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Unconventional optical response in monolayer graphene due to dominant intraband scattering
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Scattering dynamics influences the graphene’s transport properties and inhibits the charge carrier deterministic
behavior. The intra/interband scattering mechanisms are vital for graphene’s optical conductivity response
under specific considerations of doping. In this study, we systematically explored the impact of scattering on
optical conductivity using a semiclassical multiband Boltzmann equation, incorporating both electron-electron
and electron-phonon interactions collectively with a single phenomenological relaxation time constant. We
found unconventional characteristics of linear optical response with a significant deviation from the universal
conductivity (e2/4h̄) in doped monolayer graphene. This is explained through phenomenological relaxation
rates under low doping regime with dominant intraband scattering. Such novel optical responses vanish at high
temperatures or overdoping conditions due to strong Drude behavior. With the aid of approximations around
Dirac points we have developed analytical formalism for many-body interactions and are in good agreement
with the Kubo approaches.
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I. INTRODUCTION

Unique and remarkable quantum properties of monolayer
graphene with a honeycomb structure have sparked significant
interest in both linear [1] and nonlinear optics [2]. The Dirac
cone symmetry is responsible for the ambipolar behavior
thus producing a surge of carrier concentration in suspended
graphene [3,4] and encapsulated graphene [5]. This is in con-
trast to the semiconductors where a particular quasiparticle
plays a major role for the transport properties [6]. The charge
carriers in graphene with zero rest mass resembles the rela-
tivistic entities and exhibit an effective velocity comparable
to the speed of light [7,8]. These distinctive characteristics
of charge carriers in pristine graphene are at the helm of
its high conductivity [9,10]. In order to describe the elec-
tronic properties of different two-dimensional materials, the
tight-binding Hamiltonian is a first simplified noninteracting
model and commonly used on monolayer, bilayer, and twisted
graphene [11–13]. This basic model reveals the behavior of π

electrons in the graphene hexagonal lattice by considering the
interaction between neighboring carbon atoms through elec-
tron hopping and overlapping of their atomic orbitals, which
successfully produces the electronic band structure including
linear dispersion near Dirac points. To calculate the optical
conductivity of graphene using the tight-binding Hamiltonian,
one can employ the Kubo expression [14–16] from the lin-
ear response theory [17]. But the current-current correlation
function in the Kubo expression requires summation over all
the states in high-dimensional systems, which can become
computationally expensive.

Besides the Kubo approach, the semiconductor Bloch
equation (SBE) [17,18] is an alternative and more effective
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to calculate the optical conductivity of semiconductors and
two-dimensional crystals. The SBE is derived from the time-
dependent Schrödinger equation for periodic systems that
provides great advantage in solving the out-of-equilibrium
problems. Within the realm of this SBE, a cascade of dif-
ferent studies has been focused to observe a spectrum of
diverse optical phenomena. Out of which, Cheng, Sipe, and
Vermuelen conducted extensive study on doped monolayer
graphene to obtain linear and nonlinear optical conductivity
with scattering [19] and without scattering [20] using approx-
imations around Dirac points. With the similar assumptions,
they have calculated dc current-induced second harmonic gen-
eration [21] at zero temperature limit. A quite similar research
has been conducted by Hipolito, Taghizadeh, Alireza, and
Pedersen [22] to find the linear conductivity, third harmonic
generation, and optical Kerr effect for both monolayer and
bilayer graphene. Identification of new kinds of third-order
divergences during cross phase modulation and degenerate
four wave mixing were carried out by Cheng, Sipe, Wu,
and Guo [23] for centrosymmetric two-dimensional materials.
Naib and Sipe [24] detected intraband and interband current
with applying electric field through numerical simulation on
undoped monolayer graphene at low temperatures. McGouran
et al. [25] obtained dipole matrix elements through length
gauge and found the linear and nonlinear Terahertz responses
for undoped suspended bilayer graphene through numerical
simulations at different low temperatures with scattering time
of 80 fs. Study of carrier mobility, carrier density, band struc-
ture, linear and nonlinear terahertz response of nitrogen doped
graphene were reported [26] using this technique. Cheng and
Guo [27] studied the nonlinear magnetooptic effects in doped
and gapped graphene and examined linear response, third
harmonic generation, Kerr effects, two photon absorption, and
four wave mixing under external magnetic field (B = 0.05 T).
The previous studies were using nonlinear relaxation rates
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for studying higher-order optical phenomenon and less focus
on the influence of equal rates for different orders, which
should be exercised to understand anomalous linear optical
responses.

