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Coherence-enhanced thermodynamic performance in a periodically driven inelastic heat engine
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Quantum thermodynamics with microscopic inelastic scattering processes has been intensively investigated
in recent years. Here, we apply quantum master equation combined with full counting statistics approach to
investigate the role of quantum coherence on the periodically driven inelastic heat engine. We demonstrate
that the inelastic quantum heat engine exhibits dramatic advantage of thermodynamic performance compared
to their elastic counterpart. Moreover, it is found that inelastic currents, output work, and the efficiency can
be enhanced by quantum coherence. In particular, the geometric effect proves crucial in achieving maximal
values of generated output work and energy conversion efficiency. The Berry curvature boosted by quantum
coherence unveils the underlying mechanism of a periodically driven inelastic heat engine. Our findings may
provide some insights for further understanding and optimizing periodically driven heat engines via quantum
coherence resource and inelastic scattering processes.
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I. INTRODUCTION

Quantum thermodynamics, an exquisite combination of
thermodynamics and quantum mechanics, addresses heat-to-
work conversion and entropy production in quantum thermal
machines at the microscopic level, ranging from the heat en-
gines, refrigerators, heat pumps, and even multitask machines
[1–4]. The practical quantum thermodynamics mainly con-
siders nonequilibrium thermodynamic processes, which are
typically realized by (i) time-dependent modulations [5,6];
(ii) multiple reservoirs with thermodynamic bias [7–9]; (iii)
quantum measurements [10,11]; (iv) quantum information,
e.g., quantum correlation [12–14]. The periodically driven
quantum heat engines have attracted increasing attention,
which can overcome thermodynamic biases to sustain the heat
transfer from the cold (low voltage) drain to the hot (high
voltage) source, thereby enabling the thermodynamic opera-
tions [15–22]. In particular, the geometric effects [23,24], e.g.,
Berry phase and quantum metric, should be properly adopted.

Quantum coherence is one kind of indispensable ingredi-
ent for quantum mechanics and also a fundamental quantum
resource in quantum thermodynamics, which distinguishes it
from classical counterparts [25,26]. With its unique features,
quantum coherence finds fertile applications in quantum ther-
mal machines [27–36]. Notably, heat engine, heat pump, and
multitask thermal machines can be driven by pure quantum
coherence [37–39]. Quantum coherence can also enhance the
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efficiency and constancy of the quantum thermal machines
[40]. Moreover, quantum coherence enables us to explore
the quantum contribution to the nonequilibrium entropy pro-
duction and information processes, e.g., the nonequilibrium
Landauer principle [41,42].

Recently, there has been growing recognition of the sig-
nificance of inelastic scattering processes in nonequilibrium
transport and thermodynamics [43–47], which are imple-
mented in three-terminal setups, in contrast to the elastic
scattering processes sufficiently realized via two terminals.
The generic inelastic processes enable one to investigate
nonlinearly coupled electronic and bosonic currents. Inter-
estingly, it is found that the bounds of Onsager coefficient
with inelastic processes are dramatically relaxed to promote
the thermodynamic performance [48]. Thus, quantum thermal
machines (e.g., thermal transistor and refrigerator) exhibit a
thermodynamic advantage by comparing with counterparts
under elastic processes. Meanwhile, such microscopic in-
elastic processes yield other unconventional transport and
thermodynamic phenomena, e.g., cooling by heating [49], the
separation of charge and heat currents [50,51], linear transis-
tor effects [52,53], and cooperative heat engines [54]. Though
extensive studies have been conducted to excavate the steady-
state thermodynamics of inelastic quantum thermal machines
[55], the influence of interplay between quantum coherence
and geometric effects on the thermodynamic performance of
periodically driven quantum heat engines are far from clear.

In our paper, we conduct a comprehensive study to investi-
gate the impact of quantum coherence on the thermodynamic
performance of a periodically driven heat engine modulated
in adiabatic regimes by including the Redfield equation in the
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absence of secular approximation. First, the performance of
a three-terminal inelastic quantum heat engine is compared
with a two-terminal elastic counterpart to demonstrate the
advantages of inelastic scattering processes. Then, the geo-
metric and dynamic current components dramatically affected
by quantum coherence are obtained and the contribution of
the geometric component to the thermodynamic performance
of three-terminal heat engine is rigorously analyzed.

The main points of this paper are demonstrated as: (i)
The Redfield equation encompasses a unified description
of nonlinear electronic and phononic transport in a three-
terminal periodically driven setup, with a particular focus
on the interplay between inelastic electron-phonon scattering
and quantum coherence on nonequilibrium currents. Thus, the
method goes beyond the traditional transport approaches, e.g.,
Fermi’s golden rule [43,56], the Lindblad equation [57,58],
and the Redfield equation with secular approximation [59].
(ii) The three-terminal driven inelastic quantum heat en-
gine exhibits a significant advantage of thermodynamic
performance in a wide parameter regime, compared to a two-
terminal elastic counterpart [60,61]. This clearly demonstrates
the importance role of the inelastic scattering processes on
driven quantum thermodynamics. Additionally, the combi-
nation of heat and particle transports in inelastic transport
facilitates concurrent optimization of thermal conductance
and electrical conductance for thermodynamic devices. (iii)
The thermodynamic performance of the driven inelastic heat
engine can be dramatically enhanced via quantum coherence.
The nonequilibrium currents are decomposed as dynamic
and geometric components. And the geometric component is
found to be crucial in achieving maximal values of generated
output work and thermodynamic efficiency.

