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Optical orientation of excitons in hybrid metal-semiconductor nanostructures
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We demonstrate the possibility of the optical orientation of excitons in the near field of the metal grating
that covers a semiconductor nanostructure. Excitons generated this way have the wave vector greater than the
wave vector of the incident radiation. We suggest that optical orientation method is applicable to study the fine
structure and kinetics of the hot excitons in semiconductor quantum well.

DOI: 10.1103/PhysRevB.109.125418

I. INTRODUCTION

Principles of optical orientation and alignment, which were
initially developed for atomic gases, are widely employed in
the spectroscopy of excitons in semiconductors [1,2]. In ad-
dition to the exitons in bulk crystals [3], these methods allow
investigating the fine structure of excitons in semiconductor
nanostructures and estimating the exciton lifetime and spin
relaxation time [4,5]. Normally one generates the excitons
with polarized light at the resonance frequency ω0, and mea-
sures the polarization of luminescence due to direct optical
transitions. This way, either free excitons with small wave
vectors K ≈ 0, which they obtain from the incident light, or
the localized excitons are studied. In bulk semiconductors,
orientation of hot excitons that have significant K and kinetic
energy is only attainable through indirect transitions accom-
panied by the optical phonon emission [6]. On the other hand,
it is possible to fabricate a metallic grating that supports the
surface plasmon polaritons (SPPs) on top of a semiconductor
heterostructure and preserve the exciton resonance [7]. In
the resulting hybrid nanostructure, excitons acquire the wave
vector and polarization (spin) of SPPs that propagate along
the grating [8]. This means, in principle, that one could study
the properties of excitons with nonzero wave vectors by ex-
citing them through the grating and measuring their polarized
luminescence.

In the present paper, we consider the orientation of excitons
in a hybrid nanostructure that consists of a semiconductor
quantum well (QW) and a square grating of metal nanopar-
ticles (NPs). For instance, similar structures including the
ZnO QW and Ag nanodisks were fabricated to investigate the
coupling between localized surface plasmons and semicon-
ductor excitons [9]. We have considered the plasmon-exciton
coupling and estimated its effect on the optical spectra of
such systems previously [10]. Since we propose applying
the grating to study hot excitons, we consider the weak-
coupling regime, which is realistic in case of the Wannier-type
excitons and localized surface plasmons. Strong plasmon-
exciton coupling and related effects were observed for either
molecular excitons in organic dyes [11], or for small-radius
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excitons in TMDCs [12,13]. In these systems, properties of
the excitations are strongly modified by the plasmon-exciton
hybridization.

The paper is organized in the following way. In Sec. II,
we find the electric field scattered by the grating, approximat-
ing the nanoparticles by discrete electric dipoles. A concise
description of this model and its applications can be found in
[14]. Polarization of the near field they produce inside the QW
is quite different from polarization of the incident electromag-
netic wave. Next, we calculate the exciton generation matrix
that enters the kinetic equation, which we solve in Sec. III to
obtain the stationary exciton density matrix. At this stage, we
consider the effect of the stationary homogeneous magnetic
field applied perpendicularly to the QW plane. Since the grat-
ing allows simultaneously generating excitons that propagate
in different directions, we take into account both exciton spin
and exciton momentum relaxation. In Sec. IV, we calculate
the polarization of secondary radiation of the excitons facil-
itated by the grating. In Sec. V, we show how the energy
relaxation can be included in the kinetic equation for excitons
and discuss its effect on the polarized luminescence. As the
principal result, we find out how the luminescence polariza-
tion varies with the applied magnetic field, and demonstrate
that the hybrid nanostructures make it possible to study the
kinetic characteristics of the hot excitons.

II. GENERATION OF EXCITONS THROUGH
THE GRATING

Consider a structure shown in Fig. 1, which contains a
semiconductor quantum well (QW) and a grating of metallic
nanoparticles (NPs). We assume the photon energy of the inci-
dent radiation close to the energy of excitonic transition in the
QW, and the distance h between the grating and the QW less
than the wavelength in semiconductor. Then the excitons are
generated by the near field of metallic grating, which results
from scattering of the incident beam represented by the plane
wave with a certain polarization tensor. To capture the essence
of the optical orientation and alignment effects, we employ a
commonly used model of exciton transitions shown in Fig. 2.
Semiconductor QWs are known to support the Wannier-Mott
excitons, whose binding energy is much smaller than the
gap between electron subbands, and whose radius exceeds
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FIG. 1. Schematic of nanostructure consisting of a semicon-
ductor quantum well (QW) and a short-period grating of metal
nanoparticles (NPs).