In this paper, the linear optical response for monolayer
graphene is investigated using the SBE approach with the
many-particle approximations at different doping levels. The-
oretically, the length gauge approach for the equation of
motion with the density matrix has been used innumerable
times to investigate various optical parameters. The differ-
ent scattering mechanisms are introduced in our calculations
with the aid of phenomenological relaxation parameters to the
modified SBE and the conductivity response is obtained from
the first-order density matrix, which comprises of both intra-
and interband components. Furthermore, the results are com-
pared with experimental results to gain more insights about
the Pauli blocking and conductivity response. Our formalism
is in good agreement with the experimental data with slight
deviations due to the approximations near Dirac points, lower
optical field energy and noninclusion of thermal fluctuations.
We have shown that the utilization of approximations around
Dirac points bridge the results obtained from perturbative cal-
culations and the Kubo expression under an external electric
field.

II. SEMICLASSICAL APPROACH

The SBE consists of perturbed Hamiltonian with radiation-
interaction and scattering terms to study many-body interac-
tions. For the graphene, unperturbed tight-binding Hamilto-
nian (Ĥ0) deals with the nearest-neighbor hopping with zero
on-site energies,

Ĥ0 =
∑

n

∑
k

εnkc†
nkcnk . (1)

The energy eigenvalues are denoted by εnk and the coef-
ficients c†, c are creation and annihilation operators with
states n = [1, 2] in the momentum space (k). Previously, the
light-matter interactions were treated with velocity gauge, but
challenges arise for many-body interactions because of the
spurious divergences at lower frequencies due to its sensitiv-
ity and susceptibility to numerical inaccuracies [28]. These
divergence issues can be easily tackled by using the length
gauge through sum rules [29] and gauge invariant electric
field, which emerged as a pivotal solution to the problem.
However, it does possess an additional scalar dependence that
disturbs the diagonal property of the perturbed Hamiltonian
in k space. Because of that, there will be some overlap or
coupling contributions, which can be eliminated by the band
isolation technique [30].

The light-matter interacting term in the Hamiltonian (ĤeR)
possesses interaction between electric field of the light and
charge distribution of the matter. By considering electric
dipole approximation along with long wavelength limit for
uniform illumination, we have employed the length gauge
approach with explicit dependence on external electric field
E(t) given by,

ĤeR = −eE(t ).r̂, (2)

FIG. 1. Incorporation of light-matter interaction energy (εeR)
into the tight-binding component (εo) with hopping parameter (t =
−2.7 eV) introduces a more significant band gap expansion, even at
relatively low electrical bias (eE).

where e is the charge of the electron and r̂ being the spatial co-
ordinates. The position operator in the length gauge approach
is linked to the Berry connection (ξ ) when the bands are
distinct under external electrical field. In the context of distinct
bands, the Berry connection or Berry curvature may capture
the geometric phase relationship between them when system
undergoes adiabatic changes in parametric space. Close prox-
imity of the Dirac cones (Fig. 1) is no longer valid due to
presence of external electric field radiation within the light-
matter Hamiltonian [19] given by,

ĤeR = − eE(t ).
∑

n1

∑
n2

∑
k

c†
n1kξn1n2kcn2k

− ieE(t ).
∑

n

∑
k

∇kc†
nkcnk (3)

in which the last term possesses local band characteristics.
The effect of electron-electron, electron scattering due to
phonon, and impurities are dealt with by scattering term in
the Hamiltonian. In the equation of motion [Eq. (4)], the
rate of change due to scattering can be made proportional to
the density of states with the inclusion of phenomenological
relaxation parameter.

