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Motivated by recent experiments on Si/SiGe quantum wells with a co-design of high electron mobility and
large valley splitting [Paquelet Wuetz et al., Nat. Commun. 14, 1385 (2023); Esposti et al., arXiv:2309.02832
[cond-mat.mes-hall]], suitable for a Si-based spin qubit quantum computing platform, we examine the role
of disorder by theoretically calculating mobility and quantum mobility from various scattering mechanisms
and their dependence on the electron density. At low electron densities ne < 4 × 1011 cm−2, we find that
mobility is limited by remote Coulomb impurities in the capping layer, whereas interface roughness becomes
the significant limiting factor at higher densities. We also find that alloy disorder scattering is not a limiting
mechanism in the reported high-mobility structures. We estimate the critical density of the disorder-driven
low-density metal-insulator transition using the Anderson-Ioffe-Regel localization criterion and qualitatively
explain the breakdown of the Boltzmann-Born theory at low densities. We also estimate the critical density by
considering inhomogeneous density fluctuations induced by long-range Coulomb disorder in the system, and
find a larger critical density compared to the one obtained from the Anderson-Ioffe-Regel criterion. For quantum
mobility, our calculation suggests that remote and distant background impurities are likely the limiting scattering
sources across all densities. Future measurements of quantum mobility should provide more information on the
distribution of background impurities inside the SiGe barriers. Moreover, we extend our theoretical analysis to
the effect of quantum degeneracy on transport properties and predict the mobility and the critical density for the
metal-insulator transition in spin-polarized high-mobility structures under an external parallel magnetic field.
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I. INTRODUCTION

For spin qubits in gate-defined silicon quantum dots,
it is important to minimize disorder potential fluctuations
to better control charging energies and tunneling between
quantum dots, which requires high mobility of the hosted
two-dimensional electron gas (2DEG) [1–3]. Moreover,
background charge noise, necessarily associated with uninten-
tional random impurities in the environment, is the primary
mechanism causing charge noise induced decoherence in
semiconductor qubits, and therefore, a comprehensive under-
standing of the background impurity disorder is essential for
good qubit performance [3–6]. Additionally, a large valley
splitting energy is important to limit leakage from the com-
putational Hilbert space in the lowest conduction band, which
is crucial for maintaining high-fidelity qubit operations [3,7–
12]. Recent advancements in isotopically purified 28Si/SiGe
quantum wells (QWs) at a low temperature of 1.7 K have
shown promising improvements in channel static disorder,
as indicated by an enhanced mobility 3 × 105 cm2 V−1 s−1

and a smaller critical density of metal-insulator transition
nc = 7 × 1010 cm−2, while maintaining a relatively high mean
valley splitting 0.2 meV [13,14]. (Isotopic purification sup-
presses nuclear spin noise for semiconductor based spin qubits
in the Si platform, providing long spin coherence times
and enabling high-fidelity gate operations [15].) In compar-
ison, previous experimental reports of large valley splitting

>0.2 meV in Si/SiGe QWs showed 5 times lower mobil-
ity <6 × 104 cm2 V−1 s−1 [16–18]. On the other hand, high
mobility of 6.5 × 105 cm2 V−1 s−1 was reported in conven-
tional Si/SiGe heterostructures but with low valley splitting
35–70 µeV [19]. Therefore the co-design of high electron
mobility and large valley splitting calls for reinvestigating
the scattering sources inside the Si/SiGe QWs reported in
Refs. [13,14]. This is the goal of our theoretical work, partic-
ularly in the context of the importance of the Si/Ge quantum
computing platform.

In this study, we employ the Boltzmann-Born transport
theory [20] to theoretically investigate both transport and
quantum mobility (μ and μq). Our focus is on quantify-
ing the effects of various scattering mechanisms, namely
remote impurities at the semiconductor-oxide interface (RI),
background impurities (BI), interface roughness (IR), and al-
loy disorder (AD). By analyzing experimental mobility data
from 5 nm and 7 nm Si/SiGe quantum wells reported in
Refs. [13,14], we find that RI predominantly limits μ at
electron densities below 4 × 1011 cm−2, while IR becomes
the limiting factor at higher densities ranging from 4 − 6 ×
1011 cm−2. Despite limited experimental data on quantum
mobility (μq = 3.0 ± 0.5 × 104 cm2 V−1 s−1 at the highest
density 6 × 1011 cm−2 [21]), our theoretical models indicate
that μq is likely constrained by RI and distant BI scatter-
ing across all electron densities. Since μq is much more
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sensitive to RI and distant BI scattering compared to μ [22],
we need more experimental data on μq across a wider range
of densities to better understand the distribution for BI in SiGe
barriers. We also show that AD is quantitatively irrelevant
in all experimental density ranges for these high-mobility
structures. We address the limitations of the Boltzmann-Born
theory at low electron densities ne � 2 × 1011 cm−2 with con-
siderable disagreement between the theory and experimental
data, although our theory explains the higher density data
quantitatively. A possible explanation for this discrepancy
at low densities is that the 2DEG is broken into inhomo-
geneous electron puddles separated by long-range Coulomb
disorder potential barriers, so that both the perturbative Born
approximation and linear screening are no longer applicable.
The system eventually undergoes a metal-insulator transition
(MIT) at a critical density ne = nc, where transport in the
low-density ne � nc region should be described by percola-
tion through charged puddles [23–31]. This MIT is, in fact,
a crossover (happening sharply over a narrow density range
around nc because of the rapid failure of screening of the
long-range Coulomb disorder) and not a quantum phase tran-
sition [26,27]. We estimate nc in the experimental systems
[13,14] by using the Anderson-Ioffe-Regel (AIR) criterion
[32,33], although the failure of the Boltzmann-Born theory at
low densities indicates that the critical density estimated from
the AIR criterion should be smaller than the actual critical
density (percolation threshold) observed in experiments and
should be used as a lower bound estimate of the percolation
threshold. We also estimate nc by considering inhomogeneous
density fluctuations induced by long-range Coulomb disorder
in the system [34,35] and find a larger nc compared to the
one obtained from the AIR criterion. Moreover, we extend
our theoretical analysis to the effect of quantum degeneracy
on transport properties and predict the mobility and the criti-
cal density for the metal-insulator transition in spin-polarized
high-mobility structures, which can be tested in future exper-
iments by applying an external parallel magnetic field.

The Si/SiGe heterostructures reported in Refs. [13,14]
consist of a strained Si QW of width w surrounded by a
Si0.69Ge0.31 upper barrier of thickness d = 30 nm and a thick
strained relaxed Si0.69Ge0.31 bottom barrier of several µm.
The upper barrier is passivated with a 1 nm Si capping layer.
A metallic top gate is separated from the capping layer by
a do = 10 nm oxide dielectric spacer. The electron density
ne is tuned by the gate up to 6 × 1011 cm−2. The bottom
barrier is placed on top of a step-graded Si1−xGex strain-
relax buffer layer, which has a decreasing Ge concentration
x until it reaches the Si substrate with x = 0. A schematic
illustration of the Si/SiGe heterostructure is shown in Fig. 1.
In our calculations, we model the possible disorder sources
as follows. There are uniform background charged impuri-
ties outside (inside) the QW with 3D concentration N1 (N2).
The remote charged impurities at the semiconductor-oxide
interface have a 2D concentration nr . Because the top gate is
relatively close to the semiconductor-oxide interface, we take
into account the gate screening when we calculate the remote
and background charged impurity scattering. The interface
roughness between the Si QW and the Si0.69Ge0.31 barrier is

FIG. 1. A schematic illustration of the high-mobility Si/SiGe
heterostructure reported in Refs. [13,14], where w is the thickness
of the strained Si quantum well. The oxide and the top Si0.69Ge0.31

barrier is separated by a Si capping layer of thickness 1 nm.

characterized by a typical height � and a lateral size �. The
conduction band offset from the twofold valley degenerate
conduction band �2 in the strained Si to the sixfold valley
degenerate conduction band �6 in the relaxed Si0.69Ge0.31 is
taken to be V0 = 180 meV [3,36]. The 2DEG wave function
penetrates the barriers and scatters from the alloy disorder.
Scattering mechanisms considered in our theory are the only
low-temperature scattering mechanisms operational in high
quality SiGe 2D structures, where the crystal quality is good
enough to rule out short-range scattering by atomic point
defects and vacancies [37], but random charged impurities are
invariably present in the system along with interface rough-
ness and alloy disorder. Since our interest is in understanding
the low-temperature mobility, we neglect all phonon scatter-
ing and restrict our calculations to T = 0. We believe that our
comprehensive transport theory is quantitatively accurate at
high carrier densities, and poorer at lower densities although
it should remain qualitatively (and semiquantitatively) valid at
lower densities above the critical density for the 2D MIT.