the crystal lattice period due to the relatively large dielectric
permittivity and small effective masses of charge carriers. In
this case, the exciton wave function is a product of the smooth
envelope F (re, rh) that depends on the electron and hole co-
ordinates, and the Bloch functions (X,Y, Z , and S), which
correspond to the top of the valence band and the bottom of
the conduction band [15]. The envelope in turn is the prod-
uct of the function ϕ(ρe − ρh, ze, zh) describing the relative
motion of electron and hole, and the exponent exp(iK · ρ)
that corresponds to the propagation of exciton along the QW
plane. In bulk semiconductors with the zinc-blende structure,
like GaAs, electron states at the top of the valence band are
fourfold degenerate, resembling the states with the total angu-
lar momentum J = 3/2. However, in QWs this degeneracy is
lifted due to the lower symmetry, and states with the projec-
tion of the angular momentum on the growth axis j = ±3/2
or j = ±1/2 give rise to the separate subbands. In sufficiently
narrow QWs the upper valence subband is formed by the

FIG. 2. Optically active exciton states formed by conduction
band electrons and heavy holes in the valence band. Electron states
are labeled with the Bloch function S or X ± iY and spin ↑ or ↓.
Excitons with spin M = −1 or +1 interact with the left or right
circularly polarized light correspondingly.

heavy hole states corresponding to j = ±3/2. The binding
energy of the heavy hole exciton is smaller than the energy gap
between the heavy and the light hole ( j = ±1/2) subbands,
which results from the size quantization. Therefore, the light
hole mixing can be neglected as we consider the lowest band
of the excitons, formed by the heavy holes ( j = ±3/2) and the
conduction band electrons with the spin projection s = ±1/2.
Thus, we have four possible states of excitons that differ in the
projection of the total spin on the growth axis M = ±1,±2.
Excitons with the spin projection ±1 are optically active,
while states with the spin projection ±2 are optically inactive
and therefore can be omitted. Optically active (bright) and in-
active (dark) excitons can hybridize due to exchange interac-
tion, which plays significant role in the orientation of localized
excitons [16], but we do not take this effect into account here.

According to the selection rules shown in Fig. 2, light
with circular polarization σ+ generates the excitons with spin
projection M = +1, while σ−-polarized light generates the
excitons with M = −1. Then the secondary radiation of ex-
citons partially retains the circular polarization of incident
beam. Linearly polarized light (we define the polarization in
the QW plane xy) generates the superposition of exciton states
±1 such that the total spin is oriented along the x or y axis,
which is called the optical alignment effect. The radiation
from recombination of excitons in this state is also linearly
polarized. An external magnetic field oriented along z axis
splits the states with M = ±1 and reduces the coherence of
superposition states, which decreases the linear polarization of
exciton radiation. Measurements of the dependence of lumi-
nescence polarization on the strength or direction of magnetic
field provide estimations of exciton relaxation times and of the
g-factor value for excitons.

This simple picture is suitable for a structure with no
grating, where incident light generates only excitons with
near-zero wave vectors K in the QW plane. Now we consider
a square lattice of conducting NPs, such that the surface plas-
mon frequency lies in the same range as the frequency of exci-
ton transition in the QW. The lattice is chosen square so that it
does not introduce additional polarization to the incident radi-
ation and does not alter the polarization of light emitted by the
excitons with K = 0. We suppose that the grating does not af-
fect the intrinsic properties of excitons, such as binding energy
and dipole moment, which are defined by the relative motion
of an electron and hole. In principle, the presence of the metal
surfaces that produce the image charges should modify the
Coulomb interaction between the electron and hole. However,
the calculations for a QW with a spherical NP nearby [17]
suggest that its effect on the exciton becomes substantial only
for the few-nanometer distance h. Thus, the image charges can
be neglected if the thickness of the barrier separating the NPs
from the QW is larger than the exciton radius.

