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Heat radiation and transfer for nanoparticles in the presence of a cylinder
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We study heat radiation and radiative heat transfer for nanoparticles in the presence of an infinitely long
cylinder in different geometrical configurations, based on its electromagnetic Green’s tensor. The heat radiation
of a single particle can be enhanced by placing it close to a nanowire, and this enhancement can be much larger
as compared to placing it close to a plate of the same material. The heat transfer along a cylinder decays much
slower than through empty vacuum, being especially long-ranged in the case of a perfectly conducting nanowire,
and showing nonmonotonic behavior in the case of a SiC cylinder. Exploring the dependence on the relative
azimuthal angle of the nanoparticles, we find that the results are insensitive to small angles, but they can be
drastically different when the angle is large, depending on the material. Finally, we demonstrate that a cylinder
can either enhance or block the heat flux when placed perpendicular to the interparticle distance line, where the
blocking in particular is strongly enhanced compared to the geometry of a sphere of same radius.
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I. INTRODUCTION

Fundamental understanding of radiative heat exchange in
complex micro- and nanosystems is of high practical impor-
tance for a variety of applications [1–3]. Over the past decade,
this understanding has become possible thanks to the devel-
opment of the corresponding theoretical frameworks [1,2,4],
where expressions for many-body heat radiation (HR) and
radiative heat transfer (HT) are derived based on fluctuational
electrodynamics [5,6].

With these frameworks, numerous paradigmatic configura-
tions were investigated, mainly concerning HT for a collection
of small particles [7–22], HT in many-body planar structures
[23–31], and HT between two small particles in the presence
of an arbitrarily sized object [32–43]. While the numerical
feasibility of the first two cases becomes worse upon increas-
ing the number of particles or planar structures, in the latter
case it depends on how complicated the considered object is.
Therefore, the performed computations are mainly restricted
to objects with an analytical scattering matrix, such that their
Green’s function (GF) is expressed as a sum and (or) integral
of known functions. These are a plate [32–39] or a two-plate
cavity [32,35,43], a sphere [40] or a spherical cavity [35,40],
and a cylinder [41,42] or a cylindrical cavity [43].

Cylindrical objects in the context of HR and HT are
well explored: HR of a cylinder alone [44–51] as well as
HT between a cylinder and another object [46,47,52–54]
were investigated both theoretically [44–47,52–54] and exper-
imentally [48–51] by several research groups. However, HT
between two particles in the presence of a cylinder was stud-
ied only very recently [41,42]. In Ref. [41], we showed that
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a well-conducting cylinder acts as an excellent waveguide,
transferring energy to large distances much more efficiently
than planar or spherical objects.

In this work, we discover further effects that a cylinder
has on HT and HR of nanoparticles, extending the studies
of Ref. [41] to a larger set of geometrical configurations and
materials. In particular, we show that the energy flux along a
dielectric cylinder is several orders of magnitude larger than
the vacuum flux, even greatly surpassing the transfer along
a well-conducting cylinder for a certain range of parameters.
Rotation of one particle around a cylinder relative to the other
(by keeping the interparticle distance roughly unchanged) has
a large or small effect depending on the material. When the
particles are placed perpendicular to the cylinder axis, the flux
can be either enhanced or blocked. In addition, we demon-
strate that a particle placed close to a cylinder radiates (or, in
other words, cools down) much stronger than when it is in
isolation, and also much stronger compared to placing it close
a plate.

The paper is organized as follows. In Sec. II, we study the
HR of a particle in the presence of a cylinder. Section III in-
vestigates the HT between two particles placed parallel to the
cylinder axis, whereas Sec. IV is devoted to the perpendicular
configuration. We close the main part with a summary and
discussion in Sec. V. In the Appendix, we study the GF of a
cylinder in detail, giving its expressions for various cases.

II. HEAT RADIATION

Consider particle 1 at temperature T1 placed close to a
cylinder of radius R at distance h from its surface, as de-
picted in Fig. 1. The cylinder is assumed to be infinitely long,
such that its scattering matrix is known analytically (see the
Appendix). We aim to compute HR of the particle in this
system, i.e., the rate of heat emitted by the particle, taking into
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FIG. 1. Heat radiation of particle 1 at temperature T1 in the pres-
ence of an infinitely long cylinder of radius R. When the distance
h is small (i.e., near-field regime), the cylinder strongly affects the
particle’s radiation (see Fig. 2).

account possible reabsorption. To simplify computations, we
use the dipolar point particle (PP) limit, such that particle 1 is
small compared to the thermal wavelength, the particle’s skin
depth, and the distance h [40]. In addition, the limit implies
that magnetic response of the particle can be neglected (i.e.,
its magnetic permeability μ = 1). With these conditions, the
multiple scatterings from the particle are neglected, and it can
be modeled as an electrical dipole [40]. HR then reads [40]

H (1)
1 = 8h̄

c2

∫ ∞

0
dω

ω3

e
h̄ω

kBT1 − 1
Im(α1) Tr Im G(r1, r1). (1)

Here, Tr Im G(r1, r1) is the trace of the imaginary part of
the dyadic Green’s function (GF) of the cylinder, evaluated
at the particle’s position r1, which can be found in the
Appendix [Eqs. (A35) and (A36)]. This trace encodes the
geometry of the system, and thus determines how the cylinder
affects the HR. Note that G is also a function of ω. c is the
speed of light in vacuum, and h̄ and kB are Planck’s and
Boltzmann’s constants, respectively. α1 is the particle’s po-
larizability, characterizing its natural radiation (or absorption)
strength,

α1(ω) = ε1(ω) − 1

ε1(ω) + 2
R3

1, (2)

with R1 and ε1(ω) being the radius and the frequency-
dependent dielectric permittivity of the particle, respectively.
Given Eq. (2), H (1)

1 is proportional to the particle’s volume V1.
For demonstration of the HR, we choose a SiC (alpha

silicon carbide) particle at temperature T1 = 300 K, with the
following permittivity [55]:

ε1(ω) = εSiC(ω) = ε∞
ω2 − ω2

LO + iωγ

ω2 − ω2
TO + iωγ

, (3)

with ε∞ = 6.7, ωLO = 1.82 × 1014 rad s−1, ωTO = 1.49 ×
1014 rad s−1, γ = 8.93 × 1011 rad s−1. The corresponding
thermal wavelength (which sets the short-wavelength cutoff
in the radiation spectrum, and around which the dominantly
contributing wavelengths are concentrated) is λT1 = h̄c

kBT1
=

7.63 × 10−6 m; the corresponding dominant frequency ω0 =
1.75 × 1014 rad s−1, giving the maximum of the radiation
spectrum, is the resonance frequency of αSiC. For the cylin-
der, we consider three different materials—SiC, gold, and
a perfect conductor—neglecting the magnetic response, i.e.,
μ = 1 (note that the GF given in the Appendix can be used
for arbitrary μ). The dielectric response of a SiC cylinder is
modeled by εSiC(ω) in Eq. (3), while for a gold cylinder, the

Drude model is used [56],

εAu(ω) = 1 − ω2
p

ω(ω + iωτ )
, (4)

with ωp = 1.37 × 1016 rad s−1 and ωτ = 4.06 × 1013 rad s−1.
The perfect conductor is modeled using the corresponding
scattering matrices in Eqs. (A13a)–(A13c) (formally, it is the
|ε| → ∞ limit).

The HR in the presence of a cylinder, normalized by the
HR of an isolated particle, H (1)

1,vac [see Eq. (22) in Ref. [40]], is
given in Fig. 2 as a function of R for different materials of the
cylinder and near-field distances h. Overall, we can see that
a cylinder largely amplifies the HR, with the effect becoming
stronger as h decreases. For all considered materials, the ratio
H (1)

1 /H (1)
1,vac is a nonmonotonic function of R, such that there

is an optimal radius giving the maximal amplification (the
maximum for h = 100 nm in Fig. 2(b) is not evident, as it
appears at the smallest considered R = 1 nm). This radius
shifts to smaller values with a decrease of h.

The strongest enhancement of the HR is observed for a
SiC cylinder [shown in Fig. 2(a)], which can be attributed
to similar resonances of the spectra for α1 and Tr Im G (see
Fig. 3). When R is small, there is a little effect, as the cylinder
becomes transparent. With growth of R, the HR strongly in-
creases, reaching its maximum when R becomes larger than h.
For h = 800 nm, the maximal amplification is around 7, while
it exceeds 1300 for h = 100 nm. When R becomes compara-
ble to λT1 , the result converges to the HR in the presence of
a plate. The maximal ratio between the HR for cylinder and
plate geometries grows with a decrease of h, but it does not
exceed 2 for the considered h � 100 nm.