The rest of this paper is structured as follows. Section II
discusses the general formalism of the Boltzmann transport
theory to calculate the mobility and quantum mobility. We
evaluate the BI and RI scattering rates using the delta-layer
2DEG approximation in Sec. III. The infinite potential well
approximation together with the local field correction, ap-
plied to RI, BI, and IR scattering, is discussed in Sec. IV,
while Sec. V employs a finite potential well approximation to
calculate the AD scattering. Gate-screened charged impurity
scattering is explored in Sec. VI. In Sec. VII, we estimate
the critical densities of MIT using the Anderson-Ioffe-Regel
(AIR) criterion and qualitatively explain the breakdown of
the Boltzmann-Born theory at low densities. We mention that
the AIR criterion is often referred to as the Mott-Ioffe-Regel
(MIR or IRM) or just the Ioffe-Regel criterion, but we believe
that AIR is a more appropriate terminology here since our
criterion is specific to disorder induced incoherent scattering
associated with destructive interference as envisioned by An-
derson rather than the Mott criterion involving the transport
mean free path being equal to lattice spacing, which plays
no role in doped semiconductors of interest to us. We also
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estimate the critical density by considering inhomogeneous
density fluctuations induced by long-range Coulomb disor-
der in the system and compare the result to the AIR critical
density. Section VIII examines the effect of spin/valley de-
generacy on the mobility and the AIR critical density. Finally,
we conclude and summarize in Sec. IX.

II. MOBILITY AND QUANTUM MOBILITY

In this section, we apply the Boltzmann transport theory to
calculate the mobility and quantum mobility at T = 0 [20,38–
43]. The transport mobility is given by μ = eτ/m�, and the
conductivity is eneμ, where ne is the 2DEG concentration,
m� = 0.19 m0 is the transverse effective mass of an electron
in Si, m0 is the free electron mass,

1

τ
= 4m�

π h̄3

∫ 2kF

0

dq√
4k2

F − q2

(
q

2kF

)2

〈|U (q)|2〉, (1)

is the transport scattering rate, and U (q) is the screened poten-
tial of a given scattering source. kF = √

4πne/g is the Fermi
wave vector. g = gsgv is the total degeneracy of electrons,
where gs is the spin degeneracy and gv is the valley degen-
eracy. The quantum mobility is given by μq = eτq/m�, where
the quantum (single particle) scattering rate reads

1

τq
= 2m�

π h̄3

∫ 2kF

0

dq√
4k2

F − q2
〈|U (q)|2〉. (2)

The quantum scattering rate can be indirectly measured
through the Dingle temperature TD = h̄/2πτq which charac-
terizes the damping of Shubnikov-de Haas (SdH) oscillations.
In general, τq < τ since the transport mobility ignores all
forward scattering. (For strictly zero range s-wave scattering
the two scattering times are trivially equal, but for long-range
disorder scattering the two could vary by orders of magni-
tude.) For charged impurity scattering, the potential correlator
averaged over impurity positions is given by

〈|U (q)|2〉 =
∫ +∞

−∞
dz N (z)U 2

1 (q, z), (3)

where N (z) is the 3D concentration of impurities at a distance
z from the center of the 2DEG, and U1(q, z) is the screened
Coulomb potential for an impurity located at z:

U1(q, z) = 2πe2

κqε(q)

∫ +∞

−∞
dz′ |ψ (z′)|2e−q|z−z′ |, (4)

where ψ (z) is the confinement wave function along z direction
and the dielectric function is given by

ε(q) = 1 + (qTF/q)Fc(qw)[1 − G(q)]. (5)

Here, qTF = g/aB is the Thomas-Fermi screening wave vec-
tor, aB = κ h̄2/m�e2 is the effective Bohr radius, κ = 11.9
is the dielectric constant of Si, and w is the QW width.

G(q) = q/(g
√

q2 + k2
F ) is the local field correction using the

Hubbard approximation [44,45] which reflects the suppressed
screening at q � kF (with G = 0 being the RPA, which
overestimates short wavelength screening). The form factor

Fc(qw) is given by

Fc(qw) =
∫∫ +∞

−∞
dzdz′|ψ (z)|2|ψ (z′)|2 exp(−q|z − z′|).

(6)
In Eq. (4), we ignore the screening from the top gate. To
include the gate screening, we should add the Coulomb poten-
tial of the image charges and replace e−q|z−z′ | by (e−q|z−z′ | −
e−q|2dg−z−z′ |), where dg = d + do + w/2 is the distance from
the gate to the center of the 2DEG.

III. DELTA LAYER 2DEG APPROXIMATION

For simplicity, assuming that the gate is far away dg � d
and the wave function perpendicular to the quantum well
has a delta function profile |ψ (z)|2 = δ(z), the form factors
reduce to identities and U1(q, z) = 2πe2

κqε(q) e
−q|z|. In this section,

we disregard the local field correction, thus making the di-
electric function the RPA form, ε(q) = 1 + qTF/q. We will
address the effect of form factors and local field correction in
Sec. IV, and the effect of gate screening in Sec. VI. We use a
two-impurity model to calculate the scattering rate following
Refs. [42,46]. That is, we assume that there are two delta
layers of impurities. One layer is located at a distance d from
the 2DEG, which represents the remote charged impurities in
the capping layer. The other layer is at z = 0, which represents
oxygen-related background charges in the QW [47] or an
effective description of other short-range scattering sources
such as the interface roughness [48,49]. The impurity distri-
bution is given by

N (z) = nrδ(z − d ) + n2δ(z). (7)

The corresponding transport scattering rate τ−1 = τ−1
RI + τ−1

S
reads [41,42,46]

1

τRI
= nr

2π h̄

m�

(
2

g

)2

f

(
2kF d,

qTF

2kF

)
, (8)

1

τS
= n2

2π h̄

m�

(
2

g

)2

f

(
0,

qTF

2kF

)
. (9)

The quantum scattering rate τ−1
q = τ−1

qRI + τ−1
qS reads

1

τqRI
= nr

2π h̄

m�

(
2

g

)2

fq

(
2kF d,

qTF

2kF

)
, (10)

1

τqS
= n2

2π h̄

m�

(
2

g

)2

fq

(
0,

qTF

2kF

)
, (11)

and the dimensionless functions f (a, s) and fq(a, s) are de-
fined as

f (a, s) =
∫ 1

0
s2 2x2e−2ax dx√

1 − x2(x + s)2
, (12)

fq(a, s) =
∫ 1

0
s2 e−2ax dx√

1 − x2(x + s)2
. (13)

In the density range

g

16πd2
� ne � g3

16πa2
B

, (14)
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the limits 2kF d � 1 and qTF/2kF � 1 are satisfied and we
have f (a, s) = (2a3)−1 and fq(a, s) = (2a)−1 [50] which lead
to the well-known results for RI scattering [51–54]

1

τRI
= nr

(
2

g

)2
π h̄

8m�(kF d )3
, (15)

1

τqRI
= nr

(
2

g

)2
π h̄

2m�kF d
, (16)

and the corresponding ratio is given by(
τ

τq

)
RI

= (2kF d )2 � 1. (17)

The large difference between τ and τq reflects the diffusive
character of the electron dynamics on the Fermi surface scat-
tered from remote impurities [22]. The physical meaning of
τ/τq is the typical number of small-momentum forward scat-
tering events needed to change the direction of momentum by
an angle of order π [54]. Next, we calculate the short-range
scattering rate τ−1

S and τ−1
qS contributed from a delta layer of

impurities at z = 0. The related integrals f (0, s) and fq(0, s)
at s > 1 can be calculated analytically:

f (0, s) = s2π + 2s3

1 − s2
+ 2s3(2 − s2) sec−1(s)

(s2 − 1)3/2
, (18)

fq(0, s) = s

1 − s2
+ s3 sec−1(s)

(s2 − 1)3/2
. (19)

In the density range ne � g3/16πa2
B, the limit s =

qTF/2kF � 1 is satisfied and f (0, s) = fq(0, s) = π
2 , so that

τ−1
S and τ−1

qS are given by [41,46]

1

τS
= 1

τqS
= n2

π2h̄

m�

(
2

g

)2

, (20)

which is independent of the electron concentration. The ratio
τ/τq = 1 reflects that short-range impurities are efficient in
backscattering the electrons—this is the situation in regular
3D metals where τ and τq are basically the same.

In the other two-impurity model, we replace the delta-layer
remote impurities by uniform background charged impurities
outside the well with a 3D concentration N1. The impurity
distribution is given by

N (z) = N1�(|z| − w/2) + n2δ(z). (21)

The corresponding scattering rates due to uniform background
charged impurities are given by

1

τBI
= N1

2π h̄

m�

(
2

g

)2 ∫
|z|>w/2

f

(
2kF z,

qTF

2kF

)
dz, (22)

1

τqBI
= N1

2π h̄

m�

(
2

g

)2 ∫
|z|>w/2

fq

(
2kF z,

qTF

2kF

)
dz. (23)

In the electron density range

g

16πw2
� ne � g3

16πa2
B

, (24)

the limits 2kF w � 1 and qTF/2kF � 1 are satisfied and
we get the analytical expressions of the BI scattering

rates

1

τBI
= N1w

(
2

g

)2
π h̄

2m�(kF w)3
, (25)

1

τqBI
= N1w

(
2

g

)2
π h̄ ln(2ds/w)

m�kF w
, (26)

where ds is the cutoff distance of the BI distribution so that
impurities at |z| > ds can be ignored. Otherwise, τ−1

qBI diverges
logarithmically due to the contribution of small-momentum
scattering from the long distance. We choose ds = dg/2 as
half the distance from the gate to the center of the 2DEG,
considering that charged impurities close to the gate should
be effectively screened [55]. We will discuss this choice of ds

and the gate screening effect in more detail in Sec. VI.
In the density range described by Eqs. (14) and (24), we

see from Eqs. (15) and (25) that τ−1
RI and τ−1

BI are proportional
to k−3

F , which leads to a mobility proportional to n3/2
e . On

the other hand, τ−1
S in Eq. (20) does not depend on kF , so

it results in a constant mobility that does not depend on ne.
As a result, the total mobility described by the two-impurity
model τ−1 = τ−1

RI + τ−1
S or τ−1 = τ−1

BI + τ−1
S should increase

as n3/2
e at low density and eventually saturate at high density.

