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Quantum computing demands innovative approaches for realizing qubits, and one promising avenue involves
leveraging gated hybridized van der Waals (vdW) vertical heterostructures, referred to as vdW qubits. The
two-level system that characterizes the vdW qubit comes from the layer-dependent orbital character of the charge
carrier. This paper investigates the potential of gated vdW heterostructures for quantum computing. We study
how gate fields affect the orbital composition of bands, enabling spatial superposition of electrons across layers of
two-dimensional materials. Our ab initio calculations assess 20 transition metal dichalcogenides, identifying lay-
ers with slight energy offsets as vdW qubit candidates. Our investigation extends to the heterostructures formed
based on the layered materials meeting these criteria. To simulate these qubits within large quantum circuits effi-
ciently, we employ the tight-binding approach with maximally localized Wannier functions, validated against full
ab initio calculations. At zero field, we confirm the existence of highly hybridized states that manifest as a qubit
state exhibiting an approximately equal distribution between |0〉 and |1〉. The electric field application serves
as a modulator for adjusting the contribution of these states. This phenomenon is general and is explored in the
context of four distinct heterostructures. In addition, our study identified 222 possible combinations matching dif-
ferent layers on the conduction or the valence as promising host heterostructures for implementing vdW qubits.
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I. INTRODUCTION

Since the early 1980s, quantum computing has become a
topic of great interest, stemming from the seminal discussions
initiated by Richard Feynman [1]. Feynman’s musings on
utilizing computers to simulate complex physics problems
brought forth the intriguing potential of those machines. He
envisioned a computer capable of precisely emulating natural
processes, surpassing the capabilities of classical computers,
at the same time being universal, in the sense of solving any
problem and not specific ones. This concept of universality of
such a machine was further elaborated by David Deutsch [2].
Presently, quantum computing not only offers the capability to
solve intricate problems but also serves as a testing ground for
the fundamental principles of quantum mechanics itself [3].

In order to create a functional quantum computer, it be-
comes necessary to manipulate interconnected qubits, which
are the building blocks of quantum circuits. Qubits can be
physically implemented in different ways, such as by means of
superconductors [4–6], electronic and nuclear spin degree of
freedom [7,8], trapped ions [9,10], molecules [11,12], as well
as by exploiting topological properties of solid state systems
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[13], with each of these implementations offering distinct
capabilities and challenges.

The application of semiconductor-based qubits has at-
tracted significant interest due to their compatibility with
concepts from the microelectronics industry [14,15]. Current
research is dedicated to exploring physical implementations
of materials that show potential for integration into quan-
tum chips capable of operating with numerous logical qubits,
thus driving advancements in large-scale quantum integration.
The remarkable diversity of properties exhibited by two-
dimensional (2D) materials, along with their high versatility
at the nanometer scale, makes them promising candidates
for quantum circuits, which can lead to advancements in the
field of quantum information [16,17]. Due to their distinctive
attributes, 2D materials have emerged as promising candidates
for qubit development [18,19]. Transition metal dichalco-
genides (TMDs), in particular, exhibit intriguing structural
and electronic properties that render them suitable for such
applications. Furthermore, high-performance transistors and
optoelectronic devices based on graphene and TMDs have
been explored [20,21]. Moreover, the capacity to manipulate
the electronic properties of 2D materials through external
stimuli, such as electric fields [22], strain [23–25], and doping
[26], provide novel avenues for tailoring their characteristics
to meet specific application requirements.

Recently, an innovative proposal has emerged, namely the
use of gated van der Waals (vdW) heterostructures as charge
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qubits, henceforth referred to as vdW qubits [27]. The inter-
layer environment is characterized by weak covalent bonds
that stabilize the hole structure allowing the formation of
numerous stacking combinations [28]. These solid-state sys-
tems exhibit collective behavior and their properties can be
easily manipulated through external perturbations, such as
electric fields, presenting significant potential for revolution-
izing quantum computing.

This qubit arises from the quantum superposition of states
within the constituent materials of the vdW heterostruc-
ture. This superposition is achieved by pairing materials
exhibiting minimal energy differences in their valence band
maximum and conduction minimum concerning the vacuum
level. Several prior studies have delved into the investiga-
tion of energy levels in layered materials through ab initio
calculations, aiming to identify heterostructures tailored for
specific technological applications [29–31]. Here the resultant
slight energy mismatch enables the emergence of the desired
hybridization in the band structure, defining the fundamental
two-level system inherent to the vdW qubit concept.

This innovative proposal explores the orbital composition
of the bands at a given k point as a function of the gate
field, allowing for the achievement of spatial superposition of
electrons from individual layers. The vast number of possible
combinations of 2D materials makes this proposal a promising
avenue for further exploration.

Simulating realistic devices at the full ab initio level can be
computationally challenging, especially for large systems. In
such cases, tight-binding Hamiltonian models (TBH) provide
an alternative approach for tackling the electronic structure
problem, enabling simulations of large systems. These models
can be parametrized by fitting procedures or machine learning
models to reproduce accurate first-principles calculations. For
monolayers of TMDs, tight-binding (TB) models using only
d orbitals accurately reproduce low-energy bands through fit-
ting procedures based on ab initio calculations [32]. Machine
learning has also been explored for obtaining TB param-
eters for defect simulations [33]. Realistic descriptions of
large-scale models for black phosphorus, derived from GW0

calculations, have successfully replaced computationally in-
tensive calculations with simple TB models [34]. Another
approach for describing TMDs’ band structure involves creat-
ing a TBH based on Bloch wave functions and mapping them
into Wannier functions (WFs). This approach succeeded by
using d orbitals of the metal and p orbitals of the chalcogen
as WFs, considering interactions up to first and second neigh-
bors, and interlayer interactions mediated by the chalcogen’s
p orbitals [35].

