
PHYSICAL REVIEW B 109, 125431 (2024)

Inhomogeneous and nonlocal optical response in magic-angle twisted trilayer graphene
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The response of traditional two-dimensional (2D) materials to electromagnetic fields is typically homogeneous
and local, as the wavelength of the electromagnetic field is much longer than the lattice constant of 2D materials.
In contrast, plasmons in moiré flatband systems enable the coupling of electromagnetic fields and electrons at
extremely small length scales. In this paper, we demonstrate that the plasmons in magic-angle twisted trilayer
graphene (TTG) exhibit significant inhomogeneity and nonlocality, along with violation of in-plane wave-vector
conservation. The exceptional optical scenarios arising from inhomogeneous response can be characterized
by the 2D distribution patterns of the plasmonic electric fields. Our findings provide additional means for
detecting the electronic states of materials by near-field optical experiments, as well as an innovative approach
for advancing the development of optoelectronic devices.

DOI: 10.1103/PhysRevB.109.125431

I. INTRODUCTION

The response of two-dimensional (2D) materials to elec-
tromagnetic fields serves a valuable foundation for unveiling
their inherent electronic structures, paving the way for var-
ious applications in photonics and optoelectronics, such as
light-emitting devices, photodetectors, and ultrafast lasers
[1–7]. In the realm of linear response, the current Jα (r, ω)
(α = x, y) has a linear relationship with the applied elec-
tric field Eβ (r′, ω)(β = x, y), connected by the conductivity
σαβ (r, r′, ω). In homogeneous response, such as that observed
in systems with translation invariance, σαβ (r, r′, ω) depends
on r − r′, rather than r or r′ [8]. When the current Jα (r, ω)
relies solely on the electric field applied at the same posi-
tion (r′ = r), the response is termed localized. Otherwise, the
response is referred to as inhomogeneous or nonlocalized.
Typically, the interaction between conventional 2D materials
and electromagnetic waves can be described as homogeneous
and localized, because the wavelength of the electromagnetic
wave significantly surpasses the lattice constant of these mate-
rials. This condition gives rise to position-independent optical
conductivity σαβ (ω) (α, β = x, y). However, when the wave-
length of an electromagnetic wave is comparable to the lattice
constant of 2D materials, inhomogeneous optical response
can become pronounced, leading to position-dependent op-
tical conductivity [8]. Additionally, certain quantum effects,
such as quantum pressure and diffusion, induce nonlocality
to the response [9]. In contrast to the conventional optical re-
sponse, inhomogeneous and nonlocal response provides more
intricate insights into the electron structures of materials.
Consequently, it offers an enhanced platform for exploring
the short-range interactions within electron systems, including
correlation effects [10].

As collective excitations of electrons, plasmons in 2D ma-
terials exhibit an extraordinary ability to confine optical fields
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on scales significantly shorter than wavelength of illumination
[11–13], enabling a wide range of applications includ-
ing nanophotonics, photodetection, and biosensing [14–18].
Among these materials, graphene plasmons stand out due
to their exceptional properties, such as long lifetime, sub-
stantial wave localization, and high tunability [1,19,20]. The
pronounced confinement of optical fields by graphene plas-
mons has been leveraged to explore nonlocal response effects,
revealing that nonlocal response becomes appreciable in the
phase space (q, ω) where ω/q approaches the Fermi velocity
of graphene [10]. In the context of graphene superlattice, non-
local response induces a decay channel for plasmons, resulting
in substantial dissipative effects at low energies [21].

Twisted bilayer graphene (TBG) introduces an additional
dimension for finely tuning its electronic structure by ma-
nipulating the twist angle. When the twist angle nears the
magic angle 1.05◦, the energy bands near Fermi energy ex-
hibit exceptional flatness, and are separated from other bands.
This unique characteristic gives rise to the emergence of in-
triguing electronic phases, including correlated insulation and
superconductivity [22–30]. The plasmon properties of TBG
have garnered substantial attention from both theoretical and
experimental studies [31–39]. It has been demonstrated that
magic-angle TBG is capable of sustaining undamped plas-
mon modes, distinguished by their remarkable longevity and
significant wave vectors extending to the boundaries of the
Brillouin zone (BZ) [31]. This undamped property of the
moiré flat plasmons (MFPs) can be attributed to the relatively
large values of the “fine structure” constant α = e2/h̄κvF

arising from the low Fermi velocity vF of moiré flatbands,
which raises the plasmon energies beyond the realm of single-
particle excitation [31]. Significantly, the wavelength of these
undamped MFPs can be reduced to the order of 20–30 nm, a
scale comparable to the lattice constants of magic-angle TBG
[40], hinting at a substantial inhomogeneous optical response
within the material.

