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Topology-related ideas might lead to noise-resilient quantum computing. For example, it is expected that
the slow spatial exchange (“braiding”) of Majorana zero modes in superconductors yields quantum gates that
are robust against disorder. Here, we report our numerical experiments, which describe the dynamics of a
Majorana qubit built from quantum dots controlled by time-dependent gate voltages. Our protocol incorporates
nonprotected control, braiding-based protected control, and readout of the Majorana qubit. We use the Kitaev
chain model for the simulations, and we focus on the case when the main source of errors is quasistatic
charge noise affecting the hybridization energy splitting of the Majorana modes. We provide quantitative
guidelines to suppress both diabatic errors and disorder-induced qubit dephasing, such that a fidelity plateau
is observed as the hallmark of the topological quantum gate. Our simulations predict realistic features that
are expected to be seen in future braiding experiments with Majorana zero modes and other topological qubit
architectures.
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I. INTRODUCTION

Majorana zero modes (MZMs) as bound states in topo-
logical superconductors might be used as building blocks of
future quantum technology, enabling topologically protected
quantum-logical qubit operations [1–3]. This opportunity has
triggered intense research efforts in the past decade [4–13].
The protection of the quantum information encoded in such
a Majorana qubit is, however, incomplete [14–27]. To assess
the technological potential of Majorana qubits, it is critical to
understand their decoherence mechanisms.

Due to their topological protection, Majorana qubits
might serve as long-lived quantum memory elements, hence
the decoherence properties of idle qubits are of interest
[15–19,24,28–35]. Majorana qubits could also serve as build-
ing blocks of quantum processors, where they are subject to
electromagnetic control fields, e.g., controlling the spatial ex-
change of the MZMs [3,36]. Such a MZM exchange can yield
a single-qubit π/2 gate, and can also be useful to perform
two-qubit gates, e.g., a CNOT [36–38]. (Note that other works
propose “braiding without braiding,” i.e,. measurement-based
quantum gates that avoid spatial exchange MZMs [20,39,40].)

Reference [3] proposed to braid MZMs in one-dimensional
(1D) topological superconductors to achieve topologically
protected quantum gates. Advantages and limitations of this
topological protection of braiding-based gates has been the
subject of many theoretical works since then. Models of
MZM braiding range from the effective description restricted
to the degenerate subspace [22,25,26,41–44], through the
Kitaev chain model [23,45–47], to the Rashba wire model
[36,48].

MZMs are also predicted in engineered topological super-
conductors, where an effective Kitaev chain is formed by a
register of quantum dots proximitized by nearby superconduc-
tors [49–53]. Recent experimental progress with quantum-dot
chains, featuring charge shuttling in a nine-dot array [54], spin
qubit operation in six-dot arrays [55,56], the triple Andreev
dot chain [57], and the realization of the minimal Kitaev chain
[58] strengthen the feasibility of the quantum-dot approach to
MZMs. In such quantum dots, often used as spin qubit regis-
ters, a key qubit decoherence mechanism is the fluctuation of
the on-site energies of the dots, attributed to electromagnetic
fluctuations of the environment, including 1/ f charge noise
[35,59–65].

In this work, we propose a few-dot setup and a control
scheme, which could be used to experimentally demonstrate
braiding-based gates with MZMs based on quantum dot ar-
rays [50,51,66]. We perform numerical experiments to predict
the quality of braiding-based gates in the presence of charge
noise, which we incorporate in our model as quasistatic dis-
order. Our numerical results show diabatic errors for short
braiding times as well as qubit dephasing effects for long
braiding times. We identify an experimentally relevant pa-
rameter range where a future experiment can find “fidelity
plateaus” as fingerprints of topologically protected quantum
gates.

The rest of the paper is organized as follows. In Sec. II, we
introduce the setup of our numerical experiment and highlight
the main steps of our braiding-based protocol. In Sec. III,
we describe the nonadiabatic dynamics of the system in the
absence of any disturbances. In Sec. IV, we show the ef-
fect of the quasistatic disorder on our protocol. We discuss
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FIG. 1. Protocol to demonstrate a braiding-based π/2 gate on a Majorana qubit. (a) Blue: Y junction built from Kitaev chains. Red: a
straight Kitaev wire. Blue and red together form a Majorana qubit. Black: readout dot. (b) The five-step protocol, analogous to a Ramsey
protocol, aiming to detect the braiding-based π/2 gate: A, Initialization; B, First π/2 pulse; C, Braiding; D, Second π/2 pulse; E, Readout.
(c) Procedure of a single MZM exchange used in step C, Braiding.

implications and follow-up ideas in Sec. V, and we conclude
in Sec. VI.

II. PROTOCOL TO DEMONSTRATE A BRAIDING-BASED
π/2 GATE OF A MAJORANA QUBIT

Here we introduce a model and a protocol, suitable for
the experimental demonstration of the braiding-based π/2
quantum gate of a Majorana qubit. The setup is sketched in
Fig. 1(a). It consists of three units: a Y junction built from
Kitaev chains (blue), a straight Kitaev wire (red), and a read-
out dot (black). Dashed lines denote connections via electron
tunneling and Cooper-pair creation and annihilation. Solid
lines denote connections via tunneling only. Filled and empty
circles depict different on-site energies. This setup consists of
two Kitaev chains (blue filled circles and red filled circles),
and hence it can host a Majorana qubit in its ground-state
subspace. Based on Refs. [50–52,58,66], we envision that
proximitized quantum dot arrays can realize such a few-site
Kitaev model.

The Y junction consists of three regular Kitaev chains
(legs) and a central site. Each Kitaev chain can be described
by the following Hamiltonian [2]:

H (n,Nc )
c =

Nc−1∑
i=1

(vc†
n,icn,i+1 + �nc†

n,ic
†
n,i+1 + H.c.)

+
Nc∑

i=1

μn,i(t )c†
n,icn,i, (1)

where Nc is the length of the legs (it is set to Nc = 1 in
Fig. 1), c†

n,i and cn,i are the creation and annihilation operators
on the ith site of the nth chain (n ∈ {1, 2, 3}), v denotes the
nearest-neighbor hopping amplitude, �n is the p-wave super-
conducting pairing amplitude in the nth chain, and μn,i(t ) is
the site- and time-dependent on-site energy of the ith site of
the nth chain.