In contrast to SiC, the spectrum of the gold cylinder GF
has overall a smaller amplitude and no peaks (see Fig. 3),
such that H (1)

1 /H (1)
1,vac is also smaller [see Fig. 2(b)], with its

maximum varying between 1.5 (for h = 800 nm) and 264 (for
h = 100 nm). Compared to SiC, this maximum is reached
at a much smaller R (e.g., Rmax ≈ 1 nm for h = 100 nm),
which we attribute to a much smaller skin depth (δAu = 2.2 ×
10−8 m versus δSiC = 1.2 × 10−6 m). The plate limit for gold
is below the vacuum HR, such that a thin gold cylinder can
outperform a gold plate by several orders of magnitude.

A perfectly conducting cylinder shows a smaller amplifi-
cation compared to SiC and gold, with its maximum being
22 for h = 100 nm [see Fig. 2(c)]. Notably, the convergence
to the vacuum HR is very slow, such that H (1)

1 /H (1)
1,vac for

a thin cylinder is significantly above 1 even for the largest
considered h = 800 nm; in other words, when SiC and gold
cylinders become transparent, a perfectly conducting one still
affects the particle’s emission. As in the case of gold, the plate
limit is below the vacuum one, leading to a large cylinder-plate
amplification factor. Importantly, for a perfectly conducting
plate, one can apply the method of images, and only one image
dipole is required. Tr Im G is known analytically, leading to
an amplification factor between 2/3 and 2 compared to the
case of a free particle [40,57], indicating that the amplification
may be limited by the number of image dipoles. For a cylinder,
the method of images is more complicated, involving multiple
image dipoles. This larger number of image dipoles might
be the reason why a cylinder allows a larger amplification
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FIG. 2. Heat radiation of a SiC particle at temperature T1 = 300 K in the presence of a cylinder, as a function of the cylinder radius R,
normalized by the heat radiation in isolation. The results are given for different materials of the cylinder [(a) SiC, (b) gold, (c) perfect conductor]
and for different distances h from the particle to the cylinder surface (see Fig. 1). Dashed lines show the heat radiation in the presence of a
plate of the corresponding material for the corresponding h. λT1 = 7.63 × 10−6 m is the thermal wavelength, while δSiC = 1.2 × 10−6 m and
δAu = 2.2 × 10−8 m are the skin depths of SiC and gold, respectively. A solid line at a value of 1 is included as a guide to the eye.

as seen in Fig. 2(c). It is worth noticing that a perfectly
conducting cylinder requires many fewer multipoles [indexed
by n in Eq. (A36)] for the convergence of Tr Im G compared
to SiC and gold [for which Eq. (A35) is used]: For example,
nmax ≈ 5 is enough for a perfect conductor when h = 100 nm
and R = 1 µm, whereas nmax ≈ 50 is required for the same h
and R in the case of SiC or gold.

The result for the perfect conductor is remarkable: In this
case, the cylinder strictly absorbs no energy, and the energy
emitted in the HR of the particle must travel to infinity (in
contrast to gold and SiC, where the energy can be absorbed
by the cylinder). In this regard, the difference to the perfectly
conducting plate is worth noting: The nanoparticle seems to
excite waves traveling along the cylinder, but it seems not
to be able to excite (noticeable) waves traveling along the
plate. Interestingly, the relative factor becomes even larger
for smaller frequencies (or larger wavelengths): As shown in
Fig. 3, with a decrease of ω, Tr Im G grows for a perfectly
conducting cylinder, but it decays for a plate. This means that
the effect of a cylinder should be most pronounced for small
temperature T1 (large λT1 ).

FIG. 3. Tr Im G(r1, r1) as a function of frequency as appearing
in the radiation spectrum of a particle in Eq. (1). Here, we consider
a cylinder (R = h = 100 nm), plate (same h), or no object (vacuum).
The vertical line shows the resonance frequency ω0 of the SiC parti-
cle polarizability, which is the dominant frequency in heat radiation
[see Eqs. (1)–(3)].

III. HEAT TRANSFER: PARALLEL CONFIGURATION

Let us now turn to the HT from particle 1 at temperature T1

to particle 2 in the presence of a cylinder. As in Sec. II, we use
the PP limit (here, for both particles), which requires that the
radius of each particle is much smaller than the distance be-
tween them (in addition to the conditions discussed in Sec. II).
In this limit, the HT reads [7,40]

H (2)
1 = 32π h̄

c4

∫ ∞

0
dω

ω5

e
h̄ω

kBT1 − 1
Im(α1) Im(α2)

× Tr[G(r1, r2)G†(r1, r2)], (5)

where Tr[G(r1, r2)G†(r1, r2)] is the trace of the matrix
product of the GF of the cylinder (evaluated at the parti-
cles’ positions r1 and r2) and its conjugate transpose. The
polarizabilities α1 and α2 are given by Eq. (2) (with the cor-
responding particle index), such that the HT is proportional
to volumes of the particles V1 and V2. We thus do not give
the particles’ radii explicitly but instead normalize the HT by
V1V2.

For demonstration of the HT, we choose SiC particles, with
permittivities given by Eq. (3); the temperature of particle 1 is
T1 = 300 K. As in Sec. II, we consider three materials of a
cylinder: SiC, gold, and a perfect conductor.

In this section, we consider the configuration depicted in
Fig. 4, where the interparticle distance line is either parallel
(for azimuthal angle 
ϕ = 0) or almost parallel (
ϕ �= 0,
but 
z � 2r, such that d ≈ 
z) to the cylinder axis. Both
particles are placed at a distance h from the cylinder surface;
we set h = 10−7 m, i.e., h � λT1 , in order to have a strong
coupling between the particles and cylinder. The GF is given
by Eqs. (A26) and (A27) for 
ϕ = 0, and by Eqs. (A18) and
(A19) for finite 
ϕ. For 
ϕ = 0, this configuration was stud-
ied in Ref. [41]. It was found that, for a perfectly conducting
cylinder, the HT decays logarithmically with the interparticle
distance d (for large d), thus being many orders of magnitude
larger than for isolated particles. This highly efficient energy
transport is attributed to the system geometry: The cylinder
acts as a waveguide, transferring the near-field energy in the
preferred direction. Here, we study this configuration in more
detail, including SiC and gold cylinders, as well as effects of
finite angle 
ϕ.
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FIG. 4. Radiative heat transfer from particle 1 at temperature
T1 to particle 2, placed close to an infinitely long cylinder parallel
(
ϕ = 0) to the cylinder axis. The near-field energy radiated by the
first particle is captured by the cylinder and guided in the needed
direction to the second particle. Such a directional configuration
leads to a highly efficient heat transfer even for far-separated particles
(see Fig. 5). Variation of relative azimuthal angle 
ϕ (provided that
d ≈ 
z) can lead to a mild or strong change of the heat transfer,
depending on the material of the cylinder (see the insets of Fig. 5).

The HT is given in Fig. 5 as a function of d for differ-
ent radii and materials of the cylinder. Overall, the cylinder
greatly enhances the HT. When R is small [R � h in Figs. 5(a)

and 5(b)], a SiC cylinder has little effect, whereas a gold
cylinder yields a large enhancement, which appears at larger
values of d and vanishes at larger values of d the larger R is.
The vanishing occurs via an exponential decay to the vacuum
result. Compared to gold, the HT with a perfectly conducting
cylinder deviates from the vacuum HT at a larger near-field
distance, meaning that gold wins in terms of efficiency in the
near field. However, an exponential decay does not appear for
a perfect conductor, thanks to the absence of material losses.
Instead, the HT decays logarithmically for any large d [41],
surpassing gold, SiC, or vacuum cases by more than 10 orders
of magnitude in the far field (for the range of d shown).