Moiré flatbands also manifest in twisted trilayer graphene
(TTG) systems when the magic angle of about 1.6◦ is achieved
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[41–43]. The larger magic angle in TTG, which is about√
2 times larger than that of TBG, can be attributed to the

strengthened effective interlayer coupling [41–43]. Similar to
TBG, magic-angle TTG also supports MFPs [44]. The en-
hanced interlayer coupling in TTG compared to TBG may
lead to more pronounced inhomogeneous response. Further-
more, the increased magic angle results in a shorter moiré
lattice constant (∼8.8 nm) for TTG, rendering it more suitable
for investigating response properties at smaller length scales.
In this paper, we delve into the role of inhomogeneous and
nonlocal effects on the plasmonic properties of magic-angle
TTG. Our findings reveal that the position-dependent inter-
layer coupling, which breaks the transition invariant within
TTG, leads to a pronounced inhomogeneous response. This
inhomogeneous response can be identified by a 2D periodic
distribution of plasmon electric fields in real space, which
differs significantly from the one-dimensional patterns ob-
served in a homogeneous response. This intriguing scenario
unveils additional avenues for exploring the electronic states
of materials through near-field optical experiments. Moreover,
we demonstrate that the TTG exhibits remarkable nonlocal
response characteristics stemming from quantum origins.

II. THEORETICAL APPROACH

A. General theory for the optical response
in 2D electron systems

In the framework of linear response theory, the general
formula of current Jα (r, ω) in response to the electric field
Eβ (r′, ω) can be written as [33]

Jα (r, ω) =
∑

β

∫
σαβ (r, r′, ω)Eβ (r′, ω)dr′, (1)

where σαβ (r, r′, ω) denotes the component of the optical con-
ductivity tensor. The Fourier transform with respect to r and
r′ leads to the expression

Jα (q, ω) =
∑
β,q′

σαβ (q, q′, ω)Eβ (q′, ω), (2)

with

σαβ (q, q′, ω) = 1

S

∫∫
σαβ (r, r′, ω)e−iq·reiq′ ·r′

drdr′, (3)

and S is the area of the 2D system.
In the homogeneous response limit, e.g., in the system with

translation invariance, the optical conductivity σαβ (r, r′, ω) is
solely determined by the vector r − r′ [8]. Consequently, the
conductivity tensor reduces to σαβ (q, q′, ω) = σαβ (q, ω)δq,q′ ,
corresponding to the conservation of momentum (q = q′)
during optical response. However, for the inhomogeneous
response, there exists σαβ (q, q′, ω) �= 0 for q �= q′, implying
the broken momentum conservation.

In the local response limit, the current at a given point
r is exclusively determined by the electric field at the same
location. Consequently, we derive the optical conductiv-
ity tensor for this scenario,σαβ (r, r′, ω) = σαβ (r, ω)δ(r − r′),
which leads to σαβ (q, q′, ω) = σαβ (q − q′, 0, ω) according
to Eq. (3). Therefore, within the framework of homo-
geneity and the local response limit, we derive an optical

conductivity tensor, σαβ (q, q′, ω) = σαβ (q → 0, ω)δq,q′ ≡
σαβ (ω)δq,q′ . The q -independent optical conductivity tensor
σαβ (ω) was extensively utilized in prior studies.

B. Dielectric function and plasmons in 2D electron systems

When an external scalar potential energy Vext (r, ω) is ap-
plied to a 2D electron system, the redistribution of electrons
leads to an additional potential Vind(r, ω), with

Vind(r, ω) = e2

4πε0

∫

n(r′, ω)

|r − r′| dr′, (4)

where 
n(r′, ω) is the fluctuation of electron density with
respect to that of ground state. Notably, Vind(r, ω) differs from
the Hartree potentials arising from the charge inhomogeneity
of ground state [33].

Total potential energy is given as

Vtot (r, ω) = Vext (r, ω) + Vind(r, ω), (5)

According to the linear response theory, 
n(r, ω) is corre-
lated to Vtot (r′, ω) through a density-density response function
χ (r, r′, ω) [8]:


n(r, ω) =
∫

χ (r, r′, ω)Vtot (r′, ω)dr′. (6)

The combination of Eq. (4)–Eq. (6) allows us to define a di-
electric function ε(r, r′, ω), serving as a connection between
Vext (r, ω) and Vtot (r′, ω),

Vext (r, ω) =
∫

ε(r, r′, ω)Vtot (r′, ω)dr′. (7)

Alternatively, dielectric function can also be expressed in
wave-vector space through a Fourier transform,

Vext (q, ω) =
∑

q′
ε(q, q′, ω)Vtot (q′, ω), (8)

with

ε(q, q′, ω) = δq,q′ − v(q)χ (q, q′, ω) (9)

where v(q) = e2/(2ε0εrq) is the Fourier transform of 2D
Coulomb potential, and εr is the background dielectric con-
stant. The density-density response function χ (q, q′, ω) can
be calculated within the random-phase approximation,

χ (q, q′, ω) = 1

S

∑
α,β

f (Eα ) − f (Eβ )

h̄ω − Eβ + Eα + iη
Fαβ (q, q′), (10)

where S is the area of the 2D system, α and β rep-
resent the eigenstates states with the energy of Eα and
Eβ, f (E ) is the Fermi distribution function, and Fαβ (q, q′) =
〈α|e−iq·r|β〉〈β|eiq′ ·r|α〉.