To calculate the field of nanoparticles, we use the discrete
dipole approximation [18], which yields the total electric field
in the following form:

E(ρ, z) = E0 exp(iqz) +
∑

m

Em exp (ibm · ρ + iqz,m|z|),

Em = iq2b2

2πn2qz,m
Ĝ(bm + sgnz qz,mez )X (ω) E0. (1)
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This equation contains the sum of the scattered waves that
have the wave vector components q‖ in the grating plane ρ =
(x, y) equal to the reciprocal lattice vectors bm = b(mxex +
myey), where b = 2π/a, a is the lattice period. In case of
the short-period grating that we intend to consider, the length
of the vectors bm�=0 exceeds the wave number q = nω/c of
light propagating in the semiconductor with refractive index
n. Therefore, the wave numbers qz,m = (q2 − b2

m)1/2 = iβm

are purely imaginary, and the corresponding waves decay
exponentially along the direction z perpendicular to the grat-
ing. Amplitudes of the scattered waves are determined in the
dipole approximation by the effective polarizability of NPs
in the lattice X (ω) and the tensor Ĝ(q) = es ⊗ es + ep ⊗ ep

that describes the radiation of electric dipole. This notation
involves the tensor products of polarization vectors es = [ez ×
q‖]/q‖ and ep = [es × q]/q, whose definitions are extended to
the region of evanescent waves q‖ > q(ω).

Since the wave vector component parallel to the QW is
conserved in the optical transitions, the field of the lattice (1)
can produce the excitons with wave vectors K = bm. At the
same time, the exciton transition energy Eexc(K ) ≈ Eexc(0) +
h̄2K2/2Mexc, where Mexc is the exciton effective mass, must
be close to the energy of the incoming photons. Optical transi-
tions are characterized by the matrix element of the interaction
operator VK,M = 〈excK,M | − ∫

d̂(r) · E d3r|0〉, which we cal-
culate using the smooth envelope approximation for the
exciton wave function, see Sec. 2.7.5 of the book [15]. The
density of the transition dipole moment 〈excK,M |d̂(r)|0〉 =
−ie/(m0ω0) pMF ∗

K (r, r) is expressed via the wave function
envelope with coinciding electron and hole coordinates, the
interband matrix element of the momentum operator pM ,
charge e, and mass m0 of a free electron. For simplicity, we
assume that the exciton spin states are independent of its wave
vector K, therefore they are labeled with the same projection
M as the states with K = 0. Given that the envelope func-
tion may be written as FK (r, r) = S−1/2 exp(iK · ρ)�(z − h),
where S is the QW area and �(z − h) = ϕ(0, z, z), after inte-
grating the dipole moment density with the electric field (1)
we obtain

VK,M = (2π )2S− 1
2

∑
m

δ(K − bm)
∫

�∗(z − h)eiqz,mzdz

× ie

m0ω0
pM

[
δm,0 + iq2b2

2πn2qz,m
X Ĝbm

]
E0. (2)

The delta function δ(K − bm) indicates the conservation of
the wave vector component in the QW plane, which assumes
the values of the reciprocal lattice vectors bm. The overlap
integral with even function �(z − h) entering the Eq. (2) was
estimated in [10] for thin QWs, and can be deemed virtually
independent of the wave number qz,m. The selection rules
concerning the exciton spin are defined by the matrix ele-
ment pM calculated on the Bloch functions of the bands that
form the exciton. As discussed before, we consider the case
pM = pcv e∗

M for M = ±1, where e± = (ex ± iey)/
√

2 are the
unit vectors of circular polarization, and pM=±2 = 0.

Now we can obtain the generation matrix, that is, the rate
of increase in the exciton density matrix due to the absorp-
tion of light scattered on the grating. We shall restrict to the
components that are diagonal in terms of the exciton wave

vector K,

gMM ′ (K ) = 2π h̄−1VK,MV ∗
K,M ′ δ(h̄ω − Eexc(K )). (3)

Photons of the energy h̄ω = Eexc(0) generate the excitons
with K = 0, and the related matrix elements V0,± ∼ e∗

± · E0 =
E0

± are proportional to the circularly polarized components
of the incident wave. In presence of the square lattice of
symmetric NPs, the amplitude of the incident wave E0 is
multiplied by the transmittance coefficient t (K = 0) = 1 +
iq2b2X /(2πn2qz,m), which does not depend on the light po-
larization. Therefore, the lattice does not affect the optical
orientation (and polarized luminescence) of excitons with
K = 0, and we can apply the phenomenological theory from
[19] to outline this phenomenon. To calculate the generation
of excitons by partially polarized light, the products of the
amplitudes E0

αE0
β

∗ in Eq. (3) are replaced with the components
d0

αβ of the polarization matrix of incident radiation, which is
convenient to represent in the basis of circular polarization
vectors e± in the form d0

MM ′ = I0/2(δMM ′ + σMM ′ · P0). It
involves the scalar product of the vector of Pauli matrices
σ = (σx,σy,σz ) and the vector of Stokes parameters of inci-
dent light P0 = (P0

l ,P0
l ′ ,P0

c ). The latter are the degree of
linear polarization in x, y axis, the degree of linear polarization
in rotated by 45◦ x′, y′ axis, and the degree of circular polariza-
tion. Then the exciton generation matrix at K = 0 coincides,
up to a factor, with the polarization matrix in the circular basis
[19]

gMM ′ (K ) = g0I0

2

(
1 + P0

c P0
l − iP0

l ′

P0
l + iP0

l ′ 1 − P0
c

)

× δ(K ) δ(h̄ω − Eexc(0)). (4)

It follows from Eq. (4) that the average spin of excitons in
the moment of generation M0 = Tr(gσ )/Tr(g) is equal to the
vector P0 that determines the polarization of incident light.