When R = h = 10−7 m [Fig. 5(c)], a SiC cylinder strongly
affects the HT, being a few orders of magnitude better than
gold and a perfect conductor for near-field d � h. For inter-
mediate distances, the SiC curve goes below the gold and
perfect conductor curves, but it is still above the vacuum
result. When d is large compared to the thermal wavelength,
the HT scales similar to the vacuum one, i.e., ∝d−2, but it is
about seven times larger; the ultimate behavior for d → ∞
remains unknown. The HT in the presence of a gold cylinder

FIG. 5. Heat transfer (normalized by particles’ volumes) from SiC particle 1 at temperature T1 = 300 K (the corresponding thermal
wavelength λT1 = 7.63 × 10−6 m) to SiC particle 2 in the presence of a cylinder, as a function of interparticle distance d . The particles
are placed parallel to the cylinder axis at a distance h = 10−7 m from the cylinder surface (see Fig. 4). The results are given for different radii
R and materials of the cylinder, and they are compared to the case of the particles in vacuum. Inset graphs show the angular dependence of the
HT, where one particle is rotated by an angle 
ϕ relative to the other, whereas radial and z components remain unchanged (see Fig. 4); the
result is normalized by the case shown in the main graph (
ϕ = 0) and given for a specific distance along the z axis, 
z, indicated in the main
figures as vertical dashed lines; the point and color codes are the same as in the main figures, while the horizontal dashed lines correspond
to 1.
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FIG. 6. Tr[G(r1, r2)G†(r1, r2 )] as a function of frequency,
which is a part of the interparticle heat transfer spectrum related to
the influence of a cylinder [see Eq. (5)]. Here, we consider a parallel
configuration (see Fig. 4) with R = h = 100 nm and d = 0.1 mm,
corresponding to the vertical dashed line in Fig. 5(c). The vertical
line shows the resonance frequency ω0 of the SiC particle polariz-
ability, selecting a major contribution to the total heat transfer [see
Eqs. (2), (3), and (5)]. The inset shows a zoomed version of the main
plot for ω ∈ [140, 170] Trad s−1.

features a plateau starting at d ≈ 1 μm and ending by an
exponential decay in the far field. This plateau is longer in
d but smaller in the HT amplitude compared to that observed
for smaller R [see Figs. 5(a) and 5(b)]. Until the exponential
drop, it almost repeats the logarithmically decaying perfect
conductor curve (gold has a slightly larger HT). The latter is
also smaller in amplitude compared to the HT for smaller R (a
detailed R dependence can be found in Ref. [41]).

We analyze the case of R = h = 10−7 m and d = 10−4 m
in more detail, plotting the spectrum of Tr(GG†) in Fig. 6.
The amplification for SiC observed in Fig. 5(c) can be
explained by the resonance of Tr(GG†) close to ω0 (the
resonance of αSiC). The small mismatch of the respective reso-
nance frequencies of particle and cylinder implies that the HT
can be increased even further when using (for either particles
or a cylinder) a material with slightly different optical proper-
ties. Similar arguments can be applied for the HR in the pres-
ence of a SiC cylinder (see the peak in Fig. 3). Interestingly,
the spectrum also features a “pulse” at ω ≈ 149 Trad s−1

(where the real part of εSiC changes sign), followed by a “wave
packet.” For gold and a perfect conductor, the spectrum is a
smooth function of ω, with a much larger amplitude compared
to vacuum or SiC, which explains the large amplification in
Fig. 5. This smooth behavior is different compared to the
case of the particles inside a cylindrical gold cavity, where
the spectrum features geometry-induced resonances [43].

For R = 10−6 m in Fig. 5(d), i.e., when the radius becomes
comparable to the skin depth of SiC, the HT in the presence of
a SiC cylinder shows an oscillatory behavior for intermediate
d , being much larger than the HT in vacuum or with a gold or
perfectly conducting cylinder present. The oscillations, whose
origin remains partly elusive, fade away with an increase of d ,
and when d � λT1 the HT decays monotonically, approaching
the vacuum result (we cannot exclude that it goes below the
vacuum curve for d � 1 cm, as was observed for a SiC plate

[34]). Similar to Fig. 5(c), gold and a perfect conductor show
almost identical results until the exponential drop for gold.
Compared to smaller R, the logarithmic plateau spans a wider
range of d but has a smaller amplitude. With a further increase
of R, the HT for all materials is expected to converge to the
HT in the presence of a plate (the tendency can already be ob-
served in Fig. 5 if one compares to the plate results [33–35]).

How does the HT change if the symmetry of the con-
figuration is violated, i.e., for finite azimuthal angle 
ϕ?
For finite 
ϕ, the interparticle distance d is given by d =√

2r2(1 − cos 
ϕ) + (
z)2, where r = R + h is the radial
coordinate of each particle, and 
z is the separation along
the cylinder axis, so that d = 
z for 
ϕ = 0 (see Fig. 4).
To reveal the pure effects of rotation, and to minimize the
effect of the distance change, we consider 
z � 2r, such that
d ≈ 
z, i.e., d changes insignificantly with 
ϕ.

The angular dependent HT, normalized by the HT at 
ϕ =
0, H (2)

1
ϕ=0, is given in the inset plots of Fig. 5 as a function of

ϕ. The corresponding 
z is indicated via vertical dashed
lines in the main plots, which also display the reference value
of the HT. We note that the results are symmetric with respect
to 
ϕ = 180◦, as expected.

In the inset of Fig. 5(a), R = 10−9 m and 
z = 2 ×
10−6 m. The angular dependence for SiC is the same as the
vacuum dependence (i.e., rotating the particle with no cylinder
present, such that the HT decreases only due to increase of d),
meaning that such a thin SiC cylinder is transparent. Rotating
the particle around a gold or perfectly conducting cylinder
leads to a significant, yet no more than 1.09-fold, change
of the HT. Interestingly, the rotation around a gold cylinder
enhances the HT (with a maximum reached at 
ϕ = 180◦),
whereas the HT is decreased when the particle is rotated
around a perfectly conducting cylinder (where 
ϕ = 180◦
gives the minimum).

For R = 10−8 m at 
z = 10−5 m [see the inset of
Fig. 5(b)], all the curves are below 1, i.e., the rotation de-
creases the HT for all considered materials. A SiC cylinder
gives a minimum at 
ϕ = 90◦ (and hence also symmetrically
at 
ϕ = 270◦) and a local maximum at 
ϕ = 180◦ coin-
ciding with the minimum of the vacuum result. Minima at

ϕ = 180◦ appear for gold and a perfect conductor; for gold,
the minimum is more pronounced.

For R = 10−7 m, we choose 
z = 10−4 m. Here, the ro-
tation around a SiC cylinder leads to a large change of the
HT [see the right inset of Fig. 5(c)]. The ratio at the mini-
mum is H (2)

1 (
ϕ = 90◦)/H (2)
1
ϕ=0 = 0.0674, i.e., rotating the

particle by 90◦ suppresses the HT by 15 times. In contrast,
with gold or a perfect conductor, there is only a little effect
[see the left inset of Fig. 5(c)]: A maximum with H (2)

1 (
ϕ =
180◦)/H (2)

1
ϕ=0 = 1.0072 appears for gold, and a minimum

with H (2)
1 (
ϕ = 180◦)/H (2)

1
ϕ=0 = 0.9988 is observed for a
perfect conductor.

When R = 10−6 m and 
z = 2 × 10−5, the angular de-
pendence for SiC is even more nontrivial, as can be seen in
the inset plot of Fig. 5(d). A minimum with the approximate
value of 0.335 is reached at 
ϕ ≈ 85◦. It is followed by
a maximum at 
ϕ = 180◦ with the value of 1.1805. Com-
pared to the previously considered R and 
z, gold and a
perfect conductor have now stronger minima at 
ϕ = 180◦:
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FIG. 7. Radiative heat transfer from particle 1 at temperature T1

to particle 2, placed close to an infinitely long cylinder perpendicular
to the cylinder axis. The cylinder either enhances or blocks the
transfer, depending on its material (see Fig. 8).

H (2)
1 (
ϕ = 180◦)/H (2)

1
ϕ=0 = 0.7309 for gold and H (2)
1 (
ϕ =

180◦)/H (2)
1
ϕ=0 = 0.6918 for the perfect conductor.

Overall, we can conclude that H (2)
1 /H (2)

1
ϕ=0 � 1 for a per-
fectly conducting cylinder, with a minimum at 
ϕ = 180◦,
whereas gold shows either a minimum or maximum at this
angle, such that the ratio is either smaller or larger than 1,
respectively. For the parameters studied, no more than an
8% and a 31% change of the HT is observed for a metallic
nano- and microwire, respectively. This indicates that a well-
conducting cylinder transports the energy mainly via surface
modes with little angular dependence, i.e., the mode n = 0.
For a SiC cylinder, the angular dependence is stronger and,
the larger R is, the modes with larger n contribute.