Importantly, using the charge-continuity equation ∇ ·
J(r, ω) = −iωe
n(r, ω) and E(r, ω) = 1

e ∇Vtot (r, ω), along
with Eqs. (1) and (6), we can establish the relation between
the density-density response function and conductivity,

χ (q, q′, ω) = 1

ie2ω

∑
α,β

qαq′
βσαβ (q, q′, ω). (11)
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FIG. 1. (a) Schematic of TTG, where the top and bottom layers
are aligned, whereas the middle layer is relatively twisted with θ . (b)
The moiré BZ of TTG. GM

1 and GM
2 represent the reciprocal lattice

vectors. (c) The band structures of TTG at magic angle θ = 1.6◦. The
bands for valley ξ = + and ξ = − are represented by red solid lines
and blue dashed lines, respectively. (d) −Imχ (q, ω) for q along x
axis, with q = 0.01 Å−1 or q = 0.02 Å−1, respectively.

Furthermore, in the framework of homogeneous and the
local response limit, we can obtain

χ (q, ω) ≈ 1

ie2ω

∑
α,β

qαqβσαβ (ω). (12)

For the optical response in 2D crystals, the lattice period-
icity leads to the quasimomentum conservation q′ = q + G
in the optical response, where G is the reciprocal lattice,
due to the lattice periodicity. Consequently, the dielectric
function becomes a matrix defined as εG,G′ (q, ω) = ε(q +
G, q + G′, ω), and the plasmon modes are determined by
det εG,G′ (q, ω) = 0. This condition is reduced to ε0,0(q, ω) =
0 in the homogeneous response limit, owing to the momentum
conservation q′ = q in the response process.

III. RESULTS AND DISCUSSION

A. Electronic band structures and polarization function of TTG

We consider a specific TTG to demonstrate the inhomoge-
neous and nonlocal response effect. The TTG is constructed
by rotating the middle layer of an AAA stacked trilayer
graphene by an angle of θ with respect to the two outer layers,
as depicted in Fig. 1(a) [41]. The electronic band structure of
the TTG can be calculated by using a continuum model. In this
model, the Hamiltonian is constructed by the low-energy elec-
tronic states near the Dirac points K (+) or K (−) of graphene.
The Hamiltonian for valley K (ξ ) is given as

H (ξ ) =

⎛
⎜⎝H1 T + 0

T H2 T
0 T + H3

⎞
⎟⎠, (13)

where Hl = −h̄v{R[(−1)l+1θ/2](k − K (ξ )
l )} · (ξσx, σy) rep-

resents the intralayer contribution of layer l . R(ϕ) is a 2 × 2
rotation matrix, and K (ξ )

l denotes the Dirac point for layer l
at valley K (ξ ). The interlayer coupling is characterized by a
moiré potential T , which is given by

T (r) =
(

u u′
u′ u

)
+ eiξGM

1 ·r
(

u u′ω−ξ

u′ωξ u

)

+ eiξ
(

GM
1 +GM

2

)
·r
(

u u′ωξ

u′ω−ξ u

)
. (14)

In this expression, GM
1 and GM

2 are the moiré reciprocal lat-
tice vectors, as shown in Fig. 1(b). In our calculations, we take
u = 79.7meV and u′ = 97.5meV as adopted in previous liter-
ature, which are obtained by a tight-binding model with intra-
and interlayer hopping amplitudes given by t0 = −2.7eV and
t⊥ = 0.48eV, respectively [23]. The difference between u and
u′ is due to the interlayer corrugation effect. The interlayer
coupling between two outer layers was not taken into account,
due to its negligible magnitude (< 7meV) [41].