Combining Eqs. (2) and (3), we obtain the generation ma-
trix for excitons with K �= 0,

gMM ′ (K �= 0) =
∑

m

gm
(
e∗

MĜbm E0)(eM ′Ĝ∗
bm

E0∗)
× δ(K − bm) δ(h̄ω − Eexc(bm)),

gm = (2π )3h̄−1

(
epcv

m0ω0

)2∣∣∣∣
∫

�∗(z − h) eiqz,mzdz

∣∣∣∣
2

×
∣∣∣∣δm,0 + iq2b2

2πn2qz,m
X

∣∣∣∣
2

. (5)

The contributions with m �= 0 are nonzero solely due to
the grating, and the spin polarization of generated excitons
is determined by the scattered waves Em ∼ Ĝ(bm)E0. Con-
sider the incoming photons with the energy h̄ω = Eexc(0) +
h̄2b2/2Mexc, such that the excitons with wave vectors K =
±bex or ±bey are generated due to the scattering (in the
first diffraction order, see Fig. 3). For these values of K the
nonzero components of the tensor Ĝ(K ) are Gxx(±bex ) =
Gyy(±bey) = η and Gyy(±bex ) = Gxx(±bey) = 1, where the
parameter η = 1 − b2/q2 is responsible for the change of
polarization of the scattered field from the polarization of
light incident on the grating. Namely, the component of the
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electric field E0 parallel to the wave vector K is scaled η

times relative to the perpendicular component of the field. We
consider this circumstance in (5) and replace the products of
the field components with the polarization matrix to find

gMM ′ (K ) =
∑
bm

g̃MM ′ (bm) δ(K − bm) I0δ(h̄ω − Eexc(b)),

g̃MM ′ (±bex ) = g1

4

(
1 + η2 + P0

l (η2 − 1) + 2ηP0
c η2 − 1 + P0

l (η2 + 1) − 2iηP0
l ′

η2 − 1 + P0
l (η2 + 1) + 2iηP0

l ′ 1 + η2 + P0
l (η2 − 1) − 2ηP0

c

)
,

g̃MM ′ (±bey) = g1

4

(
1 + η2 + P0

l (1 − η2) + 2ηP0
c 1 − η2 + P0

l (η2 + 1) − 2iηP0
l ′

1 − η2 + P0
l (η2 + 1) + 2iηP0

l ′ 1 + η2 + P0
l (1 − η2) − 2ηP0

c

)
. (6)

Equation (6) implies that excitons having four allowed wave
vector values are produced at different rates Trg(K ) and with
different average spins. We note that the product I0δ(h̄ω −
Eexc(K )) in Eqs. (4)–(6) originates from the consideration of
monochromatic light, and in general case it should be replaced
by the spectral intensity of radiation I0(Eexc(K )) with the re-
quired photon energy.

III. EXCITON DENSITY MATRIX

To calculate the characteristics of the recombination ra-
diation of excitons, we require the stationary value of their
density matrix ρMM ′ (K ) that is determined by the equation
[20] (see also Chapter 3 of [21])

− i

h̄
[HB, ρ] − ρ

τ
− ρ − 〈ρ〉ϕ

τp
+

(
∂〈ρ〉ϕ

∂t

)
s.r.

+ g(K ) = 0.

(7)

We assume here that the density matrix has spin indices
M, M ′ = ±1, but it is diagonal in the momentum h̄K of ex-
citon motion in the QW plane. This approximation is valid
when the elastic scattering of quasiparticles by impurities is
considered, and the density matrix is averaged over random
locations of scattering centers [22]. The first term in Eq. (7) is
responsible for the evolution of the exciton spin in an external
magnetic field. We consider the longitudinal magnetic field
Bz, in which case the Hamiltonian HB = 1

