = (μx,eff
μy,eff

μz,eff

)
. Due

to structural symmetry, we have εy,eff = εz,eff and μy,eff =
μz,eff at frequencies close to the � point. These effective
parameters can be determined by matching the dispersion and
surface impedance of the corresponding eigenmodes [43,44].
From bands 1 and 3 along the �Y direction, corresponding to
the EDx and MDz modes, we obtain εx,eff and μz,eff (or μy,eff )
as follows:

εx,eff = − ky

Zeff1ε0ω
,

μz,eff = −kyZeff1

μ0ω
= μy,eff , (2)

where ω is the angular frequency; ε0 and μ0 are the per-
mittivity and permeability of free space, respectively; Zeff1 =
〈Ex〉/〈Hz〉 is the effective wave impedance for waves with
the electric field polarized along the x direction, propagating
along the y direction. The bracket 〈. . .〉 denotes the average of
eigenfields along the xz surface of the PhC unit cell. Similarly,
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FIG. 3. (a) A zoomed-in view of the dual semi-Dirac conical dispersion (left), and the effective parameters of PhC (right). (b) EFCs at
f a/c = 0.768, 0.775, 0.782 on the kx − ky (left) and ky − kz (right) planes. The numerical labels indicate the bands adopted from (a). The
dots and lines represent the results from the simulations and analytical dispersions based on effective-medium description, respectively.

from bands 4 and 6, corresponding to the EDz and MDx
modes, we obtain εz,eff (or εy,eff ) and μx,eff as

εy,eff = ky

Zeff2ε0ω
= εz,eff

μx,eff = kyZeff2

μ0ω
, (3)

where Zeff2 = 〈Ez〉/〈Hx〉 is the effective wave impedance for
waves with the electric field polarized along the z direction,
propagating along the y direction.

The effective parameters of the PhC are computed using
Eqs. (2) and (3) and are plotted in the right panel of Fig. 3(a). It
is observed that the PhC exhibits characteristics of an effective
double-zero ZIM with εx,eff = μz,eff = μy,eff = 0 (or εy,eff =
εz,eff = μx,eff = 0) for the y and z propagation directions, but a
single-zero ZIM with εy,eff , εz,eff �= 0 (or μy,eff , μz,eff �= 0) for
the x propagation direction at the semi-Dirac frequency fSD1

(or fSD2). This pronounced anisotropic property is expected to
induce highly anisotropic wave transport properties for waves
of different propagation directions, as elaborated upon in the
subsequent section.

Utilizing the effective parameters, the EFCs of the PhC can
be well retrieved by the following dispersion relations:

kx
2

μ(ε)y
+ ky

2

μ(ε)x
= ε(μ)zk

2
0 (4)

on the kx − ky plane for modes with electric (magnetic) field
polarized along the z direction, and

ky
2

μ(ε)z
+ kz

2

μ(ε)y
= ε(μ)xk2

0 (5)

on the ky − kz plane for modes with electric (magnetic) field
polarized along the x direction. Here, k0 is the wave number
in free space. The solid lines in Fig. 3(b) depict the retrieved
EFCs based on Eqs. (4) and (5), displaying good agreement
with the simulation results (dots). The effective parameters
shown in Fig. 3(a) reveal that μ(ε)z, μ(ε)y, and ε(μ)x con-
sistently exhibit the same sign, crossing zero at the same
semi-Dirac frequency. As a result, the EFCs on the ky − kz

plane are always closed circles, exhibiting no topological
transition. Interestingly, μy and εz (or εy and μz) have the
opposite signs in the frequency region between the two semi-
Dirac frequencies (i.e., fSD1 ∼ fSD2), resulting in hyperbolic
dispersions [45,46], whereas their signs become the same
below fSD1 or above fSD2, causing the EFCs to transform into
closed ellipses. This change in signs leads to a transition in
the topology of the EFCs. These findings underscore that the
topological transitions at the two semi-Dirac points can be
well characterized by the effective parameters. Importantly,
such an effective-medium description significantly simplifies
the phenomenological understanding of the PhC, even in the
presence of exotic band structures, particularly concerning
wave transport properties.

IV. ANISOTROPIC WAVE TRANSPORT PROPERTIES

In the following, we will show the topological transition
induced anisotropic wave transport properties within the 3D
PhC featuring dual semi-Dirac cones, based on the aforemen-
tioned effective-medium description.