The Hamiltonian of Eq. (13) can be rewritten in the
bonding–antibonding bases as [41]

H̃ (ξ ) =

⎛
⎜⎝ H+

√
2T 0√

2T + H2 0
0 0 H−

⎞
⎟⎠, (15)

where H+/− represents the Hamiltonian of top and bottom
layers, respectively. Importantly, we can decompose H̃ (ξ ) into
a bilayer Hamiltonian that closely resembles the TBG Hamil-
tonian but with a proportionally increased interlayer coupling
by a factor of

√
2 factor and that of a single-layer Hamiltonian

of graphene. As a result, the band structure of TTG combines
that of TBG with a significantly enhanced interlayer coupling
and that of pristine graphene. The first magic angle in TTG is
enlarged by a factor of

√
2 compared to TBG, due to the in-

creased effective interlayer coupling, which is about θ = 1.6◦

observed in experimental results [42].
The electronic band structure near the Fermi level (set to

zero) of TTG at the magic angle of θ = 1.6◦ obtained from
the above Hamiltonian is depicted in Fig. 1(c). In the ξ = +
valley, we observe the presence of two moiré flatbands and a
Dirac cone (DC) with Dirac point located at K , which can be
attributed to a combination of the bilayer Hamiltonian and a
single-layer Hamiltonian of graphene as expressed in Eq. (15).
The Dirac point is found to be slightly below the Fermi level
by about 3.4 meV. The bands for the ξ = − valley mirror
those of the ξ = + valley due to time-reversal symmetry.

Notably, for h̄ω � t⊥, the interlayer-coupling effect is ne-
glectable, and the TTG can thus be treated as three decoupled
graphene monolayers. The polarization function becomes

χ (q, ω) ≈ −iglgvgs

16h̄

q2√
ω2 − (vF q)2

, (16)

at zero temperature and zero chemical potential, where gl = 3,
gv = gs = 2 are the layer, valley, and spin degeneracy, respec-
tively. vF is the Fermi velocity of graphene monolayer. This
result is similar to that of TBG [32].
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FIG. 2. (a) The EELS as the functions of wave vector q (along the high-symmetry lines) and energy h̄ω. The results for homogeneous
response limit are shown in (b). (c) The real and imaginary parts of det εG,G′ , and EELS for q = M, calculated by a 2 × 2 dielectric function
matrix. The undamped plasmon mode corresponds to the peak value of loss function at h̄ω ≈ 15.6meV, where Re det εG,G′ = 0, as shown in
the illustration. (d) The real and imaginary parts of dielectric function matrix elements ε11 and ε12, as well as EELS for q = M. For the damped
plasmon mode at lower energy, it has ε11 = ε12, whereas they are opposite for undamped plasmon mode at higher energy.

However, when h̄ω � t⊥, the interlayer coupling plays
an important rule. The interlayer coupling leads to flatbands
with the renormalized Fermi velocity v∗

F = vF (1−6α2)/(1 +
12α2), where α = u′/2kDvF sin(θ/2) is a dimensionless pa-
rameter characterizing the interlayer coupling [41]. Therefore,
we have

χ (q, ω) ≈ −igvgs

16h̄
(q2/

√
ω2 − (vF q)2 + 2q2/

√
ω2 − (v∗

F q)2).

(17)

The polarization function diverges when h̄ω ≈ h̄vF q or
h̄ω ≈ h̄v∗

F q. This contrasts with the polarization function of
TBG, which diverges only at h̄ω = h̄v∗

F q [32]. This result was
also verified from our numerical calculations, as depicted in
Fig. 1(d). The two peaks of −Imχ (q, ω) for qx = 0.01 and
0.02 Å−1 are contributed by moiré flatbands (h̄ω ≈ h̄v∗

F q) and
graphene monolayer (h̄ω ≈ h̄vF q), respectively.

B. Inhomogeneous response in TTG

Based on the electronic band structure of TTG,
we explore the impact of inhomogeneous response
in TTG’s plasmonic behavior. The plasmon modes
determined by det εG,G′ (q, ω) = 0 enable the definition
of the electron-energy-loss spectrum (EELS) as EELS =
−Im[Trε−1

G,G′ (q, ω)] [40]. Identification of plasmon modes
is achieved through the peak values of EELS, as illustrated
in Fig. 2. For the inhomogeneous response depicted in

Fig. 2(a), we adopted 9 reciprocal lattice vectors, G, G′ =
mGM

1 + nGM
2 , with m, n ∈ (−1, 0, 1), corresponding to 81

Umklapp processes. This choice ensures convergence of
dielectric function matrix calculations [32]. The EELS in the
homogeneous response limit was obtained by excluding the
Umklapp processes, as shown in Fig. 2(b). In both scenarios,
an undamped plasmon branch extending across the entire
BZ is evident. These plasmon modes can be attributed to the
electron transitions between the moiré flatbands, resulting
in small energy fluctuation smaller than 10 meV. For small
wave vectors q, the disparity between the real plasmon
dispersion and that under the homogeneous response limit
is neglectable, implying a weak inhomogeneous response
effect in the long-wavelength approximation. However, as
the wave vector increases, the homogeneous response limit
fails to reproduce the positive group velocities of plasmon
dispersion, indicating an enhanced inhomogeneous response
effect in TTG for large wave vectors. Furthermore, the
inhomogeneous response leads to the emergency of damped
plasmons in the frequency region around 5 meV.