This work presents an ab initio TB model for vdW
heterostructures of TMDs obtained from density functional
theory (DFT) calculations using hybrid functional, without
relying on fitting procedures or empirical parameters. The
model, constructed from localized d and p orbitals, includes
the first- and second-neighbor couplings, and we can safely
neglect higher orders due to exponential decay, usually suf-
ficient for understanding the nature of the bands. Adding
more terms beyond nearest-neighbor couplings can improve
accuracy, eventually approaching results comparable to those
obtained from the ab initio. The objective in obtaining such a
model aims to analyze the electric control of the vdW qubit’s

TABLE I. Cutoff energy for the plane-wave expansion (Ecut) and
the mesh of k points (k-mesh) that assures well converged DFT with
respect to the total energy. T and H stand for the allotropic form.

TMDs Ecut (Ry) k-mesh

HfS2 (T) 160 10×10×1
HfS2 (H) 120 10×10×1
HfSe2 (T) 180 12×12×1
HfSe2 (H) 120 10×10×1
MoS2 (T) 160 10×10×1
MoS2 (H) 160 10×10×1
MoSe2 (T) 160 14×14×1
MoSe2 (H) 160 10×10×1
SnS2 (T) 120 10×10×1
SnS2 (H) 120 10×10×1
SnSe2 (T) 140 12×12×1
SnSe2 (H) 120 12×12×1
WS2 (T) 140 10×10×1
WS2 (H) 160 10×10×1
WSe2 (T) 160 14×14×1
WSe2 (H) 120 10×10×1
ZrS2 (T) 120 10×10×1
ZrS2 (H) 120 10×10×1
ZrSe2 (T) 140 12×12×1
ZrSe2 (H) 120 10×10×1

orbital character, once an electric field acts perturbatively in
the onsite energies and then compare results with DFT calcu-
lations to verify the accuracy of the model.

The article is organized as follows: In Sec. II, we describe
the systems and the methods adopted in our calculations. In
Secs. III and IV, we present and discuss the results. Finally, in
Sec. V, we briefly summarize the paper.

II. METHODS

A. Ab initio calculations

The structural and electronic properties are calculated
using the DFT formalism [36,37] as implemented in the
Quantum ESPRESSO [38–40] package. For the monolay-
ers of TMDs, cutoff energy for the plane-wave expansion
ranging from 120 to 160 Ry was used due to the structural
and electronic properties of the allotropes considered, and
the integrations over the Brillouin zone (BZ) have used a
Monkhorst-Pack mesh for k-point sampling [41]. Table I gives
the value used for each material.

The atomic positions were relaxed until a convergence
threshold of 10−5 Ry/bohr on the forces and 10−5 Ry on the
energy. The SCF cycle’s convergence threshold was 10−8 Ry.
A vacuum of 30 Å was used to avoid spurious interactions
of the periodic images for the monolayers with truncation
of the Coulomb interaction perpendicular to the slab [42].
Heterostructure investigations are performed after obtaining
relaxed lattice parameters of each monolayer and applying
necessary strains, in which for all the systems here discussed
was smaller than 1%, to make the systems commensurate. The
same vacuum in the stacking direction was employed.

The wave functions and pseudopotentials are gener-
ated within the scalar-relativistic optimized norm-conserving
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Vanderbilt pseudopotential code [43–45] taken from The
PseudoDojo project [46]. Exchange and correlation (XC)
are described using the Perdew-Burke-Ernzerhof [47,48]. To
describe excited states more accurately, and consequently
the energy levels more accurately, the hybrid functional
HSE06 [49–51] was employed, making use of the adaptively
compressed exchange [52], which greatly reduces the com-
putational cost associated with the Fock exchange operator
without loss of accuracy. With the use of HSE06, the diver-
gence of the coulomb potential for small q vectors on the Fock
grid is handled by the treatment of Gygi and Baldereschi [53].
During the DFT calculation, the sawtooth electrostatic poten-
tial was utilized to implement the electric field, as discussed in
Refs. [54,55]. The vdW interaction, where the vdW-DF family
was implemented by the Thonhauser group [56–58], used was
vdW-DF-obk8 [59].

B. Maximally localized Wannier functions

A localized description of the Bloch eigenfunctions can be
obtained from a Fourier transform of the form [60]

wn(r) = V

(2π )3

∫
BZ

ψnk(r)e−ik·Rdk, (1)

where wn(r) is the nth WF, ψnk(r) are the Bloch states, V is
the volume of the unit cell, k is the quasimomentum quantum
number, R are the lattice vectors, and the integral is over the
first BZ with n being the band index. Moreover, this trans-
formation has gauge freedom since the Bloch states do not
change when multiplied by a phase factor. In general, for a
case of composite bands, one has the freedom to mix them
with a unitary transformation U (k)

mn , such as

wn(r) = V

(2π )3

∫
BZ

[∑
m

U (k)
mn ψnk(r)

]
e−ik·Rdk, (2)

with U (k)
mn being unitary matrices that mix the Bloch states.

A recipe for the localization procedure of WFs was proposed
based on minimizing a functional that measures the real space
spread of such functions [61,62], dealing with the gauge
freedom that comes from the unitary matrix U (k)

mn , redefin-
ing such transformation in order to satisfy the criterion, as
implemented in the Wannier90 package [63–65]. The spread
functional to be minimized is given by

� =
∑

n

[〈r2〉n − r̄2
n

]
, (3)

with

r̄n = i
V

(2π )3

∫
dk 〈unk| ∇k |unk〉 , (4)

〈r2〉n = V

(2π )3

∫
dk| |∇kunk〉 |2, (5)

in which the MLWFs are obtained by minimizing Eq. (3)
with respect to U (k)

mn . Here |unk〉 are the periodic part of the
Bloch states. This functional can be written as a sum of two
quantities,

� = �I + �̃, (6)

where the first term is gauge independent, and the latter is
gauge dependent [61]. Now, since the expectation values in
Eq. (3) involve the position operation, it is necessary to rewrite
the necessary expressions in k space, something that can be
achieved with the help of the Blount identities [66]. All the de-
sired quantities derived in Ref. [61] for the spread functional
depend only on the overlap between the periodic part of the
Bloch states,

M (k,b)
m,n = 〈umk|un,k+b〉 . (7)

Such overlaps can be obtained from the ab initio calculations
and will be the main input for the Wannier90 code.