2 h̄�σz describes
the splitting h̄� = g‖μBBz of states with M = ±1. Here μB

is the Bohr magneton and g‖ is the effective longitudinal g
factor of the exciton. The second term in (7) describes the
recombination of excitons characterized by the lifetime τ . The
third term represents the relaxation of exciton momentum due
to the elastic scattering, which brings the density matrix to-
wards its average 〈ρ〉 = 1

2π

∫ 2π

0 ρ(K )dϕ over the direction of
exciton momentum h̄K. We assume the momentum relaxation
time τp to be the shortest, which substantially simplifies the
general theory [23]. The term (∂〈ρ〉/∂t )s.r. describing the spin
relaxation process is taken into account in the simplest form

∂

∂t
(〈ρ++〉 − 〈ρ−−〉)s.r. = −〈ρ++〉 − 〈ρ−−〉

τs1
,

∂

∂t
〈ρ+−〉s.r. = −〈ρ+−〉

τs2
,

∂

∂t
〈ρ−+〉s.r. = −〈ρ−+〉

τs2
. (8)

Thus the averaged z component of the exciton spin
〈Mz〉 = (〈ρ++〉 − 〈ρ−−〉)/Tr〈ρ〉 is considered to vanish with
rate τ−1

s1 , while perpendicular components of the exciton
spin 〈Mx〉 = (〈ρ+−〉 + 〈ρ−+〉)/Tr〈ρ〉 and 〈My〉 = i(〈ρ+− 〉 −
〈ρ−+ 〉)/Tr〈ρ〉 vanish with rate τ−1

s2 . Such phenomenological
picture is not restricted to specific spin relaxation mechanism,
as it refers to the spin averaged over the exciton momentum
orientation.

In this section, we do not take into account relaxation of the
exciton’s energy due to inelastic scattering, and seek the spin
density matrix for constant values of energy and, naturally,
|K|. The secondary radiation of such excitons has the same
frequency as the incident light.

To solve Eq. (7), we average it over the orientation of the
wave vector K, obtain the average density matrix and substi-
tute it back into Eq. (7). It is convenient to present the spin
density matrix in the form ρMM ′ = N/2(δMM ′ + σMM ′ · M),
where N = Trρ is the number of excitons with the given
wave vector, and M = Tr(ρσ )/N is the average angular mo-
mentum per exciton. The similar expansion was previously
introduced for the matrix of light polarization and the matrix
of exciton generation at K = 0. The angular momentum com-
ponents Mx,y and Mz evolve independently, even as the spin
relaxation (8) is included. However, the term −ih̄−1[HB, ρ] =
�N (σyMx − σxMy) mixes the components in the QW plane,
which corresponds to the spin precession in magnetic field Bz.
Then after averaging Eq. (7) we find

〈N〉 = τ Tr〈g〉, 〈NMz〉 = τ1〈g++ − g−−〉,
〈N (Mx − iMy)〉 = τ2

1 + i�τ2
2〈g+−〉,

〈N (Mx + iMy)〉 = τ2

1 − i�τ2
2〈g−+〉. (9)

Here τ−1
i = τ−1 + τ−1

si are the summary decay rates of the
average exciton spin components. Next, we substitute the ob-
tained averaged spin components back into (7) and designate
τ−1
∗ = τ−1 + τ−1

p to find the result

N = τ∗

(
Trg + τ

τp
Tr〈g〉

)
,

NMz = τ∗

(
g++ − g−− + τ1

τp
〈g++ − g−−〉

)
,
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N (Mx − iMy) = 2τ∗
1 + i�τ∗

(
g+− + τ2

τp

〈g+−〉
1 + i�τ2

)

= N (Mx + iMy)∗. (10)

Since we obtained the exciton generation matrix (6) in
the form g(K ) = ∑

|bm|=b I0 g̃(bm)δ(K − bm), its average value
over the direction of wave vector is 〈g(K )〉 = (g̃(bex ) +
g̃(bey)) I0/(πb) δ(K − b). Therefore, the resulting density
(10) includes contributions with the selected values of wave
vector, proportional to the matrices g̃(bm), and the isotropic
contribution proportional to the average matrix (g̃(bex ) +
g̃(bey))/2. In the case of rapid momentum relaxation, the
isotropic contribution is dominant as τi ∼ τ � τp. Then we
may simplify the result, considering τ∗ ≈ τp and �τp � 1.
After inserting the explicit generation matrix (6) in (10), we
get the isotropic component of the density of excitons with
|K| = b and their average spin

N = (η2 + 1)
τg1I0

πb
δ(K − b), Mz = τ1

τ

2η

η2 + 1
P0

c ,

Mx − iMy = 1

1 + i�τ2

τ2

τ

(
P0

l − i
2η

η2 + 1
P0

l ′

)
. (11)