To reveal the role of the inhomogeneous response in
the MFPs in TTG, we constructed a minimal model of
the dielectric function matrix εG,G′ (q, ω) at q = M, focus-
ing on a restricted set of reciprocal lattice vectors, G, G′ ∈
{0, − GM

2 }, as

ε =
(

ε11 ε12

ε21 ε22

)
, (18)
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with ε11=ε0,0, ε22=ε−GM
2 ,−GM

2
, ε12=ε0,−GM

2
, and ε21=ε−GM

2 ,0.
The C2 symmetry of TTG leads to ε11 = ε22 and ε12 = ε21, as
demonstrated in Appendix A. The two plasmon modes given
by det εG,G′ = 0 correspond to ε11= ± ε12, respectively. We
plotted the real and imaginary parts of det εG,G′ , Re[det εG,G′ ],
and Im[det εG,G′ ], along with the EELS of TTG in Fig. 2(c).
The two zeros of Re[det εG,G′ ] at h̄ω ≈ 5.7 and 15.6 meV
are along with the two peaks of EELS at these energies,
indicating the presence of plasmon modes at these frequen-
cies. Notably, at the frequency of h̄ω ≈ 5.7meV, Im[det εG,G′ ]
has a finite value, indicating the presence of a damped
plasmon mode. In contrast, for the higher-frequency mode,
Im[det εG,G′ ] approaches nearly zero, signifying an undamped
plasmon mode. We also depicted the spectra of ε11 and ε12 in
Fig. 2(d). The lower-frequency damped plasmon mode and
the higher-frequency undamped plasmon mode are consistent
with the conditions ε11 = ε12 and ε11 = −ε12, respectively,
as we have analyzed. In the case of homogeneous response
limit, εG,G′ (q, ω) becomes a diagonal matrix, and the plasmon
modes are determined by the zeros of the diagonal elements
of ε, i.e., ε11 = ε22 = 0, which gives two degenerate plasmon
frequencies at h̄ω ≈ 12.3meV. However, the nonzero ε12 term
stemming from the inhomogeneous response leads to the split-
ting of two modes, resulting an undamped plasmon mode of
larger frequency h̄ω ≈ 15.6meV and a damped plasmon mode
of small frequency h̄ω ≈ 5.7 meV.

The inhomogeneous response of TTG can be correlated to
the Umklapp processes. The periodic interlayer moiré poten-
tial breaks the translational symmetry of the TTG, allowing
the emergence of σαβ (q, q′, ω) �= 0 at q′ = q + G, where G
represents the reciprocal moiré lattice vector. For the moiré
potential with a small periodicity, e.g., in the TTG with a
large twisted angle, Umklapp processes are suppressed be-
cause the wave vector is significantly smaller than the
length of the reciprocal moiré lattice vector. Consequently,
the response can be treated homogeneously. Conversely, for
the TTG with a small twisted angle close to the magic an-
gle, leading to a larger periodicity, the wave vector becomes
comparable to the length of the reciprocal moiré lattice vector,
making the Umklapp processes significant. In such cases, the
response exhibits pronounced inhomogeneous feature. This
mechanism also holds for TBG, where interlayer moiré poten-
tials play a crucial role. It has been reported that the existence
of damped plasmon branch in magic-angle TBG is closely
related to the inhomogeneous response [45].

C. Electric field distribution of MFPs

To visualize the inhomogeneous response features in TTG,
we further determined the distribution of plasmon electric
fields on the TTG. In our model system, TTG is placed at z =
0 plane surrounded by a medium with dielectric constant ε and
magnetic permeability μ = 1, as shown in Fig. 3(a). Gener-
ally, the incident electromagnetic wave for exciting plasmons
can be expressed as

Ei(q, ω) =
∑

G

(Ei,q+Geq+G + Ei,zez)e
i(q+G)·re−κze−iωt (κ> 0),

(19)

where q = (qx, qy) and r = (x, y) are, respectively, the wave
vector and position vector projected onto the xy plane.
eq+G and ez are the unit vectors parallel to q + G and
along the z direction, respectively. The wave equation from
Maxwell’s equations,∇2Ei − μ0ε0ε∂

2Ei/∂t2 = 0, gives κ =√
|q + G|2 − εω2/c2. In the unretarded limit (|q + G| �√
εω/c), we have κ ≈ |q + G|. In experiments, Ei can be

obtained by Otto configuration, where the wave vector of light
is increased by a prism of large dielectric constant [13,46,47].