A. Collisional multiband Boltzmann equation

We have adopted Sipe-Aversa’s SBE [30] with length
gauge perturbation theory to develop the equation of motion
and solved for the response function of monolayer graphene.
In general, most of the calculations are always focused on in-
terband scattering contribution while neglecting the intraband
scattering. Using a modified SBE, we take intraband informa-
tion directly into account with the aid of phenomenological
relaxation parameters. To obtain expression for many-body
interactions, we followed semiclassical approach using the
quantum Liouville equation,

ih̄
∂ρ̂(t )

∂t
= [Ĥ, ρ̂(t )], (4)
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which consists of the total Hamiltonian (Ĥ ) and the time-
dependent density operator denoted by,

ρ̂(t ) =
∑
n1n2

ρn1n2 (t )|n1〉〈n2|, (5)

where, h̄ is the reduced Planck’s constant. Using Eqs. (4)
and (5) the equation of motion in terms of density matrix is
obtained,

ih̄
∂ρn1n2 (t )

∂t
|n1〉〈n2| = Ĥ0|n1〉ρn1n2 (t )〈n2| − ρn1n2 (t )|n1〉〈n2|Ĥ0

− i�n1n2ρn1n2 (t )|n1〉〈n2|
− eE(t ).〈n1|[r̂, ρ̂(t )]|n2〉|n1〉〈n2|, (6)

where Γ is the phenomenological constant, which contains
the scattering parameters. In the presence of the scattering,
the time evolution of the density operator undergo various
physical effects including damping or decoherence. We have
used the band isolation identity [30] to get a commutation
relationship for the spatial coordinate (r̂) with a physical
operator(Λ̂),∫

dr
∗
n1k1

(r)[r̂, �̂]
n2k2 (r)

= [
ξk1k2

,�k1k2

]
n1,n2

+ i∇k�n1n2k1k2 . (7)

In general, the single-band Boltzmann equation can model the
charge carrier transport in a single electronic band, which can
be extended for the multiband. To depict these different band
characteristics, the above Eq. (7) is extended for each k val-
ues to perceive the required collisional multiband Boltzmann
equation (CMBE),

ih̄
∂ρn1n2k (t )

∂t
= (

εn1k − εn2k
)
ρn1n2k (t ) − ieE(t ).∇kρn1n2k (t )

− eE(t ).
∑

n

(
ξn1nkρnn2k (t )

− ρn1nk (t )ξnn2k

) − i�n1n2kρn1n2k (t ). (8)

The right-hand side of this equation of motion is equivalent in
form to the quantum Boltzmann equation (QBE). It consists
of the kinetic energy terms, which seem to combine with the
dot product of scalar potential. Eliminating the reliance of this
offset energy on position and maintaining system uniformity,
the mentioned identity offers an alternative advantage. And,
finally the extra driving term collectively accounts for all the
collisions, which is the identical term from QBE.

B. Conductivity expression

Composition of the jth order CMBE is possible if the
density matrix is considered to be sum of all orders,

h̄
∂ρ

( j)
n1n2k (t )

∂t
= − i

(
εn1k − εn2k

)
ρ

( j)
n1n2k (t ) − �

( j)
n1n2kρ

( j)
n1n2k (t )

+ ieE(t ).
[
ξk, ρ

( j−1)
k (t )

]
n1n2

− eE(t ).∇kρ
( j−1)
n1n2k (t ). (9)

The solution of the CMBE equation is in the following form,

ρ
( j)
n1n2k =

∫
..

∫ [
−e

dω

2π
Ea

ωe−iωt

] j

S ( j)
n1n2k (ω1, ω2, . . . , ω j ),

(10)

where, S (ω) is the jth-order frequency component. By mak-
ing use of the perturbative expansion of the current density, a
pathway opens for establishing a connection with the surface
current density given by,

e
∑
n1n2

∫
dk
4π2

va
n1n2kρ

( j)
n1n2k (t )

=
∫

..