This paper is structured as follows: In Sec. II, we describe
the setup of the inelastic heat engines and derive the dynamic,
geometric currents using the quantum master equation with a
full counting statistics approach. The work and efficiency also
have been defined. In Sec. III, we focus on analyzing the en-
ergy efficiency and output work of the inelastic heat engines.
Additionally, we numerically compare the results with both
the elastic engine and the incoherent engine. We summarize
our findings in Sec. IV. For simplicity, we set h̄ = kB = e ≡ 1
throughout this paper.

II. MODEL AND METHODS

A. Inelastic heat engine

We consider an inelastic heat engine, which is composed
of a double quantum dot (QD) system inelastically coupled
to a phonon bath, and each dot individually exchanges energy
with an electronic reservoir (e.g., metal lead, denoted as l and
r), as shown in Fig. 1. The Hamiltonian of this inelastic heat
engine reads Ĥ = ĤDQD + Ĥe−ph + Ĥlead + Ĥtun + Ĥph [46].
Specifically, the double QDs are described as

ĤDQD =
∑
i=l,r

εid̂
†
i d̂i + �(d̂†

l d̂r + H.c.), (1)

where d̂†
i (d̂i) is the creation (annihilation) operator of one

electron in the ith QD, εi represents the QD energy, and �

shows tunneling between the two QDs. The phonon reservoir

FIG. 1. Illustration of the three-terminal inelastic heat engine: An
electron initially departs from the left reservoir and enters the left
QD, characterized by an energy level εl . Subsequently, the electron
undergoes a transition to the right QD, which possesses a different
energy level denoted as εr . This transition is facilitated by interacting
with one phonon from the phonon bath, maintained at a temperature
of Tph. Within this setup, two electric reservoirs are involved, each
characterized by distinct temperatures and chemical potentials. The
left (l) and right (r) electric reservoirs have temperatures denoted
as Tl (r), while their respective chemical potentials are represented
as μl (r). � represents the tunneling strength between two QDs, γi

characterizes the coupling between the electronic reservoirs and the
corresponding QD, and λq represents the electron-phonon interaction
strength.

denotes Ĥph = ∑
q ωqâ†

qâq, where â†
q (âq) creates (annihilates)

one phonon with the frequency ωq. The inelastic electron-
phonon interaction is described as

Ĥe−ph =
∑

q

λqd̂†
l d̂r (âq + â†

q) + H.c., (2)

where λq is the strength of the electron-phonon coupling
strength. The electronic leads are expressed as Ĥlead =∑

j=L,R

∑
k ε jkNjk , with the electron number Njk = d̂†

jk d̂ jk

in the jth lead at the momentum k. The electron tunnel-
ing between the dots and the electronic reservoirs are given
by Ĥtun = ∑

j=L,R;k γ jk d̂†
j d̂ jk + H.c., where γ jk is the corre-

sponding coupling strength.
To analyze the heat engine in eigenspace of the double

QDs, we begin to diagonalize ĤDQD as

ĤDQD = EDD̂†D̂ + Ed d̂†d̂, (3)

where the eigenenergies denote ED = εr+εl
2 +√

(εr−εl )2

4 + �2 and Ed = εr+εl
2 −

√
(εr−εl )2

4 + �2, and
the new sets of Fermion operators are specified
as D̂ = sin θ d̂l + cos θ d̂r and d̂ = cos θ d̂l − sin θ d̂r

[53,61], with θ ≡ arctan( 2�
εr−εl

)/2. Consequently, the
electron-phonon and dot-reservoir tunneling terms are
reexpressed as Ĥe−ph = ∑

q λq[sin(2θ )(D̂†D̂ − d̂†d̂ ) +
cos(2θ )(d†D + D†d )](â†

q + âq) and Ĥtun = ∑
k[γLk (sin

θD̂† + cos θ d̂†) d̂Lk + γRk (cos θD̂† − sin θ d̂†)d̂Rk] + H.c.
From the term Ĥe−ph, it is known that in the eigenbasis of
ĤDQD there exist both dephasing and damping processes,
which may generate the steady-state coherence [62].
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B. Geometric-phase-induced currents

Full counting statistics nowadays is widely accepted as
a powerful utility to characterize complete information of
current fluctuations [63]. Based on a two-time measurement
protocol [64], we apply the full counting statistics to obtain
the particle and energy flows out of electronic reservoirs and
heat current out of the phonon reservoir by including � = {λp,
λE , λph}, respectively (see the introduction of full counting
statistics in Appendix A). Consequently, the counting-field-
dependent total Hamiltonian is described as

H−�/2 = HDQD + Hph + Hlead + V−�/2, (4)

with V−�/2 specified as

V−�/2 =
∑

q

λq[sin(2θ )(D̂†D̂ − d̂†d̂ )

+ cos(2θ )(d†D + D†d )](ei
λph

2 ωq âq + H.c.)