IV. HEAT TRANSFER: PERPENDICULAR
CONFIGURATION

Another important configuration is depicted in Fig. 7: the
interparticle distance line is perpendicular to the cylinder axis
(corresponding to 
z = 0 and 
ϕ = 180◦ in Fig. 4). Both
particles are placed at a distance h from the cylinder surface,
such that d = 2(R + h). The GF for this configuration is given
by Eqs. (A30) and (A31). Keeping small h = 10−7 m fixed,
we aim to investigate how the HT depends on d when R is
increased, as was done for the HT between the particles in the
presence of a sphere in Ref. [40] (see Fig. 5 there).

Figure 8 shows the HT as a function of d (lower horizontal
axis) for different materials of the cylinder, compared to the
HT in the presence of a sphere (with the same R) and the HT
for isolated particles; see the sketch. In the upper horizontal
axis, we show the corresponding R.

The HT in the presence of a SiC cylinder is largely (by two
to three orders of magnitude) above the vacuum HT for any
considered R comparable to or larger than h. The curve has a
local maximum at R ≈ 0.7h, and it approaches the vacuum
result when R � h. A SiC sphere has a similar effect, but
with a larger amplification, a local maximum at R ≈ h, and
pronounced oscillations for R > δSiC [40].

On the contrary, a gold or perfectly conducting cylinder
blocks the HT. Strongest suppression of the transfer appears
at R ≈ h (about 30 times) and for d > λT1 (here the HT
scales approximately as ∼d−4 within the studied range of d),
whereas the effect is minimized at intermediate R ≈ 1 µm.
Interestingly, even a very thin (R � h) metallic cylinder
strongly affects the HT. Here, the difference between gold

FIG. 8. Heat transfer (normalized by particles’ volumes) from SiC particle 1 at temperature T1 = 300 K to SiC particle 2 placed
perpendicular to a cylinder or on opposite sides of a sphere, or with no objects present (see the sketch), as a function of interparticle distance
d . The results are given for different materials of the cylinder and sphere. The distance from each particle to the cylinder (sphere) surface is
h = 10−7 m; the upper axis gives the corresponding radius of the object. On the lower axis, we show the thermal wavelength, while the upper
axis also contains h and the skin depths of SiC and gold. The results for the sphere are taken from Ref. [40].

125412-6



HEAT RADIATION AND TRANSFER FOR NANOPARTICLES … PHYSICAL REVIEW B 109, 125412 (2024)

and a perfect conductor becomes pronounced: when R � δAu,
a gold cylinder becomes transparent, while a perfectly con-
ducting cylinder suppresses the HT by more than twice even
when R = 1 nm. Putting a metallic sphere between the parti-
cles leads to a totally different behavior, from the HT being
unaffected for small R to a large enhancement for R ∈ [h, λT1 ]
(when R � λT1 , the HT goes below the vacuum result) [40].

The strong blocking by a cylinder may be understood from
energy considerations. The cylinder is able to transport energy
away to infinity, like a lightning rod. Such transport is impos-
sible for the sphere, which thus is much worse in terms of
blocking.

It is worth noticing that the convergence of the HT with
respect to the number of multipoles can be strongly nonmono-
tonic (for both parallel and perpendicular configurations), as
was also observed for the HT in the presence of a sphere (see
Fig. 6 in Ref. [40]).

V. CONCLUSION

In this paper, we studied heat radiation of a small parti-
cle and radiative heat transfer between small particles in the
presence of a cylinder. Assumptions of small particle size and
infinite extension of a cylinder along its axis allows us to
reduce the problem to the study of the semianalytical Green’s
function of a cylinder. Analyzing this Green’s function in
detail (as presented in the Appendix), we investigated several
geometrical configurations, both symmetric (paradigmatic)
and nonsymmetric, considering different materials for a
cylinder.

A SiC particle placed close to a nanowire radiates much
stronger than when being isolated, with the effect being
strongest for a SiC nanowire. Notably, even a perfectly con-
ducting cylinder, which absorbs no energy, strongly enhances
HR of a closeby nanoparticle, which we attribute to excitation
of waves traveling to infinity. The energy transfer between two
particles along a metallic cylinder outperforms the transfer in
vacuum by several orders of magnitude by virtue of slowly
decaying surface waves. A SiC cylinder can be preferable for
intermediate (micron-range) interparticle distances, showing a
nonmonotonic dependence on the distance. These phenomena
are stable in the sense that they vary little when the configu-
ration is imperfect (particles are located at slightly different
distances from the cylinder surface or one of them is slightly
rotated around a cylinder), which is relevant for experiments,
as it is difficult to achieve a perfect alignment in practice. Yet
a large relative azimuthal angle can change the heat transfer
dramatically in the case of SiC, but still mildly in the case of
gold or a perfect conductor. This demonstrates that different
wave modes are responsible for transfer for these materials.
Placing a metallic cylinder between the particles blocks the
heat transfer like a lightning rod, whereas a SiC cylinder acts
as an amplifier.

The Green’s function analyzed in the Appendix can be used
to study other geometries and materials, including magnetic
response of a cylinder. Future work may also consider elec-
tromagnetic conductivity of a cylinder, using a recent theory
of electromagnetic heat transport in dissipative media [58],
and consider the heat transfer between the particle and the
cylinder.
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APPENDIX: GREEN’S FUNCTION OF AN INFINITELY
LONG CYLINDER

We work in a cylindrical coordinate system (r, ϕ, z) and
consider an infinitely long cylinder of radius R, whose sym-
metry axis coincides with the z axis (see Figs. 1, 4, 7). We
aim to find the GF G(r, r′) of the cylinder (more precisely,
the electric GF, a part of the electromagnetic set of the GFs
[10,34,57,59]), where both radius vectors r and r′ lie outside
the cylinder.

1. Free Green’s function in cylindrical coordinates

The GF of a cylinder contains the GF of free space G0 [see
Eq. (A14)]. In a Cartesian coordinate system, this GF is well
known in closed form [10,34,40,57,60–63] (G0 and G̃0 denote
the free GF in a cylindrical and a Cartesian coordinate system,
respectively):

G̃0(r, r′) = − 1

3k2
Iδ(3)(r − r′)

+ eikd

4πk2d5
[d2(−1 + ikd + k2d2)I

+ (3 − 3ikd − k2d2)(r − r′) ⊗ (r − r′)], (A1)

where d = |r − r′| is the distance between the points, k = ω
c

is the wave number (the amplitude of the wave vector), I is the
3 × 3 identity matrix, and the symbol ⊗ denotes the dyadic
product. Note the following properties for G̃0:

G̃0(r, r′) = G̃T
0 (r′, r), (A2a)

G̃0(r, r′) = G̃0(r − r′), (A2b)

G̃0(r, r′) = G̃T
0 (r, r′), (A2c)

G̃0(r, r′) = G̃0(r′, r). (A2d)

Property (A2a) is the reciprocity condition, which takes place
for any GF [57,59,60]. The δ-function term in Eq. (A1), which
contributes to the field at the source region [40,57,60–64], is
neglected in other expressions of this work, because it does
not contribute to the quantities of interest.

To obtain the free GF in cylindrical coordinates, G0, one
can apply the corresponding transformation to the GF in
Eq. (A1) [65]:

G0(r, r′) = G0(r, ϕ, z, r′, ϕ′, z′) = U (ϕ)G̃0U
−1(ϕ′), (A3)

where the transformation of the coordinates (x = r cos ϕ, y =
r sin ϕ, z = z, x′ = r′ cos ϕ′, y′ = r′ sin ϕ′, z′ = z′) in G̃0 is
made;

U (ϕ) =
⎛⎝ cos ϕ sin ϕ 0

− sin ϕ cos ϕ 0
0 0 1

⎞⎠ (A4)
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is the transformation matrix satisfying U−1 = UT [65]. We get (
ϕ ≡ ϕ′ − ϕ and 
z ≡ z′ − z)

G0(r, r′) = eikd

4πk2d5

⎧⎨⎩d2(−1 + ikd + k2d2)

⎛⎝cos 
ϕ − sin 
ϕ 0
sin 
ϕ cos 
ϕ 0

0 0 1

⎞⎠

+(3 − 3ikd − k2d2)

⎛⎝(r′ cos 
ϕ − r)(r′ − r cos 
ϕ) (r′ cos 
ϕ − r)r sin 
ϕ (r′ cos 
ϕ − r)
z
(r′ − r cos 
ϕ)r′ sin 
ϕ rr′ sin2 
ϕ r′ sin 
ϕ
z

(r′ − r cos 
ϕ)
z r sin 
ϕ
z (
z)2

⎞⎠⎫⎬⎭, (A5)

satisfying

G0(r, r′) = GT
0 (r′, r), (A6a)

G0(r, r′) = G0(r, r′, ϕ − ϕ′, z − z′). (A6b)

The (11) term in the second matrix in Eq. (A5) can
also be written as (r′ cos 
ϕ − r)(r′ − r cos 
ϕ) =
[d2 − (
z)2] cos 
ϕ − rr′ sin2 
ϕ. The distance d
in terms of cylindrical coordinates is expressed as
d =

√
r2 + r′2 − 2rr′ cos 
ϕ + (
z)2.