∫ [
dω

2π
Ea

ωe−iωt

] j

σ ( j);abcd..(ω1, ω2, . . . , ω j ).

(11)

After substitution of Eq. (10) in Eq. (11), we get the general-
ized formula for conductivity,

σ ( j);abcd.. = −e j+1
∑
n1n2

∫
dk
4π2

va
n1n2kS

( j);bcd..

n1n2k (ω1, ω2, . . . , ω j ).

(12)

Solving the above equation (see Appendix) produces the
final expression, which depends upon frequency and chemical
potential (μ) given by,

σ
(1)xx
intra (ω) = iσ0

π

4|μ|
h̄ω + i�(1)

i

(13)

and,

σ
(1)xx
inter (ω) = − σ0

π

[
− π + i ln

∣∣∣∣ h̄ω + 2μ + i�(1)
e

h̄ω − 2μ + i�(1)
e

∣∣∣∣
+ 1

2
ln

∣∣∣∣ h̄ω + 2μ + �(1)
e

h̄ω − 2μ + �
(1)
e

∣∣∣∣
]
, (14)

where, Γe is the interband constant, Γi is the intraband con-
stant, and σ0 = (e2/4h̄) is the universal conductivity. In the
case of graphene, the Dirac cone electronic dispersion leads
to a unique Drude response and the expression of Drude con-
ductivity for Dirac electrons is the intraband conductivity in
Eq. (13), which coincides with the Boltzmann-Drude expres-
sion. In connection to this, direct gap approximation is needed
to be considered when the Berry connection is dealing with
interband transition. It is well assumed that the momentum
states in both bands (|ck〉 for CB and |vk〉 for VB) has to be
aligned (�k = 0), thus restricting the oblique transitions. Not
only for Berry connection, this approximation is true to any
light-matter coupling operator (h′) whose matrix element is
defined as,

〈ck|ĥ′|vk〉 =
∫

dr
∗
ck (r)ĥ′
vk (r) (15)

whose Bloch functions are denoted by ψ .

III. RESULTS

In order to explore the linear optical conductivity of the
graphene, we use the expressions [Eqs. (13) and (14)] to ex-
amine the real and imaginary parts of the optical conductivity
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FIG. 2. The solid and dashed lines represent real conductivity of chemical potential values from 0.1–0.6 eV for different scattering rates.
(a) Dominant interband scattering induces a narrow width and sharp Drude response [Eq. (13)] near zero frequency. Both solid (Γi = 0.5 meV,
Γe = 65 meV) and dashed lines (Γi = 0.414 meV, Γe = 4.14 meV) are overlapped in this case. (b) Dominant intraband scattering reduces
the Drude response and increases the broadening for solid lines (Γe = 0.5 meV, Γi = 65 meV) and dashed lines (Γe = 0.414 meV, Γi =
4.14 meV). Γi and Γe are intraband and interband scattering rates.

with scattering parameters as well as doping levels. The real
component of the linear response term, without considering
scattering or thermal effects, consists only of the interband
contribution as a simple step function, showing optical shield-
ing behavior consistent with the reported literature [20]. The
optical conductivity with sole consideration of interband scat-
tering results in reducing the Drude response and a departure
from metallic behavior.In our case, with the inclusion of fi-
nite scattering, the band terms are expressed independently
for transport mechanism. The scattering rates are taken from
experimental findings, Γe = 4.14 meV, Γi = 0.414 meV [31],
and Γe = 0.5 meV, Γi = 65 meV [32], and employed for a
systematic investigation of multiband collisional events while
tuning the chemical potential. When we consider intraband
scattering, the emergence of new optical response is observed.
In the graphene system the interband transitions and associ-
ated scattering parameters cannot be avoided, as they play a
major role in transport properties. A vital observation from
Fig. 2 is showcased in terms of Drude response for different
values of chemical potentials and scattering rates. During in-
terband scattering dominance a strong Drude response occurs
as shown in Fig. 2(a), is a general case for large availability
of free charge carriers. Whereas in the Fig. 2(b), it is strik-
ingly evident that the intraband scattering emerges as a new
phenomena, which suppresses the strong free carrier response
as well as increasing the bandwidth. Through the variation
of the chemical potential, the intensity of Drude behavior
is modulated, driven by the interplay between interband and
intraband scattering mechanisms. Further, we examine the
real conductivity response in the broad infrared frequency
range where Pauli blocking (PB) window starts to appear
for different scattering rates under the influence of doping.
Figure 3(a) is demonstrated with respect to PB effect and
found to be more effective with the reduction of interband
scattering rate (Γe = 10Γi ) where the slope of the PB curves
has sharp cutoff. With higher scattering rates (Γe = 130Γi )
the PB curves slope decreases because of radiation leakage
or interband losses, similar behavior is reported by Hipolito
et al. [22].