Based on the Hamiltonians of the legs in Eq. (1), the
Hamiltonian of the Y junction is written as

HY =
3∑

n=1

H (n,Nc )
c + μ0c†

0c0

+
3∑

n=1

(vc†
0cn,1 + �nc†

0c†
n,1 + H.c.), (2)

where index 0 denotes the central site, and the superconduct-
ing pair potential is �1 = �eiϕ , �2 = �e−iϕ , and �3 = −�,
with � > 0. For concreteness, we set ϕ = π/2 in our simula-
tions.

Another building block of the Majorana qubit is a straight
Kitaev wire, depicted as filled red circles in Fig. 1. Its length is
chosen, for simplicity, to have the same length as the topolog-
ical region of the Y junction, which is 3 in the case of Nc = 1.
Thus the corresponding Hamiltonian is

HW =
2Nc∑
i=1

(vc†
i ci+1 + �W c†

i c†
i+1 + H.c.) +

2Nc+1∑
i=1

μic
†
i ci, (3)

where �W = �e−iϕ .
With the purpose of reading out the parity of the Y junction,

an additional site, the readout dot [19,20,67,68] denoted by
“R” in Fig. 1(a), is coupled to the system. The Hamiltonian of
the full system reads

H = HY + HW + μRc†
RcR + (uP(t )c†

2,Nc
c1 + H.c.)

+
2∑

n=1

(uR(t )c†
Rcn,N + H.c.). (4)

Here, uP(t ) is the hopping amplitude between the rightmost
site of the Y junction and the leftmost site of the straight
Kitaev wire, which is required in the (nonprotected) π/2
pulses of the experimental protocol; see below. Furthermore,
uR(t ) is the tunneling amplitude between the readout dot and
the two ends of the Y junction, which is utilized for parity-
to-charge conversion in the readout step of the experimental
protocol.
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FIG. 2. Ramsey-type experiment to detect the braiding-based π/2 gate on the Majorana qubit. Error-free evolution of the qubit Bloch
vector, shown after each step (A)–(D) of the protocol, cf. Table I. Qubit basis states are |e,e〉 and |o,o〉. The last column shows the expected
value of the readout dot occupation at the and of the protocol. The three paths correspond to the protocol with 0, 1, and 2 exchanges.

The Y junction and the straight Kitaev wire can host
two MZMs each, and their composite system can host a
Majorana qubit. By default, both the Y junction and the
straight Kitaev wire are tuned to their topological fully dimer-
ized limit, and hence the ground state of their composite
system is fourfold-degenerate. The four ground states will be
denoted as |e, e〉, |e, o〉, |o, e〉, |o, o〉, with e (o) being a ref-
erence to the even (odd) fermion-number parity of each unit.
The topological fully dimerized limit is defined by setting (i)
the hopping amplitudes and the absolute value of the super-
conducting pair potentials equal to each other, i.e., � = v, and
(ii) the on-site potentials to zero. This limit implies MZMs
that are perfectly localized at the end sites of the topological
regions. The protocol we propose to demonstrate braiding is
similar to the well-known Ramsey experiment, as shown in
Fig. 2 and Table I. The key difference is that most often the
Ramsey experiment aims to characterize unwanted dephasing
dynamics (see, e.g., Fig. 10 of Ref. [19]), whereas here we use
this scheme to characterize an intentional, braiding-based π/2
gate.

Our Ramsey-type protocol consists of five steps: (A) ini-
tialization, (B) first π/2 pulse, (C) braiding, (D) second π/2
pulse, and (E) readout, detailed in the subsections below.
The development of the many-body wave function at the key
points of the protocol is shown in Table I, and the development

of the corresponding Majorana qubit polarization vector is
shown in Fig. 2. As seen in Table I and Fig. 2, we consider
three different cases: when no braiding is done (0× exchange),
when a single exchange is performed (1× exchange), and
when two exchanges are performed (2× exchange). In the
table, we use the notation |pY , pW , nR〉, where pY ∈ {e, o}
(pW ∈ {e, o}) is the parity of the Y junction (straight wire),
and nR ∈ {0, 1} is the occupation of the readout dot. Table I
shows the wave functions in an idealized, error-free case,
when there is no disorder, no timing error, no leakage from the
computational subspace, etc. Figure 2 shows the polarization
vector of the Majorana qubit after each of the first four steps
of the protocol, with the last column showing the readout dot
occupation expectation value, which can be measured upon
readout.

The last step of the protocol is the measurement of the
charge of the readout dot. The measurement probabilities can
be read off the last row (“Readout”) of Table I as follows.
For 0× exchange, the measurement probability of finding
a charge in R is 1, for 1× exchange it is 0.5, and for 2×
exchange it is 0. This probability (which is the same as the
charge expectation value of the readout dot) carries the par-
ity information of the Y junction: if it is zero, that signals
that the Y junction was in the even state after the second
π/2 pulse, and before starting the parity-to-charge conversion

TABLE I. Error-free evolution of the many-body wave function during the Ramsey-type protocol. Three columns correspond to the protocol
with 0, 1, and 2 exchanges. The wave function shown in each row is the state at the end of that step.

0× exchange 1× exchange 2× exchanges

A. Initialization |e, e, 0〉
B. First π/2 pulse 1√

2
|e, e, 0〉 + 1√

2
|o, o, 0〉

C. Braiding 1√
2
|e, e, 0〉 + 1√

2
|o, o, 0〉 1√

2
|e, e, 0〉 + i√

2
|o, o, 0〉 1√

2
|e, e, 0〉 − 1√

2
|o, o, 0〉

D. Second π/2 pulse |o, o, 0〉 1−i
2 |e, e, 0〉 + 1+i

2 |o, o, 0〉 |e, e, 0〉
E. Readout i |e, o, 1〉 1−i

2 |e, e, 0〉 − 1−i
2 |e, o, 1〉 |e, e, 0〉
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(e.g., 2× exchange); if it is one, that signals the odd parity
(e.g., 0× exchange).

In what follows, we describe the five steps of the protocol
in detail.

A. Initialization

At the beginning of the protocol, the coupling between the
Y junction and the straight wire, and the coupling between
the Y junction and the readout dot, are turned off, i.e., uP = 0
and uR = 0. All the on-site potentials are set to zero, except
in the third leg of the Y junction, where they are set to the
value ξ = 4v, adjusted well over the critical value 2v. We
assume that the Majorana qubit is initialized in the state |e, e〉.
This implies that the physically available part of the four-
dimensional ground-state subspace is the two-dimensional
subspace spanned by the globally even ground states |e, e〉
and |o, o〉. The two states form the computational basis for
the Majorana qubit. We also assume that the dot is initialized
to be empty.