Note that G0 can also be written as an expansion in cylin-
drical waves [45,57,60,66,67] [similar to GT in Eq. (A15)].
However, this representation has restrictions on the positions
(r �= r′ or z �= z′), which do not allow us to study important
configurations (such as those considered in Secs. III and IV).
In contrast, Eq. (A5) is valid for arbitrary positions.

Transformation (A3) can be written for any GF, and its
structure implies that our quantities of interest, Tr Im G(r, r)
and Tr(G(r, r′)G†(r, r′)), do not depend on coordinate sys-
tem (given that U−1 = UT ). This in turn means that HR and
HT [see Eqs. (1) and (5)] do not depend on coordinate system,
which can also be stated a priori from physical grounds. For
G0, the traces read [40]

Tr Im G0(r, r) = k

2π
, (A7)

Tr(G0G
†
0 ) = 1

8π2d2

[
1 + 1

k2d2
+ 3

k4d4

]
, (A8)

where d is kept finite in Eq. (A8).

2. Outgoing cylindrical waves

As shown in Eq. (A15), the scattering part of the GF can
be written in terms of the outgoing cylindrical waves and the
scattering matrix of a cylinder. The waves read [45,60]

Mout
n,kz

(r) =
[

in

qr
Hn(qr)er − H ′

n(qr)eϕ

]
eikzz+inϕ, (A9a)

Nout
n,kz

(r) = 1

k

[
ikzH

′
n(qr)er − nkz

qr
Hn(qr)eϕ

+ qHn(qr)ez

]
eikzz+inϕ, (A9b)

where Mout
n,kz

and Nout
n,kz

correspond to magnetic and electric
waves of multipole order n ∈ Z, respectively. er , eϕ , and ez

are the unit vectors. kz ∈ R is the z component of the wave
vector, while q = √

k2 − k2
z . When |kz| � k, q is real and

non-negative, whereas when |kz| > k, q is complex with a
zero real part and a positive imaginary part. Hn is the Hankel

function of the first kind of order n, and H ′
n(qr) ≡ dHn(qr)

d (qr) is
the corresponding derivative.

3. Scattering matrix

In our case, we need the scattering matrix which relates
the incident and scattered fields outside a cylinder. The out-
side scattering matrix of an infinitely long cylinder is known
analytically. For a cylinder made of a homogeneous isotropic
material with dielectric permittivity ε and magnetic perme-
ability μ, the elements of the scattering matrix read [45,68,69]

T MM
n,kz

= − Jn(qR)

Hn(qR)


1
4 − K2


1
2 − K2
, (A10a)

T NN
n,kz

= − Jn(qR)

Hn(qR)


2
3 − K2


1
2 − K2
, (A10b)

T MN
n,kz

= T NM
n,kz

= 2i

π
√

εμ[qRHn(qR)]2

K


1
2 − K2
. (A10c)

Here, Jn is the Bessel function of order n,


1 = J ′
n(qεR)

qεRJn(qεR)
− 1

ε

H ′
n(qR)

qRHn(qR)
, (A11a)


2 = J ′
n(qεR)

qεRJn(qεR)
− 1

μ

H ′
n(qR)

qRHn(qR)
, (A11b)


3 = J ′
n(qεR)

qεRJn(qεR)
− 1

ε

J ′
n(qR)

qRJn(qR)
, (A11c)


4 = J ′
n(qεR)

qεRJn(qεR)
− 1

μ

J ′
n(qR)

qRJn(qR)
, (A11d)

and

K = nkz√
εμkR2

(
1

q2
ε

− 1

q2

)
, (A12)

where qε = √
εμk2 − k2

z .
In the limit of perfect conductivity (or reflectivity), the

scattering matrix simplifies to [41,66]

lim
|ε|→∞

T MM
n,kz

= − J ′
n(qR)

H ′
n(qR)

, (A13a)

lim
|ε|→∞

T NN
n,kz

= − Jn(qR)

Hn(qR)
, (A13b)

lim
|ε|→∞

T MN
n,kz

= T NM
n,kz

= 0. (A13c)

The scattering matrix can be generalized to the case of an
anisotropic material [45].
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4. Cylindrical waves expansion

The GF can be written as a sum of the free GF G0 and the
scattering part GT :

G = G0 + GT = G0 + G0TG0, (A14)

where T is the scattering operator of the cylinder [45],
and the operator multiplication is understood in G0TG0

[4,40,66,67,70]. Detailed information about electromagnetic
operators can be found in Refs. [4,40,66,67,70].

Substituting the expansion of the free GF in cylindrical
waves [45,57,60,66,67] into Eq. (A14), and using the rela-
tion between the scattering operator and the scattering matrix
[45,66,67], one obtains [45]

GT = i

8π

∑
P,P′

∞∑
n=−∞

(−1)n

×
∫ ∞

−∞
dkzPout

n,kz
(r) ⊗ P′out

−n,−kz
(r′)T PP′

n,kz
, (A15)

where P, P′ = {M, N}, the waves Pout
n,kz

are given by Eqs. (A9a)

and (A9b), and the matrix elements T PP′
n,kz

can be found in
Eqs. (A10a)–(A10c). Like G0, GT is a function of r, r′,
ϕ − ϕ′, z − z′.

5. Green’s function

a. Arbitrary positions

The free GF is given in Eq. (A5). Performing the tensor
product in Eq. (A15) and using H−n(qr) = (−1)nHn(qr),
H ′

−n(qr) = (−1)nH ′
n(qr), T MM

−n,kz
= T MM

n,kz
, T NN

−n,kz
= T NN

n,kz
,

T MN
−n,kz

= −T MN
n,kz

, T MM
n,−kz

= T MM
n,kz

, T NN
n,−kz

= T NN
n,kz

, T MN
n,−kz

=
−T MN

n,kz
, together with the symmetry of the summation and

integration, the scattering part can be obtained:

GT =
⎛⎝GT11 GT12 GT13

GT21 GT22 GT23

GT31 GT32 GT33

⎞⎠, (A16)

with

GT11 = i

4π

∫ ∞

0
dkz

k2
z

k2
H1(qr)H1(qr′)T NN

0,kz
cos(kz
z)

+ i

2π

∞∑
n=1

∫ ∞

0
dkz

{
n2

(qr)(qr′)
Hn(qr)Hn(qr′)T MM

n,kz
+ nkz

k

[
1

qr
Hn(qr)H ′

n(qr′) + 1

qr′ H
′
n(qr)Hn(qr′)

]
T MN

n,kz

+ k2
z

k2
H ′

n(qr)H ′
n(qr′)T NN

n,kz

}
cos(n
ϕ) cos(kz
z), (A17a)

GT12 = − i

2π

∞∑
n=1

∫ ∞

0
dkz

{
n

qr
Hn(qr)H ′

n(qr′)T MM
n,kz

+ kz

k

[
n2

(qr)(qr′)
Hn(qr)Hn(qr′) + H ′

n(qr)H ′
n(qr′)

]
T MN

n,kz

+ nk2
z

k2qr′ H
′
n(qr)Hn(qr′)T NN

n,kz

}
sin(n
ϕ) cos(kz
z), (A17b)

GT13 = − i

4π

∫ ∞

0
dkz

qkz

k2
H1(qr)H0(qr′)T NN

0,kz
sin(kz
z)

+ i

2π

∞∑
n=1

∫ ∞

0
dkz

{
n

kr
Hn(qr)Hn(qr′)T MN

n,kz
+ qkz

k2
H ′

n(qr)Hn(qr′)T NN
n,kz

}
cos(n
ϕ) sin(kz
z), (A17c)

GT21 = i

2π

∞∑
n=1

∫ ∞

0
dkz

{
n

qr′ H
′
n(qr)Hn(qr′)T MM

n,kz
+ kz

k

[
n2

(qr)(qr′)
Hn(qr)Hn(qr′) + H ′

n(qr)H ′
n(qr′)