We first consider a planar wave propagating along the
z direction, where transverse modes that can couple with
external waves exist. Figure 4(a) illustrates the configuration,
illustrating a planar wave of Ex polarization normally incident
onto a PhC slab comprising Nz layers of units along the z
direction. Our emphasis here is on the normal incidence to
prevent the excitation of longitudinal modes in the flat bands.
In this scenario, the incident waves “see” the parameters εx,eff

and μy,eff , both crossing zero at the lower semi-Dirac fre-
quency (i.e., fSD1a/c = 0.773), as demonstrated in Fig. 3(a).
This double-zero characteristic is anticipated to lead to ro-
bust complete wave transmission [8,21,47]. To validate this
expectation, we compute and plot the transmittance spectra for
PhC slabs with Nz = 10, 15, 25 in Fig. 4(b). Total transmis-
sion is observed at fSD1, irrespective of Nz, as shown by the
inset. This independence of Nz suggests that the total trans-
mission arises from the double-zero parameters rather than
Fabry-Perot resonances. Further evidence is presented in
Fig. 4(c), where the upper and lower panels show the dis-
tributions of Ex (color) and its phase ϕEx (lines) for a planar
wave normally incident on the PhC slab with Nz = 25 (upper)
and its corresponding effective-medium slab (lower) at fSD1.

125432-5



LI, MEI, YAN, MA, CAO, XU, XU, AND LUO PHYSICAL REVIEW B 109, 125432 (2024)

FIG. 4. (a) Schematic graph of a planar wave of Ex polarization
propagating along the z direction normally incident on a PhC slab
consisting of Nz layers of units along the z direction. (b) Transmit-
tance spectra for PhC slabs with Nz = 10, 15, 25. The dashed lines
mark the two semi-Dirac frequencies. The inset is the magnification
of the gray region. (c) Distributions of Ex and its phase ϕEx (lines)
for the planar wave normally incident on the PhC slab with Nz = 25
(upper) and its corresponding effective-medium slab (lower) at the
lower semi-Dirac frequency fSD1a/c = 0.773.

These results exhibit good agreement, showing a small phase
change (∼ 0.2π ) over a long propagation distance of 25a
(∼ 19λ0), further confirming the double-zero characteristic of
the PhC for waves of Ex polarization propagating along the z
direction at the lower semi-Dirac frequency fSD1.

Then we alter the polarization direction of the incident
wave to the y direction, while maintaining the propagation
direction unchanged, as illustrated in Fig. 5(a). In this sce-
nario, the wave transport characteristics are governed by the
parameters εy,eff and μx,eff . Referring to Fig. 3(a), we observe
that the two parameters simultaneously cross zero at the upper
semi-Dirac frequency (i.e., fSD2a/c = 0.778). Consequently,
we anticipate Nz-independent complete transmission to occur
at fSD2, as validated by the transmittance spectra in Fig. 5(b).
The distributions of Ey (color) and its phase ϕEy (lines) for
the planar wave normally incident on the PhC slab with
Nz = 25 and its corresponding effective-medium slab at fSD2

[Fig. 5(c)] show nearly perfect transmission and a small phase
lag (∼ 0.2π ), providing further evidence of the double-zero
characteristic of the PhC for waves of Ey polarization at the
upper semi-Dirac frequency fSD2.

These findings demonstrate that the 3D PhC functions
as an effective double-zero ZIM at the semi-Dirac fre-
quencies, specifically for orthogonal polarizations, along the
z propagation direction. Due to structural symmetry, a similar
double-zero characteristic is expected for the y propagation
direction. Analyzing the effective parameters in Fig. 3(a), we
can infer that the 3D PhC acts as an effective double-zero
ZIM for waves of Ex polarization at fSD1, while for waves

FIG. 5. (a) Schematic graph of a planar wave of Ey polarization
propagating along the z direction normally incident on a PhC slab
consisting of Nz layers of units along the z direction. (b) Transmit-
tance spectra for PhC slabs with Nz = 10, 15, 25. The dashed lines
mark the two semi-Dirac frequencies. The inset is the magnification
of the gray region. (c) Distributions of Ey and its phase ϕEy (lines)
for a planar wave normally incident on the PhC slab with Nz = 25
(upper) and its corresponding effective-medium slab (lower) at the
upper semi-Dirac frequency fSD2a/c = 0.778.

of Ez polarization at fSD2, the 3D PhC acts as an effective
double-zero ZIM along the y propagation direction.

It is important to highlight that the PhC slabs exhibit
high transmittance (>0.9) independent of Nz across the entire
studied frequency spectrum (i.e., f a/c = 0.76–0.79) for both
models in Figs. 4 and 5. This is because the PhC is almost
impedance matched with free space within this frequency
region. Actually, our numerical calculations (not shown here)
reveal that the bandwidth of this robust high transmission is
very broad, roughly covering the frequency range of f a/c =
0.51–0.83 for both models in Figs. 4 and 5. This indicates that
the PhC can function as an effective wave-transparent metas-
tructure, despite being constructed from reflective dielectrics
and PECs. Such characteristics hold promising potential for
practical applications in areas such as radomes and wireless
communications.