+
∑

k

([γLk (sin θD̂† + cos θ d̂†)d̂Lk

+ γRke−i
λp
2 −i λE

2 εRk (cos θD̂† − sin θ d̂†)d̂Rk] + H.c.).

(5)

We assume the electron-phonon coupling and dot-reservoir
tunnelings are weak. Based on the Born-Markov approx-
imation, we perturb V−�/2 to obtain the quantum master
equation as [65]

∂

∂t
ρS (�, t ) = i[ρS (�, t ), HDQD]

−
∫ ∞

0
dτTrB{[[V−�/2, [V−�/2(−τ ),

× ρS (�, t )⊗ρB]�]�}, (6)

where ρS (�, t ) denotes the reduced density operator of
a central double QD system with counting parameters,
i.e., ρS (�, t ) = TrB{ρT

�(t )}, with ρT
�(t ) [see Eq. (A4) in

Appendix A] the full density operator of the whole
inelastic heat engine, the commutating relation denotes
[Â�, B̂�]� = Â�B̂� − B̂�Â−�, and the equilibrium distribu-
tion of reservoirs is specified as ρB = ρl⊗ρr⊗ρph, with ρi =
exp[−βi(Ĥi − μiN̂i )]/Zi (i = l, r), ρph = exp[−βphĤph]/Zph,
the partition functions Zi = Tr{exp[−βi(Ĥi − μiN̂i )]} and
Zph = Tr{exp[−βphĤph]}, and the inverse temperatures βi =
1/kBTi and βph = 1/kBTph. If we reorganize ρS (�, t ) in the
vector form |P(�, t )〉 = [〈0|ρS (�, t )|0〉; 〈D|ρS (�, t )|D〉;
〈d|ρS (�, t )|d〉; 〈D|ρS (�, t )|d〉; 〈d|ρS (�, t )|D〉], the quantum
master equation is reexpressed as

d|P(�, t )〉
dt

= H(�, t )|P(�, t )〉, (7)

where H(�, t ) is the evolution matrix with its elements
shown in Appendix B. We note that the inclusion of the off-
diagonal elements of the density matrix, i.e., 〈D|ρS (�, t )|d〉
and 〈d|ρS (�, t )|D〉, are the signature of quantum coherence.
Conversely, if we neglect the quantum coherence effect, we
disregard the off-diagonal elements.

For the heat engine modulated by parameters such as �i(t ),
μi(t ), Ti(t ), and εi(t )(i = l, r), in the long time evolution the

cumulant generating function based on the large deviation
principle and adiabatic perturbation theory can be divided into
two components [66],

Gtot (�) = Gdyn(�) + Ggeo(�), (8)

where the dynamical phase denotes Gdyn(�) = 1
T

∫ T
0

dtEg(�, t ), with Eg(�, t ) the eigenvalue of H(�, t ) owning
the maximum real part [66,67], and the geometric phase is
specified as Ggeo(�) = − 1

T
∫ T

0 dt〈ϕ(�, t )|∂t |ψ (�, t )〉, with
〈ϕ(�, t )| and |ψ (�, t )〉 left and right eigenvectors of H(�, t ).
The dynamical component, Gdyn, characterizes the temporal
average and delineates the dynamic aspects of particle and
heat transfer. While the geometric contribution, Ggeo, arises
from adiabatic cyclic evolution and necessitates a minimum
of two parameter modulations to manifest its effects [66–68].

Consequently, the particle current flowing from the right
reservoir into the system is given by [55]

〈Nl〉 = ∂Gtot (�)

∂ (iλp)

∣∣∣∣
�=0

, (9)

and the particle flow from the left reservoir can be straight-
forwardly obtained as 〈Nl〉 = −〈Nr〉 via the law of particle
conservation. Meanwhile, the energy flow is expressed as

〈Er〉 = ∂Gtot (�)

∂ (iλE )

∣∣∣∣
�=0

, (10)

and electronic heat flow extracted from the right reservoir
is defined as 〈Qr〉 = 〈Er〉 − μr〈Nr〉 [69]. The phononic heat
current is given by

〈Qph〉 = ∂Gtot (�)

∂ (iλph)

∣∣∣∣
�=0

. (11)

In analogy, the particle current 〈Nl〉 and energy current 〈El〉
flow from the left electronic reservoir into the central system.
In this paper, we constrain all parameters of the driving proto-
col to an adiabatic driving regime: the driving period is chosen
as T = 10−12 s, corresponding to h̄� ≈ 4 × 10−2 meV. It’s
evident that the rate between system and reservoir �i = 4 meV
(i = l, r, ph), which is much greater than h̄�, and the adi-
abatic approximation remains valid [18]. In this paper, we
demonstrate the realization of the thermoelectric engine in the
double QD system by choosing the left and right QD ener-
gies, i.e., εl and εr , as the modulating parameters [22,60,70].
The QDs are driven adiabatically following the protocol εl =
EA,l + EB,l sin(�t ), εr = EA,r + EB,r sin(�t + φ)]. The im-
pact of geometric properties can be realized by tuning the
phase φ. Nonzero modulation phase φ is required to pump
heat from one reservoir to another reservoir. Distinct values
of φ correspond to different driving protocols. When φ =
π/2, the modulation-induced geometric pump is optimized. In
contrast, when φ = 0, the geometric contribution diminishes,
leaving only the dynamical counterpart. This stems from the
disappearance of the enclosed area in the parameter space,
e.g., εl and εr .