B. First π/2 pulse

The second step is a nonprotected π/2 rotation of the
Majorana qubit, i.e., a rotation in the subspace spanned by
|e, e〉 and |o, o〉. We will refer to this as a rotation around
the y axis of the Bloch sphere. (Note that this is an implicit
condition for the relative global phase of the two-qubit basis
states, which we have not defined explicitly.) Here, a balanced
superposition of the basis states is achieved by switching on
the tunnel coupling uP. We apply a sine-squared shaped pulse
which has the form

uP(t ) = uP,max sin2(πt/TP) if 0 � t � TP, (5)

where the duration TP = h/(4uP,max) of the pulse is set to
provide a π/2 gate. To avoid quasiparticle excitation, we use
a weak pulse, uP,max = 0.25v. Note that this gate is not topo-
logically protected [24,69,70]; i.e., errors in the tunnel pulse
strength or duration lead to gate errors that are not suppressed
by increasing the system size or slower operation.

C. Braiding

The next step is the braiding of the MZMs localized on
sites (1,1) and (2,1), making use of the site (3,1) of the Y
junction. MZMs can be exchanged by means of the steps
shown in Fig. 1(c). Moving MZMs is realized by ramping up
(down) the on-site energies to the value ξ = 4v (zero). These
we do by using sine-squared pulses. The shape of the pulse
for the ramp-up reads

μn,i(t ) = ξ sin2

(
πt

2Tramp

)
if 0 � t � Tramp, (6)

where Tramp is the ramping time, i.e., the duration through
which an on-site potential is varied. For longer chains, i.e.,
Nc > 1, ramp-up and ramp-down of on-site potentials in each
leg is performed consecutively, site-by-site. Adiabatic ex-
change of the modes will create a π/2 phase difference [3]
between the basis state |e, e〉 and |o, o〉. This phase difference
is expected to be robust against imperfections of the path of
control parameters, including quasistatic disorder, in the limit

of adiabatic control and large system size; characterizing this
robustness in the presence of diabatic errors and small system
sizes is one of the goals of the numerical experiments in the
next sections.

As we argue below, performing this protocol with two
MZM exchange, providing a π gate, should be used as an
important control experiment. We will denote the number of
exchanges by NE. Furthermore, as seen from Fig. 1(c), the full
duration of the Braiding step is TB = 6NcNETramp. Note also
that we use the term “exchange” to denote a single (clockwise
or counterclockwise) exchange of two MZMs, whereas we
use the term “braiding” to describe any combination of MZM
exchanges.

D. Second π/2 pulse

After the braiding step, a second nonprotected π/2 pulse
is applied, to do a rotation around the y axis. Naturally, the
many-body state after this step (row 4 of Table I) depends on
the number of exchanges done during Braiding.

E. Readout

In our protocol, readout of the parity of the Y junction is
based on parity-to-charge conversion [19,20,67,68]. We fol-
low the scheme described in [67]: conversion is performed by
switching on the two tunnel couplings uR for an appropriate
duration, and reading out the charge of the readout dot after-
wards. The tunnel pulse converts the fermion-number parity
of the Y junction to the charge of the dot. The charge readout
is assumed to be perfect, and to yield 0 or 1.

For parity-to-charge conversion, we use sine-squared tun-
nel pulses:

uR(t ) = uR,max sin2(πt/TR) if 0 � t � TR, (7)

where uR,max is the strength of the parity-to-charge conversion,
and TR = h/(4uR,max) is the duration for ideal conversion. In
our simulations, we use uR,max = 0.25v. Note that this parity-
to-charge conversion scheme is not “protected,” in the sense
that small perturbations, e.g., on-site energy fluctuations, or
errors in the tunnel pulse strength or duration, lead to readout
errors without any exponential suppression [67]. (For alter-
native parity-to-charge conversion schemes, and their error
mechanisms, see, e.g., Refs. [19,20,39,40,71–73].)

III. DIABATIC ERRORS OF A PERFECT
MAJORANA QUBIT

Before describing the effect of quasistatic disorder, we
characterize the braiding-based π/2 gate in a clean, per-
fectly controlled system. We performed numerical simulations
of the protocol described above using the time-dependent
Bogoliubov–de Gennes (BdG) formalism. Details are de-
scribed in Appendix. The BdG formalism allows for effi-
cient simulations: for example, the many-body Fock space
of the eight-site setup in Fig. 1(a) has dimension 28 =
256, growing exponentially with increasing system size
Nc, whereas the space of BdG wave functions has dimen-
sion 2 × 8 = 16, growing linearly with increasing system
size Nc.
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FIG. 3. In a disorder-free system, a braiding-based π/2 gate implies a fidelity plateau for long braiding times. Readout dot occupation
is shown as a function of the braiding time, for the setup with eight quantum dots (Nc = 1), obtained from our numerical simulation of a
disorder-free system. (a) Protocol with one exchange of the Majorana zero modes in the Y junction. (b) Protocol with two exchanges. For short
braiding times, braiding does not affect the dynamics resulting in nR ≈ 1. For intermediate braiding times, diabatic errors dominate the data.
In the adiabatic limit (TB → ∞), readout dot occupation shows a fidelity plateau at (a) 1/2 and (b) 0, as predicted in Table I.

We solve the time-dependent BdG-Schrödinger equa-
tion numerically by discretizing the time axis, approxi-
mating the time dependence of the parameters by steplike
dependence, and evaluating the propagator for each time step
by exponentiating the instantaneous BdG Hamiltonian ma-
trix. Recall that all of our control pulses have sine-squared
shape. We call each half-period of each sine-squared pulse an
elementary step in our protocol. For each elementary step,
having duration T , we choose the time discretization step as
�t = min{h̄/v, T/150}.

In our numerical experiment, we aim to characterize the
braiding-based π/2 gate via the statistics of the measurement
of the readout dot charge. This is a realistic constraint: in
a real experiment, the experimenter can indeed perform a
charge measurement, but has no access to the many-body
wave function (let alone any of the BdG wave functions).
Hence, the target quantity of our simulations is the readout dot
occupation, nR = 〈�f|c†

RcR|�f〉, where �f is the final state,
i.e., the many-body state of the system after the parity-to-
charge conversion.