This result should be compared to the orientation of excitons
at K = 0, for which an equation of the same kind (7) is
applicable, except for the term corresponding to momentum
relaxation [19]. In that case, given the generation matrix (4),
we obtain the exciton density N = τg0I0 δ(K ) and average
spin components

Mz = τ1

τ
P0

c , Mx − iMy = 1

1 + i�τ2

τ2

τ

(
P0

l − iP0
l ′
)
. (12)

Thus, when excitons with |K| = b are generated through the
lattice of nanoparticles, the degrees of the circular and linear
polarization in the axes x′, y′ rotated by 45◦ with respect to
the lattice are multiplied by the factor 2η/(η2 + 1). As in the
case of K = 0, circularly polarized light produces excitons
whose spin is oriented along the z axis, and linearly polarized
light generates excitons with spin in the perpendicular plane
xy. However, we note that the lifetime τ and spin relaxation
time τi entering Eqs. (11) and (12) generally are not the same
for excitons with |K| = b or K = 0. The degrees of the linear
polarization P0

l and P0
l ′ enter the result (11) differently, since

we have considered the generation of the excitons whose
wave vectors are oriented along the lattice axes x, y. On the
contrary, if the excitons with wave vectors K = b(ex ± ey) are
considered, the polarization degree P0

l ′ will appear with the
factor 1, and the polarization degree P0

l will be multiplied by
2η′/(η′2 + 1), where η′ = 1 − 2b2/q2. In other words, the lat-
tice does not alter the linear polarization in the axes that coin-
cide with the directions of propagation of generated excitons.

IV. LUMINESCENCE OF HOT EXCITONS

In the previous section, we have calculated the distribution
of excitons over momentum and their spin density matrix
resulting from the continuous photogeneration. Now we look
into the characteristics of the excitons’ radiation, and we apply
the Fermi golden rule to calculate the probability of sponta-
neous photon emission [24], since the exciton recombination

FIG. 3. Distribution in K space of the excitons generated by the
light with the frequency ω = ωexc(b). Dashed circles indicate the
regions |K − bm| = |q‖| < q(ω) of “bright” excitons that can emit
photons with in-plane wave vector q‖.

occurs via nonradiative processes predominantly. The lumi-
nescence process, being inverse to the absorption of light, is
characterized by the complex conjugate of the matrix element
(2), where the external electric field E0 should be replaced
with the field of the ground state of the selected photon mode.
The photon modes in the considered structure (Fig. 1) differ
from the photons in homogeneous medium, though both are
described by the wave vector q = (q‖, qz ) and polarization
(s or p) of the wave incident on the grating from the sur-
rounding space. The radiation with a given frequency ω and
wave vector q‖, detected at z = −∞, includes both modes
with qz = ±(q2 − q2

‖ )1/2. As shown in Fig. 3, the grating
allows the luminescence of excitons whose wave vector lies
in the regions |K − bm| = |q‖| < q(ω), where the radiation
wave vector q‖ can take any values inside the “light cone”.
Up to a constant that determines the intensity of radiation,
the polarization matrix of the emitted wave is given by the
following expression:

dαβ

(
q‖

) =
∑

K,MM ′
VK,M;q‖,αV ∗

K,M ′;q‖,β
ρMM ′ (K ). (13)

Next we consider the exciton radiation at small angles to the
growth axis z, such that, on the one hand, this radiation can
be distinguished from the specular reflection of the pump
beam, and on the other hand, we can assume q‖ ≈ 0 and
use the conjugate of Eq. (2) for the matrix element of the
interaction operator. Substituting into (13) the density matrix
of generated excitons with |K| = b defined by the parameters
(11), and summing the contributions of the excitons with wave
vectors K = ±bex and ±bey, we obtain the Stokes parameters
of secondary radiation (which has the same frequency as the
pump)

Pl = τ2

τ
[1 + (�τ2)2]−1

(
P0

l − �τ2
2η

η2 + 1
P0

l ′

)
,

Pl ′ = τ2

τ
[1 + (�τ2)2]−1 2η

η2 + 1

(
2η

η2 + 1
P0

l ′ + �τ2P0
l

)
,

Pc = τ1

τ

(
2η

η2 + 1

)2

P0
c . (14)
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(a) (b)

FIG. 4. Ratio of the linear polarization of exciton luminescence Pl ′ in the rotated x′, y′ axes to the linear polarization of the pump P0
l ′ in the

same axes (a), and to the linear polarization of the pump P0
l in the x, y axes (b). Calculated from Eq. (14) with τ2/τ = 0.8 as the function of

parameter �τ2 proportional to the magnetic field. Solid lines (η = 1) correspond to the conventional optical alignment of excitons with K = 0.
Dashed lines (η = −2) and dash-dotted lines (η = −3) demonstrate the effect of the grating. The indicated characteristic points of the plots
are used to determine the spin relaxation time τ2 from experiment.