When we reverse the scattering dominance process to intra-
band, we observed that the Drude behavior is suppressed and
found emergence of new conductivity peaks at the end of the
PB region, which is illustrated in Fig. 3(c). It is evident that
the conductivity goes higher than universal conductivity value
owing to the prevailing influence of intraband scattering with
Γe = 0.5 meV and Γi = 65 meV. This feature is consistent
for different doping values but the peak amplitude decreases
exponentially with increasing doping concentration. Afore-
mentioned unique feature emerges beyond a specific doping
threshold value due to the opening of bandgap, facilitating
bound charge carriers, while below this value the dominance
shifts to the free carrier Drude response. The higher intraband
scattering dominance in our case is closely matching with the
experimental results obtained by Basov et al. [33] at specific
external bias conditions. These experiments were conducted
at 28 V gate bias voltage (Fermi level at 0.18 eV) at 45 K, in
which the PB curve is bending in the conductivity plot from
0.223–0.447 eV. Whereas in our case, calculations have pro-
duced a sharp change in response at 0.367 eV (line A) at zero
Kelvin, which is lying in region where the slope reaches the
maximum as depicted in Fig. 3(c). These electrically neutral
quasiparticles participate in band renormalization and com-
pete with the PB mechanism to produce such unique optical
responses during weak Coulomb screening. The imaginary
part of the conductivity for different scattering rates and dop-
ing levels are plotted in Figs. 3(b) and 3(d). The absorption
peaks are logarithmic divergences around PB in the conduc-
tivity curves. These peak height increases with doping and
amplitude get quenched for a high scattering rates. For direct
band gap of two-dimensional materials, the energy levels of
carriers are shifted due to the interactions between electrons
and impurities and enhances the absorption rates at higher
doping levels. With the variation of chemical potential one can
effectively modulate the absorption to desired frequencies.
From Fig. 3(d), the peak at 0.2 eV correspond to midin-
frared range is smoothly shifted to near-infrared range with
small increment of chemical potential. For a higher interband
scattering (Γe = 130Γi ) the broadening of absorption peak
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FIG. 3. Both solid and dashed lines represents varying doping levels ranging from 0.1–0.6 eV. The (a) real and (b) imaginary linear
conductivity diagrams induced by dominant interband scattering rate has solid lines corresponding to Γe = 65 meV and Γi = 0.5 meV
with the dashed lines corresponding to Γe = 4.14 meV and Γi = 0.414 meV, whereas the (c) real and (d) imaginary linear conductivity
diagrams induced by dominant intraband scattering rate has solid lines corresponding to Γe = 0.5 meV and Γi = 65 meV with the dashed
lines corresponding to Γe = 0.414 meV and Γi = 4.14 meV.

occurs. The smearing in the real part and the broadening in
the imaginary part primarily stems from the incorporation of
thermal effects, which are inherently considered within our
calculations.