Concerning the quasimomentum conservation (q′ = q +
G′) in TTG, we assume the reflection wave Er and transmis-
sion waves Et as

Er (q, ω) =
∑
G′

[Er,q+G′ eq+G′+Er,zez]e
i(q+G′ )·re|q+G′|ze−iωt ,

(20)

and

Et (q, ω) =
∑
G′

[Et,q+G′ eq+G′+Et,zez]e
i(q+G′ )·re−|q+G′|ze−iωt .

(21)

All the components of reflection and transmission waves
are evanescent waves due to |q + G′| >

√
εω/c, which will

decay to zero when z → −∞ (for Er) and z → +∞ (for
Et ). E i(q, ω) and Et (q, ω) can be represented by vector ma-
trixes in the reciprocal space: Ei = {Ei,q+G1 , Ei,q+G2 , ...} and
Et = {Et,q+G1 , Et,q+G2 , ...}. According to the Maxwell electric
field theory, we derive a simple equation that establishes a
connection between Et to Ei, as follows (see Appendix B for
details):

F−1Et = Ei, (22)

with F−1 = I − χV, where I is an identity matrix,
χ is the density-density response function matrix de-
fined as χG,G′ = χ (q + G, q + G′, ω), and V is a diagonal
matrix of 2D Coulomb potential expressed as VG,G′ =
e2/(2ε0ε|q + G|)δG,G′ . Clearly, in the case of homogeneous
response, both and F−1 are diagonal, because χ is diagonal.
Consequently, Et,q+Gn is nonzero only when the correspond-
ing incident wave component Ei,q+Gn is nonzero, and the wave
vector is conserved in the in-plane direction (q′ = q). For
inhomogeneous responses, however, the nonzero off-diagonal
components in can lead to nonzero Et,q+Gn even when
Ei,q+Gn = 0, breaking the in-plane wave-vector conservation.

To further verify the above analysis, we considered
a monochromic electromagnetic plane wave, Ei(q, ω) =
(Ei,qeq + Ei,zez )eiq·re−qze−iωt as incident wave and calcu-
lated the transmission coefficient t (q + G′) = Et,q+G′/Ei,q as
a function of frequency ω for q = S,M, andK , as depicted
in Figs. 3(b)–3(d). For each incident wave vector q, we
checked nine transmission wave vectors q′ = q + G′, with
G′ ∈ 0 ± GM

1 ,±GM
2 ,±GM

1 ± GM
2 , labeled as 1 ∼ 9(q′

1 ∼
q′

9). From Fig. 3(b), for the case of q = S, we can observe
that besides −Im[t (q)], −Im[t (q′

5)] = −Im[t (q − GM
2 )] has a

substantial value, verifying the failure of in-plane wave-vector
conservation in TTG. Similar results are also observed for
q = M and K .

Notably, in the absence of incident electromagnetic waves,
i.e.,Ei,q = 0, the nontrivial solutions of Eq. (22) given by
det F−1 = 0 correspond to the plasmon modes of the
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FIG. 3. (a) Schematic of the excitation of plasmons of TTG by using evanescent wave. TTG is placed at z = 0 plane surrounded by
a medium with dielectric constant ε and magnetic permeability μ = 1. i, r, and t represent the incident, reflected, and transmitted waves,
respectively. (b)–(d) The −Imt (q′) (t (q′) is transmission coefficient for wave vector q′) for different incident wave vector q = S, M, andK .
For each incident wave vector q, we checked nine transmission wave vectors q′ = q + G′, with G′ ∈ 0 ± GM

1 , ±GM
2 , ±GM

1 ± GM
2 , labeled

as 1 ∼ 9(q′
1 ∼ q′

9) in the illustration. The relative values of −Imt (q′) for undamped plasmon modes (corresponding to the peak value of
−Imt (q′) at 15 ∼ 20meV) are represented by the size of red circles.

system. This is equivalent to the result of the linear re-
sponse theory, det ε(q, ω) = 0, due to the relation det F−1 =
det[V(I − χV)V−1] = det(I − Vχ ) = det ε. Moreover, the
plasmon modes correspond to the peak values of transmission
coefficients. For each q, there are two peak values for trans-
mission coefficients, corresponding to the damped plasmon
mode and undamped plasmon mode, respectively, as depicted
in Figs. 3(b)–3(d). The relative values of transmission coeffi-
cients for undamped plasmon modes are also represented by
the size of circles. For q = S, the plasmon modes are mainly
contributed by the q′ = q and q′ = q − GM

2 components la-
beled by 1 and 5, whereas the amplitudes of other wave-vector
components are relatively small.