This Wannierization procedure may potentially break the
symmetry of the orbitals and consequently the symmetry of
our Hamiltonian. The symmetries play a crucial role, espe-
cially when dealing with noncollinear simulations of nonmag-
netic materials influenced by spin-orbit coupling, many-body
techniques exploring topological effects, as detailed in a re-
cent publication [67]. However, this usual Wannierization
procedure approximately adheres to symmetry conditions,
with changes in the band-structure interpolation on the or-
der of submillielectronvolt [68]. Furthermore, consideration
of unoccupied bands enables the MLWFs to achieve greater
localization, thereby restoring some symmetries that might
otherwise be compromised [69]. Given our primary focus
on accurate band interpolation and agreement with the DFT
band structure, this approach proves sufficient for effectively
modeling the systems under investigation.

C. Tight-binding model

The TB parameters obtained are solely determined by the
overlap integrals for orbitals and the matrix elements from
the full ab initio calculation. The WFs corresponding to the
initial guesses are based on a projected band structure in
the atomic orbitals analysis, used to determine the resulting
sparse Hamiltonian. Although the real-space Hamiltonian has
low dimensionality, its matrix elements (hopping parameters)
decay slowly with distance, leading to a large number of
small parameters. In order to make the resulting model more
tractable, we ignore parameters beyond the cutoff radius |dhop|
restricting the model to hoppings between first and second
neighbors. The truncation of the sparse Hamiltonian was per-
formed using the PythTB program to obtain the best fidelity
to the DFT results regarding band structure, band gap, and
orbital character.

Moreover, in our TB model, we introduced an unscreened
electric field represented by the term eE ext

z z. This simplified
representation overlooks local effects and polarization. Con-
sequently, we observed a more pronounced control over the
charge in the vdW qubit’s orbitals at lower field strengths,
diverging from the conclusions drawn from previous DFT
analyses. To incorporate polarizability effects, we consider
the static dielectric constant and define the resulting field as
Eres = E ext

z /εz,hetero, where εz,hetero is the transverse dielec-
tric permittivity of the heterostructure, accounting for any
induced field present in the system. To compute εz,hetero, we
individually considered the dielectric constants of the layers
constituting the heterostructure, following a similar reason-
ing to the quantum electrostatic heterostructure model, that
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FIG. 1. 1×1 unit cell of layered materials investigated. (a) Top
and (b) side view of allotrope H. (c) Top and (d) side view of
allotrope T.

determines the heterostructure’s dielectric function by consid-
ering the electrostatic interactions among its components [70].
Here, we approximate the heterostructure’s dielectric constant
as the harmonic mean of these individual constants, in which
the resultant dielectric constant is given by

εz,hetero = ε1ε2(d1 + d2)

ε1d2 + ε2d1
, (8)

where ε1,2 is the 2D dielectric constant of the layers that
composes the material and d1,2 is their thickness. Since TMDs
layers possess similar thickness, we can approximate d1 ≈ d2,
giving

εz,hetero ≈ 2ε1ε2

ε1 + ε2
. (9)

In this way, polarizability effects can be considered allowing
the use of the model for large-scale simulations of realistic
devices.

All the dielectric constants used in this work were taken
from the Materials Project Database [71,72] which were com-
puted within density functional perturbation theory approach
[73,74].

III. RESULTS AND DISCUSSION

A. Structural properties

TMDs are compounds with the form X-M-X, where X is a
chalcogen and M is a metal connected by covalent bonds and
displaying hexagonal symmetry. Two typical structural phases
are the 2H (trigonal prismatic) and 1T (octahedral) phases,
which belong to the D3h and D3d point groups, respectively.
The 2H phase has chalcogen atoms located on top of each
other in the perpendicular direction of the layer. In contrast,
the 1T phase has the chalcogen atoms rotated by an angle of
180◦ relative to the metal. Top and side view is shown of each
allotrope is shown on Fig. 1.

The present work investigate the structural and electronic
properties of 20 phases of 10 TMDs to obtain the necessary
data for forming heterostructures and analyzing their energy

TABLE II. Structural parameters, lattice constants a (obtained in
this study) and aexp (derived from experimental data), and metal-
chalcogen bond lengths (dMX). Values in parentheses represent
literature-derived data for comparison purposes.

a (Å) aexp (Å) dMX (Å)

HfS∗
2(T) 3.649 3.635 [75] 2.56 (2.55 [76])

HfS2 (H) 3.540 3.37 [77] 2.58
HfSe∗

2(T) 3.774 3.748 [75] 2.69 (2.67 [76])
HfSe2 (H) 3.68 3.44 [77] 2.71
MoS2 (T) 3.19 3.16 [78] 2.43
MoS∗

2(H) 3.185 3.162 [75] 2.41 (2.41 [79])
MoSe2 (T) 3.29 2.56
MoSe∗

2(H) 3.322 3.289 [75] 2.54 (2.54 [79])
SnS∗

2(T) 3.705 3.648 [80] 2.60 (2.59 [76])
SnS2 (H) 3.62 3.647 [81] 2.64
SnSe∗

2(T) 3.872 3.811 [80] 2.75 (2.73 [76])
SnSe2 (H) 3.80 3.811 [81] 2.79
WS2 (T) 3.21 2.43
WS∗

2(H) 3.187 3.153 [75] 2.42 (2.42 [79])
WSe2 (T) 3.29 2.57
WSe∗

2(H) 3.321 3.282 [75] 2.55 (2.55 [79])
ZrS∗

2(T) 3.685 3.662 [75] 2.57 (2.57 [79])
ZrS2 (H) 3.57 2.59
ZrSe∗

2(T) 3.750 3.700 [75] 2.70 (2.71 [79])
ZrSe2 (H) 3.71 2.73

alignments. The lattice parameters (a) and the bond length
between metal (M) and chalcogen (X) (dMX) for each of the
2D materials are provided in Table II.