IV. CONCLUSION

We have conducted a systematic analytical study on linear
optical properties of monolayer graphene under low dop-
ing conditions to determine the interplay between interband
and intraband scattering mechanisms. A collisional multiband
Boltzmann equation was constructed using the length gauge
over the velocity gauge to account for many-body effects.
The Drude behavior can be tuned through the phenomeno-
logical scattering parameters (Γe, Γi ) and a high-amplitude
quenching effect is observed for interband scattering events
leading to significant bandwidth broadening in imaginary con-
ductivity. During the dominance of intraband scattering under
low doping regime, we observed the emergence of new peak,
which beats the universal conductivity for lower-frequency
range of PB window in the real conductivity spectrum. The
leap in response by excitonic effects in monolayer graphene
is primarily triggered by dominant intraband scattering rather
than interband scattering. It is very crucial that the material
parameters of graphene such as carrier density, temperature,
and impurity concentration, will dictate the importance of
different scattering processes for transport dynamics.

ACKNOWLEDGMENTS

We gratefully acknowledge support from DST Science and
Engineering Research Board (SERB), India under Grant No.
SERB:CRG/2022/008749 and IIT Jodhpur Seed Grant No.
I/SEED/BMK/20230017.

APPENDIX: KUBO EXPRESSIONS

In the following, we present some major steps for calcu-
lation of the conductivity. As long as the external field or the

applied field perturbation is of the same order as the measured
response, we are in the linear regime. From the CMBE, the
first-order equation is deduced as follows,

h̄
∂ρ

(1)
n1n2k (t )

∂t
= − i

(
εn1k − εn2k

)
ρ

(1)
n1n2k (t ) − �(1)

n1n2
ρ

(1)
n1n2k (t )

+ ieE(t ).
[
ξk, ρ

(0)
k

]
n1n2

− eE(t ).∇kρ
(0)
k , (A1)

The solution in Eq. (10) is an initial guess where time deriva-
tive has only one time-dependent variable,

∂ρ
(1)
n1n2k (t )

∂t
= −iω1ρ

(1)
n1n2k (t ). (A2)

If Eq. (A2) is substituted in the first-order CMBE [Eq. (A1)],
the expression becomes,

−ih̄ω1ρ
(1)
n1n2k (t ) = − ih̄ωn1n2kρ

(1)
n1n2k (t ) − �(1)

n1n2
ρ

(1)
n1n2k (t )

+ ieE(t ).
[
ξk, ρ

(0)
k

]
n1n2

− eE(t ).∇kρ
(0)
k ,

(A3)

where the two-band frequency is actually the difference
between any two bands (ωn1n2 = ωn1 − ωn2 ) and the phe-
nomenological constant is actually dependent on the signs of
n1 and n2. Eventually, from the Fourier transform of electric
field one can find the final form with the density matrix.

ρ
(1)
n1n2k (t ) = (−e)

∫
dω1

2π
Ec

ω1
e−iω1t

×
([

ξ c
k , ρ

(0)
k

]
n1n2

+ ∂
∂kc

ρ
(0)
n1n2k

)
h̄ω1 − h̄ωn1n2k + i�(1)

n1n2

. (A4)

From the above expression of linear amplitude one can sep-
arate out the interband (first term) and intraband (second
term) components. Then inverse transform of Eq. (A4) is
substituted in Eq. (12) to get the first-order conductivity ex-
pression, which is a crucial step in matching the results of
Kubo formalism. Formulated within the proximity of Dirac
nodes (see Supplemental Material [34]) first the intraband
expression is established using the energy terms as follows:
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ε1k = +h̄vF k = ε and ε2k = −h̄vF k = −ε. Similarly, the
velocity terms are given by: vx

11k = +vF kx/k and vx
22k =

−vF kx/k. Eventually, the intraband linear conductivity ex-
pression can be written as,

σ
(1)xx
intra (ω) = −e2

∫
dk
4π2

[
vx

11kS
(1);x
11k (ω) + vx

22kS
(1);x
22k (ω)

]
.