In Fig. 4(a), we have depicted the Re[Et (z)] distribution
of the undamped plasmon modes for q = S within the xy
plane. The electric field presents a 2D distribution within
the xy plane, with significant periodic variations along the x
direction and comparatively weaker periodic variations along
the y direction. The periodicity of Re[Et (z)] in the x direction
(λ1 = 30 nm) aligns with the wave vector q = S, indicat-
ing the contribution of q′ = q and q′ = q ± GM

2 . In the y
direction, the periodicity of Re[Et (z)] is λ2 = 8.5 nm, sug-
gesting the contributions of wave vectors q′ = q ± GM

1 and
q′ = q ± GM

1 ± GM
2 . Similar results can also be observed for

a larger q which extends to the boundary of BZ, q = M,
as shown in Fig. 4(b), except that the Re[Et (z)] distribution

becomes more localized because of the larger q value. For
the incident wave vector of q = K , the undamped plasmon
modes are contributed equally by q′ = q, q′ = q + GM

1 , and
q′ = q − GM

2 , as depicted in Fig. 3(d). The superposition of
these electromagnetic waves results in a distinct 2D periodic
distribution of Re[Et (z)] within the xy plane, as shown in
Fig. 4(c). The emergence of these 2D Re[Et (z)] distribution
patterns is closely correlated to the nonzero off-diagonal χG,G′

components arising from inhomogeneous response which lifts
the conservation of in-plane wave vectors. In the context
of homogeneous response, the Re[Et (z)] would exhibit 1D
distribution patterns along the direction parallel to q, due
to the conservation of in-plane wave vectors. Therefore, in-
homogeneous optical response can be directly reflected by
the distribution of plasmon electric fields in the real space,
which can be detected by the near-field optical experiments.
Moreover, the breakage of in-plane wave-vector conservation
in inhomogeneous response can lead to anomalous optical
scenarios, paving the way for innovative concept in the design
of optoelectronic devices.

D. Nonlocal response in TTG

Finally, we demonstrate the nonlocal nature of the
optical response in TTG. If this response is local, we
would expect σαβ (q, q′, ω) = σαβ (q − q′, 0, ω), resulting in
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σαβ (q, ω) = σαβ (q → 0, ω) for q = q′. Conversely, a nonlo-
cal response would yield σαβ (q, ω) �= σαβ (q → 0, ω).

We calculated σxx(q → 0, ω) of TTG using the
expression [48]

σxx(q → 0, ω) = − ie2gh̄

(2π )2

∑
ξ,m,n

∫
( fξ,k,m − fξ,k,n)F ξ

m,n(k)(
E ξ

k,m − E ξ

k,n

) × (
E ξ

k,m − E ξ

k,n + h̄ω + iη
)d2k, (23)

with F ξ
m,n(k) = 〈ξ, k, m|vx|ξ, k, n〉〈ξ, k, n|vx|ξ, k, m〉. In this

expression, ξ is the valley index of TTG. For valley ξ , the
energy eigenstates for wave vector k are defined as |ξ, k, m〉
with the eigenenergy of E ξ

k,m, where m is the band index, and
g = 2 is the spin degeneracy. The conductivity σxx(q, ω) at
finite wave vector q can be determined by using the expres-
sion σxx(q, ω) = iχ (q, ω)e2ω/q2 for q along the x direction,
according to Eq. (11).

Our calculations unveiled a significant distinction be-
tween σxx(q = S, ω) and σxx(q → 0, ω) in TTG, as illustrated
in Fig. 4(d), verifying the nonlocal features of the opti-
cal response in TTG. For frequency higher than 15 meV,
Re[σxx(q → 0, ω)] converges to the value of graphene, e2/4h̄
[48], which can be attributed to the electron transitions in the
DCs of TTG. In contrast, Re[σxx(q = S, ω)] decreases to zero
for h̄ω > 10 meV, due to the considerably larger wave vector

FIG. 4. (a)–(c) The distribution of ReEt (z) for the undamped
plasmon modes in the xy and xz plane, for incident wave vectors
q = S, M, andK , respectively. The black arrows indicate the periodic
of plasmon electric fields, and the green parallelograms denote the
supercell of moiré lattice. (d) The real and imaginary parts of optical
conductivities σxx (q = S, ω) and σxx (q → 0, ω), as the functions of
energy h̄ω.

q compared to the momentum transfers for electron transitions
in the DCs at these frequencies. The nonlocal response in
TTG arises mainly from electronic transitions between moiré
flatbands where quantum effects are pronounced, offering
a promising avenue for investigating moiré flatbands using
optical technique.