The numerical result for this readout dot occupation, for a
protocol with a braiding containing 1× exchange, is shown
in Fig. 3(a) as a function of braiding time TB. This result
corresponds to the smallest system size Nc = 1, i.e., to the
eight-site setup shown in Fig. 1(a). For short braiding times,
TB � 0.1h̄/v, the exchange protocol is so fast that the wave
function is almost unchanged during the braiding because the
system has no time to respond to the time dependence of
the Hamiltonian. Thus in this limit, the final wave function
is close to the one corresponding to no exchange (see “0×
exchange” column in Table I). In the adiabatic limit, however,
i.e., for TB � 100h̄/v, the readout dot occupation shows a
straight “fidelity plateau” at nR = 1/2, which is consistent
with the expectation that braiding induces a π/2 rotation
around the qubit z axis (see the “1× exchange” column in
Table I). For intermediate braiding times, the occupation of
the readout dot depends strongly on the actual value of the
braiding time. Here the MZM exchange is slow enough to
induce dynamics in the system, but the diabatic errors are
significant.

One might wonder whether an average dot occupation of
nR = 1/2 is a satisfying signature of a precisely functioning
quantum gate? As we will see in Sec. IV, a similar result of
nR ≈ 1/2 arises also if the experiment is dominated by strong
decoherence that randomizes the Majorana qubit during the
exchange.

Hence we study, as an important control experiment,
the case in which braiding consists of two consecutive
counterclockwise exchanges of the MZMs (2× exchange).
Our numerical simulation of this control experiment is
shown in Fig. 3(b). Here the braiding time TB incorpo-
rates both exchanges: TB = 12NcTramp . The behavior of the
final readout-dot occupation for short and intermediate braid-
ing times is similar to that seen in panel (a). However,
in the adiabatic limit TB → ∞, the readout dot occupa-
tion is zero as anticipated, e.g., in the last column of the
Table I.

One aspect of the topological protection of a Majorana
qubit is that errors induced by the finite overlap of the MZMs
can be exponentially suppressed by increasing the system size.
Even though the simulations in Fig. 3 are not subject to such
errors, we highlight an interesting and potentially useful as-
pect of chain length dependence here. The length dependence
of the final-state readout dot occupation is shown in Fig. 4.
Importantly, the horizontal axis shows the time Tramp needed
to move the topological-trivial domain wall by a single site,
and not the complete braiding time TB = 12NcTramp. Our con-
clusion is that the results for the three different system sizes
Nc ∈ {1, 2, 3} show very similar power-law-type behavior for
intermediate times, which provides the clear prediction that
this behavior is universal, and hence can be used to extrap-
olate for larger system sizes (Nc > 3) as well. This result is
analogous to our earlier result for braiding in the SSH model;
see Fig. 3(b) of Ref. [74].

Note also that in Fig. 4, the apparent error of the gate, i.e.,
the final occupation of the readout dot, saturates for large ramp
times at a plateau of nR ≈ 10−5. This is a consequence of
the nonprotected nature of the tunnel-pulse-based π/2 gates
and readout; errors caused by such tunnel-pulse-based oper-
ations set the height of this plateau. (See, e.g., Fig. 2 of [67]
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FIG. 4. Diabatic errors of the braiding-based π/2 gate scale
with the ramping time. Diabatic error is illustrated as a function
of the ramping time in the case of the 2× exchange protocol, for
three different chain lengths. For this protocol, diabatic error corre-
sponds to the readout dot occupation at the end of the protocol. The
three curves overlap, showing that the diabatic error scales with the
ramping time (which is inversely proportional to the domain-wall
speed), irrespective of the chain length. For longer ramping times
T � 100h̄/v, the nR curves saturate due to the nonzero error of
tunnel-pulse-based gates and readout.

describing readout error in a similar readout scheme.) This is
a feature that we expect to see in future braiding experiments
as well.

IV. CHARGE NOISE INDUCES MAJORANA QUBIT
DEPHASING IF BRAIDING IS SLOW

The braiding-based π/2-gate on the Majorana qubit is an
example of a topological quantum gate: the operation on the
qubit does not depend on the geometry of the path of control
parameters, only on the topology of the path. This topological
nature implies robustness, i.e., resilience to imperfections in
the control path. We investigate this robustness here. As the
imperfection, we focus on 1/ f charge noise, which is known
to be an important ingredient in quantum dots [35,59–65],
and hence is expected to be relevant in future Majorana qubit
experiments based on quantum dot arrays as well.

Following earlier studies, we model 1/ f charge noise in
our multidot system as quasistatic disorder [28,67]. We as-
sume that we set our system in the topological fully dimerized
limit, but there is also an unwanted, uncontrolled, and spatially
uncorrelated random quasistatic contribution to each on-site
energy (except to the potential of the readout dot, see below).
These on-site energy contributions are represented as indepen-
dent zero-mean Gaussian random variables:

δμn,i, δμk ∼ N
(
0, σ 2

μ

)
, (8a)

δμR = 0, (8b)

where σμ is the disorder strength, i.e., the standard deviation
of the Gaussian distribution, n = {1, 2, 3}, i = {1, 2, . . . , Nc},
and k = {0, 1, 2, . . . , 2Nc + 1}. Note that static disorder is a
much studied ingredient of the Kitaev chain model; see, e.g.,
Refs. [29,75].

In the Ramsey-type protocol we consider in this work,
a single data point (readout dot occupation) is obtained by

taking multiple runs of the very same experiment and aver-
aging the binary values (0 or 1) of the readout dot charge
measured upon the multiple runs. The assumption of the qua-
sistatic model is that this averaging procedure is equivalent
to averaging over the disorder configurations described by
Eq. (8).

We focus on the effect of disorder on the braiding-based
gates. Hence, we do not add disorder to the on-site energy
of the readout dot, and we do not include imperfections in
the tunnel pulses uP(t ) or uR(t ). Such imperfections would in
fact cause errors that are not suppressed by increasing system
size Nc. In contrast, the on-site energy disorder (whose effects
we describe below) and disorder in the static tunnel ampli-
tudes and pair potentials (which we do not describe explicitly
below) cause errors that are suppressed by increasing system
size Nc.