Phase engineering methods have enabled the experimental
growth of TMDs that are not achievable through conventional
procedures. For instance, MoS2 can be synthesized in its 1T
phase via ion intercalation techniques, where a significant
charge transfer from ions triggers the phase transition to oc-
tahedral [82]. Similarly, substitutional doping of rhenium in
WS2 nanotubes results in the 1T phase, with the Re impu-
rity atoms acting as electron donors [83]. Lithium insertion
has been shown to induce the formation of 1T MoS2 and
WS2 [84]. Combining ball milling and chemical lithium in-
tercalation yields high percentages of 1T WS2 and MoSe2

from their 2H phase, producing in single-layer TMD nanodots
[85]. Likewise, different growing conditions have been shown
to lead to the formation of 2H phases of SnS2 and SnSe2

[81]. First-principles calculations also allow the simulation
of phase transitions under diverse conditions, guiding experi-
mental routes. For example, hydrogenation can induce a phase
transition (H to T and vice versa) for HfS2, HfSe2, WSe2,
ZrS2, and ZrSe2, resulting in the interplay between metallic
and semiconductor behavior depending on the layer’s side
exposed to the process [86]. Layered 1H SnS2 can be obtained
by in situ heating and electron beam radiation, with the growth
of each phase being controllable by adjusting experimental
parameters [87]. Similarly, 2H SnSe2 can be assembled using
the Bridgman-grown method [88].

Our ab initio findings, as presented in Table II, emphasize
the remarkable accuracy of our results, even for less com-
mon allotropes, when compared to experimental data. The
deviations from experimental values in lattice parameters and
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TABLE III. Electronic properties of monolayers TMDs. Quasi-
particle band gaps (Eg), ionization energies (I), and electron affinity
(A) with respect to the vacuum level obtained with hybrid exchange-
correlation functional HSE06.

Eg (eV) I (eV) A (eV)

HfS∗
2(T) 2.19 7.08 4.89

HfS2 (H) 1.97 7.67 5.70
HfSe∗

2(T) 1.53 6.37 4.84
HfSe2 (H) 1.74 7.19 5.45
MoS2 (T) Metal Metal Metal
MoS∗

2(H) 2.35 6.45 4.10
MoSe2 (T) Metal Metal Metal
MoSe∗

2(H) 1.89 5.89 4.00
SnS∗

2(T) 2.25 7.40 5.15
SnS2 (H) 1.39 6.96 5.57
SnSe∗

2(T) 1.41 6.72 5.31
SnSe2 (H) 0.58 6.28 5.70
WS2 (T) Metal Metal Metal
WS∗

2(H) 2.49 6.20 3.71
WSe2 (T) Metal Metal Metal
WSe∗

2(H) 2.03 5.63 3.60
ZrS∗

2(T) 2.07 7.11 5.04
ZrS2 (H) 1.81 7.58 5.77
ZrSe∗

2(T) 1.30 6.39 5.09
ZrSe2 (H) 1.61 7.13 5.52

metal-chalcogen distances were consistently within 1% or less
across all allotropes.

B. Electronic properties of monolayer systems

Going beyond the structural properties, the electronic prop-
erties of the previous monolayers are investigated, including
band structures, band gaps, and energy levels with respect to
the vacuum level. For the electronic properties we take the
quasiparticle corrections into account by applying an XC hy-
brid functional HSE06 to compute the electronic band states.
We do not consider spin-orbit coupling (SOC) in this study.
As reported in Ref. [70], the bands’ splitting in the 1T phase
is inhibited. While this does not apply to the 2H phase, our
analysis exclusively focuses on the 1T phases of TMDs in the

context of the heterostructures, as elaborated in the following
section. The valence band maximum (VBM) and conduction
band minimum (CBM) were determined with respect to the
vacuum level as the reference. Consequently, the ionization
energy (I) is associated with VBM, expressed as VBM = −I ,
and the electron affinity (A) is associated with CBM, ex-
pressed as CBM = −A. Table III provides the values for I ,
A, and the quasiparticle energy gap Eg (where Eg = I − A).
Figure 2 displays a more didactic view of the energy levels
with respect to the vacuum level.

The values of ionization energy I and A will be impor-
tant when combining individual layers because the degree
of alignment of these energies will indicate the degree of
hybridization between the layers.

Another critical quantity defined here is the natural band
offset between the layers. This quantity is obtained as the
difference between the values of I and A in the following way:

�Ev = I (1) − I (2),

�Ec = A(2) − A(1), (10)

where �Ev (�Ec) is the valence (conduction) band offset
and the indices 1 (2) represent the layers that compose the
heterojunction.

The significance of quasiparticle corrections on the band
structure of materials cannot be overstated. DFT calculations
often underestimate the band gap, leading to inaccuracies in
energy levels. Consequently, materials that demonstrate en-
ergy level alignment when quasiparticle effects are taken into
account may not exhibit this characteristic in a pure DFT
calculation alone.

IV. VDW HETEROSTRUCTURES

In this section, using the data of Tables II and III, we aim to
discuss heterostructures that will be useful for the vdW qubits.
To this end, we want materials that will have a high degree of
hybridization in the VBM and CBM. To predict this, we use
the band offsets �Ev and �Ec. These offsets are essential in
determining the electric field’s strength necessary to modulate
the degree of state hybridization within the heterostructure.
Given an interlayer distance denoted as d , as depicted in

FIG. 2. Energy levels and band gaps of TMDs monolayers considering quasiparticle effects through HSE. The bar edges represent the
valence band maximum and the conduction band minimum for each material. All energies are in eV and with the vacuum as reference.
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FIG. 3. An illustration of the system under investigation in this
study is provided, showing a side view of the heterostructure, which
consists of the 1T phase of each constituent material. Notably, the
interlayer distance is visualized as it plays an important quantity in
estimating the gate potential needed to modulate the hybridization
within the band structure based on the band off-sets. Light green is
the thin (Sn) atoms, dark green selenium (Se), and gray zirconium
(Zr) atoms.