C. Definitions of work and efficiency

We operate the three-terminal inelastic heat engine by har-
vesting energy from the hot phonon reservoir with a fixed
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temperature of kBTl = kBTr = 10 meV and kBTph = 12 meV
and converting it into useful output work. The electrochemical
potential bias is defined as �μ = μl − μr , with the average
chemical potential μ ≡ (μl + μr )/2. The particle and energy
conservation laws imply that [16,18]

〈WI〉 = −(〈El〉 + 〈Er〉 + 〈Qph〉). (12)

Here, 〈WI〉 represents the input work per modulating period T ,
which becomes vanishing once the driving is removed. And
the useful output work of the heat engine is described as

〈Wout〉 = (μl − μr ) 〈Nr〉 . (13)

The entropy production of the whole system is given by 〈S〉 =
−∑

v=l,r,ph〈Qv〉/Tv [71]. Moreover, the entropy production
takes on a specific form [71]

Tl〈S〉 = (1 − Tl/Tph )〈Qph〉 − 〈Wout〉 + 〈WI〉. (14)

From the above equation, we can find that the thermody-
namic device can still function as a quantum heat engine and
generate useful work, even without a temperature difference.
We note that when the electric power 〈Wout〉 > 0, the thermal
machine operates as a heat engine. (i) If the input energy is
negative, i.e., 〈WI〉 < 0, the efficiency of the heat engine is
given by

〈η〉 = 〈Wout〉
(1 − Tl/Tph )〈Qph〉 . (15)

Such definition of the efficiency is consistent with the en-
ergy efficiency of steady-state thermoelectric transport, e.g.,
at the Carnot limit 〈Wout〉/〈Qph〉 = 1 − Tl/Tph, the efficiency
at Eq. (15) becomes the unit. (ii) When the input energy is
nonnegative, i.e., 〈WI〉� 0, the efficiency of the heat engine
becomes [18]

〈η〉 = 〈Wout〉
(1 − Tl/Tph )〈Qph〉 + 〈WI〉 . (16)

According to the thermodynamic second law, the thermoelec-
tric engine efficiency is always upper bounded by 〈η〉 � 1
[16,72].

In contrast to the elastic heat engine, it is known that
〈Qph〉 = 0 in the absence of the inelastic electron-phonon
scattering. Thus, the average input work is reduced to
〈WI〉 = −(〈El〉 + 〈Er〉). Meanwhile, the entropy production
of Eq. (14) is simplified to Tl〈S〉 = −〈Wout〉 + 〈WI〉, and the
thermodynamic efficiency denotes

〈η〉 = θ (〈WI〉)〈Wout〉/〈WI〉, (17)

with θ (x) = 1 for x > 0 and θ (x) = 0 for x � 0. It should note
that the input energy of an elastic quantum heat engine orig-
inates entirely from the driving energy WI = −(〈El〉 |geo +
〈Er〉|geo) and 〈El〉 |dyn + 〈Er〉|dyn ≡ 0 due to the second law
of thermodynamics [9].

III. RESULTS AND DISCUSSIONS

In this section, we will present results derived from pe-
riodically driven double QD setups. Our investigation will
encompass two distinct cases: (i) a comparison of thermody-
namic performance between elastic and inelastic heat engines

(a) (b)

FIG. 2. Comparison of performance between elastic and inelastic
quantum heat engines. (a) The average output electric work 〈Wout〉,
(b) average efficiency 〈η〉 as a function of �μ for two-terminal
(elastic) and three-terminal (inelastic) heat engines. The energy-level
modulations are exemplified as εl = [−1 + 5 sin(�t )] meV, εr =
[1 + 5 sin(�t + π/2)] meV, � = 2π/T and T = 10−12 s. The cou-
pling between quantum dots and phonon reservoir for the inelastic
and elastic cases are set as �ph = 4 meV and �ph = 0, respectively.
The other parameters are given by μ = 0, �l = �r = 4 meV, � =
8 meV, kBTl = kBTr = 10 meV, and kBTph = 12 meV.

with quantum coherence and (ii) an exploration of the impact
of quantum coherence on the inelastic engine.