Figure 5(a) shows the disorder-averaged result of the
Ramsey-type protocol with 1× exchange, averaging Nr =
1000 different disorder realizations for the disorder strength
σμ = 0.15v. We show results of simulations where the initial
state is formed by the product of the even ground state of
the Y junction, the even ground state of the wire, and the
empty readout dot (see Appendix A for details). The quantity
we plot in Fig. 5(a) is the disorder-averaged final readout dot
occupation

n̄R = 1

Nr

Nr∑
j=1

n( j)
R , (9)

where n( j)
R is the expectation value of the final readout dot

occupation for the jth disorder realization. (Note that these
expectation values n( j)

R are random variables themselves, since
they depend on the disorder configuration.) Furthermore, the
error bars show the 10–90 % quantiles of the 1000 different
realizations.

Figure 5(a) shows that for short braiding times, TB �
50h̄/v, diabatic errors corrupt the gate. For intermediate
times, 50h̄/v � TB � 100h̄/v, the readout dot occupation is
close to the clean result nR = 1/2, with small fluctuations
as shown by the error bars. For long times, TB � 100h̄/v,
the readout dot occupation is still close to the clean result
nR = 1/2, but the fluctuations grow significantly.

The fluctuations seen for TB � 50h̄/v in Fig. 5(a) are in-
terpreted as dephasing occurring during the braiding-based
quantum operation. The on-site energy disorder detunes the
Kitaev chains from the fully dimerized limit, causing hy-
bridization of MZMs and corresponding energy splittings,
both in the Y junction and in the straight Kitaev wire. As a
consequence of the splittings, the dynamical phases acquired
by the Majorana qubit basis states become different, which in
turn causes significant deviations from the ideal (disorder-free
and adiabatic) scenario, which relies only on the geometric
phase difference π/2 between the even and odd ground states
of the Y junction.

Although the increasing error bars with increasing braiding
time, seen in Fig. 5(a) for TB � 50h̄/v, provide a clear numeri-
cal signature of dephasing, these error bars cannot be revealed
by an experiment that follows our protocol. The reason is as
follows. The randomness of disorder implies that the final dot
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FIG. 5. Numerical simulation of the braiding experiment in the presence of on-site disorder. Disorder-averaged final-state occupation n̄R of
the readout dot is shown as a function of the braiding time, for the smallest system size Nc = 1 with disorder strength σμ = 0.04. Each curve is
a result of Nr = 1000 realizations, dots show the mean of the occupations, while error bars depict the 10–90 % quantiles. (a) Single exchange.
Disorder-averaged readout dot occupation for long braiding time is similar to that without disorder [see Fig. 3(a)], but the error bars arise due
to disorder. (b) Double exchange. The disorder changes the mean of the readout dot occupation in the adiabatic limit [cf. Fig. 3(b)], and the
error bars also show the influence of disorder. The plateau between 100 and 1000 can serve as the signature of successful braiding in a real
experiment.

occupation nR itself is a random variable. However, in a single
run of the experiment, say, the jth run, the charge readout
result is either 0 or 1, with the probability of 1 determined by
n( j)

R . The data point for a given braiding time is the average of
these binary results for a large number of runs with a fixed TB.
This averaging procedure yields the disorder-averaged n̄R, and
the result carries no information about the disorder-induced
fluctuations of nR.

Nevertheless, dephasing during the braiding-based gate
can be characterized by our protocol. This is done by doing
the exchange twice. In that setting, the idealized readout dot
occupation is nR = 0, and dephasing causes deviations of
the disorder-averaged n̄R from that value. Figure 5(b) shows
the disorder-averaged result of the 2× exchange protocol,
along with error bars as discussed above. For short braiding
times TB � 200h̄/v, there is no significant difference from
the clean case, and the result is dominated by diabatic error.
For intermediate braiding times, 200h̄/v � TB � 1000h̄/v, a
“fidelity plateau” is seen, which is the signature that each
MZM exchange realizes a π/2 gate. We anticipate that such
fidelity plateaus will serve as important signatures of topo-
logically protected quantum gates in future experiments. For
longer braiding times, TB � 1000h̄/v, the result is dominated
by disorder-induced dephasing that happens during the MZM
exchanges.

To illustrate the topological protection of the braiding-
based quantum gate, we show how the fidelity plateau length
varies if we vary the system size and the strength of the disor-
der. In Fig. 6(a), the disorder-averaged readout dot occupation
n̄R is shown for the three smallest system sizes Nc = 1, 2, 3
using the 2× exchange protocol. Disorder strength is set to
σμ = 0.15v, which is strong enough to reduce the plateau
to a dip for Nc = 1 (blue). By increasing the chain length to
Nc = 2 (green), a fidelity plateau is developed, which flattens
further for an even larger system size Nc = 3 (red). This im-
provement of the gate quality by increasing the system size
will probably be used as a hallmark of topologically protected

quantum gates in future braiding experiments. In Fig. 6(b),
we show the disorder-averaged readout dot occupation curves
for different disorder strengths in the case of the smallest
system size Nc = 1. The main observation here is that the
fidelity plateau gets longer and more flat as disorder strength
is decreased.

V. DISCUSSION

A. Experimental timescales

Here, we convert our numerical results discussed above to
quantitative estimates of timescales for future experiments.
Based on the recent experiment of Ref. [58], we assume an
induced gap of 30 µeV in our fully dimerized Kitaev-chain
model, equivalent to setting v = � = 15 µeV. The simplest
quantum-dot-based braiding setup corresponds to our Nc = 1
case, requiring eight quantum dots.

Assuming that our protocol will be realized experimen-
tally in such a setup, we ask the following question: for
which experimental result are we convinced that the exper-
iment demonstrated a braiding-based topological quantum
gate? That is, when do we say that a fidelity plateau is
“long and flat” enough to be convincing evidence of such
a gate? To make this question a bit more specific: what is
the level of disorder that enables the experimenter to observe
a fidelity plateau below the error level of 1% (n̄R � 0.01)
such that the fidelity plateau spreads over at least one order
of magnitude along the braiding-time axis? Using the esti-
mate v = � = 15 µeV, a quantitative answer can be read off
Fig. 6(b): for σμ = 0.02v = 0.3 µeV (red squares), the fidelity
plateau spreads in the range 250h̄/v � TB � 2500h̄/v, which
is equivalent to 5.5 ns � TB � 55 ns.