Notably, the wave transport characteristics undergo a
profound transformation when the propagation direction is al-
tered to the x direction, as schematically shown in Fig. 6(a). A
planar wave of Ez polarization is normally incident on the PhC
slab comprising Nx layers of units along the x direction. The
transmittance spectra for PhC slabs with Nx = 10, 15, 25
are presented in Fig. 6(b). It is seen that the transmission
experiences a rapid decline in the vicinity of the two semi-
Dirac frequencies with increasing Nx, showcasing distinct
wave transport behaviors compared to the cases involving the
z propagation direction. Such a substantial change is foresee-
able due to the asymmetric band structures along the x and
y (or z) directions nearby the two semi-Dirac frequencies.
Particularly, topological transitions of EFCs occur at the two
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FIG. 6. (a) Schematic graph of a planar wave of Ez polarization
propagating along the x direction normally incident onto a PhC slab
consisting of Nx layers of units along the x direction. (b) Transmit-
tance spectra for PhC slabs with Nx = 10, 15, 25. The dashed lines
mark the two semi-Dirac frequencies. (c) Distributions of Ez for a
planar wave normally incident onto the PhC slab with Nx = 25 at
fSD1a/c = 0.773 (upper) and fSD2a/c = 0.778 (lower).

semi-Dirac frequencies, forming a directional band gap along
the �X direction within the frequency range of fSD1– fSD2.
The change in wave transport property can also be compre-
hended from the perspective of effective parameters. In this
scenario, the wave transport property is influenced by the
parameters μy,eff and εz,eff . Referring to Fig. 3(a), we observe
that μy,eff ∼ 0 and εz,eff < 0 (or εz,eff ∼ 0 and μy,eff > 0) at
the lower (or upper) semi-Dirac frequency, where the PhC
behaves as a single-zero ZIM. It was demonstrated that the
wave transmission decreases with increasing the thickness of
the single-zero ZIM [47,48], as evident in the electric-field
distributions shown in Fig. 6(c). Within the frequency range
of fSD1– fSD2, we have εz,eff < 0 and μy,eff > 0, indicating that
the PhC behaves as a single-negative material. Waves inside it
become evanescent, resulting in low transmission, especially
for a large slab thickness (i.e., a large layer number Nx).
We note that a similar wave transport behavior is anticipated
for waves of Ey polarization, as deduced from the effective
parameters.

Overall, topological transition induced anisotropic wave
transport behaviors are demonstrated within the 3D PhC fea-
turing dual semi-Dirac cones. The PhC exhibits drastically
different wave transport properties for waves of different
propagation directions in the vicinity of semi-Dirac frequen-
cies. For the y/z propagation direction, the PhC behaves as
an effective double-zero ZIM with broadband robust wave
transparency at the semi-Dirac frequencies. In contrast, for
the x propagation direction, it behaves as a single-zero ZIM
at the semi-Dirac frequencies, and a single-negative material
between the two semi-Dirac frequencies due to the direc-
tional band gap, thus leading to low wave transmission. These

FIG. 7. The dispersion surfaces near the semi-Dirac points on the
(a) kx − ky and (b) ky − kz planes based on the effective Hamiltonian
HSD, eff .

findings underscore the significant impact of topological tran-
sitions on wave transport properties of the 3D PhC.

V. DISCUSSION AND CONCLUSION

Finally, it is crucial to emphasize that the studied 3D sys-
tems offer an additional degree of freedom for manipulating
band structures compared to 2D systems. This presents a vi-
able avenue for constructing exotic dispersions that are absent
in 2D systems. As demonstrated in the aforementioned 3D
PhC, it showcases dual semi-Dirac cones on the kx − ky and
kx − kz planes, while two sets of triply accidentally degener-
ate Dirac-like cones on the ky − kz plane. This suggests the
potential to unveil more exotic dispersions in 3D PhCs due to
the increased degree of freedom inherent in 3D systems.

In summary, we have demonstrated the unique dual
semi-Dirac cones in 3D PhCs, arising from two sets of
triply accidental degeneracy of ED and MD modes. The
identification of these two semi-Dirac cones is linked to
topological transitions in EFCs, as substantiated by both
the effective-Hamiltonian and effective-medium descriptions.
Highly anisotropic wave transport properties triggered by the
topological transitions are further demonstrated. Our findings
apply to dispersionless and lossless materials. The introduc-
tion of material dispersion and losses could affect the mode
degeneracy. Their influences on the accidentally degenerate
semi-Dirac cones remain uncertain, and worthy of further
exploration.