Fig. 3, the electric field is given by E = V/d , with V being
the gate potential.

Materials pairs with offsets of less than 0.6 eV emerge as
strong candidates for hosting vdW qubits through heterostruc-
ture assembly. Our investigation resulted in 222 possible
combinations attending this criterion, as presented in the
Supplemental Material (SM) [89]. Given an interlayer dis-
tance of approximately 3 Å, the electric field necessary to
manipulate this hybridization has values around 0.2 V/Å,
which is well within the applicable range for the systems
investigated in this study.

Expanding on a previously proposed class of host mate-
rials [27], we broaden this classification, offering additional
experimental pathways to attain platforms suitable for vdW
qubits. This extension holds significance for industrial ap-
plications, aiding in the selection of economically feasible,
easily accessible, and environmentally friendly materials for
assembly. The new material combinations are detailed in the
SM [89]. Here we delve into a subset of these combinations:
ZrSe2/SnSe2, HfS2/SnS2, ZrS2/SnS2, and ZrS2/HfS2. Fol-
lowing we explore each case separately. The bottom and top
layers are denoted, respectively, by BL and TL.

A. ZrSe2/SnSe2 heterostructure

To evaluate the methodology proposed in this study, we
compared our results with those from a previous investigation
on the ZrSe2/SnSe2 heterojunction [27]. Our investigation
aimed to determine whether perturbing the onsite energies in
the TB model with an electric field could achieve the same
degree of hybridization control as in DFT calculations. The
heterostructure, which includes stacking different layers of
TMDs on top of each other, is depicted in Fig. 3. Additionally,
we provide the interlayer distance for reference.

Once dealing with heterostructures, an important point to
be discussed is which stacking will be considered on the
ab initio simulations. The stacking configuration is determi-
nant since influences not only the total energy but also crucial

TABLE IV. Valence (�Ev) and (�Ec) conduction band offsets
for the heterostructures with the pair offset lower than 0.6 eV that
will be studied in detail in the following subsections. All values are
in eV.

Heterostructure I A �Ev �Ec

ZrSe2/SnSe2 6.52 5.28 −0.33 0.23
HfS2/SnS2 7.18 5.14 −0.32 0.26
ZrS2/SnS2 7.17 5.26 −0.29 0.11
ZrS2/HfS2 7.07 5.16 0.03 −0.15

quantities such as exfoliation and binding energies and the
overall stability of the heterostructure. However, the stacking
pattern has a negligible effect on the orbital contribution of the
bands [90,91].

Concerning the structural properties, the isolated layers
present a good lattice match with ZrSe2 having a lattice pa-
rameter of 3.80 Å and SnSe2 of 3.87 Å. When combining
these materials in a heterostructure, a minor stress is applied
on the monolayers to make the system commensurable, ten-
sile on ZrSe2 and compressive on SnSe2. This results in a
heterostructure with a lattice constant of 3.83 Å which cor-
responds to a relative stress of 0.9% on each layer. After
the relaxation procedure, the interlayer distance resulted in
3.04 Å. Table IV presents the electronic properties of ZrSe2

(BL) and SnSe2 (TL). By examining the energy levels de-
picted in Fig. 2, we observe that these two materials exhibit
a type II band alignment. The slight offsets of the layers hint
at a possible hybridization presented in the band structure of
the heterojunction.

To simplify the model and investigate whether the same
hybridization control occurs on the two lowest conduction
bands, we performed Wannierization to obtain an ab initio
TBH from the Bloch wave functions. Based on a projected
band-structure analysis, we took into account the dxy, dz2 , and
dx2−y2 orbitals of zirconium and p orbitals of selenium, result-
ing in a TB model consisting of 15 bands. Tin gives a minor
contribution to the bands around the Fermi energy in this
heterostructure and on the ones discussed in Secs. IV B and
IV C and, for this reason, it was not considered in our model.
However, to obtain a simplified Hamiltonian that captures the
central physics of bands of interest, it is considered hoppings
with magnitude above a certain threshold, here represented by
|hop|, and between orbitals separated by a certain distance,
dhop. The values chosen to truncate the Hamiltonian while
preserving the band gap and ensuring agreement of TB and
DFT band structures, as well as maintaining the orbital contri-
bution of the layers, were |hop| � 0.024 eV and dhop � 8.4 Å.
The resulting band structure is shown in Fig. 4. The orbital
characters of the truncated Hamiltonian are 45% (ZrSe2) and
55% for (SnSe2) in the lowest conduction band, in good agree-
ment with DFT results [92]. The resulting ab initio TBH is
1.26 eV, which is comparable with the DFT + HSE value of
1.24 eV.

If the electric field is introduced as a first-order perturba-
tion on the onsite energies, without considering polarizability
effects, then the control of the orbital character is achieved.
This is illustrated in Fig. 5, where the change in hybridization
can be observed. For negative fields, |0〉 comprises states
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FIG. 4. Band structure of ZrSe2/SnSe2 obtained by the ab initio
TBH. The zero of energy is considered on the top of the valence
bands.

coming from SnSe2, and |1〉 from ZrSe2, and the opposite
occurs for positive fields. Here the vdW qubit state |ψ〉 =
α |0〉 + β |1〉 is interpreted as being the two lowest conduction
bands at the M point each having the orbital weight (α and β)
which is a function of the electric field applied.