We note that typical quantum dot devices show on-site
energy fluctuations (σμ) of the order of a few microelectron-
volts; see, e.g., the experimental data listed in Table II of
Ref. [18]. However, in recent state-of-the-art experiments with
a double quantum dot, σμ ∼ 0.1 µeV has been achieved [76].
Even though it is a highly nontrivial technological challenge
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FIG. 6. Demonstration of topological protection. Disorder-averaged occupation of the readout dot as a function of the braiding time is
shown in the double-exchange protocol (a) for a given disorder strength σμ = 0.15v and for different system sizes; (b) for the smallest
system size Nc = 1 and for different disorder strengths. Each curve is obtained by averaging for Nr = 1000 realizations. For (a) increasing
system size, and (b) for decreasing disorder strength, a plateau with n̄R ≈ 0 appears for long braiding times, and the plateau length
increases.

to combine the high-quality dot structures with superconduc-
tors, these numbers give hope that topological quantum gates
can be experimentally demonstrated using small quantum dot
arrays.

B. Beyond the minimal model

The model we have used in this work is a minimal one,
allowing us to focus on a few key physical ingredients, and to
highlight a few mechanisms likely to affect the proposed ex-
periment. Here, we list further ingredients that are worthwhile
to incorporate in future studies.

(i) Modeling braiding dynamics with a microscopic dot-
array Hamiltonian. We have assumed that the Kitaev chain
model provides a faithful description of a quantum dot array
proximitized by superconductors. Much physical insight be-
hind that assumption has been provided by Refs. [50–52,66].
However, it will be an interesting and relevant extension of
our work to study the braiding-induced dynamics in a more
realistic dot array model, where, e.g., Zeeman sublevels of
the dots, excited orbitals, Coulomb repulsion, spin-orbit in-
teraction, etc., are explicitly incorporated. The more realistic
character of such models will imply, e.g., an increased MZM
hybridization with respect to the dimerized limit of the Kitaev
chain model, and in turn, a greater susceptibility of the Majo-
rana qubit to charge noise.

(ii) Role of fluctuations of v and �. We have assumed that
the static tunnel amplitudes (v) and pair potentials (�) are
perfectly controlled. In an experiment, this is not the case.
For small quantum dot arrays, the effect of their fluctuations
can be relevant. For example, the MZM energy splitting of
a two-site Kitaev chain is linear in the parameter |v| − |�|
(see Ref. [66]), hence the fluctuations of v and � can cause
significant dephasing. Note that this dephasing mechanism
is suppressed exponentially by increasing the system size,
similar to the case of on-site energy fluctuations we studied
above.

For semiconductor quantum dots, it has been experimen-
tally established that charge noise affects the on-site energies
much more than the interdot tunneling energies. This has been

revealed in a number of experiments [77–79] implementing
the Loss-DiVincenzo two-qubit gate in a double quantum dot.
In those experiments, the charge noise had the weakest effect
when the on-site energies are tuned to be identical (“symmet-
ric operation point”). In that operation point, charge noise
induces decoherence via the tunneling amplitude, whereas
away from that point, charge noise induces decoherence via
the on-site energy detuning. Therefore, the symmetric point
being the sweet spot indicates that the main effect of charge
noise is the on-site detuning fluctuation. This was a further
motivation to focus on on-site energy fluctuations in the
present paper, and postpone the study of tunneling energy
fluctuations for future work.

(iii) Errors in the tunnel pulses. A further difference be-
tween our minimal model and experiments is that in the
latter, the tunnel pulses are imperfect; e.g., pulse duration,
pulse amplitude, and pulse shape deviate from ideal. Such
perturbations, if strong enough, could significantly reduce the
quality (flatness and length) of the fidelity plateaus shown in
Figs. 5(b) and 6.

For semiconductor quantum dot spin qubits, the exper-
imentally most relevant noise sources are hyperfine noise,
charge noise, and electron-phonon interaction (see, e.g.,
Sec. VI of [80]). Errors caused by pulse imperfections might
also be relevant, but those have not obstructed beyond-99%
gate fidelities [61], hence we consider them as a secondary
threat for Majorana qubits as well, and we postpone studying
them to future work.

(iv) On-site energy fluctuations of the readout dot. In this
study, we have disregarded on-site energy fluctuations of the
readout dot to focus on the features of MZM braiding. Such
fluctuations lead to readout error [67], which, similarly to
the effect of tunnel pulse errors, reduces the quality of the
fidelity plateaus. Based on our earlier results [67], we estimate
that extending the on-site energy fluctuations to the readout
dot would not change the quantitative timescale analysis of
Sec. V A.

(v) Beyond the quasistatic approximation. In this work,
we use the quasistatic approximation [81,82] to describe the
effect of charge noise. In real devices, charge noise often

125410-8



BRAIDING-BASED QUANTUM CONTROL OF A MAJORANA … PHYSICAL REVIEW B 109, 125410 (2024)

exhibits an 1/ f -type spectrum [18,35,60–65,73,83,84]. Incor-
porating the 1/ f frequency dependence of noise in our model,
following, e.g., Refs. [19,35,73,83], could be an important
addition to the present work.

(vi) Qubit initialization. Above, we assumed that the
Majorana qubit can be initialized to a particular state of
the fourfold-degenerate ground-state manifold. One way to
achieve this experimentally is via thermalization. The experi-
menter can tune both the Y junction and the straight wire away
from the fully dimerized limit to open up an energy splitting
between the even and odd ground states of both subsystems,
and to make the ground state unique (e.g., |e, e〉). Then, ther-
malization will relax the system to this unique ground state,
completing the initialization step.

(vii) Thermalization-induced decoherence during braid-
ing. In our simulations above, we neglect effects and errors
induced by the finite-temperature bath that is unavoidably
present in a real experiment. This effect is discussed in de-
tail in Ref. [23], using a Kitaev-chain model similar to ours.
For a simple numerical estimate based on the parameters of
Sec. V A, we assume that the thermalizing bath cannot change
the fermion number parity of the multidot setup during the
braiding phase. For that case, we estimate the error due to
thermalization as the probability of having excitation energy
2v in thermal equilibrium. This error has no significant effect
on the fidelity plateau defined by nR � 0.01 if e−2v/kBT �
0.01, which is converted to the condition T � 76 mK for
v = 15 μeV as assumed in Sec. V A. Such temperatures are
achieved in dilution refrigerators.