A. Elastic vs inelastic periodically driven heat engines

For the periodically driven elastic heat engines, a straight-
forward example of such devices is a two-terminal double
QD device, where the energy exchange between QDs and the
phonon reservoirs is isolated, i.e., �ph = 0. We depict the av-
erage work and efficiency of both elastic (the red solid curve)
and inelastic (the black solid curve) heat engines as a function
of the potential difference �μ in Fig. 2, utilizing Eqs. (13),
(15), and (16) to compare their performances. Here quantum
coherence is considered for both heat engines. It is found that
even without a temperature difference (Tl = Tr), the devices
can still work as a quantum heat engine and generate useful
work, i.e., 〈Wout〉 > 0.

Figure 2 clearly shows that in a broad voltage bias range
(as indicated by the red and black curves for −8 meV <

�μ < 0), the inelastic quantum heat engine demonstrates
substantially higher output work and efficiency compared to
its elastic counterpart. This superior performance is attributed
to the benefits of inelastic scattering processes, such as in-
elastic thermoelectricity, which surpasses conventional elastic
transport, as proposed by Mahan and Sofo for conventional
thermoelectricity [73]. Consequently, we assert that inelastic
heat engines incorporating quantum coherence warrant thor-
ough analysis.

B. Thermodynamic performance of the inelastic heat engine

In Fig. 3, we commence the analysis of the thermo-
dynamic performance of the inelastic engine employing a
three-terminal double QD system. It needs noting that when
we naturally include quantum coherence, we mark the cal-
culated quantities (e.g., the output work) with coherence.
In contrast, if we discard quantum coherence, these quanti-
ties are marked with incoherence. Initially, we examine the
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(a) (b)

(c) (d)

FIG. 3. (a) The average output electric work 〈Wout〉, (b) average
efficiency 〈η〉, (c) the input work done by driving 〈WI〉, and (d) aver-
age phononic current 〈Qph〉 as a function of �μ for the coherence and
incoherence cases. The energy-level modulations are exemplified as
εl = [−1 + 5 sin(�t )] meV, εr = [1 + 5 sin(�t + π/2)] meV, � =
2π/T , and T = 10−12 s. The other parameters are given by μ = 0,
�l = �r = �ph = 4 meV, � = 8 meV, kBTl = kBTr = 10 meV, and
kBTph = 12 meV.

output work and efficiency of the engine, depicted in Figs. 3(a)
and 3(b), respectively. We observe that the nonzero quantum
coherence (off-diagonal elements of system density matrix)
yields a significant improvement in the optimal work and
efficiency, compared with the counterparts in absence of quan-
tum coherence. More specifically, the maximum output work
increases to 0.3 meV as the coherence effect is taken into
account, whereas it becomes 0.05 meV by artificially ignoring
quantum coherence; see Fig. 3(a). In analogy, the maximum
efficiency considering the coherent transport effect lead to a
maximum efficiency of 30% (in percentage units), whereas it
becomes only 2% during the incoherent transport processes,
as shown in Fig. 3(b). (More details of the optimization and
comparison can be found in Appendix C.) It’s worth noting
that the temperatures considered in this analysis are consistent
with current experimental conditions [74].

We also scrutinize the impact of quantum coherence on the
driving energy WI and phononic current Qph. We observe a
comparative decrease for the input work WI due to the quan-
tum coherence in Fig. 3(c). Similarly, the input heat current
〈Qph〉 around �μ = 0 in Fig. 3(d) is reduced to approximately
twice the value in absence of quantum coherence. Hence,
quantum coherence enhances the thermodynamic efficiency.

Next, we utilize coherence measurement (i.e., |ρDd |) to
quantitatively estimate the quantum coherence during the
adiabatic transport [25]. In Fig. 4(a), it is found that the
existence of |ρDd | suppresses the diagonal density ma-
trix element ρdd . And, |ρDd | itself in Fig. 4(b) shows

(a) (b)

FIG. 4. The density matrix (a) ρdd with coherence and incoher-
ence as a function of t/T . (b) |ρDd | as a function of t/T for different
dot-dot tunneling strength �. The double QD energy modulations:
εl = [−1 + 5 sin(�t )] meV, εr = [1 + 5 sin(�t + π/2)] meV, � =
2π/T and T = 10−12 s. The other parameters are given by
μ = 0, �l = �r = �ph = 4 meV, � = 8 meV, �μ = 0, kBTl =
kBTr = 10 meV, and kBTph = 12 meV.

finite value and periodic oscillations in one driving pe-
riod, which is enhanced by the inter-dot tunneling. Thus,
quantum coherence should not be naively ignored. Con-
sidering the contribution of |ρDd | to the currents, e.g., the
output work 〈Wout〉 = (μl − μr )

∫ T
0

dt
T

∑
i=D,d [−γr,i0ρii(t ) +

γr,0iρ00(t )] + 1
4 sin 2θ [γ̃r,i0(ρDd + ρdD)], with the rates γr,i0 =

�rλ0i[1 − fr (εi )], γr,0i = �rλ0i fr (εi ), γ̃r,i0 = �r[1 − fr (εi )],
and γ̃r,0i = �r fr (εi ) (λ0D = sin2 θ , λ0d = cos2 θ ) [61,75], it
is known that the output work is dramatically enhanced via
the quantum coherence in Fig. 3(a). Therefore, quantum co-
herence indeed plays a pivotal role in the performance of
quantum heat engines.