We can compare the density range ne = 1 − 6 × 1011 cm−2

in the high mobility structures reported in Refs. [13,14] with
the density ranges written in Eqs. (14) and (24). We use
the spin/valley degeneracy gs = 2 and gv = 2 for the high
mobility structures reported in Refs. [13,14]. In the density
range ne = 1 − 6 × 1011 cm−2, the Fermi energy calculated
using g = 4 is EF = 0.6–3.8 meV which is much higher than
the valley splitting 0.2 meV reported in Refs. [13,14], so our
choice of g = 4 is correct. In Sec. VIII, we will discuss the
effects of quantum degeneracy on the transport properties in
more detail. Using g = 4, we find that the experimental den-
sity range is well within the range described in Eq. (14) where
the upper bound is g3/16πa2

B ≈ 1013 cm−2 and the lower
bound is g/16πd2 ≈ 1010 cm−2. Therefore the asymptotic
expressions for RI scattering Eqs. (15) and (16) should be a
good approximation. On the other hand, the lower bound in
Eq. (24) is g/16πw2 ≈ 2.4 × 1011 cm−2, which means that
the asymptotic expressions for BI scattering rates Eqs. (25)
and (26) are good only when ne � 2.4 × 1011 cm−2. At low
densities ne � 2.4 × 1011 cm−2, we have

1

τBI
= 1

τqBI
= N1(2ds − w)

π2h̄

m�

(
2

g

)2

, (27)

and the background impurity scattering behaves similarly to
short-range impurity scattering with an effective 2D impurity
concentration N1(2ds − w). Hence, as the density is reduced,
τ−1

BI and τ−1
qBI transition from a long-range behavior, as ex-

pressed in Eqs. (25) and (26), to a short-range behavior, as
expressed in Eq. (27). The crossover electron density is at
ne = 2.4 × 1011 cm−2.

Figure 2 shows the results of the best-fit mobility curves
(solid black) and the corresponding prediction of quantum
mobility (dashed black) by performing the numerical inte-
grals of Eqs. (8), (9), and (22). The experimental data from
Refs. [13,14], represented by blue and red curves with shaded
areas indicating error bars, are also included for comparison.
The results of the combination of remote and short-range
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FIG. 2. Mobility (μ) versus electron density (ne) for quantum wells with widths of 5 nm (red) and 7 nm (blue). The experimental data
taken from Refs. [13,14] are depicted by red and blue curves, with corresponding error bars shown as shaded areas. The solid black curves
represent the theoretical transport mobility, while the dashed black curves denote the quantum mobility, both calculated using the delta-layer
approximation for the 2DEG without local field correction. Subfigures (a) and (b) incorporate remote and short-range impurity scattering [cf.
Eqs. (8)–(10)], whereas (c) and (d) consider background and short-range impurity scattering [cf. Eqs. (9), (22), and (23)]. Fitting parameters:
(a) nr = 1.9 × 1012 cm−2 and n2 = 2.8 × 109 cm−2; (b) nr = 1.7 × 1012 cm−2 and n2 = 1.8 × 109 cm−2; (c) n2 = 2.1 × 109 cm−2 and
N1 = 11 × 1015 cm−3; (d) n2 = 1.4 × 109 cm−2 and N1 = 12 × 1015 cm−3.

impurity scattering are shown in Figs. 2(a) and 2(b), while the
results of the combination of background and short-range im-
purity scattering are shown in Figs. 2(c) and 2(d). The fitting
impurity densities are nr ≈ 2 × 1012 cm−2, n2 ≈ 1.4–2.8 ×
109 cm−2 and N1 ≈ 10 × 1015 cm−3, in reasonable agreement
with the numbers reported in Refs. [36,41,47,56–59]. In both
two-impurity models, short-range impurity scattering is the
limiting factor for transport mobility at high densities ne =
4–6 × 1011 cm−2. The dominant scattering mechanism at
lower densities is RI or BI, depending on the choice of the im-
purity model. We see that the first two-impurity model (τ−1 =
τ−1

RI + τ−1
S ) fits the mobility data at intermediate to high elec-

tron density ne = 2.5–6 × 1011 cm−2 within the experimental
uncertainty. At the highest density ne = 6 × 1011 cm−2 for
both quantum wells, the predicted quantum mobility is around
1.0 × 104 cm2 V−1 s−1, while the measurements of SdH os-
cillations give a larger value (3.0 ± 0.5) × 104 cm2 V−1 s−1

[21]. On the other hand, the other two-impurity model (τ−1 =
τ−1

BI + τ−1
S ) fits the experimental mobility data in a narrower

density range ne = 3 − 6 × 1011 cm−2, with the predicted
quantum mobility around 10 × 104 cm2 V−1 s−1 at the high-
est density ne = 6 × 1011 cm−2, which is a factor of 3
larger than the experimental value [21]. Since the typical
momentum transfer of RI scattering is much smaller than
that of BI scattering, the ratio (μ/μq)RI � (μ/μq)BI [22],
which explains a factor of 10 difference in the predicted
quantum mobility shown in Fig. 2. In Sec. VI, we will ex-
plore how including gate screening effects in RI scattering

calculations can improve the agreement with experimental
quantum mobility data. However, it is important to note that
the experimental accuracy for quantum mobility data is gen-
erally less reliable than for transport mobility, largely due to
the indirect method of extracting quantum mobility through
the Dingle temperature [22]. Given these considerations, a
semi-quantitative agreement between our theoretical predic-
tions and experimental data should be regarded as satisfactory.
At low densities ne < 2 × 1011 cm−2, the theoretical mobility
curves deviate and become higher than the experimental data.
We should emphasize that this deviation at low densities does
not arise from any new scattering mechanism ignored in the
theory. The dominant scattering mechanism at low densities
ne < 4 × 1011 cm−2 is RI if we use the two-impurity model
Eq. (7) [or BI if we use the two-impurity model Eq. (21)].
Rather, this deviation indicates the systematic failure of the
Boltzmann-Born theory at low densities, a topic we will ad-
dress in more detail in Sec. VII, particularly in the context of
the metal-insulator transition.

IV. INFINITE POTENTIAL WELL

In this section, we use an infinite potential well approx-
imation in order to address the quantum well confinement
better, where the 2DEG wave function is given by ψ (z) =√

2/w cos(πz/w)�(w/2 − |z|) [46,60]. The justification of
the infinite potential well approximation will be discussed at
the end of this section. Substituting this wave function into
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FIG. 3. Mobility (μ) vs electron density (ne) for quantum wells with widths of 5 nm (red) and 7 nm (blue). The experimental data are
depicted by red and blue curves, with corresponding error bars shown as shaded areas. The solid black curves represent the theoretical transport
mobility, while the dashed black curves denote the quantum mobility, both calculated using the infinite potential well approximation without
the local field correction. (a) and (b) assume only RI near the capping layer nr 
= 0. (c) and (d) assume only BI outside the quantum well
N1 
= 0 and no BI inside N2 = 0, while (e) and (f) assume N1 = 0 and N2 
= 0. Impurity concentrations and roughness parameters for fitting:
(a) nr = 3.1 × 1012 cm−2; (b) nr = 2.6 × 1012 cm−2; (c) N1 = 14 × 1015 cm−3 and N2 = 0; (d) N1 = 12.6 × 1015 cm−3 and N2 = 0; (e) N1 = 0
and N2 = 10.3 × 1015 cm−3; (f) N1 = 0 and N2 = 5.5 × 1015 cm−3.

Eq. (4), we obtain the single-impurity Coulomb potential

U1(q, z) = 2πe2

κqε(q)

{
F0(qw)e−q|z|, |z| > w/2,

G0(q, z), |z| < w/2,
(28)

where

F0(x) = 8π2

x(x2 + 4π2)
sinh(x/2), (29)

and

G0(q, z) = 8π2(1 − e−qw/2 cosh qz)

qw(4π2 + q2w2)

+ 2qw[1 + cos(2πz/w)]

4π2 + q2w2
. (30)

Both F0(qw) and G0(q, z) monotonically decrease as a
function of q and weaken the scattering potential at large
momentum q. The screening form factor Fc(qw) in Eq. (6)
reads

Fc(x) = 20π2x3 + 3x5 − 32π4(1 − e−x − x)

x2(4π2 + x2)2
. (31)

This form factor enters the dielectric function ε(q) and weak-
ens the screening at large momentum q.