IV. CONCLUSIONS

In summary, we explored the plasmonic properties of
magic-angle TTG and demonstrated their inhomogeneous and
nonlocal response features, using the linear response theory
and a continuous model Hamiltonian. Our findings unveil that
the interlayer coupling, characterized by the moiré potential,
plays a pivotal role in inducing significant inhomogeneous and
nonlocal optical responses in the TTG. The inhomogeneity in
optical responses can be manifest in the nonzero values of the
off-diagonal elements of the extended dielectric matrix εG,G′ ,
which lead to exceptional characteristics of the plasmons
arising from the electron transitions between the moiré flat
bands of the TTG. Specifically, the inhomogeneity of optical
responses leads to the violation of momentum conservation.
Consequently, the conservation of in-plane wave vectors of
electromagnetic waves is no longer applicable in the TTG.
This phenomenon can also be visually represented through the
special 2D distribution patterns of the plasmonic electric field,
which offers an additional means for detecting the electronic
states of materials by near-field optical experiments. More-
over, the intriguing optical scenarios that arise from these
inhomogeneous and nonlocal responses present an alternative
approach for advancing the development of optoelectronic
devices.
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APPENDIX A: RELATION BETWEEN DIELECTRIC
FUNCTION MATRIX AND LATTICE SYMMETRY

Here, we demonstrate that the C2z symmetry in the contin-
uum model of TTG leads to χ (q, ω) = χ (−q, ω) for arbitrary
wave vector q, and χ0,−GM

2
(q, ω) = χ−GM

2 ,0(q, ω) for q = M.
Energy eigenstates |k, m〉 and |k + q, n〉 with ener-

gies Ek,m and Ek+q,n can be expanded as |k, m〉 =
S−1/2 ∑

G ck,m(G)ei(k+G)·r and |k + q, n〉 = S−1/2 ∑
G′ ck+q,n

(G′)ei(k+q+G′ )·r. The C2z symmetry operator on a 2D system
(in the xy plane) changes the wave vector k to −k. Conse-
quently, the energy eigenstates |−k, m〉 and |−k − q, n〉 can
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be expressed as |−k, m〉 = S−1/2 ∑
G ck,m(G)e−i(k+G)·r and

|−k − q, n〉 = S−1/2 ∑
G′ ck+q,n(G′)e−i(k+q+G′ )·r.

We can arrive at Fk,m;k+q,n(q, q) = F−k,m;−k−q,n

(−q,−q) = |∑G c∗
k,m(G)ck+q,n(G)|2, which leads to

χ (q, ω) = χ (−q, ω) according Eq. (10).
Also, we can get the following expression:

Fk,m;k+q,n

(
q, q − GM

2

) = F−k,m;−k−q,n

( − q,−q + GM
2

)
=

[ ∑
G

c∗
k,m(G)ck+q,n(G)

]

×
[ ∑

G

c∗
k+q,n

(
G − GM

2

)
ck,m(G)

]

Consequently, this expression results in χ (q, q −
GM

2 , ω) = χ (−q,−q + GM
2 , ω). For q = M, we have q −

GM
2 = −q, and therefore, we have χ (q, q − GM

2 , ω) =
χ (q − GM

2 , q, ω).
For q = M, and G, G′ ∈ {0, − GM

2 }, the dielectric func-
tion matrix elements in Eq. (18) are given as ε11 =
1−v(q)χ (q, ω), ε22 = 1−v(−q) χ (−q, ω), ε12 = −v(q)
χ (q, q − GM

2 , ω), and ε21 = −v(−q)χ (q − GM
2 , q, ω). Due

to v(q) = v(−q), we can obtain that ε11 = ε22 and ε12 = ε21.

APPENDIX B: DERIVATION OF EQ. (22)

Maxwell’s equation ∇ · E = 0 gives

iEi,q+G − Ei,z = 0, iEr,q+G′ + Er,z = 0, iEt,q+G′ − Et,z = 0,

(B1)

Combining the charge-continuity equation and Eqs. (2) and
(11), we can express the charge density as

ρ(q + G, ω) = ie2
∑
G′

χ (q + G, q + G′, ω)
Et,q+G′

|q + G′| .

(B2)

Using the boundary conditions ez × (Et − Ei − Er )z=0 =
0 and ez · (Et − Ei − Er )z=0 = ρ/(ε0ε), we get

Ei,q+G + Er,q+G = Et,q+G, (B3)

i(Et,q+G − Ei,q+G + Er,q+G) = 1

ε0ε
ρ(q + G, ω). (B4)

Combining Eqs. (B2)–(B4), we can arrive at∑
G′

[δG,G′ − v(q + G′)χG,G′ (q, ω)]Et,q+G′ = Ei,q+G, (B5)

where we define v(q + G′) = e2

2ε0ε|q+G′ | and χG,G′ (q, ω) =
χ (q + G, q + G′, ω). Equation (B5) can also be written as a
simple equation, Eq. (22).
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