This result aligns qualitatively with the previous work
that analyzed these properties from ab initio calculation [27].
However, due to the approximation of adding the electric field
as a first-order perturbation to the onsite energies, with the
hoppings held constant and given the selection of relevant
orbitals for model construction, the magnitude of the electric
field does not match. In the ab initio calculation, the electric
field required to concentrate 80% of the charge in one of
the layers is around −0.3 V/Å while in the TB model this
is achieved at −0.04 V/Å which is one order of magnitude
smaller. Moreover, although the curves of orbital control from
both approaches are similar, the localization of the electronic
states in the TB model is achieved with a smaller electric field.

In order to improve the quantitative results, both polar-
izability and local field effects are considered, taking into
account the static dielectric constant. For the individual com-

FIG. 5. Change of the orbital weight resulted from ab initio
TB contribution as the function of the electric field applied. The solid
lines represent the change on |0〉, and the dotted lines represent the
change on |1〉. Blue is for ZrSe2 and orange for SnSe2.

FIG. 6. The ab initio TBH results for the orbital contribution
as a function of the electric field applied considering the effect of
polarizability. The solid lines represent the change on |0〉, and the
dotted lines represent the change on |1〉. Blue is for ZrSe2 and orange
for SnSe2.

ponents, the values for the static dielectric constants are 5.81
for ZrSe2 and 16.95 for SnSe2. Using Eq. (9), the dielectric
constant for the heterostructure is determined to be 8.65. With
this adjustment, the range of fields required to manipulate
the orbital composition of the two lowest conduction bands
is comparable with that obtained from the DFT calculation,
as illustrated in Fig. 6. In this scenario, the electric field
intensity required to concentrate the orbital contribution of
80% coming from one layer is −0.32 V/Å now in agreement
with the full DFT calculation.

The band structure subjected to different fields is shown in
Fig. 7. Changes in the orbital composition on the two lowest
conduction bands are evident as the intensity and direction of
the electric field is applied. One may also note the change of
orbital contribution on the valence bands at 	 point. The hole
states are concentrated at the ZrSe2 layer from zero towards
negative fields. For positive fields, the energy levels in the
valence are shifted, making the hole states concentrated in the
SnSe2 layer.

B. HfS2/SnS2 heterostructure

The HfS2/SnS2 heterostructure was selected for in-depth
investigation, consisting of two layers on 1T phase, with six
atoms in the unit cell. Despite the minor lattice mismatch be-
tween the layers, with HfS2 layer having a lattice parameter of
3.65 Å and the SnS2 layer 3.71 Å, an average lattice parameter
was determined to establish the unit cell. This resulted in a
value of 3.68 Å, with each layer experiencing a relative strain
of approximately 0.8%. After the relaxation of the atomic
positions in the unit cell, the interlayer distance was found
to be 2.99 Å.

The heterostructure’s components have already been as-
sembled experimentally, as reported in the literature [93,94],
and their potential applications have been explored. These
experimental pieces of evidence make the construction of such
heterostructure viable. Moreover, our ab initio calculations
demonstrate that this stacking configuration is energetically
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FIG. 7. Band structures for the ZrSe2/SnSe2 heterobilayer when an electric field of (a) −0.3 V/Å, (b) 0.0 V/Å, and (c) +0.3 V/Å is
applied in the z direction. Palette color indicates the percentage of bands formed by orbitals from the SnSe2 and ZrSe2 layers. The top of the
valence band is taken as reference.

favorable. As inferred from the previously computed energy
levels, their small band offsets suggest a potential for states
hybridization, possibly leading to a vdW qubit, as presented
in Table IV.

From the projected band analysis of the present het-
erostructure, the dxy, dz2 , and dx2−y2 orbitals of hafnium and p
orbitals of sulfur were identified as significant contributors to
the low-energy bands. Consequently, these orbitals were used
as an initial guess for the Wannierizartion procedure to obtain
the MLWFs. This led to a TB model of 15 bands. Following
a similar procedure to obtain the parameters to truncate the
sparse Hamiltonian ensuring the preservation of the main
quantities of interest, the values were set a dhop � 7 Å and
|hop| � 0.02 eV. This resulted in a match of DFT and TB
bands, where it is included hoppings up to second-neighbor
interactions. The resulted ab initio TBH band gap is 2.0 eV,
in good agreement with the DFT + HSE06 value of 2.04 eV.
Furthermore, the orbital contribution of the HfS2 (SnS2) for
the lowest conduction band is 64% (36%) at the M point,
which has also an excellent agreement with previous DFT
results [92]. Proceeding with the approximation of inserting
the electric field on the onsite energies, the magnitude of the
electric field applied is similar to the previous case of the
ZrSe2/SnSe2 system. The band structures are shown in Fig. 8.

Following the same notation as for the previous system, the
orbital character change with the applied electric field is given
in Fig. 9 where the polarizability effects were already taken

into account. The dielectric constant of the heterostructure
is 4.97.

C. ZrS2/SnS2 heterostructure

Based on the previous two systems, it is verified that the
ability to control the orbital character is not unique to a par-
ticular vdW heterostructure but rather a general phenomenon.
The alignment of energy levels in the individual layers prior
to their combination in a heterostructure serves as a useful pa-
rameter for guiding the design of vdW qubits. This approach
can be applied to various host materials, which makes vdW
qubits attractive for electronic component applications due to
the abundance of vdW materials available experimentally.

Similarly to the previous heterostructure discussed in this
section, here only the chalcogen is replaced, Se to S, yielding
on the ZrS2/SnS2 heterostructure, where both materials are
also in their 1T phase. A 1×1 unit cell is also suitable for this
system due to the minor mismatch between of ZrS2 (3.69 Å)
and SnS2 (3.71 Å). Averaging these values gives a lattice
parameter of 3.70 Å inducing a relative stress of roughly 0.3%
on each layer. Postcomplete relaxation, the interlayer distance
measured at 2.95 Å.

Concerning the electronic properties, this heterostructure
also exhibits a small offset in the conduction bands, which can
be useful for a host material for the vdW qubit. The energy
levels involved in this system are summarized in Table IV.