First, we calculate the charged impurity scattering rates
separately and see how well they can interpret the data in-
dividually. The 3D impurity concentration is given by

N (z) = nrδ(z − d − w/2)

+ N1�(|z| − w/2) + N2�(w/2 − |z|), (32)

where nr is the RI concentration in the capping layer, N1 (N2)
is the BI concentration outside (inside) the quantum well.
The theoretical results of mobility and quantum mobility are

shown in Fig. 3, based on the assumption that only one term
in Eq. (32) is nonzero. Figures 3(a) and 3(b) show the results
of nr 
= 0 and N1 = N2 = 0. This RI-dominant mobility can
fit the data at intermediate densities ne = 2–3 × 1011 cm−2

within the margin of experimental uncertainty. The predicted
quantum mobility is around 1.0 × 104 cm2 V−1 s−1 at the
highest density ne = 6 × 1011 cm−2. Figures 3(c) and 3(d)
show the results of N1 
= 0 and N2 = nr = 0, which fit the
data at intermediate densities ne = 2.5–5 × 1011 cm−2. The
predicted quantum mobility is around 10 × 104 cm2 V−1 s−1

at the highest density ne = 6 × 1011 cm−2. Figures 3(e) and
3(f) show the results of N2 
= 0 and N1 = nr = 0, which fit the
data at high densities ne = 4–6 × 1011 cm−2. The correspond-
ing ratio τ/τq ≈ 1 is expected, as the background impurities
inside the QW should behave similarly to the short-range
impurities because of strong screening by the electrons. In
general, switching the dominant impurity distribution from RI
(nr 
= 0) to BI (N1 
= 0) and finally to a different BI distribu-
tion (N2 
= 0) results in a progressive flattening of the mobility
μ(ne) and a decrease in the ratio μ/μq towards unity.

In order to better fit the mobility data, we use inter-
face roughness as an additional scattering mechanism that
limits mobility at high density [27,49,52,60–63]. Using the
correlator of local well width variations 〈�(r)�(r′)〉 =
�2 exp(−|r − r′|2/�2), where � is the typical roughness
height and � is the roughness lateral size, the scattering po-
tential due to interface roughness is given by

〈|UIR(q)|2〉 = π

ε2(q)
�2�2

(
∂E

∂w

)2

e−q2�2/4, (33)

where E is the ground state energy of the potential well along
z direction. For an infinite potential well, the ground state
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FIG. 4. Mobility (μ) vs electron density (ne) for quantum wells with widths of 5 nm (red) and 7 nm (blue). The experimental data are
depicted by red and blue curves, with corresponding error bars shown as shaded areas. The solid black curves represent the theoretical
transport mobility, while the dashed black curves denote the quantum mobility, both calculated using the infinite potential well approxi-
mation without the local field correction. Subfigures (a) and (b) incorporate remote impurity and interface roughness scattering, whereas
(c) and (d) consider background impurity and interface roughness scattering. Impurity concentrations and roughness parameters for fitting:
(a) nr = 2.5 × 1012 cm−2, � = 4.5 Å, and � = 27 Å; (b) nr = 2.5 × 1012 cm−2, � = 8 Å, and � = 28 Å; (c) N1 = 12 × 1015 cm−3, N2 = 0,
� = 5 Å, and � = 16 Å; (d) N1 = 12 × 1015 cm−3, N2 = 0, � = 7 Å, and � = 20 Å.

energy E = E0 = h̄2π2/2m�
zw

2 and ∂E/∂w = 2E0/w. Here
m�

z = 0.92m0 is the longitudinal effective mass of an electron
in Si. Using Eqs. (33), (1), and (2), we obtain the transport
relaxation rate τ−1

IR and quantum rate τ−1
q,IR due to interface

roughness scattering. At low electron densities ne � g/4π�2,
where kF � � 1 and qTF/2kF � 1 are satisfied, we obtain

τ−1
IR = 1

τ0

3π

8

(
2kF

qTF

)2

, (34)

τ−1
qIR = 1

τ0

π

4

(
2kF

qTF

)2

, (35)

where τ−1
0 is given by

τ−1
0 = 2π4h̄

m�

(
m�

m�
z

)2
�2�2

w6
. (36)

The corresponding mobility grows in thickness μIR ∝ w6,

which was experimentally demonstrated in modern GaAs
electron quantum wells in Ref. [64] (see also Fig. 2(d) in
Ref. [65]). We find that both μIR and μqIR are proportional
to n−1

e at low electron densities ne � g/4π�2. In the high-
density range g/4π�2 � ne � g3/16πa2

B, we obtain

τ−1
IR = 1

τ0

3
√

π

4

(
2kF

qTF

)2

(kF �)−5, (37)

τ−1
qIR = 1

τ0

√
π

4

(
2kF

qTF

)2

(kF �)−3, (38)

where we find μIR ∝ n3/2
e and μqIR ∝ n1/2

e [66], similar to the
long-range remote impurity scattering results [cf. Eqs. (15)
and (16)]. The crossover of the μIR ∝ n−1

e to the μIR ∝ n3/2
e

behavior is at ne = g/4π�2, where μIR reaches its minimum

μIR,min ≈ eτ0

m�

q2
TF�

2

4
= e

8π4h̄

(
m�

z

m�

)2 q2
TFw

6

�2
. (39)

For the high mobility structures reported in Refs. [14] with
w = 7 nm, we equate the saturation mobility value ≈30 ×
104 cm2 V−1 s−1 to μIR,min, and obtain a rough estimate of
� ≈ 5 Å. This value is in reasonable agreement with the
roughness height measured from scanning transmission elec-
tron microscopy (STEM) images reported in Refs. [13,14].

Figures 4(a) and 4(b) are calculated using the combination
of RI and IR scattering, while (c) and (d) are calculated using
the combination of BI and IR scattering. When we fit the
experimental data, we restrict the RI (BI) concentration to be
the same for both the 5 nm and 7 nm quantum wells. This re-
striction is based on the fact that the experimental uncertainty
of mobility is relatively small ∼10% for different devices
with the same structure design [13,14], indicating that the
sources of disorder should be similar from device to device.
As a result, the best-fit charge impurity concentrations are
nr = 2.5 × 1012 cm−2 and N1 = 12 × 1015 cm−3. To explain
the difference in the peak mobility between the 5 nm and
7 nm quantum wells, the roughness parameters are chosen dif-
ferently within the range � = 4.5–8.0 Å and � = 16–28 Å.
The roughness parameters that we choose are of the same
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FIG. 5. Mobility (μ) vs electron density (ne) for quantum wells with widths of 5 nm (red) and 7 nm (blue). The experimental data are
depicted by red and blue curves, with corresponding error bars shown as shaded areas. The solid black curves represent the theoretical transport
mobility, while the dashed black curves denote the quantum mobility, both calculated using the infinite potential well approximation with the
local field correction. (a) and (b) assume only RI near the capping layer nr 
= 0. (c) and (d) assume only BI outside the quantum well N1 
= 0
and no BI inside N2 = 0, while (e) and (f) assume N1 = 0 and N2 
= 0. To fit the data, the impurity concentrations and roughness parameters are
chosen as (a) nr = 2.5 × 1012 cm−2; (b) nr = 2.1 × 1012 cm−2; (c) N1 = 9.7 × 1015 cm−3 and N2 = 0; (d) N1 = 8.7 × 1015 cm−3 and N2 = 0;
(e) N1 = 0 and N2 = 7.2 × 1015 cm−3; (f) N1 = 0 and N2 = 3.8 × 1015 cm−3.

order of magnitude as those used in Refs. [27,48,49,63]. From
Fig. 4, we see that the two-impurity model combining RI and
IR scattering fits the mobility data in a wider density range
ne = 1.8–6 × 1012 cm−2, while the other two-impurity model
combining BI and IR fits the data in a narrower density range
ne = 3–6 × 1012 cm−2. Therefore RI scattering is more likely
the dominant scattering mechanism for transport mobility at
low densities, whereas at high densities the transport mobility
is limited by IR scattering. This behavior is similar to that
in Si-SiO2 MOSFET 2DEG systems, where the IR scatter-
ing is much larger leading consequently to lower maximum
mobilities.

In the above calculations, we ignore the local field correc-

tion G(q) = q/(g
√

q2 + k2
F ) in the dielectric function Eq. (5).

Results that include the local field correction are presented in
Figs. 5 and 6. Incorporating this correction leads to a reduction
in the estimated impurity concentrations and the ratio of τ/τq.
This can be understood because the local field correction
weakens the screening at a large momentum q � kF , so the
disorder is more effective in scattering the electrons. Given
that τ is more sensitive to large-momentum scattering com-
pared to τq, the local field correction consequently reduces τ

to a greater extent than τq for the same disorder configuration,
leading to a smaller τ/τq. To analytically incorporate the local
field correction G(q) into the scattering rate calculations, we
evaluate the q integral in Eqs. (1) and (2) in an approximation
where the square-root singularity at q = 2kF is integrated,
but the form factors and G(q) are taken at q = 2kF . As a
result, the expressions of charged impurity scattering rates
Eqs. (15), (16), (20), and (25)–(27) should be multiplied by an
additional factor F0(2kF w)2[(2kF /qTF)ε(2kF )]−2, where the

local field correction G(q) enters the dielectric function ε(q)
defined in Eq. (5). At low densities kF � � 1, the expressions
of IR scattering rates Eqs. (34) and (35) should be multiplied
by [(2kF /qTF)ε(2kF )]−2. While at high densities kF � � 1,
the typical momentum transfer is �−1 so Eqs. (37) and (38)
should be multiplied by [(2/qTF�)ε(2/�)]−2.