To provide a further understanding of how coherent and in-
coherent transport impact output work and phononic currents,
we categorize these currents into two distinct components:
the geometric and dynamic components [18,76], as elegantly
illustrated in Fig. 5. The former component arises as a con-
sequence of external periodic driving. In contrast, the latter
one is attributed to thermodynamic biases, such as differ-
ences in chemical potentials and temperature gradients. It’s
evident that geometric work can counteract the direction of
thermodynamic biases, allowing for the realization of a ge-
ometric thermoelectric pumping effect, e.g., based on the
three-terminal double QDs system [18,76]. The input work
〈WI〉 at Eq. (12) is completely determined by the geomet-
ric contribution, expressed as 〈WI〉 = −(〈El〉 |geo + 〈Er〉|geo +
〈Qph〉|geo), based on the first law of thermodynamics, i.e.,
〈El〉 |dyn + 〈Er〉|dyn + 〈Qph〉|dyn ≡ 0. The input work is appar-
ently reduced via quantum coherence. Hence, by comparing
output work [Figs. 5(a) and 5(b)], heat current [Figs. 5(c) and
5(d)], and input work [Fig. 3(c)] both at coherence and inco-
herence cases, it is interesting to note that geometric currents
experience dramatic improvement due to quantum coherence
effects. Hence, such geometric effect will strongly affect the
thermodynamic performance.

Alternatively, in scenarios where pairs of parameters [εl (t )]
and [εr (t )] are subjected to periodic driving [77–79], the
gauge-invariant Berry curvature is harnessed to describe the
system’s geometric behavior. This Berry curvature is elegantly
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(a) (b)

(c) (d)

FIG. 5. The average output work 〈Wout〉 with (a) coherence and
(b) incoherence, (c) the photonic current 〈Qph〉 with (c) coherence
and (d) incoherence as a function of �μ. The shaded regimes in
(a) and (b) denote the useless work. The parameters are the same
as in Fig. 3.

expressed as [23,66,76]

Fεl εr = 〈∂εl ϕ|∂εr ψ〉 − 〈∂εr ϕ|∂εl ψ〉, (18)

and the geometric contribution of cumulant generating func-
tion is described as Ggeo = − ∫∫

εl εr
dεl dεrFεl εr [80]. As

shown in Fig. 6, the Berry-phase effect is able to generate
geometric particle and heat currents against thermodynamic
biases. Specifically, the Berry curvatures for the parti-
cle current, considering both incoherence [Fig. 6(a)] and
coherence effects [Fig. 6(b)], promise the existence of

(a) (b)

FIG. 6. The contour map in the parameter space of the left QD
energy level εl and the right QD energy εr : Berry curvature for
the average particle current −∂Fεl εr (λ)/∂ (iλp)|λ=0 (a) with incoher-
ence and (b) coherence cases. The black circle denotes the path of
two parameter QD energy modulations: εl = [−1 + 5 sin(�t )] meV,
εr = [1 + 5 sin(�t + π/2)] meV, � = 2π/T and T = 10−12 s. The
other parameters are given by μ = 0, �L = �r = �ph = 4 meV, � =
8 meV, �μ = 0, kBTl = kBTr = 10 meV, and kBTph = 12 meV.

geometric currents. However, quantum coherence will further
enhance the performance of Berry curvature within the driving
zone (rounded by black circles), which finally significantly
strengthens the geometric contribution to the thermodynamic
performance of the inelastic heat engine.

IV. CONCLUSION

In summary, we have demonstrated that the quantum
coherence can enhance the thermodynamic performance of
periodically driven quantum heat engines. Employing quan-
tum master equations with the full counting statistics method,
which conserves quantum coherence, we derived the dynam-
ics and geometric current of coherent quantum heat engine,
along with the output work and thermodynamic efficiency.
Our results reveal that inelastic quantum heat engine exhibits
significantly higher performance compared to their elastic
counterpart. The nonzero quantum coherence, characterized
as the off-diagonal density matrix elements in the eigenba-
sis, is explicitly exhibited. Various modulations of system
parameters, e.g., geometric modulation phase and tunneling
strength, on thermodynamic performance are exhibited in
Appendix C.

Furthermore, we delved into exploring the impact of quan-
tum coherence on the thermodynamic performance of the
periodically driven inelastic heat engine. Through external
modulations with dual parameters and considering the ge-
ometric phase, we illustrated that the quantum coherence
effect can enhance heat absorption and inelastic currents,
consequently improving output work and thermodynamic ef-
ficiency. Analyzing the Berry curvature, we further unveiled
the mechanism of quantum coherence on geometric currents.
It is shown that the curvature is dramatically strengthened via
quantum coherence. Therefore, our findings provide physical
insights for optimizing periodically driven inelastic heat en-
gines with quantum coherence resource.
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APPENDIX A: FULL COUNTING STATISTICS
FOR PARTICLE AND ENERGY CURRENTS