(A5)

The intraband frequency coefficient is now placed in the above
expression along with the approximations taken around the
Dirac point,

σ
(1)xx
intra (ω) = − e2

∫
dk
4π2

[
ivx

11k

h̄ω + i�(1)
i

(
∂ f (ε)

∂ε

∂ε

∂kx

)

+ ivx
22k

h̄ω + i�(1)
i

(
∂ f (−ε)

∂ε

∂ε

∂kx

)]
, (A6)

where ρ
(0)
n1n2k= f (+ε) or f1k is the Fermi-Dirac distribution

function. If the intraband velocity matrix elements are sub-
stituted, the expression can be rewritten as,

σ
(1)xx
intra (ω) = ie2

∫
dk
4π2

(
kx

k

)2
vF

k

× hvF k(
h̄ω + i�(1)

i

)(
∂ f (−ε)

∂ε
− ∂ f (ε)

∂ε

)
. (A7)

The transformation from momentum space to energy space is
carried out to produce one half of the result obtained by Kubo
expression,

σ
(1)xx
intra (ω) = ie2

π h̄
(
h̄ω + i�(1)

i

) ∫ ∞

0
ε

(
∂ f (−ε)

∂ε
− ∂ f (ε)

∂ε

)
dε.

(A8)

Above conversion can also be carried out using an identity,
which is only applicable for two-dimensional isotropic mate-
rials given by,

∫
dk
4π2

(
kx

k

)2
vF

k
=

∫
dk
4π2

(
ky

k

)2
vF

k
= 1

π h̄

∫ ∞

0
dε.

(A9)

The proposition of the cold semiconductor approximation
is put forward with the aim of attaining outcomes that
closely converge towards temperatures nearing absolute zero.
Similarly, for the interband term the required velocity ap-
proximations are listed vx

12k = ivF ky/k and vx
21k = −ivF ky/k

along with the Berry connection elements ξ x
12k = ky/2k2 and

ξ x
21k = ky/2k2. From Eq. (12) the interband linear conductivity

expression is written as,

σ
(1)xx
inter (ω) = −e2

∫
dk
4π2

[
vx

12kS
(1);x
12k (ω) + vx

21kS
(1);x
21k (ω)

]
.

(A10)

The interband frequency coefficient values are now placed in
the above expression to become,

σ
(1)xx
inter (ω) = − e2

∫
dk
4π2

[−vx
12kξ

x
12k ( f1k − f2k )(

h̄ω + i�(1)
e − 2ε

)
+ vx

21kξ
x
21k ( f1k − f2k )(

h̄ω + i�(1)
e + 2ε

) ]
. (A11)

If the interband velocity matrix elements are substituted in
the numerator with some simple steps the expression can be
rewritten as,

σ
(1)xx
inter (ω) = ie2

2

∫
dk
4π2

(
ky

k

)2
vF

k
[ f (+ε) − f (−ε)]

×
[

1(
h̄ω + i�(1)

e − 2ε
) + 1(

h̄ω + i�(1)
e + 2ε

)
]
.

(A12)

Again, the transformation from momentum space to energy
space is carried out to produce the other half of the result
obtained by Kubo expression,

σ
(1)xx
inter (ω) = ie2

h̄π

∫ ∞

0

dε

2
[ f (+ε) − f (−ε)]

×
[

1(
h̄ω + i�(1)

e − 2ε
) + 1(

h̄ω + i�(1)
e + 2ε

)
]
.

(A13)

Equivalence between the solution obtained and the expression
without accounting for any scattering phenomena [20] can
be formally demonstrated through some easy mathematical
steps. Another important criteria that needs to be considered
during vanishing of the interband phenomenological constant
towards the positive side otherwise the entire has to be taken
in the reverse order, which is not the target of our study. Fur-
thermore, it should be noted that all the calculations hold true
in the vicinity of absolute zero Kelvin. However, if necessary,
appropriate adjustments to the chemical potential can be made
to accommodate variations outside this temperature range.
The indirect dependence of the scattering constant on tem-
perature can be elucidated by expressing it in terms of curve
fitting. Employing this approach, a more lucid comprehension
of the thermal effects is attained, enabling the observation of
temperature-related patterns and behaviors in the scattering
constant.
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