Now we address the justification of the infinite poten-
tial well approximation employed in our calculations. This
approximation is justified under two conditions. The first
condition is that the subband gap of the infinite poten-
tial well, Esg = 3h̄2π2/2m�

zw
2, should satisfy the inequality

EF � Esg � V0, where EF is the Fermi energy of the 2DEG
and V0 is the conduction band offset of the quantum well.
In the case of the 7 nm quantum well reported in Ref. [14],
Esg ≈ 25 meV, EF < 4 meV, and V0 ≈ 180 meV [3,36], so the
first condition EF � Esg � V0 is met. The second condition is
that the asymmetric electric field from the top gate should not
significantly change the effective well width. If the electric
field is strong enough to tilt the bottom of the conduction
band toward a triangular potential well, then the effective well
width becomes smaller. Using the Fang-Howard wave func-
tion [67], we can roughly estimate the effective well width
at the highest density where the effect of the electric field
Egate = 4πene/κ is the strongest. At the highest density ne =
6 × 1011 cm−2, the estimated smallest effective well width is
wFH = 6/b ≈ 5.5 nm, where b = (48πm�

z e2ne/κ h̄2)1/3. Given
that the estimated smallest effective well width from the
Fang-Howard wave function, wFH ≈ 5.5 nm, does not sig-
nificantly differ from the original well width w = 5–7 nm, it
suggests that the bending of the conduction band bottom due
to the electric field from the top gate should not substantially
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FIG. 6. Mobility (μ) vs electron density (ne) for quantum wells with widths of 5 nm (red) and 7 nm (blue). The experimental data are
depicted by red and blue curves, with corresponding error bars shown as shaded areas. The solid black curves represent the theoretical transport
mobility, while the dashed black curves denote the quantum mobility, both calculated using the infinite potential well approximation with the
local field correction. Subfigures (a) and (b) incorporate remote impurity and interface roughness scattering, whereas (c) and (d) consider
background impurity and interface roughness scattering. Fitting parameters: (a) nr = 2.0 × 1012 cm−2, � = 3.5 Å, and � = 30 Å; (b) nr =
2.0 × 1012 cm−2, � = 6.5 Å, and � = 30 Å; (c) N1 = 8.1 × 1015 cm−3, N2 = 0, � = 3 Å, and � = 22 Å; (d) N1 = 8.1 × 1015 cm−3, N2 = 0,
� = 6 Å, and � = 22 Å.

alter the results. If the density is further increased such that
wFH � w (the wide quantum well limit), we should replace
the well width w by wFH in the expression of the subband
gap Esg and the scattering rate τ−1

IR [cf. Eqs. (34)–(38)]. If
the condition EF � Esg � V0 is still satisfied, the density
dependence of the corresponding mobility acquires an extra
factor of w6

FH ∝ n−2
e . Additionally, the mobility increases by

a factor of 2 because the wave function accumulates on the
upper side of the quantum well in the presence of the top
gate. This allows us to disregard the interface roughness on the
bottom side of the quantum well. This reasoning justifies the
use of the infinite potential well approximation in our calcu-
lations. One shortcoming of both the strict 2D and the infinite
square well potential is that they cannot incorporate the short-
range alloy disorder scattering arising from the SiGe alloy on
the barrier outside the well. We address this shortcoming in
the next section by using a finite well confinement model
where the carrier wave function is allowed to tunnel into the
barrier regime.

V. FINITE POTENTIAL WELL

In this section, to calculate the short-range alloy disorder
scattering rate, we employ the finite potential well approxima-
tion to determine the wave function tail extending outside the
quantum well. Furthermore, we recalculate the RI, BI, and IR
scattering rates using the finite potential well wave function,
which enters the expressions of the form factors Eqs. (5) and

(6) and the lowest subband energy in Eq. (33). The com-
prehensive results combining the scattering mechanisms of
RI (BI), IR and AD are shown in Figs. 7 and 8. The finite
potential well Schrödinger equation reads

− h̄2

2m(z)

d2ψ (z)

dz2
+ V (z)ψ (z) = Eψ (z), (40)

where m(z) = m�
z = 0.92 m0 is the longitudinal effective mass

for silicon at |z| < w/2 and m(z) = mB 
 m�
z at |z| > w/2

inside the Si1−xGex barrier, since at x < 0.85, Si1−xGex alloys
are considered as “Si-like” material with almost the same ef-
fective masses [68,69]. Note that Eq. (40) is an approximation
for the situation with a variable effective mass, which applies
very well in our system since m(z) varies little with z. The
effective finite potential well is described by

V (z) =
{

0, |z| < w/2,

V0 − EF , |z| > w/2,
(41)

where V0 = 180 meV [3,36] and EF = h̄2k2
F /2m� is the Fermi

energy of the 2DEG. In the following we use V to represent
V0 − EF for simplicity. The bound state solutions (E < V ) for
the lowest subband are

ψ (z) =
{

Ce−η|z|, |z| > w/2,

D cos(kz), |z| < w/2,
(42)
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FIG. 7. Mobility (μ) vs electron density (ne) for quantum wells with widths of 5 nm (red) and 7 nm (blue). The experimental data are
depicted by red and blue curves, with corresponding error bars shown as shaded areas. The solid black curves represent the theoretical transport
mobility, while the dashed black curves denote the quantum mobility, both calculated using the finite potential well approximation without the
local field correction. Subfigures (a) and (b) incorporate RI, IR, and AD scattering, whereas (c) and (d) consider BI, IR, and AD scattering.
Fitting parameters: (a) nr = 2.4 × 1012 cm−2, � = 4.5 Å, and � = 50 Å; (b) nr = 2.4 × 1012 cm−2, � = 9 Å, and � = 37 Å; (c) N1 = 11 ×
1015 cm−3, N2 = 0, � = 5 Å, and � = 26 Å; (d) N1 = 11 × 1015 cm−3, N2 = 0, � = 7 Å, and � = 30 Å.

FIG. 8. Mobility (μ) vs electron density (ne) for quantum wells with widths of 5 nm (red) and 7 nm (blue). The experimental data are
depicted by red and blue curves, with corresponding error bars shown as shaded areas. The solid black curves represent the theoretical transport
mobility, while the dashed black curves denote the quantum mobility, both calculated using the finite potential well approximation with the
local field correction. Subfigures (a) and (b) incorporate RI, IR, and AD scattering, whereas (c) and (d) consider BI, IR, and AD scattering.
Fitting parameters: (a) nr = 1.9 × 1012 cm−2, � = 4.5 Å, and � = 22 Å; (b) nr = 1.9 × 1012 cm−2, � = 8 Å, and � = 35 Å; (c) N1 = 7.5 ×
1015 cm−3, N2 = 0, � = 5 Å, and � = 20 Å; (d) N1 = 7.5 × 1015 cm−3, N2 = 0, � = 7.5 Å, and � = 24 Å.
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where k =
√

2m�
z E/h̄2 and η =

√
2mB(V − E )/h̄2. The

boundary condition reads

Ce−ηw/2 = D cos(kw/2), (43)

C

mB
ηe−ηw/2 = D

m�
z

k sin(kw/2). (44)

The normalization of ψ (z) gives

C2
∫ ∞

w/2
e−2ηzdz + D2

∫ w/2

0
cos2(kz)dz = 1/2. (45)

Combining with Eq. (43), one has

C =
[

1

η
e−ηw + kw + sin(kw)

2k cos2(kw/2)
e−ηw

]−1/2

. (46)

Dividing Eq. (44) by Eq. (43), one obtains

tan(kw/2) = m�
z

mB

η

k
. (47)

Introducing dimensionless quantities Ẽ = E/E0, Ṽ = V/E0,
where E0 = h̄2π2/2m�

zw
2 is the ground state energy for infi-

nite well, we arrive at [70]

Ẽ + mB

m�
z

Ẽ tan2 (
√

Ẽπ/2) = Ṽ . (48)

The local energy fluctuation due to interface roughness reads

δE (r) = ∂E

∂w
�(r), (49)

where �(r) is the local variation of the well width at a position
r. Taking the derivative with respect to w for both sides in
Eq. (48), we obtain the expression for ∂E/∂w

∂E

∂w
= −2E

w

{
1 + g

(
mB

m�
z

,
E

V

)
Ṽ −1/2

}−1

, (50)

where

g(x, y) = 2

π
[x−1/2 + y(x1/2 − x−1/2)]−1(1 − y)−1/2. (51)

Substituting Eq. (50) into Eq. (33), we obtain the scattering
potential for the interface roughness for a finite potential
well.

We now estimate the correction introduced by the finite po-
tential well model relative to the infinite potential well model.
According to Eq. (48), we see that if Ṽ → ∞ and mB = m�

z ,
then Ẽ = 1. For finite values of Ṽ , we have 0 < Ẽ < 1, imply-
ing that the effective well width is larger than w due to wave
function penetration into the barriers. For example, at electron
density ne = 6 × 1011 cm−2, we have Ṽ ≈ 10 for a 5 nm QW
and Ṽ ≈ 20 for a 7 nm QW. In the limit Ṽ � 1, one can solve
Eq. (48) perturbatively and obtain

Ẽ ≈ 1 − 4

πṼ 1/2
+ 12

π2Ṽ
+ O

(
Ṽ − 3

2
)
, (52)

so that Ẽ ≈ 0.70 for a 5 nm QW and Ẽ ≈ 0.77 for a 7 nm
QW. The reduced Ẽ enters directly into the interface rough-
ness scattering potential Eq. (33) and (50) and lowers the
scattering rate by a factor of Ẽ2. The parentheses in Eq. (50)

lead to a further reduction in the scattering rate. As a result,
τIR,inf/τIR,fin ≈ 0.34 for a 5 nm QW and τIR,inf/τIR,fin ≈ 0.45
for a 7nm QW. To account for this reduction in the scattering
rate due to the finite well potential, the product of �� must
be increased to fit the mobility data, as evident from Eq. (33).
Above, we see that the finite potential well approximation
significantly alters the interface roughness scattering. The
leading order correction to τIR is proportional to Ṽ −1/2, which
is substantial given that Ṽ is around 10 for a 5 nm QW and
20 for a 7 nm QW. Next, we consider how the finite potential
well model alters the background impurity scattering rates.
The model alters the form factors as per Eqs. (4) and (5).
Since the form factors are proportional to the electron density
|ψ (z)|2, the leading correction should be comparable to the
leakage probability outside the quantum well

Prob|z|>w/2 =
∫

|z|>w/2
|ψ (z)|2dz = C2η−1e−ηw. (53)

In the limit of Ṽ � 1, we have

Prob|z|>w/2 ≈ 2

πṼ 3/2
. (54)

Hence, Prob|z|>w/2 ≈ 0.02 for a 5 nm QW and Prob|z|>w/2 ≈
0.007 for a 7 nm QW. This indicates that the finite potential
well approximation only marginally modifies the background
impurity scattering rates, affecting them by at most a few
percent.