In order to describe the luminescence of excitons with K = 0,
one could either substitute their spin density matrix (12) into
Eq. (13), or formally set η → 1 in Eq. (14). Either method
yields the known result [1],

Pl − iPl ′ = τ2

τ

1

1 + i�τ2

(
P0

l − iP0
l ′
)
, Pc = τ1

τ
P0

c . (15)

As seen from Eqs. (14) and (15), the circular polarization of
luminescence reduces (compared to the pump polarization)
due to the longitudinal spin relaxation. The linear polariza-
tion is reduced by the transverse spin relaxation, and further
suppressed by the applied magnetic field. Additionally, in
magnetic field the linear polarization of the pump P0

l is
partially transformed into the linear polarization of the lumi-
nescence Pl ′ in rotated axes (and vice versa, the polarization
P0

l ′ is converted into Pl ).
The difference in the polarized luminescence of excitons

with K = 0 and |K| = b is the lattice induced factor 2η/(η2 +
1), which should not be too small so that the orientation
of hot excitons could be observed. For that, the lattice pe-
riod a should be only several times less (2–3 times) that the
wavelength of light in semiconductor. Figure 4 shows the
ratios of the linear polarization degrees of exciton lumines-
cence and pump plotted as the functions of the parameter
�τ2 (proportional to magnetic field) for several values of
the lattice parameter η. Measuring such dependencies (as
in the Hanle effect) provides the estimations of the life-
time and spin relaxation time of excitons, but in the case
η �= 1, when the lattice is present, these times relate to
hot excitons with nonzero wave vectors. Therefore, fabri-
cation of a hybrid structure including a QW and a lattice
of NPs will make it possible to study the properties of hot
excitons.

V. SOLUTION OF KINETIC EQUATION INCLUDING
EXCITON ENERGY RELAXATION

In the picture considered above, frequencies of the in-
cident and emitted light coincide, which may hamper the
observation of the polarized luminescence of hot excitons.
However, these excitons are able to lose their kinetic energy
while scattering on acoustic phonons, and then emit light on
a lower frequency, which is shown schematically in Fig. 5.
To describe the orientation of exciton spin in this case, it is
necessary to include the energy relaxation in Eq. (7) for the
stationary density matrix. It can be accomplished using the
equation of the Fokker-Planck type [25], assuming that the
kinetic energy of exciton changes in relatively small portions
as it interacts with long-wave acoustic phonons. Considering
the spontaneous emission of phonons to be dominant over
absorption, we neglect the energy diffusion term and write the
equation for the exciton density matrix 〈ρ〉 averaged over the

FIG. 5. Schematic of excitation and radiative recombination of
excitons, taking into account their energy relaxation caused by the
emission of acoustic phonons.
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momentum orientations,

− i�

2h̄
[σz, 〈ρ〉] − 〈ρ〉

τ
+

(
∂〈ρ〉
∂t

)
s.r.

+ ∂

∂ε

(
ε

τε

〈ρ〉
)

+ 〈g〉=0.

(16)

Compared to Eq. (7), here the almost immediate momentum
relaxation is taken into account, and the density matrix 〈ρ〉(ε)
depends only on the kinetic energy ε(K ) ≈ h̄2K2/(2Mexc).
The new penultimate term in Eq. (16) corresponds to the drift
of excitons towards the lower kinetic energy. We present the
exciton generation matrix averaged over momentum direc-
tions in the form 〈g〉 = 1/2 Tr〈g〉(1 + σ · M0). For excitation
in a narrow spectral range Tr〈g〉 = G δ(ε − ε0), so that ex-
citons with a certain kinetic energy value ε0 are generated.
For example, in case of the excitons with wave vectors K =
±bex and ±bey we have ε0 = ε(b), and averaging Eq. (6)
yields G = (η2 + 1)g1I0 h̄2/(2πMexc) and the average exciton
spin at the moment of generation M0 = (P0

l , 2η/(η2 + 1)P0
l ′ ,

2η/(η2 + 1) P0
c ).