We briefly introduce the full counting statistics to count the
particle and energy flows in the inelastic heat engine. Here,
we count the particle and energy flows into the rth electronic
reservoir and the heat current into the phth reservoir. Using the
two-time measurement protocol [63,64], one is able to define
the characteristic function as

Z (�) = 〈eiλpN̂p(0)+iλE ĤE (0)+iλphĤph (0)e−iλpN̂p(t )−iλE ĤE (t )−iλphĤph (t )〉,
(A1)
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where � = {λp, λE , λph}, λp,E counting parameters for par-
ticle and energy flows into the rth reservoir and λph heat
currents into the phonon reservoir, respectively. N̂p represents
the number operator for the total particles in the rth reservoir,
ĤE is the Hamiltonian operator for the rth reservoir, and Ĥph

is the Hamiltonian operator for the phonon reservoir. The
time evolution follows the Heisenberg representation and 〈.〉
denotes an average with respect to the total initial density
operator. This density operator is considered as a factorized
form with respect to the central QDs system (S) and the (l , r,
and ph) reservoirs. It is expressed as

ρT (0) = ρS (0) ⊗ ρl (0) ⊗ ρr (0) ⊗ ρph(0), (A2)

where the equilibrium distribution of ρα of the αth elec-
tronic reservoir is given by ρα = exp[−βα (Ĥα − μαN̂α )]/Zα ,
with Zα = Tr{exp[−βα (Ĥα − μαN̂α )]} representing the par-
tition function, and the equilibrium density operator of the
phonon reservoir is expressed as ρph(0) = exp[−βphĤph]/Zph,
with Zph = Tr{exp[−βphĤph]}. Actually, Eq. (A1) can be re-
organized as

Zt (�) = Tr
[
ρT

�(t )
]
, (A3)

where the modified density operator is specified as

ρT
�(t ) = U−�/2(t )ρT (0)U †

�/2(t ). (A4)

The propagating operator embedded with counting pa-

rameters is given by U−�/2(t ) = e−i
λph

2 Hph−i λE
2 Hr−i

λp
2 NrU (t )

ei
λph

2 Hph+i λE
2 Hr+i

λp
2 Nr , which can be reexpressed as

U−�/2(t ) = e−iH−�/2(t ), (A5)

with the counting-field-dependent total Hamiltonian

H−�/2 = e−i
λph

2 Hph−i λE
2 Hr−i

λp
2 Nr HT ei

λph
2 Hph+i λE

2 Hr+i
λp
2 Nr , (A6)

and HT is the total Hamiltonian of the inelastic heat engine.
Hence, the t-time cumulant generating function is given by
Gt (�) = ∂ lnZt (�)/∂t . Then the current can be obtained as

Jμ(t ) = ∂Gt (�)

∂ (iλμ)

∣∣∣∣
�=0

. (A7)

APPENDIX B: THE DETAILED EXPRESSION OF THE EVOLUTION H(�) FOR COUNTING THE RIGHT RESERVOIR

The following is the detailed expression of the evolution H(�) for counting the right reservoir:

H11(�) = −�l cos2 θ fl (ED) − �l sin2 θ fl (Ed ) − �r sin2 θ fr (ED) − �r cos2 θ fr (Ed ),

H12(�) = �l cos2 θ [1 − fl (ED)] + �r sin2 θ [1 − fr (ED)]e−i(λp+λE ED ),

H13(�) = �l sin2 θ [1 − fl (Ed )] + �r cos2 θ [1 − fr (Ed )]e−i(λp+λE Ed ),

H14(�) = H15(�) = 1
2�l sin θ cos θ [[1 − fl (ED)] + [1 − fl (Ed )]]

− 1
2�r sin θ cos θ [[1 − fr (ED)]e−i(λp+λE ED ) + [1 − fr (Ed )]e−i(λp+λE Ed )],

H21(�) = �l cos2 θ fl (ED) + �r sin2 θ fr (ED)ei(λp+λE ED ),

H22(�) = −�l cos2 θ [1 − fl (ED)] − �r sin2 θ [1 − fr (ED)] − �ph cos2 2θ [1 + n(ω0)],

H23(�) = �ph cos2 2θeiλphω0 n(ω0),

H24(�) = H25(�) = 1
2�l sin θ cos θ [1 − fl (Ed )] − 1

2�r sin θ cos θ [1 − fr (Ed )] + 1
2�ph sin 2θ cos 2θ (eiλphω0 − 1) [1 + n(ω0)],

H31(�) = �l sin2 θ fl (Ed ) + �r cos2 θ fr (Ed )ei(λp+λE Ed ),

H32(�) = �ph cos2 2θ e−iλphω0 [1 + n(ω0)],

H33(�) = −�l sin2 θ [1 − fl (Ed )] − �r cos2 θ [1 − fr (Ed )] − �ph cos2 2θ n(ω0),