(viii) Nuclear spins and spin-orbit interaction. To build a
Kitaev chain type system from quantum dots, it is essential to
break time-reversal symmetry by a substantial Zeeman field
[2,49–51]. In line with that, each on-site orbital of the Kitaev
chain model corresponds to a single Zeeman sublevel. Hyper-
fine interaction does add low-frequency noise to the energies
of these Zeeman sublevels. The strength of this noise can be
estimated from earlier results on semiconductor spin qubits.
In III-V semiconductors, where hyperfine effects are very sig-
nificant, the hyperfine noise strength of an electronic Zeeman
sublevel is of the order of 1 millitesla, or 60 nanoelectronvolts
[85]. This is much less than the typical charge noise level in
quantum dots, of the order of microelectronvolts, which we
have taken into account in our simulations above. Hence, it is a
reasonable approximation to neglect hyperfine noise, as it has
a weaker effect than charge noise. We also note that spin-orbit
interaction can act as a dominant decoherence mechanism
in semiconductor quantum dot spin qubits; however, it be-
comes a source of decoherence only when it is combined with
charge noise. Therefore, spin-orbit induced decoherence is a
secondary effect of charge noise, and hence we expect that this
secondary effect is dominated by the primary effect of charge
noise, which we include in our simulations discussed above.

(ix) Optimal control. In our numerical simulation, ex-
cited states are populated due to faster-than-adiabatic control.
These excitations cause deviations, seen for short braiding
times, from the idealized results nR = 1/2 [Figs. 3(a) and
5(a)] and nR = 0 [Figs. 3(b), 4, 5(b), and 6]. These di-
abatic errors could be reduced, e.g., by quantum optimal
control tools [86]. An example of a theoretical study is [41].
Based on the history of solid-state qubits (superconducting

circuits and semiconductor quantum dots), we expect that the
first generation of Majorana qubit experiments will attempt
to demonstrate initialization, control, and readout without
optimal-control techniques, and once these functionalities
have been demonstrated, then second-generation experiments
will utilize optimal control theory.

(x) Open-system approaches. It is possible to add open-
system dynamics to the model considered here, to describe
further decoherence mechanisms. This has been done, e.g.,
in Ref. [23], using a Markovian framework. We note that an
open-system approach to numerical simulations of braiding
does not scale as favorably as our approach based on the
BdG technique. For example, by adding a bosonic bath to the
few-site superconducting model, as in Eq. (20) of Ref. [23],
the Hamiltonian loses its quadratic character (in particle
creation-annihilation operators), and hence the economical
BdG approach cannot be used to simulate the dynamics. In
the case of an N-site model, the BdG matrix has a linear
dimension of 2N , which is linear in N ; however, the even
and odd Fock space each has dimension 2(N − 1), which
is exponential in N . The latter exponential scaling quickly
becomes prohibitive for numerical simulations.

(xi) Variations of our braiding scheme. Our Ramsey-type
braiding experiment outlined in Figs. 1 and 2 involves two
nonprotected gates that rotate the qubit by angle π/2. In
an experiment, it is possible to change those rotation angles
continuously, and measure the readout dot final occupation as
a function of those two angle parameters; i.e., those angles can
be used as control knobs. We expect that the earliest braiding
experiments will not be able to produce the fidelity plateaus
we obtain in our simulations; however, the comparison of
experiments and simulations exploring the rotation angle de-
pendence of the readout dot occupation can be used to identify
the error mechanisms leading to the loss of fidelity.

An alternative of our setup in Fig. 1, which does not re-
quire nonprotected qubit rotations, is where the middle two
Majorana zero modes are coupled by a Y junction. In that
setup, the nonprotected gates can be substituted by braiding
in the latter Y junction. However, that setup requires two Y
junctions to function properly, as opposed to the single Y junc-
tion setup of Fig. 1. Since nonprotected qubit rotations based
on simple tunnel pulses have already been demonstrated with,
e.g., semiconductor spin qubits, we find our single-Y -junction
setup more feasible and easier to realize.

VI. CONCLUSIONS

In conclusion, we have proposed a setup and a protocol
for experimental demonstration of a braiding-based π/2 gate
on a Majorana qubit. The protocol is based on a proximitized
quantum-dot array, and it is composed of auxiliary (nontopo-
logical) quantum gates, a braiding-based topological quantum
gate, and qubit readout via parity-to-charge conversion and
charge measurement. We focused on the effect of charge
noise, which we incorporate in our simulations as quasistatic
on-site disorder. Our results confirm that the braiding-based
gate suffers from diabatic errors for short braiding times, and
they demonstrate noise-induced dephasing for long braiding
times. For intermediate times, a fidelity plateau can develop,
which is made flatter and longer if disorder strength is
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decreased or if system size is increased. Our numerical results
provide quantitative predictions for the quality of future braid-
ing experiments, which can hopefully be built by combining
today’s state-of-the-art quantum dot arrays and proximity-
induced superconductivity.
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APPENDIX: BOGOLIUBOV–DE GENNES FORMALISM
FOR DYNAMICS

Our numerical results in the main text are obtained by
applying the BdG formalism. Here we outline how to calculate
the time dependence of the readout dot occupation via

nR(t ) = 〈�(t )|c†
RcR|�(t )〉 , (A1)

where |�(t )〉 is the time-evolved many-body state developing
from the initial state �i of the system.

The time-dependent Fock-space Hamiltonian in Eq. (4)
describes the time evolution of the system. To construct the
BdG Hamiltonian, we define the vector of the local fermionic
operators

c̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cY

c†
Y

cW

c†
W

cR

c†
R

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A2)

where cY and cW denote the vector of annihilation operators
of the Y junction and the straight wire, respectively. Using the
vector c̃, we can rewrite the Hamiltonian as

H (t ) = 1

2
c̃†H(t )c̃ + 1

2

∑
i∈L

μi, (A3)

where H(t ) is the BdG Hamiltonian, and L is the set of all site
labels.

At t = 0, the system is decoupled to three components
(Y junction, straight wire, readout dot) by setting uR(0) =
uP(0) = 0, and hence the BdG Hamiltonian has the form

H(0) =
⎛
⎝HY (0) 0 0

0 HW (0) 0
0 0 HR(0)

⎞
⎠, (A4)

where HY (0), HW (0), and HY (0) are the BdG Hamiltonian of
the Y junction, the straight wire, and the readout dot, at t = 0,
respectively.

As usual in the BdG formalism, we use a time-dependent
BdG Hamiltonian that is particle-hole symmetric for all
times t :

PH(t )P−1 = −H(t ). (A5)

Here, the particle-hole transformation reads

P =
⎛
⎝σx ⊗ 1NY 0 0

0 σx ⊗ 1NW 0
0 0 σx

⎞
⎠K, (A6)

where σx is the first Pauli matrix acting on the Nambu
(particle-hole) degree of freedom, 1n is the n × n identity
matrix, NY (NW ) is the number of the sites in the Y junc-
tion (straight wire), and K is complex conjugation. We note
that each of the three subsystems alone has particle-hole
symmetry.