FIG. 8. Band structures for the HfS2/SnS2 heterobilayer when an electric field of (a) −0.27 V/Å, (b) 0.0 V/Å, and (c) +0.27 V/Å is
applied in the z direction. Palette color indicates the percentage of bands formed by orbitals from the HfS2 and SnS2 layers. The top of the
valence band is taken as reference.
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FIG. 9. Same as Fig. 6 but now for HfS2/SnS2.

The band structure of this system is similar to that of
ZrSe2/SnSe2, which is expected since the chalcogen atoms in
both systems belong to the same family on the periodic table
and the calculated band gap, considering quasiparticle effects,
was 1.91 eV. The TB model derived from Wannierization used
the same atomic orbitals as in the previous systems, given the
similar chemistry of the compounds. The TB model featured
15 bands and a band gap of 1.89 eV, a value that closely
matches the ab initio result of 1.91 eV. The TB Hamiltonian
was truncated considering dhop � 8.5 Å and |hop| � 0.004 eV
where, besides first- and second- neighbor, 10 third-neighbor
hoppings were included to improve the agreement of the or-
bital character between DFT and the TB model.

The resulting band structure for this gated system is
shown in Fig. 10. Similarly to the case of the heterostruc-
ture ZrSe2/SnSe2, for negative fields the state |0〉 is mainly
composed of state coming from the SnS2 layer and |1〉 from
ZrS2 layer and the modulation of this contribution changes
with the intensity and direction of the electric field. A similar
change in the orbital composition is also observed at the top of
the valence band. The dielectric constant for this heterostruc-
ture is 5.48.

The orbital control, shown in Fig. 11, indicates that with
a field around −0.24 V/Å it is possible to concentrate 80%
of the charge coming from one of the layers to each qubit
state, a value that is in agreement with the two other systems

FIG. 11. The same of Fig. 6 but now for ZrS2/SnS2.

investigated. Around 0.14 V/Å is required for positive fields
to localize the qubit state in one of the layers.

D. ZrS2/HfS2 heterostructure

Up to this point, we have been discussing systems with a
small band offset in the conduction bands. However, we will
now examine a system that exhibits the superposition of states
not in conduction but rather in the valence bands. Specifically,
we consider the ZrS2/HfS2 heterostructure, consisting of both
materials in the 1T phase and six atoms in the unit cell. In
this case, the lattice parameters of the individual layers are
nearly commensurate, allowing for a 1×1 unit cell. At the
commensurate lattice constant, each layer is subjected to a
relative strain of only 0.5%, and the interlayer distance where
the energy is minimized is 2.98 Å.

As seen in Table IV, the valence band offset is �Ev =
0.03 eV, indicating that the energy levels of the individual
layers are nearly aligned, suggesting a strong hybridization
between these states. The CBM of the individual layers also
exhibits a small offset of �Ec = −0.15 eV.

To confirm this observation, we conducted a Wannier-
ization analysis using the dxy, dz2 , and dx2−y2 orbitals of
zirconium and hafnium, as well as the p orbitals of sulfur,
which were identified through a fat band analysis. This re-
sulted in a basis of 18 atomic orbitals that were minimized

FIG. 10. Band structures for the ZrS2/SnS2 heterobilayer when an electric field of (a) −0.24 V/Å, (b) 0.0 V/Å, and (c) +0.24 V/Å is
applied in the z direction. Palette color indicates the percentage of bands formed by orbitals from the ZrS2 and SnS2 layers. The top of the
valence band is taken as reference.
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FIG. 12. Band structures for the ZrS2/HfS2 heterobilayer when an electric field of (a) 0.0 V/Å, (b) −0.05 V/Å, and (c) +0.05 V/Å is
applied in the z direction showing the change of hybridization at the 	 point. Palette color indicates the percentage of bands formed by orbitals
from the ZrS2 and HfS2 layers. The top of the valence band is taken as reference.

to produce the MLWFs. The resulting TB band structure
of the vdW heterostructure is depicted in Fig. 12. As ex-
pected, the alignment of energy levels of individual layers
results in hybridization on the valence bands. The band gap
obtained from the DFT + HSE06 calculation was 1.90 eV,
while the TB model yielded a gap of 1.86 eV. To re-
duce the Hamiltonian, only hoppings with a modulo |hop| �
0.02 eV and between neighbors located at a distance below
dhop � 8.0 Å were kept, considering only first and second
neighbors.

One can observe in Fig. 12 that in this heterostructure,
having the dielectric constant of 3.75, it is possible to confine
holes in one of the layers at the 	 point by applying very
small electric fields (± 0.05 V/Å). Specifically, a negative
electric field leads to hole localization in the ZrS2 layer,
whereas a positive field leads to hole concentration in the HfS2

layer.
Due to the versatility of modeling electronic properties in

vdW heterostructures, hybridization can also be made to occur
in the conduction bands in this system. The hybridization
“jumps” from the valence bands to the two lowest conduction
bands for more intense and negative electric fields, resulting
in a two-level system similar to the previous heterostructures.
This system demonstrates the ability to manipulate the elec-
tronic structures of vdW heterostructures, allowing for control
over the superposition of quantum states in either the valence

or the conduction bands, which can affect transport properties.
In this case, an electric field is used to first obtain the desired
superposition of quantum states in the two lowest conduction
bands, resulting in a charge distribution between the layers,
or a two-level system of |0〉 and |1〉, followed by further
control of the charge contribution of each layer for this qubit.
Figure 13 clearly shows that as the electric field is turned on,
the electron is localized in one of the layers, and the orbital
character of these two bands changes.

At zero field, the state |0〉 (|1〉) is formed entirely from
the ZrS2 (HfS2) layer and with the application of a negative
electric field, this contribution changes. This change in the
orbital character of the two lowest conduction bands is shown
in Fig. 14

From Fig. 14, it can also be noted that the equal distribution
of states for the vdW qubit is in a situation where the het-
erostructure is subjected to a gate field, around −0.16 V/Å,
which is justified by the offset that the conduction bands
presents. Since at zero field the equal contribution is on the
valence, the energy levels on the conduction are aligned for
negative fields, which explains the result.