]
T MN

n,kz

+ nk2
z

k2qr
Hn(qr)H ′

n(qr′)T NN
n,kz

}
sin(n
ϕ) cos(kz
z), (A17d)

GT22 = i

4π

∫ ∞

0
dkzH1(qr)H1(qr′)T MM

0,kz
cos(kz
z)

+ i

2π

∞∑
n=1

∫ ∞

0
dkz

{
H ′

n(qr)H ′
n(qr′)T MM

n,kz
+ nkz

k

[
1

qr
Hn(qr)H ′

n(qr′) + 1

qr′ H
′
n(qr)Hn(qr′)

]
T MN

n,kz

+ n2k2
z

k2(qr)(qr′)
Hn(qr)Hn(qr′)T NN

n,kz

}
cos(n
ϕ) cos(kz
z), (A17e)
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GT23 = i

2π

∞∑
n=1

∫ ∞

0
dkz

{
q

k
H ′

n(qr)Hn(qr′)T MN
n,kz

+ nkz

k2r
Hn(qr)Hn(qr′)T NN

n,kz

}
sin(n
ϕ) sin(kz
z), (A17f)

GT31 = i

4π

∫ ∞

0
dkz

qkz

k2
H0(qr)H1(qr′)T NN

0,kz
sin(kz
z)

− i

2π

∞∑
n=1

∫ ∞

0
dkz

{
n

kr′ Hn(qr)Hn(qr′)T MN
n,kz

+ qkz

k2
Hn(qr)H ′

n(qr′)T NN
n,kz

}
cos(n
ϕ) sin(kz
z), (A17g)

GT32 = i

2π

∞∑
n=1

∫ ∞

0
dkz

{
q

k
Hn(qr)H ′

n(qr′)T MN
n,kz

+ nkz

k2r′ Hn(qr)Hn(qr′)T NN
n,kz

}
sin(n
ϕ) sin(kz
z), (A17h)

GT33 = i

4π

∫ ∞

0
dkz

q2

k2
H0(qr)H0(qr′)T NN

0,kz
cos(kz
z) + i

2π

∞∑
n=1

∫ ∞

0
dkz

q2

k2
Hn(qr)Hn(qr′)T NN

n,kz
cos(n
ϕ) cos(kz
z), (A17i)

satisfying, as G0, properties (A6a) and (A6b), such that the full GF, G = G0 + GT , also satisfies those properties.

b. Equal radial coordinates

In the case of equal radial coordinates (r = r′ = R + h), the GF contains six independent elements. For G0 in Eq. (A5), we
get

G0 = eikd

4πk2d5

⎧⎨⎩d2(−1 + ikd + k2d2)

⎛⎝cos 
ϕ − sin 
ϕ 0
sin 
ϕ cos 
ϕ 0

0 0 1

⎞⎠
+(3 − 3ikd − k2d2)

⎛⎝ −r2(1 − cos 
ϕ)2 −r2(1 − cos 
ϕ) sin 
ϕ −r(1 − cos 
ϕ)
z
r2(1 − cos 
ϕ) sin 
ϕ r2 sin2 
ϕ r sin 
ϕ
z

r(1 − cos 
ϕ)
z r sin 
ϕ
z (
z)2

⎞⎠⎫⎬⎭, (A18)

where d =
√

2r2(1 − cos 
ϕ) + (
z)2.
The scattering part is obtained by setting r′ = r in Eqs. (A17a)–(A17i):

GT =
⎛⎝ GT11 GT12 GT13

−GT12 GT22 GT23

−GT13 GT23 GT33

⎞⎠, (A19)

with

GT11 = i

4π

∫ ∞

0
dkz

k2
z

k2
H2

1 (qr)T NN
0,kz

cos(kz
z)

+ i

2π

∞∑
n=1

∫ ∞

0
dkz

{
n2

(qr)2
H2

n (qr)T MM
n,kz

+ 2
nkz

kqr
Hn(qr)H ′

n(qr)T MN
n,kz

+ k2
z

k2
[H ′

n(qr)]2T NN
n,kz

}
cos(n
ϕ) cos(kz
z), (A20a)

GT22 = i

4π

∫ ∞

0
dkzH

2
1 (qr)T MM

0,kz
cos(kz
z)

+ i

2π

∞∑
n=1

∫ ∞

0
dkz

{
[H ′

n(qr)]2T MM
n,kz

+ 2
nkz

kqr
Hn(qr)H ′

n(qr)T MN
n,kz

+ n2k2
z

k2(qr)2
H2

n (qr)T NN
n,kz

}
cos(n
ϕ) cos(kz
z), (A20b)

GT33 = i

4π

∫ ∞

0
dkz

q2

k2
H2

0 (qr)T NN
0,kz

cos(kz
z) + i

2π

∞∑
n=1

∫ ∞

0
dkz

q2

k2
H2

n (qr)T NN
n,kz

cos(n
ϕ) cos(kz
z), (A20c)

GT12 = − i

2π

∞∑
n=1

∫ ∞

0
dkz

{
n

qr
Hn(qr)H ′

n(qr)T MM
n,kz

+ kz

k

[
n2

(qr)2
H2

n (qr) + [H ′
n(qr)]2

]
T MN

n,kz

+ nk2
z

k2qr
Hn(qr)H ′

n(qr)T NN
n,kz

}
sin(n
ϕ) cos(kz
z), (A20d)
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GT13 = − i

4π

∫ ∞

0
dkz

qkz

k2
H0(qr)H1(qr)T NN

0,kz
sin(kz
z)

+ i

2π

∞∑
n=1

∫ ∞

0
dkz

{
n

kr
H2

n (qr)T MN
n,kz

+ qkz

k2
Hn(qr)H ′

n(qr)T NN
n,kz

}
cos(n
ϕ) sin(kz
z), (A20e)

GT23 = i

2π

∞∑
n=1

∫ ∞

0
dkz

{
q

k
Hn(qr)H ′

n(qr)T MN
n,kz

+ nkz

k2r
H2

n (qr)T NN
n,kz

}
sin(n
ϕ) sin(kz
z). (A20f)

For a perfectly conducting cylinder, the elements of GT take a simpler form thanks to compact expressions for the scattering
matrix in Eqs. (A13a)–(A13c):

lim
|ε|→∞

GT11 = − i

4π

∫ ∞

0
dkz

k2
z

k2

H2
1 (qr)J0(qR)

H0(qR)
cos(kz
z)

− i

2π

∞∑
n=1

∫ ∞

0
dkz

{
n2

(qr)2

H2
n (qr)J ′

n(qR)

H ′
n(qR)

+ k2
z

k2

[H ′
n(qr)]2Jn(qR)

Hn(qR)

}
cos(n
ϕ) cos(kz
z), (A21a)

lim
|ε|→∞

GT22 = − i

4π

∫ ∞

0
dkz

H2
1 (qr)J1(qR)

H1(qR)
cos(kz
z)

− i

2π

∞∑
n=1

∫ ∞

0
dkz

{
[H ′

n(qr)]2J ′
n(qR)

H ′
n(qR)

+ n2k2
z

k2(qr)2

H2
n (qr)Jn(qR)

Hn(qR)

}
cos(n
ϕ) cos(kz
z), (A21b)

lim
|ε|→∞

GT33 = − i

4π

∫ ∞

0
dkz

q2

k2

H2
0 (qr)J0(qR)

H0(qR)
cos(kz
z) − i

2π

∞∑
n=1

∫ ∞

0
dkz

q2

k2

H2
n (qr)Jn(qR)

Hn(qR)
cos(n
ϕ) cos(kz
z), (A21c)

lim
|ε|→∞

GT12 = i

2π

∞∑
n=1

∫ ∞

0
dkz

{
n

qr

Hn(qr)H ′
n(qr)J ′

n(qR)

H ′
n(qR)

+ nk2
z

k2qr

Hn(qr)H ′
n(qr)Jn(qR)

Hn(qR)

}
sin(n
ϕ) cos(kz
z), (A21d)

lim
|ε|→∞

GT13 = i

4π

∫ ∞

0
dkz

qkz

k2

H0(qr)H1(qr)J0(qR)

H0(qR)
sin(kz
z)

− i

2π

∞∑
n=1

∫ ∞

0
dkz

qkz

k2

Hn(qr)H ′
n(qr)Jn(qR)

Hn(qR)
cos(n
ϕ) sin(kz
z), (A21e)

lim
|ε|→∞

GT23 = − i

2π

∞∑
n=1

∫ ∞

0
dkz

nkz

k2r

H2
n (qr)Jn(qR)