To solve Eq. (16), again we use the representation of the
density matrix 〈ρ〉 = N/2 (1 + σ · M), and obtain a system
of equations for concentration and mean angular momentum
projections (which are now regarded as functions of ε),

N

τ
− ∂

∂ε

(
ε

τε

N

)
= G δ(ε − ε0), (17)

NMz

τ1
− ∂

∂ε

(
ε

τε

NMz

)
= GM0

z δ(ε − ε0), (18)[
1

τ2
+ i� − ∂

∂ε

ε

τε

]
N (Mx − iMy) = G

(
M0

x − iM0
y

)
δ(ε − ε0).

(19)

The last equation is valid together with its complex conjugate.
The equations with δ functions on the right-hand side are
equivalent to the homogeneous ones in the range 0 < ε < ε0

with boundary conditions N (ε0 − 0) = G τε(ε0)/ε0 and
NMi(ε0 − 0) = GM0

i τε(ε0)/ε0 that suggest the absence of
excitons with energies ε > ε0. Their solution is

N (ε) = G τε

ε
exp

(
−

∫ ε0

ε

dε′

ε′
τε

τ

)
, (20)

NMz = GM0
z

τε

ε
exp

(
−

∫ ε0

ε

dε′

ε′
τε

τ1

)
, (21)

and, if the notation T = ∫ ε0

ε
dε′τε/ε

′ is introduced, the trans-
verse components of angular momentum are given by the
following equation and its complex conjugate:

N (Mx − iMy) =G
(
M0

x − iM0
y

)τε

ε

× exp

(
−

∫ ε0

ε

dε′

ε′
τε

τ2
− i�T

)
. (22)

Integrals in Eqs. (20)–(22) can be estimated by assuming the
lifetimes τ, τε = const(ε) to be independent of the kinetic en-
ergy, and the spin relaxation time τsi(ε) ∼ ε−1, which is valid
in case of the Dyakonov-Perel mechanism of spin relaxation
[26]. Recollecting the notation τ−1

i = τ−1 + τ−1
si , we obtain

the functions of energy

N (ε) = G τε

ε

(
ε

ε0

)τε/τ

, (23)

Mz = M0
z exp

(
τε

τs1(ε)
− τε

τs1(ε0)

)
, (24)

Mx − iMy = (
M0

x − iM0
y

)
exp

(
τε

τs2(ε)
− τε

τs2(ε0)

)

× exp(−i�T ). (25)

Therefore, as excitons lose their kinetic energy, their spin
component Mz decreases exponentially, the steeper the longer
the energy relaxation time τε. Transverse spin components
diminish as well when the exciton energy decreases, and
additionally transform into each other due to the spin preces-
sion with frequency � in applied magnetic field. However,
in contrast to the result (11) obtained in absence of the en-
ergy relaxation, Eq. (25) lacks the factor (1 + i�τ2)−1 that
ensures the decreasing dependence of the transverse spin
components on the magnetic field. It should be emphasized
that Eqs. (11) and (23)–(25) relate to essentially different
pictures. The former considers the polarization of excitons
that had not yet lost their energy, while the latter ones re-
fer to the excitons with lower kinetic energy that originate
exactly from the relaxation process. Some excitons, having
lost their kinetic energy by emitting phonons, end up near
the bottom of the Brillouin zone and radiate light at the fre-
quency ω ≈ ω0. According to Eq. (13), the polarization of
luminescence of these excitons, observed along the z axis,
is equal to the average spin components that are given by
Eqs. (24) and (25) at ε → 0. Thus, the nanoparticle grating
makes it possible to generate the hot excitons via the absorp-
tion of photons with energies h̄ω = Eexc(bm), and detect the
luminescence of the thermalized excitons with K = 0, which
provides the information about the kinetics of relaxation
processes.

VI. CONCLUSIONS

The paper theoretically considers the optical orientation of
hot excitons in a QW that are generated with the near field of
a grating of metal nanoparticles embedded in semiconductor
heterostructure. A model is developed to consider the effect of
the grating on the exciton spin orientation and polarization of
the exciton luminescence. It is demonstrated that gratings of
a period several times smaller than the wavelength of exciting
light preserve the correlation between the polarizations of the
exciton luminescence and the pumping beam. This enables
the experimental determination of the lifetime and spin relax-
ation time of hot excitons via the measurement of the degrees
of circular and linear polarization of secondary radiation in
applied magnetic field. Apart from the quasiresonant lumi-
nescence, the radiation occurs on the lower frequencies due
to the relaxation of exciton’s kinetic energy. The dependence
of the polarization of luminescence of thermalized excitons on
magnetic field in the Faraday geometry provides insight into
the kinetics of relaxation process.
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