The summary of the electric field required to concen-
trate 80% of the orbital contribution of the qubit’s states is
shown in Table V. It can be seen that for each system, there
is a range of fields required for such manipulation of the
states.

FIG. 13. Band structures for the ZrS2/HfS2 heterobilayer when an electric field of (a) 0.0 V/Å, (b) −0.16 V/Å, and (c) −0.23 V/Å
is applied in the z direction showing the change of hybridization now at the conduction bands at the M point. Palette color indicates the
percentage of bands formed by orbitals from the ZrS2 and HfS2 layers. The top of the valence band is taken as reference.
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FIG. 14. The same of Fig. 9, but now for ZrS2/HfS2.

The smaller range of electric field required for such ma-
nipulation can be more practical once the rotations in the
Bloch sphere are achieved at a smaller field. Moreover, the
ZrS2/HfS2 system has the advantage of a field in a fixed
polarization, changing only its intensity.

V. CONCLUSION

In this study, we leverage the accuracy of DFT calculations,
which include quasiparticle effects, to obtain TBH for vdW
heterostructures composed of monolayers of TMDs by the
Wannierization method [61,62]. We investigate the structural
and electronic properties of 20 TMD monolayers and com-
bine them to form heterostructures suitable for hosting vdW
qubits.

The accuracy of the ab initio TB model was confirmed
through a comparison with a previous pure DFT calcula-
tion of the ZrSe2/SnSe2 heterostructure [27]. The findings
revealed an excellent agreement for the unbiased and biased
band structure. Subsequent investigations of other systems
revealed a consistent tendency towards a slight energy level
mismatch, leading to the emergence of hybridized states
within the band structure, which could be effectively mod-
ulated by the application of a gate field. This widespread
behavior across different systems suggests the potential suit-
ability of these materials as host components for vdW
qubits.

It was further confirmed that it is feasible to engineer
the location of hybridization, as evidenced in the case of
ZrS2/HfS2, where a minor offset on the valence band resulted

TABLE V. Summary of electric field required to concentrate 80%
and 20% of the orbital contribution in the two lowest conduction
bands.

Heterostructure E80/20 (V/Å) E20/80 (V/Å)

ZrSe2/SnSe2 −0.32 +0.30
HfS2/SnS2 −0.27 +0.11
ZrS2/SnS2 −0.24 +0.14
ZrS2/HfS2 −0.24 −0.09

in well-localized states in the conduction bands. However, this
hybridization can be obtained in the conduction bands once an
electric field is applied, obtaining the desired two-level system
for the development of the vdW qubit.

The control of the orbital character of the hybridized states
in the TB model occurs within the same range of fields from
the ab initio calculations. In addition, using the 1T phase
of allotropes the effect of band splitting due to SOC can be
ignored, making the initial calculations less expensive.

In summary, our research has identified promising new
combinations of layered materials suitable for hosting vdW
qubits, offering novel possibilities for physically implement-
ing them. Using an ab initio TBH, free of any external
parameter, it is shown that it is possible to obtain the same
accuracy of DFT for band-structure calculations but with a
substantially lower computational cost. This approach opens
new perspectives for simulating transport in large-scale de-
vices such as the proposed vdW qubits.
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APPENDIX: CAPABILITIES OF THE AB INITIO
TIGHT-BINDING HAMILTONIANS

To illustrate the practical utility of ab initio TB models
in simulating large-scale systems, we present a prototype

FIG. 15. Prototype device designed for studying the transport
properties of highly hybridized states with 13.114 atoms.
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FIG. 16. Top view of ZrSe2 NR with different edge termination.
From top to bottom: metal-chalcogen (MC), metal-metal (MM) and
chalcogen-chalcogen (CC) edges.

device designed for studying the transport properties of highly
hybridized states, depicted in Fig. 15. This demonstration
underscores the efficacy of such models in exploring complex
electronic phenomena within mesoscale structures.

The prototype comprises upper (lower) arms composed
of ZrSe2 (SnSe2) nanoribbons and a circular central scatter-
ing region constructed based on the TB parameters defining
the ZrSe2/SnSe2 heterostructure. This configuration encom-
passes 13.114 atoms and the numerical calculations can be
performed without much computational effort. Notably, the
TB parameters can be seamlessly integrated into KWANT
software [95]. Electric and magnetic fields can be easily in-
troduced if desired.

Furthermore, the simulations are not limited to static
perturbations over time; rather, they can be extended to en-
compass time-dependent quantum dynamics of mesoscopic

FIG. 17. Conductance (G) as a function of energy (E) for ZrSe2

NRs with metal-chalcogen (MC), metal-metal (MM), and chalcogen-
chalcogen (CC) edges. The conductance for a scattering region with
a circular geometry is represented by the black curve, highlighting
its distinct impact on conductance. Inset: A zoomed view of the
conductance near the threshold energy region, illustrating detailed
behavior for energies between 1.20 and 1.40 eV.

systems effortlessly, even within structures of this scale. This
capability is facilitated by the TKWANT software [96], which
enables the simulation of dynamic phenomena in systems with
a similar order of atoms.

We can also explore simpler systems, such as nanoribbons
(NRs) based on these TMDs, with different edge terminations
as shown in Fig. 16. Edge states naturally emerge with the
confinement of 2D materials in one more dimension, ob-
taining the NRs. For each edge, we have subtleties on the
conductance and its quantization, as can be seen from Fig. 17.

We find that the TB models obtained in this study possess
the capacity to surpass the limitations of DFT calculations
for systems of this magnitude. The parameters provided in
the SM lay the groundwork for exploring mesoscopic systems
utilizing data derived from ab initio computations.
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