Hn(qR)
sin(n
ϕ) sin(kz
z). (A21f)

c. Equal angular coordinates

In the case of equal angular coordinates (ϕ = ϕ′), the GF contains five independent elements. For G0 in Eq. (A5), we get

G0(r, r′) = eikd

4πk2d5

⎧⎪⎨⎪⎩d2(−1 + ikd + k2d2)

⎛⎜⎝1 0 0
0 1 0
0 0 1

⎞⎟⎠ + (3 − 3ikd − k2d2)

⎛⎜⎝ (r′ − r)2 0 (r′ − r)
z
0 0 0

(r′ − r)
z 0 (
z)2

⎞⎟⎠
⎫⎪⎬⎪⎭, (A22)

where d =
√

(r′ − r)2 + (
z)2.
The scattering part is obtained by setting ϕ′ = ϕ in Eqs. (A17a)–(A17i):

GT =

⎛⎜⎝GT11 0 GT13

0 GT22 0
GT31 0 GT33

⎞⎟⎠, (A23)
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with

GT11 = i

4π

∫ ∞

0
dkz

k2
z

k2
H1(qr)H1(qr′)T NN

0,kz
cos(kz
z)

+ i

2π

∞∑
n=1

∫ ∞

0
dkz

{
n2

(qr)(qr′)
Hn(qr)Hn(qr′)T MM

n,kz
+ nkz

k

[
1

qr
Hn(qr)H ′

n(qr′) + 1

qr′ H
′
n(qr)Hn(qr′)

]
T MN

n,kz

+ k2
z

k2
H ′

n(qr)H ′
n(qr′)T NN

n,kz

}
cos(kz
z), (A24a)

GT22 = i

4π

∫ ∞

0
dkzH1(qr)H1(qr′)T MM

0,kz
cos(kz
z)

+ i

2π

∞∑
n=1

∫ ∞

0
dkz

{
H ′

n(qr)H ′
n(qr′)T MM

n,kz
+ nkz

k

[
1

qr
Hn(qr)H ′

n(qr′) + 1

qr′ H
′
n(qr)Hn(qr′)

]
T MN

n,kz

+ n2k2
z

k2(qr)(qr′)
Hn(qr)Hn(qr′)T NN

n,kz

}
cos(kz
z), (A24b)

GT33 = i

4π

∫ ∞

0
dkz

q2

k2
H0(qr)H0(qr′)T NN

0,kz
cos(kz
z) + i

2π

∞∑
n=1

∫ ∞

0
dkz

q2

k2
Hn(qr)Hn(qr′)T NN

n,kz
cos(kz
z), (A24c)

GT13 = − i

4π

∫ ∞

0
dkz

qkz

k2
H1(qr)H0(qr′)T NN

0,kz
sin(kz
z)

+ i

2π

∞∑
n=1

∫ ∞

0
dkz

{
n

kr
Hn(qr)Hn(qr′)T MN

n,kz
+ qkz

k2
H ′

n(qr)Hn(qr′)T NN
n,kz

}
sin(kz
z), (A24d)

GT31 = i

4π

∫ ∞

0
dkz

qkz

k2
H0(qr)H1(qr′)T NN

0,kz
sin(kz
z)

− i

2π

∞∑
n=1

∫ ∞

0
dkz

{
n

kr′ Hn(qr)Hn(qr′)T MN
n,kz

+ qkz

k2
Hn(qr)H ′

n(qr′)T NN
n,kz

}
sin(kz
z). (A24e)

For a perfectly conducting cylinder, we get

GT11 = − i

4π

∫ ∞

0
dkz

k2
z

k2

H1(qr)H1(qr′)J0(qR)

H0(qR)
cos(kz
z)

− i

2π

∞∑
n=1

∫ ∞

0
dkz

{
n2

(qr)(qr′)
Hn(qr)Hn(qr′)J ′

n(qR)

H ′
n(qR)

+ k2
z

k2

H ′
n(qr)H ′

n(qr′)Jn(qR)

Hn(qR)

}
cos(kz
z), (A25a)

GT22 = − i

4π

∫ ∞

0
dkz

H1(qr)H1(qr′)J1(qR)

H1(qR)
cos(kz
z)

− i

2π

∞∑
n=1

∫ ∞

0
dkz

{
H ′

n(qr)H ′
n(qr′)J ′

n(qR)

H ′
n(qR)

+ n2k2
z

k2(qr)(qr′)
Hn(qr)Hn(qr′)Jn(qR)

Hn(qR)

}
cos(kz
z), (A25b)

GT33 = − i

4π

∫ ∞

0
dkz

q2

k2

H0(qr)H0(qr′)J0(qR)

H0(qR)
cos(kz
z) − i

2π

∞∑
n=1

∫ ∞

0
dkz

q2

k2

Hn(qr)Hn(qr′)Jn(qR)

Hn(qR)
cos(kz
z), (A25c)

GT13 = i

4π

∫ ∞

0
dkz

qkz

k2

H1(qr)H0(qr′)J0(qR)

H0(qR)
sin(kz
z) − i

2π

∞∑
n=1

∫ ∞

0
dkz

qkz

k2

H ′
n(qr)Hn(qr′)Jn(qR)

Hn(qR)
sin(kz
z), (A25d)

GT31 = − i

4π

∫ ∞

0
dkz

qkz

k2

H0(qr)H1(qr′)J0(qR)

H0(qR)
sin(kz
z) + i

2π

∞∑
n=1

∫ ∞

0
dkz

qkz

k2

Hn(qr)H ′
n(qr′)Jn(qR)

Hn(qR)
sin(kz
z). (A25e)
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6. Green’s function for parallel configuration

For configurations of interest, G0 and GT can be simplified. For a parallel configuration (see Fig. 4), r = r′ = R + h, ϕ = ϕ′
(i.e., 
ϕ = 0), and d = |z − z′| = |
z|. Giving this, G0 in Eq. (A18) becomes diagonal (with G011 = G022) and depends only
on d:

G0 = eikd

4πk2d3

⎛⎝−1 + ikd + k2d2 0 0
0 −1 + ikd + k2d2 0
0 0 2 − 2ikd

⎞⎠. (A26)

Without loss of generality, we consider z′ > z, such that 
z ≡ z′ − z = d . Using Eqs. (A20a)–(A20f), the scattering part for
a parallel configuration can be obtained [41]:

GT =
⎛⎝ GT11 0 GT13

0 GT22 0
−GT13 0 GT33

⎞⎠, (A27)

with

GT11 = i

4π

∫ ∞

0
dkz

k2
z

k2
H2

1 (qr)T NN
0,kz

cos(kzd )

+ i

2π

∞∑
n=1

∫ ∞

0
dkz

{
n2

(qr)2
H2

n (qr)T MM
n,kz

+ 2
nkz

kqr
Hn(qr)H ′

n(qr)T MN
n,kz

+ k2
z

k2
[H ′

n(qr)]2T NN
n,kz

}
cos(kzd ), (A28a)

GT22 = i

4π

∫ ∞

0
dkzH

2
1 (qr)T MM

0,kz
cos(kzd )

+ i

2π

∞∑
n=1

∫ ∞

0
dkz

{
[H ′

n(qr)]2T MM
n,kz

+ 2
nkz

kqr
Hn(qr)H ′

n(qr)T MN
n,kz

+ n2k2
z

k2(qr)2
H2

n (qr)T NN
n,kz

}
cos(kzd ), (A28b)

GT33 = i

4π

∫ ∞

0
dkz

q2

k2
H2

0 (qr)T NN
0,kz

cos(kzd ) + i

2π

∞∑
n=1

∫ ∞

0
dkz

q2

k2
H2

n (qr)T NN
n,kz

cos(kzd ), (A28c)

GT13 = − i

4π

∫ ∞

0
dkz

qkz

k2
H0(qr)H1(qr)T NN

0,kz
sin(kzd )

+ i

2π

∞∑
n=1

∫ ∞

0
dkz

{
n

kr
H2

n (qr)T MN
n,kz

+ qkz

k2
Hn(qr)H ′

n(qr)T NN
n,kz

}
sin(kzd ). (A28d)

Note that interchanging the points r and r′ is equivalent to replacing d with −d in Eqs. (A28a)–(A28d), which in turn is
equivalent to making the transposition of G, in agreement with the reciprocity principle.