Alloy disorder within Si1−xGex barriers is another short-
range scattering mechanism that contributes equally to the
transport and quantum scattering rate [71–73]

1

τAD
= m�

h̄3 (�Ec)2�x(1 − x)
∫

|z|>w/2
|ψ (z)|4dz, (55)

where �Ec ≈ 0.8 eV is the conduction band offset between
Si and Ge [74], � = a3/4 is the scatter volume with a =
5.4 Å is the lattice constant. In the limit of Ṽ � 1, we have∫
|z|>w/2 |ψ (z)|4dz ≈ 2Ṽ −5/2/πw, and the corresponding mo-

bility is given by

μAD ≈ w6e(2m�
zV )5/2

2π4h̄2m�2(�Ec)2�x(1 − x)
. (56)

For a w = 5 nm quantum well, μAD ≈ 1.4 ×
106 cm2 V−1 s−1, while for a w = 7 nm quantum well,
μAD ≈ 1 × 107 cm2 V−1 s−1, which are much larger than
the peak mobility reported in Refs. [13,14]. The complete
numerical results for alloy disorder scattering using the full
finite potential well approximation are shown in Fig. 9, and
we see that the order of magnitude agrees with the rough
analytical estimation of Eq. (56). Therefore AD scattering
is negligible in the high-mobility quantum wells reported
in Refs. [13,14], where there is no Ge present inside the
well. (For other devices that incorporate Ge concentration
within the quantum well [18], AD scattering is much stronger,
resulting in an electron mobility of 2 − 3 × 104 cm2 V−1 s−1.)
Regarding Eq. (55), we follow the approach of Refs. [71,75],
omitting the dielectric function due to the short-range nature
of AD around a lattice constant. Though several other
studies have included the dielectric function in AD scattering
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FIG. 9. Mobility and quantum mobility due to alloy disorder μAD

vs electron density ne for a w = 5 nm (red) and w = 7 nm (blue)
quantum well, calculated using Eq. (55) with the finite potential well
approximation.

calculations [49,52,76], the inclusion of dielectric screening
would only increase mobility, further diminishing the role
of AD. Therefore our conclusion that AD scattering is not
a limiting factor in the high-mobility structures reported in
Refs. [13,14] remains valid.

The results of mobility and quantum mobility calculated
using the finite potential well approximation without the local
field correction are shown in Fig. 7. Here, Figs. 7(a) and 7(b)
are calculated using a combination of RI, IR, and AD scatter-
ing. (c) and (d) are calculated using a combination of BI, IR,
and AD scattering. The corresponding results calculated with
local field correction are shown in Fig. 8.

VI. GATE SCREENING

In our calculations above, the screening effect of the top
gate is considered primarily through the cutoff distance ds

of the background impurity distribution outside the quan-
tum well. In Sec. III, we argued that ds = dg/2 should be
half the distance from the gate to the center of the quantum
well because the charged impurities close to the gate are
effectively screened by the image charges. In particular, we
assume that the gate does not screen the remote impurities.
In this section, we refine our approach by incorporating the
Coulomb potential of the image charges induced by the gate
and compare the mobility results of the RI and BI scatter-
ing. The best-fit mobility and the corresponding quantum
mobility curves are depicted in Fig. 10, where the fitting
concentrations of charge impurities are nr = 5.2 × 1012 cm−2

and N1 = 7.5 × 1015 cm−3. To explain the difference in the
peak mobility between the 5 nm and 7 nm quantum wells, the
roughness parameters are chosen differently within the range
� = 4.5–8.0 Å and � = 20–39 Å. Our analysis confirms that
ds = dg/2 serves as a reasonably accurate approximation for
the cutoff distance of the background impurity distribution
within the upper SiGe barrier. Furthermore, we observe that
the gate-screened RI scattering results align more closely with
the quantum mobility data compared to the RI results that
disregard gate screening. Previous results shown in Fig. 8
indicate that at a high density of ne = 6 × 1011 cm−2, the
quantum mobility for RI without gate screening is 1.0 ×
104 cm2 V−1 s−1. This value is smaller than the experimen-
tal data point (3.0 ± 0.5) × 104 cm2 V−1 s−1 [21]. On the

FIG. 10. Mobility (μ) vs electron density (ne) for quantum wells with widths of 5 nm (red) and 7 nm (blue). The experimental data are
depicted by red and blue curves, with corresponding error bars shown as shaded areas. The solid black curves represent the theoretical transport
mobility, while the dashed black curves denote the quantum mobility, both calculated using the finite potential well approximation with gate
screening and the local field correction. Subfigures (a) and (b) incorporate RI, IR, and AD scattering, whereas (c) and (d) consider BI, IR, and
AD scattering. Fitting parameters: (a) nr = 5.2 × 1012 cm−2, � = 4.5 Å, and � = 39 Å; (b) nr = 5.2 × 1012 cm−2, � = 8 Å, and � = 36 Å;
(c) N1 = 7.5 × 1015 cm−3, N2 = 0, � = 5 Å, and � = 20 Å; (d) N1 = 7.5 × 1015 cm−3, N2 = 0, � = 7.5 Å, and � = 24 Å.
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other hand, as illustrated in Fig. 10, when gate screening
is included, the quantum mobility for RI increases to 3.0 ×
104 cm2 V−1 s−1 at ne = 6 × 1011 cm−2, aligning well with
the experimental data. This enhancement in quantum mobility
due to the inclusion of gate screening can be attributed to the
suppression of small momentum forward scattering by image
charges, consequently reducing the ratio τ/τq. Therefore, for
a given best-fit mobility curve, the corresponding quantum
mobility is expected to be higher.

In the scattering rate calculations, the gate screening is
taken care by including the image charge potential into the
remote impurity potential Eq. (28) at |z| > w/2:

U1(q, z) = 2πe2F0(qw)

κqε(q)
(e−q|z| − e−q|2dg−z|), (57)

where 2dg = 2d + 2do + w. As a result, the RI scattering
rates Eqs. (15) and (16) are replaced by [77]

1

τRI
= π h̄nr

8m�k3
F d3

(
1 + d3

(2dg − d )3
− 2d3

d3
g

)(
2

g

)2

, (58)

1

τqRI
= π h̄nr

2m�kF d

(
1 + d

2dg − d
− 2d

dg

)(
2

g

)2

. (59)

The ratio of the scattering rates is given by(
τ

τq

)
RI

= (2kF d )2Ig(d, dg), (60)

where the dimensionless function Ig(d, ds) reads

Ig(d, dg) =
1 + d

2dg−d − 2d
dg

1 + d3

(2dg−d )3 − 2d3

d3
g

. (61)

A comparison between Eqs. (17) and (60) reveals that the
inclusion of gate screening modifies the ratio by a factor of
Ig(d, ds), which is independent of kF . For the high mobility
structures reported in Refs. [13,14], dg ≈ 44 nm and d ≈ 30
nm, which gives Ig(d, dg) ≈ 0.3. Thus, incorporating gate
screening leads to a decrease in the ratio (τ/τq)RI, and conse-
quently, the corresponding quantum mobility should increase
by a factor of 3. This explains the difference in the quantum
mobility values between Figs. 8, 10(a), and 10(b).

On the other hand, we see that the results in Figs. 8, 10(c),
and 10(d) are very similar to each other, suggesting that our
choice of ds = dg/2 describes the gate-screened BI scattering
within the upper SiGe barrier reasonably well. We comment
on the cutoff distance in the lower SiGe barrier in the con-
text of the high-mobility structures reported in Refs. [13,14].
When we discuss the gate screening effects for BI in Sec. III,
we assume that the cutoff distances are the same from both
sides of the SiGe barriers, although in experiments the het-
erostructure is not symmetric. The bottom barrier (a few µm)
is significantly thicker than the upper spacer (30 nm). Given
that the top gate can effectively screen charge impurities only
within the upper SiGe barrier, the cutoff distance for the
lower SiGe barrier remains an open question. However, as
indicated by Eq. (26), at high densities, the cutoff distance
ds only logarithmically changes the quantum mobility, with-
out significantly affecting the transport mobility. Therefore
the choice of the cutoff distance should not change the fit
to the experimental mobility data. By considering the cutoff

distance as an additional fitting parameter, one can always
adjust the model to match a specific quantum mobility data
point. A more comprehensive future experimental investiga-
tion of high-mobility Si quantum wells would be instrumental
in enhancing our understanding of the BI distribution within
the SiGe barrieres.