H34(�) = H35 = 1
2�l sin θ cos θ [1 − fl (ED)] − 1

2�r sin θ cos θ [1 − fr (ED)] − 1
2�ph sin 2θ cos 2θ (e−iλphω0 − 1) [1 + n(ω0)],

H41(�) = H51 = − 1
2�l sin θ cos θ [ fl (ED) + fl (Ed )] + 1

2�r sin θ cos θ [ fr (ED)ei(λp+λE ED ) + fr (Ed )ei(λp+λE Ed )],

H42(�) = H52(�) = 1
2�l sin θ cos θ [1 − fl (ED)] − 1

2�r sin θ cos θ [1 − fr (ED)] + 1
2�ph sin 2θ cos 2θ (1 + e−iλphω0 ) [1 + n(ω0)],

H43(�) = H53(�) = 1
2�l sin θ cos θ [1 − fl (Ed )] − 1

2�r sin θ cos θ [1 − fr (Ed )] − 1
2�ph sin 2θ cos 2θ (eiλphω0 + 1) n(ω0),

H44(�) = H55(�) = − 1
2�l sin2 θ [1 − fl (ED)] − 1

2�l cos2 θ [1 − fl (Ed )] − 1
2�r cos2 θ [1 − fr (ED)] − 1

2�r sin2 θ [1 − fr (Ed )]

− 1
2�ph cos2 2θ [1 + 2n(ω0)],

H45(�) = H54(�) = 1
2�ph cos2 2θe−iλphω0 [1 + n(ω0)] + 1

2�ph cos2 2θeiλphω0 n(ω0). (B1)

125407-7



LU, WANG, REN, WANG, AND JIANG PHYSICAL REVIEW B 109, 125407 (2024)

(a) (b) (c)

(d) (e) (f)

FIG. 7. (a) The coherent maximum output work 〈W max〉 |co, (b) the maximum output work 〈W max〉 |inco, (c) the ratio of the coherent and
incoherent maximum work 〈W max〉 |co/ 〈W max〉 |inco, (d) the coherent maximum efficiency 〈η〉max |co, (e) the incoherent maximum efficiency
〈η〉max |co, and (f) the ratio of the coherent and incoherent maximum efficiency ratio 〈ηmax〉 |co/ 〈ηmax〉 |inco vs modulation phase φ and
tunneling strength �. The parameters are given by μ = 0, �l = �R = �ph = 4 meV, kBTl = kBTr = 10 meV, and kBTph = 12 meV. The energy
modulations are exemplified as εl = [−1 + 5 sin(�t )] meV, εr = [1 + 5 sin(�t + π/2)] meV, � = 2π/T and T = 10−12 s, μ = 0.

The counting parameter set denotes � = {λp, λE , λph},
�i = 2π

∑
k |γi,k|2δ(E − εi,k ) is the dot-electronic reser-

voir hybridization energy, and �ph = 2π
∑

q λ2
qδ(ω − ωq)

is the coupling energy of the phonon bath. fi(εi ) = {exp
[(εi − μi )/kBTi] + 1}−1 is the Fermi-Dirac distribution for
the electronic reservoir with chemical potential μi and
temperature Ti, and n(ω0) = [exp(ω0/kBTph ) − 1]−1 is the
Bose-Einstein distribution function in the phonon reservoir
with temperature Tp and energy gap ω0 = ED − Ed .

APPENDIX C: PERFORMANCE OF THE INELASTIC
COHERENTLY ENGINES WITH DIFFERENT

MODULATION PHASE, COHERENT
TUNNELING STRENGTH

Here, we aim to investigate the impact of various pa-
rameters, such as the tunneling strength between the double
QDs and the modulation phase, on efficiency and output
work, without making specific parameter selections. To begin,
we explore how coherent transport behaves with respect to
these parameters. In Fig. 7, we present the average output
work and efficiency of the heat engine as functions of the
tunneling strength (�) and the phase (φ). For each config-
uration, we optimize performance by adjusting the chemical

potential difference (i.e., the chemical potential difference �μ

at maximum efficiency and work). Figure 7(a) reveals that
coherent transport has a pronounced impact on the maximum
output work. For instance, with φ = π/2 and � = 8 meV,
the maximum work increases from 0.1 meV to 0.4 meV, due
to quantum coherence. We also calculate the enhancement
ratio 〈W max〉 |co/ 〈W max〉 |inco for different tunneling strengths
and modulation phases, as shown in Fig. 7(c). This enhance-
ment ratio can be as high as 10, indicating a substantial
improvement in work with increasing tunneling strength and
decreasing phase.

Moreover, as shown in Fig. 7, although the modulation
phase φ can increase the magnitude of the geometric cur-
rent, it doesn’t consistently improve the overall performance
of heat engines. This discrepancy can be attributed to the
potential inconsistency between the direction of geometric
and dynamical currents, which can lead to a reduction of
the total magnitude of nonequilibrium currents in the system.
Meanwhile, the efficiency is optimized when the phase is
either small or large, as illustrated in Figs. 7(c) and 7(d).
Additionally, the tunneling strength between the QDs plays
an important role in enhancing quantum coherence, as shown
in Figs. 7(a) and 7(b). These results emphasize the crucial role
of quantum coherence in inelastic heat engines.
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