For a perfectly conducting cylinder, we get [41]

lim
|ε|→∞

GT11 = − i

4π

∫ ∞

0
dkz

k2
z

k2

H2
1 (qr)J0(qR)

H0(qR)
cos(kzd )

− i

2π

∞∑
n=1

∫ ∞

0
dkz

{
n2

(qr)2

H2
n (qr)J ′

n(qR)

H ′
n(qR)

+ k2
z

k2

[H ′
n(qr)]2Jn(qR)

Hn(qR)

}
cos(kzd ), (A29a)

lim
|ε|→∞

GT22 = − i

4π

∫ ∞

0
dkz

H2
1 (qr)J1(qR)

H1(qR)
cos(kzd )

− i

2π

∞∑
n=1

∫ ∞

0
dkz

{
[H ′

n(qr)]2J ′
n(qR)

H ′
n(qR)

+ n2k2
z

k2(qr)2

H2
n (qr)Jn(qR)

Hn(qR)

}
cos(kzd ), (A29b)

lim
|ε|→∞

GT33 = − i

4π

∫ ∞

0
dkz

q2

k2

H2
0 (qr)J0(qR)

H0(qR)
cos(kzd ) − i

2π

∞∑
n=1

∫ ∞

0
dkz

q2

k2

H2
n (qr)Jn(qR)

Hn(qR)
cos(kzd ), (A29c)

lim
|ε|→∞

GT13 = i

4π

∫ ∞

0
dkz

qkz

k2

H0(qr)H1(qr)J0(qR)

H0(qR)
sin(kzd ) − i

2π

∞∑
n=1

∫ ∞

0
dkz

qkz

k2

Hn(qr)H ′
n(qr)Jn(qR)

Hn(qR)
sin(kzd ). (A29d)
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7. Green’s function for perpendicular configuration

For a perpendicular configuration (see Fig. 7), r = r′ = R + h, |ϕ − ϕ′| = π , and z = z′, with d = 2r = 2(R + h). Giving
this, G0 in Eq. (A18) becomes diagonal (with G022 = −G033) and depends only on d:

G0 = eikd

4πk2d3

⎛⎝−2 + 2ikd 0 0
0 1 − ikd − k2d2 0
0 0 −1 + ikd + k2d2

⎞⎠. (A30)

The scattering part is also diagonal,

GT =
⎛⎝GT11 0 0

0 GT22 0
0 0 GT33

⎞⎠, (A31)

with

GT11 = i

4π

∫ ∞

0
dkz

k2
z

k2
H2

1 (qr)T NN
0,kz

+ i

2π

∞∑
n=1

∫ ∞

0
dkz

{
n2

(qr)2
H2

n (qr)T MM
n,kz

+ 2
nkz

kqr
Hn(qr)H ′

n(qr)T MN
n,kz

+ k2
z

k2
[H ′

n(qr)]2T NN
n,kz

}
(−1)n, (A32a)

GT22 = i

4π

∫ ∞

0
dkzH

2
1 (qr)T MM

0,kz

+ i

2π

∞∑
n=1

∫ ∞

0
dkz

{
[H ′

n(qr)]2T MM
n,kz

+ 2
nkz

kqr
Hn(qr)H ′

n(qr)T MN
n,kz

+ n2k2
z

k2(qr)2
H2

n (qr)T NN
n,kz

}
(−1)n, (A32b)

GT33 = i

4π

∫ ∞

0
dkz

q2

k2
H2

0 (qr)T NN
0,kz

+ i

2π

∞∑
n=1

∫ ∞

0
dkz

q2

k2
H2

n (qr)T NN
n,kz

(−1)n, (A32c)

which differ from Eqs. (A28a)–(A28c) by containing (−1)n instead of cos(kzd ). Interchanging the points r and r′ does not affect
G, and the transposition also has no effect due to diagonality of G, in agreement with the reciprocity principle.

For a perfectly conducting cylinder, we get

lim
|ε|→∞

GT11 = − i

4π

∫ ∞

0
dkz

k2
z

k2

H2
1 (qr)J0(qR)

H0(qR)
− i

2π

∞∑
n=1

∫ ∞

0
dkz

{
n2

(qr)2

H2
n (qr)J ′

n(qR)

H ′
n(qR)

+ k2
z

k2

[H ′
n(qr)]2Jn(qR)

Hn(qR)

}
(−1)n,

(A33a)

lim
|ε|→∞

GT22 = − i

4π

∫ ∞

0
dkz

H2
1 (qr)J1(qR)

H1(qR)
− i

2π

∞∑
n=1

∫ ∞

0
dkz

{
[H ′

n(qr)]2J ′
n(qR)

H ′
n(qR)

+ n2k2
z

k2(qr)2

H2
n (qr)Jn(qR)

Hn(qR)

}
(−1)n, (A33b)

lim
|ε|→∞

GT33 = − i

4π

∫ ∞

0
dkz

q2

k2

H2
0 (qr)J0(qR)

H0(qR)
− i

2π

∞∑
n=1

∫ ∞

0
dkz

q2

k2

H2
n (qr)Jn(qR)

Hn(qR)
(−1)n. (A33c)

8. The trace of the imaginary part of the Green’s function evaluated at equal points

To compute HR in Eq. (1), one has to know Tr Im G(r, r) (for a particle located at r1, r = r1), which can be identified with
the electric part of the local electromagnetic density of states at point r [71,72]. Note that Tr Im G(r, r) = Tr Im G0(r, r) +
Tr Im GT (r, r), where Tr Im G0(r, r) is given by Eq. (A7). We hence need to concentrate only on Tr Im GT (r, r). Since
Tr Im GT (r, r) = Im Tr GT (r, r), one can first evaluate Tr GT (r, r). It can be found by inserting waves (A9a) and (A9b) into
the trace of Eq. (A15),

Tr GT (r, r) = i

8π

∑
P,P′

∞∑
n=−∞

(−1)n
∫ ∞

−∞
dkzPout

n,kz
(r) · P′out

−n,−kz
(r)T PP′

n,kz
, (A34)
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or from Eqs. (A27) and (A28a)–(A28c) by letting d → 0:

Tr GT (r, r) = i

4π

∫ ∞

0
dkz

{
H2

1 (qr)T MM
0,kz

+
[

k2
z

k2
H2

1 (qr) + q2

k2
H2

0 (qr)

]
T NN

0,kz

}

+ i

2π

∞∑
n=1

∫ ∞

0
dkz

{[
n2

(qr)2
H2

n (qr) + [H ′
n(qr)]2

]
T MM

n,kz
+ 4

nkz

kqr
Hn(qr)H ′

n(qr)T MN
n,kz

+
[

k2
z

k2
[H ′

n(qr)]2 + n2k2
z

k2(qr)2
H2

n (qr) + q2

k2
H2

n (qr)

]
T NN

n,kz

}
. (A35)

Then one takes the imaginary part of Eq. (A35). As expected from physical grounds, the trace in Eq. (A35) does not depend on
ϕ and z.

For a perfectly conducting cylinder, Eq. (A35) simplifies to

lim
|ε|→∞

Tr GT (r, r) = − i

4π

∫ ∞

0
dkz

{
H2

1 (qr)
J1(qR)

H1(qR)
+

[
k2

z

k2
H2

1 (qr) + q2

k2
H2

0 (qr)

]
J0(qR)

H0(qR)

}

− i

2π

∞∑
n=1

∫ ∞

0
dkz

{[
n2

(qr)2
H2

n (qr) + [H ′
n(qr)]2

]
J ′

n(qR)

H ′
n(qR)

+
[

k2
z

k2
[H ′

n(qr)]2 + n2k2
z

k2(qr)2
H2

n (qr) + q2

k2
H2

n (qr)

]
Jn(qR)

Hn(qR)

}
. (A36)

It can be shown that, for the imaginary part of the trace in Eq. (A36), the integration can be restricted to kz � k:

Im lim
|ε|→∞

Tr GT (r, r) = − 1

4π

∫ k

0
dkz Re

{
H2

1 (qr)
J1(qR)

H1(qR)
+

[
k2

z

k2
H2

1 (qr) + q2

k2
H2

0 (qr)

]
J0(qR)

H0(qR)

}

− 1

2π

∞∑
n=1

∫ k

0
dkz Re

{[
n2

(qr)2
H2

n (qr) + [H ′
n(qr)]2

]
J ′

n(qR)

H ′
n(qR)

+
[

k2
z

k2
[H ′

n(qr)]2 + n2k2
z

k2(qr)2
H2

n (qr) + q2

k2
H2

n (qr)

]
Jn(qR)

Hn(qR)

}
. (A37)
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