In summary, the results of our model, which incorporates
gate screening, suggest that RI scattering is likely the pre-
dominant scattering mechanism for transport mobility at low
densities, whereas at high densities the transport mobility is
restricted by IR scattering. The quantum mobility predicted
for gate-screened RI scattering aligns closely with experi-
mental data within the margin of error at the highest density
examined. This observation suggests that RI scattering could
be the limiting factor for quantum mobility across all densi-
ties. On the other hand, since the cutoff distance of the BI
distribution inside the bottom SiGe barrier remains an open
question, we cannot rule out the possibility that some distant
background impurities also contribute to the quantum mobil-
ity. Future experiments focusing on the quantum mobility over
a broader range of densities could yield more quantitative
information on the concentration and the cutoff distance of
background impurities inside the bottom SiGe barrier.

VII. METAL INSULATOR TRANSITION

In this section, we discuss the mobility data in the low-
density regime, and estimate the critical density of the
metal-insulator transition (MIT) using the Anderson-Ioffe-
Regel (AIR) condition [32,33]. All our results in the previous
sections are calculated using the Boltzmann-Born transport
theory, which is valid at high densities such that kF l � 1,
where l = vF τ is the transport mean free path. One might ex-
pect that the Boltzmann-Born theory fails at a critical density
ne = nc where kF l = 1. This is the well-known AIR criterion
of MIT. However, deviations in the metallic regime of our
results, as shown in Fig. 10, suggest that the theoretical mo-
bility curves, fitting well at high densities, start overestimating
mobility at low densities compared to the experimental data.
It is crucial to emphasize that these low-density deviations are
not due to any neglected scattering mechanism in the theory.
The dominant scattering mechanism at low densities is RI
(or BI, depending on the choice of the impurity model). For
RI-dominant cases, as depicted in Figs. 10(a) and 10(b), the
deviation is observed at ne � 1.8 × 1011 cm−2, where kF l �
30 or kF lq � 6 with lq = vF τq [59]. On the other hand, for BI
dominant scenarios, shown in Figs. 10(c) and 10(d), the devia-
tion occurs at a higher density ne � 2.8 × 1011 cm−2, around
kF l � 100 or kF lq � 60. The failure of the Boltzmann-Born
theory at low densities is due to the following. Long-range
Coulomb disorder leads to the fragmentation of the 2DEG into
electron puddles, separated by disorder potential barriers, cre-
ating an inhomogeneous 2DEG landscape. Although kF l � 1
is locally satisfied within each puddle, the uniform 2DEG
assumption, fundamental to linear screening theory, is no
longer valid. Instead, transport properties in the low-density
region ne � nc near MIT should be described by percolation
through charged puddles, following σ ∝ (ne − nc)p with p =
1.31 [23–31], and cannot be captured by the Boltzmann-Born
theory even including all high-order scattering processes. The
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failure of the Boltzmann-Born theory at low densities also
indicates that the critical density estimated from the AIR
criterion should be smaller than the actual critical density
(percolation threshold) observed in experiments and should
be used as a lower bound estimation of the percolation
threshold.

Nevertheless, we apply the AIR criterion, characterized by
kF l = 1 and kF lq = 1, to estimate the critical densities nc and
ncq [32,33]. Utilizing the delta-layer 2DEG approximation, as
discussed in Secs. III and VI, we can analytically estimate
the critical density of the metal-insulator transition (MIT).
By substituting the gate-screened remote impurity scattering
rates from Eqs. (58) and (59) into the AIR criterion, we derive
{gather}

n(RI)
c =

g1/5
[
1 + d3

(2dg−d )3 − 2d3

d3
g

]2/5

212/5π3/5

(
nr

d3

)2/5

, (62)

n(RI)
cq =

g−1/3
[
1 + d

2dg−d − 2d
dg

]2/3

24/3π1/3

(
nr

d

)2/3

. (63)

Equations (62) and (63) are applicable if n(RI)
c and n(RI)

cq exceed
g/16πd2. This condition is met in high-mobility quantum
wells [13,14] where g/16πd2 ≈ 1010 cm−2. For BI scattering,
substituting the rates from Eqs. (25) and (26) into the AIR
criterion yields

n(BI)
c = g1/52−8/5π−3/5

(
N1

w2

)2/5

, (64)

n(BI)
cq = g−1/32−2/3π−1/3[ln(2ds/w)]2/3N2/3

1 , (65)

which are valid if n(BI)
c and n(BI)

cq are greater than g/16πw2.
Otherwise, we use Eq. (27) and obtain

n(BI)
c = n(BI)

cq = π

g
N1(2ds − w), (66)

which is applicable if n(BI)
c < g/16πw2. Given that the

crossover density g/16πw2 ≈ 2.4 × 1011 cm−2 is signifi-
cantly higher than the MIT critical density in high-mobility
quantum wells [13,14], we should use Eq. (66) for estimating
nc in BI-dominated scenarios. Using d = 30 nm, ds = dg/2 =
22 nm, and the impurity concentration nr ≈ 5.2 × 1012 cm−2

and N1 ≈ 7.5 × 1015 cm−3 from Fig. 10, we obtain the crit-
ical densities n(RI)

c ≈ 5 × 1010 cm−2, n(RI)
cq ≈ 7 × 1010 cm−2,

n(BI)
c = n(BI)

cq ≈ 2 × 1010 cm−2.
Next, we estimate the critical density of MIT by solv-

ing the AIR conditions kF l = (2/g)(hneμ/e) = 1 and kF lq =
(2/g)(hneμq/e) = 1 with μ and μq numerically calculated
from the best fits shown in Fig. 10. The complete numerical
results for nc and ncq are summarized in the first two rows
of Table I. These values closely align with the analytical
results from Eqs. (62), (63), and (66). Furthermore, Table I
includes results for various quantum degeneracies g = 4, 2,
and 1, while keeping the same disorder parameters as used
in Fig. 10. The changes in nc and ncq as functions of g are
semi-quantitatively consistent with Eqs. (62), (63), and (66).
We should emphasize that our estimate of nc and ncq using the
AIR criterion shown in Table I should serve as a lower bound
for the experimental critical density of MIT.

TABLE I. Critical density nc and ncq in units of 1011 cm−2

for different quantum degeneracy g = 4, 2, and 1. The results are
obtained from kF l = 1 and kF lq = 1 using the same impurity param-
eters from Fig. 10 calculated in a finite potential well approximation
with gate screening and local field correction. RI (BI) indicates the
dominant scattering mechanism at low densities. 5 nm (7 nm) means
the calculation for a 5 nm (7 nm) QW.

RI (5 nm) RI (7 nm) BI (5 nm) BI (7 nm)

nc (g = 4) 0.52 0.49 0.15 0.14
ncq (g = 4) 0.65 0.62 0.12 0.11
nc (g = 2) 0.50 0.48 0.28 0.26
ncq (g = 2) 0.83 0.79 0.28 0.25
nc (g = 1) 0.49 0.47 0.42 0.38
ncq (g = 1) 1.1 1.0 0.48 0.43

Considering that the nature of 2D MIT in high-mobility
Si quantum wells likely resembles a density-inhomogeneity-
driven percolation transition similar to Si MOSFETs [27],
we performed a percolation fit of the experimental data to
estimate the experimental critical density. References [13,14]
reported the percolation density nc = 7 × 1010 cm−2 (nc =
8 × 1010 cm−2) for their high-mobility 7 nm (5 nm) Si quan-
tum wells. The percolation density can also be estimated
approximately by considering inhomogeneous density fluc-
tuations in the system [27,30,34,35,78,79], leading to nc ≈
0.1

√
nr/d ≈ 7.5 × 1010 cm−2, where we used d = 30 nm and

nr ≈ 5 × 1012 cm−2. This nc is higher than the one obtained
from the AIR criterion. This expression of nc ≈ 0.1

√
nr/d

can be understood from simple theoretical argument [34],
later confirmed by numerical simulations [80]. Namely, nc

is equal to the typical density variation (the charged puddle
density) induced by random remote charged impurities within
a square of d × d , where the distance of the remote impu-
rity d plays the role of the screening length. Furthermore,
we individually performed the percolation fit σ ∝ (ne − nc)p

using the conductivity data σ = eneμ at low densities ne =
1 − 2 × 1011 cm−2 reported in Refs. [13,14]. The results of
the best-fit nc and p are presented in Table II. The perco-
lation fit with fixed p = 1.31 yields nc ≈ 0.85 × 1011 cm−2.
Allowing p as a fitting parameter results in p ≈ 2.4 and nc ≈
0.5 × 1011 cm−2. Our percolation fit results are in reasonable
agreement with those reported in Refs. [13,14]. Comparing
Tables I and II, we observe that the RI results provide a
more stringent lower bound of the critical density, as n(RI)

c

TABLE II. Critical density nc in units of 1011 cm−2 obtained by
the power law fit σ ∝ (ne − nc )p to the conductivity data σ = eneμ

at low densities ne = 1–2 × 1011 cm−2 reported in Refs. [13,14].
The parenthesis show the 95% confidence interval of the fitting
parameters. The first column fixed p = 1.31 assuming the 2D per-
colation. The second and third columns are results treating p as a
free parameter.

nc (p = 1.31) nc p

5 nm (0.837, 0.855) (0.436, 0.514) (2.20, 2.41)
7 nm (0.869, 0.889) (0.447, 0.515) (2.34, 2.52)
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and n(RI)
cq are closer to the percolation densities reported in

Refs. [13,14]. This suggests that RI scattering, rather than BI,
is likely the limiting mechanism at low densities in the studied
high-mobility Si quantum wells. Given that n(RI)

cq > n(RI)
c , we

find that the AIR criterion, which includes the single-particle
scattering time τq [59], provides a more accurate estimate
of the percolation density. In the future, a more systematic
experimental study of the temperature and density dependence
of the conductivity is needed to gain a more comprehensive
understanding of the 2D MIT in high-quality Si quantum
wells.