Our goal is to describe the expectation value of the readout
dot occupation c†

RcR at the final moment of the protocol. To
this end, we first solve (numerically) the eigenvalue problem
of the initial BdG Hamiltonians, HY (0), HW (0), and HY (0),
we find the eigenvalues of the subsystems λY,i, λW,i, and λR,i,
as well as the corresponding eigenvectors φY,i, φY,i, and φY,i,
where i = 1, 2, . . . , 2Nk , Nk is the number of sites in the given
subsystem, and k ∈ {Y,W, R} denotes the subsystem. We or-
der the eigenvalues such that λk,i � 0 and λk,i+N = −λk,i

for 1 � i � N ≡ NY + NW + NR. Furthermore, we choose the
eigenvectors such that φk,i+N = Pφk,i.

With the eigenvectors φk,i at hand, we can express the
unitary matrix U ′ that diagonalizes H(0):

U ′ =
⎛
⎝UY 0 0

0 UW 0
0 0 UR

⎞
⎠, (A7)

where UY , UW , and UR are the diagonalizers of the Y junc-
tion, the straight wire, and the readout dot, respectively. The
diagonalizer of subsystem k ∈ {Y,W, R} can be written as

Uk =

⎛
⎜⎝

φ
†
k,1

· · ·
φ

†
k,2Nk

⎞
⎟⎠. (A8)

The vector of quasiparticle operators can be expressed as

d̃′ = U ′c̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dY

d†
Y

dW

d†
W

dR

d†
R

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A9)

where dY , dW , and dR are the quasiparticle operators corre-
sponding to the Y junction, the straight wire, and the readout
dot, respectively. The fact that the on-site energy of the read-
out dot is zero leaves dR ambiguous; for concreteness, we
define dR = cR.

To highlight the special role of the quasi-zero-energy ex-
citations, we reorder the vector of quasiparticle operations
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as

d̃ = �U ′︸︷︷︸
U

c̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

d1

· · ·
dN

d†
1· · ·

d†
N

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A10)

where d1 (d2) corresponds to the quasi-zero-energy excitation
of the Y junction (straight wire), di (i = 3, . . . , N ) are ordered
such a way that the corresponding excitation energies are
in ascending order, furthermore � is the permutation matrix
corresponding to the reordering.

As stated above, our goal is to compute the time depen-
dence of the readout dot occupation via Eq. (A1), which we
rephrase as

nR(t ) = 〈�i|[c̃(t )]2N [c̃(t )]2N−1|�i〉 , (A11)

where [. . .] j denotes the jth component of the vector, |�i〉
is a given initial state of the system, and the elements of the
vector c̃(t ) are the elements of the vector c̃, transformed to the
Heisenberg picture:

c̃(t ) = T e− i
h̄

∫ t
0 H(τ )dτ︸ ︷︷ ︸

U (t )

c̃, (A12)

where T is the time ordering operator and U (t ) is the BdG
propagator. Inserting Eq. (A12) into Eq. (A11) and using
Eq. (A10), we obtain

nR(t ) = 〈�i|[UU †d̃]2N [UU †d̃]N |�i〉

=
2N∑

n,m=1

Snm(t ) 〈�i|d̃nd̃m|�i〉, (A13)

where the second line is an implicit definition of

Snm(t ) = [UU †]2N,n[UU †]N,m. (A14)

In the main text, we focus on the case when |�i〉 = |e, e, 0〉,
i.e., both the Y junction and the straight wire are in its even
ground state, and the readout dot is empty. The even-parity
state could be the actual ground state (denoted by “G”) or
the first excited state (within the quasidegenerate ground-state
subspace, denoted by “E”) depending on the actual on-site
energy disorder realization. The two states are related as

|E, G, 0〉 = d†
1 |G, G, 0〉 , (A15a)

|G, E, 0〉 = d†
2 |G, G, 0〉 . (A15b)

The readout dot occupation can be calculated for all four
initial energy eigenstates |G, G, 0〉, |E, G, 0〉, |G, E, 0〉, and
|E, E, 0〉. Evaluation of the matrix element of 〈�i|d̃nd̃m|�i〉
in these four cases yields

nR(t )
∣∣∣
|�i〉=|G,G,0〉

=
N∑

μ=1

Sμ,N+μ(t ), (A16a)

nR(t )
∣∣∣
|�i〉=|E,G,0〉

= SN+1,1(t ) +
N∑

μ=2

Sμ,N+μ(t ), (A16b)

nR(t )
∣∣∣
|�i〉=|G,E,0〉

= SN+2,2(t ) +
∑

μ∈{1,3,4,...,N}
Sμ,N+μ(t ),

(A16c)

nR(t )
∣∣∣
|�i〉=|E,E,0〉

= SN+1,1(t ) + SN+2,2(t )

+
N∑

μ=3

Sμ,N+μ(t ). (A16d)

To determine which case corresponds to the initial state
|e, e, 0〉, we use the relation that

det(UY ) =
{

1 if the actual ground state is even,

−1 if the actual ground state is odd,
(A17)

and the corresponding relation for UW .
Applying Eq. (A17) for the Y junction and for the straight

wire, the state |e, e, 0〉 can be identified as

|e, e, 0〉 =

⎧⎪⎪⎨
⎪⎪⎩

|G, G, 0〉 if det(UY ) = det(UW ) = 1,

|E, G, 0〉 if − det(UY ) = det(UW ) = 1,

|G, E, 0〉 if det(UY ) = − det(UW ) = 1,

|E, E, 0〉 if det(UY ) = det(UW ) = −1.

(A18)

We note that if the on-site energy of the readout dot is zero, or
if the on-site disorder is absent in the Kitaev chains, then there
is at least one excitation with exactly zero energy. This leads to
the degeneracy of the zero eigenvalue of HY (0), HW (0), and
HR(0). In turn, this leads to an ambiguity in constructing the
matrices UY , UW , and UR. We have already fixed the ambiguity
of UR after Eq. (A9). Regarding the Y -junction and straight
wire, hosting Majoranas, care must be taken to use fermionic
zero modes when assembling UY and UW . Then, Eq. (A18)
can be used to identify |e, e, 0〉.
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