Data underlying the results presented in this paper are not
publicly available at this time but may be obtained from the
authors upon reasonable request.
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APPENDIX A: EFFECTIVE-HAMILTONIAN DESCRIPTION

The effective Hamiltonian of the proposed 3D PhC can be formulated on the basis of ED and MD modes as [9,13,41]

HD, eff =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ωex 0 0 0 ipkz −ipky

0 ωey 0 −ipkz 0 ipkx

0 0 ωez ipky −ipkx 0
0 ip∗kz −ip∗ky ωmx 0 0

−ip∗kz 0 ip∗kx 0 ωmy 0
ip∗ky −ip∗kx 0 0 0 ωmz

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A1)

where ωei and ωmi (i ∈ x, y, z) are associated with the energy of the EDi and MDi modes, respectively; p represents the coefficient
of the first order of dispersions; and for conciseness, the lattice constant is set to be unity. The accidental degeneracy of the ED
and MD modes at the Brillouin zone center implies ωei = ωmi at the Dirac-point frequency ωD. Under this circumstance, the six
eigenvalues of the Hamiltonian HD, eff are

ω1 = ω2 = ωD,

ω3 = ω4 = ωD + |p||k|,
ω5 = ω6 = ωD − |p||k|, (A2)

indicating the presence of two flat bands (ω1 and ω2) and four linear bands (ω3 to ω6) in the vicinity of the � point. In the
scenario where the sixfold Dirac-like point is gapped into two semi-Dirac points [Fig. 1(d)], the effective Hamiltonian can be
rewritten as

HSD, eff =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ωSD1 0 0 0 ip′kz −ip′ky

0 ωSD2 0 −ip′kz 0 iqk2
x

0 0 ωSD2 ip′ky −iqk2
x 0

0 ip′∗kz −ip′∗ky ωSD2 0 0
−ip′∗kz 0 iq∗k2

x 0 ωSD1 0
ip′∗ky −iq∗k2

x 0 0 0 ωSD1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A3)

where p′ is the coefficient of the first order of dispersions
along the ky and kz directions; q is the coefficient of the second
order of dispersions along the kx direction. At the � point,
the accidental degeneracy of the EDx, MDy, and MDz modes
occurs at ωSD1; meanwhile, the accidental degeneracy of the
EDz, EDy, and MDx modes occurs at ωSD2. In this case, the
eigenvalues of the Hamiltonian HSD, eff are

ω1 = ωSD1,

ω2 = ωSD1 −
√

q2k4
x + p2

(
k2

y + k2
z

)
,

ω3 = ωSD1 +
√

q2k4
x + p2

(
k2

y + k2
z

)
,

ω4 = ωSD2,

ω5 = ωSD2 −
√

q2k4
x + p2

(
k2

y + k2
z

)
,

ω6 = ωSD2 +
√

q2k4
x + p2

(
k2

y + k2
z

)
. (A4)

Equation (A4) reveals the presence of two flat bands (ω1 and
ω4) and four exotic bands (ω2, ω3, ω5, and ω6). Notably, these
exotic bands exhibit a linear behavior along the ky direction
(kx = kz = 0) and kz direction (kx = ky = 0), but a quadratic
behavior along the kx direction (ky = kz = 0). This signifies
the emergence of dual semi-Dirac cones.

For visualization, the analytical dispersion surfaces on
the kx − ky and ky − kz planes in the vicinity of the two
semi-Dirac points using Eq. (A4) are plotted in Figs. 7(a)
and 7(b), respectively. They agree well with the simula-
tion results in Fig. 2, validating the effectiveness of the
Hamiltonian description. Analysis of the dispersion surfaces
reveals linear dispersions along the ky and kz directions,
but a quadratic dispersion in the kx direction, at two dis-
tinct frequencies, thereby confirming the presence of dual
semi-Dirac cones.

APPENDIX B: METHODS OF SIMULATION

Numerical simulations are performed using the finite-
element software COMSOL MULTIPHYSICS. The band structures
and EFCs in Figs. 1–3 are calculated using a continuum
Floquet eigensolver with Floquet periodic boundary condi-
tions. The eigenfrequencies can be calculated for given Bloch
wave vectors. The transmittance spectra and field distribu-
tions in Figs. 4–6 are obtained by full-wave simulations in
the frequency domain. The upper and lower boundaries of
the models in Figs. 4(c), 5(c), and 6(c) are set as Floquet
periodic boundaries. The left and right boundaries are set as
port, which are used to excite the incident wave and absorb
the transmitted wave. The transmittance spectra are retrieved
from S parameters of the ports.
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