VIII. EFFECTS OF SPIN/VALLEY DEGENERACY

In earlier sections, our numerical calculations considered
a total quantum degeneracy g = gsgv = 4. This assumption
is valid under two conditions: first, the Fermi energy must
substantially surpass the valley splitting, and second, the ex-
ternal magnetic field should be weak enough to avoid inducing
spin polarization. In this scenario, both the valley and spin
degrees of freedom maintain a twofold degeneracy, indicated
by gv = gs = 2. This section theoretically addresses how the
total quantum degeneracy g affects the electron transport prop-
erties in the high-mobility Si/SiGe structures for a given
disorder configuration. For example, a decrease in degeneracy
from g = 4 to g = 2 can be achieved by applying an in-plane
magnetic field B parallel to the 2DEG, which is assumed to
only affect the spin degeneracy of the 2DEG without orbital
effect if the thickness of the 2DEG is much smaller than the
cyclotron radius w � ch̄kF /eB [41,81–83]. Such a reduced
degeneracy is also possible without any spin polarization if
the valley splitting happens to be larger than the Fermi energy
so that gv = 1 in the system.

In the strong screening limit qTF/2kF � 1 (for the density
range of interest to us ne � g3/16πa2

B), mobility increases
monotonically with increasing g for a given impurity con-
figuration. This monotonic behavior of mobility versus g has
been shown in a comprehensive analysis of valley-dependent
2D transport in (100), (110), and (111) Si inversion layers
with the same bare Coulomb disorder [40,41]. A similar
phenomenon was observed in an ambipolar gate-controlled
Si(111)-vacuum field effect transistor, where by tuning the
external gate voltage the 2D electron and hole transport can be
studied within the same device against the same background
Coulomb disorder [43]. For the ambipolar transistor discussed
in Ref. [43], the effective valley degeneracy is 6 for a 2D
electron system, whereas it is 1 for a 2D hole system, resulting
in the peak electron mobility being approximately 20 times
greater than the peak hole mobility at low temperatures. This
can be qualitatively understood from the expression of the
Thomas-Fermi screening wave vector qTF = g/aB, implying
that higher g leads to improved screening and consequently,
higher mobility. However, the relationship between mobility
and g is generally nontrivial, as g influences both qTF ∝ g
and kF ∝ g−1/2. For remote impurity scattering, it is evi-
dent from Eqs. (15), (16), (58), and (59) that μRI ∝ g1/2

and μqRI ∝ g3/2. On the other hand, for short-range impurity
scattering, μS = μqS ∝ g2, as indicated by Eq. (20). As dis-
cussed in Sec. III, the g dependence of background impurity
scattering crosses over from short-range to remote impurity

scattering behavior with increasing electron density, as de-
tailed in Eqs. (25)–(27). The crossover density is at ne =
g/16πw2. For interface roughness scattering, the mobili-
ties μIR and μqIR are proportional to g3 at low densities
ne < g/4π�2, transitioning to a long-range behavior where
μIR ∝ g1/2 and μqIR ∝ g3/2 at higher densities, as shown in
Eqs. (34)–(38). However, IR scattering at low densities ne <

g/4π�2 is typically overshadowed by the dominant scatter-
ing mechanism at these densities, which is usually remote
Coulomb disorder. At ne = g/4π�2, the minimum mobility
due to IR scattering μIR,min ∝ g2, as per Eq. (39). Since the
unscreened alloy disorder scattering rate, as given by Eq. (55),
depends on kF only through V = V0 − EF , the mobility μAD

is not influenced by g provided that V0 � EF is fulfilled. The
results of the above analysis suggest that if a parallel magnetic
field is used to lift the spin degeneracy without any orbital
effect, the metallic resistance can at most be increased by a
factor of 4 [39,82–86].

Figure 11 presents the results of mobility μ(ne) for dif-
ferent quantum degeneracies g = 4, 2, and 1. For these
calculations, the finite potential well approximation with gate
screening and local field correction is utilized, employing the
same disorder parameters as in Fig. 10. As expected, we see
that the mobility decreases monotonically with the reduction
in g. The scattering mechanism that limits the transport mobil-
ity is IR at high densities, while the limiting factor of mobility
at low densities is RI (or BI, depending on the choice of the
impurity model). The dashed curves in Fig. 11 replicate the
g = 4 mobility results from Fig. 10. The solid curves represent
our prediction for the mobility in the presence of a parallel
magnetic field without orbital effect. In this scenario, the spin
is fully polarized (gs = 1), resulting in a total quantum degen-
eracy of g = gv = 2. The observed ratio of μg=4/μg=2 falls
within the range from

√
2 to 4, which aligns with the predicted

g1/2 to g2 scaling of μ across various scattering mechanisms.
Our choice of the valley degeneracy gv = 2 is appropriate for
the high mobility structures reported in Refs. [13,14], where
the Fermi energy in the density range ne = 1 − 6 × 1011 cm−2

is EF ∈ (0.6, 3.8) × (4/g) meV. This Fermi energy is signif-
icantly greater than the valley splitting of 0.2 meV. Should
the valleys split further such that only one valley is occu-
pied, combined with a strong parallel magnetic field, one
could achieve a quantum degeneracy of g = 1. The dot-dashed
curves in Fig. 11 are our predictions in this scenario, indicat-
ing a further reduction in mobility.

The quantum degeneracy g also has an effect on the critical
density nc estimated from the AIR criterion. The specific
relationship between nc and g depends on the dominant scat-
tering mechanism responsible for MIT and the dimensionless
parameters such as qTF/2kF , kF d for RI, kF w for BI, and kF �

for IR. These parameters determine the effective screened po-
tential that scatters electrons, thereby altering the MIT critical
density. In the strong screening limit qTF/2kF � 1 or ne �
g3/16πa2

B, which is of interest to us for the high-mobility
structures reported in Refs. [13,14], the critical densities es-
timated from the AIR criterion for the RI and BI scatterings
are summarized in Eqs. (62)–(66). We see that for long-
range Coulomb impurity scattering, nc ∝ g1/5 while ncq ∝
g−1/3. For MIT induced by short-range impurity scattering, the
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FIG. 11. Mobility (μ) vs electron density (ne) for quantum wells with widths of 5 nm (red) and 7 nm (blue). The dashed, solid, and
dot-dashed curves represent the theoretical mobility assuming the total quantum degeneracy g = 4, 2, and 1 respectively. The calculations are
done using the finite potential well approximation with gate screening and local field correction. Subfigures (a) and (b) incorporate RI, IR, and
AD scattering, whereas (c) and (d) consider BI, IR, and AD scattering. The corresponding disorder parameters are the same as in Fig. 10.

critical density is given by

n(S)
c = n(S)

cq = π

g
n2, (67)

which is the same as Eq. (66) with N1(2ds − w) replaced
by the effective 2D short-range impurity concentration n2

nearby the 2DEG. For example, Eq. (67) describes the case
in Si MOSFETs where nc increases as g (and μ) decreases
[59,78,87]. Table I shows the value of nc and ncq for the same
disorder parameters taken from Fig. 10 but with different g.
We should emphasize that the disorder parameters in Fig. 10
are obtained by fitting the experimental data with the theoret-
ical mobility curves using g = 4, which is justified since EF

is much larger than the valley splitting in the high-mobility
Si quantum wells. For completeness, Appendix presents the
best-fit results of the mobility curves and the corresponding
critical densities assuming g = 2. In this scenario, the fitting
disorder parameters are lower than those in Fig. 10 due to
weaker screening.

IX. CONCLUSION

In summary, as the main goal of our theoretical work in
the context of the importance of the Si/Ge quantum com-
puting platform, we have systematically examined the roles
of different scattering sources on the transport and quantum
mobilities in the Si/Si0.69Ge0.31 quantum wells with a co-
design of high electron mobility and large valley splitting
reported in Refs. [13,14]. We identify remote charged im-
purities and interface roughness as primary limitations for

transport mobility at low and high electron densities, re-
spectively. Quantum mobility, on the other hand, influenced
by both remote and distant background impurities, requires
further experimental investigation to understand the charged
impurity distribution in SiGe barriers. Our analysis finds alloy
disorder scattering to be negligible in high-mobility struc-
tures. Other scattering sources, such as inhomogeneous strain
distributions and threading dislocations [37] that originated
from the bottom metamorphic substrate of several µm, are
also quantitatively irrelevant for the reported mobility us-
ing similar estimations from Ref. [53,88]. We estimate the
metal-insulator transition critical density using the Anderson-
Ioffe-Regel criterion and qualitatively explain the breakdown
of the Boltzmann-Born theory at low densities due to the long-
range Coulomb disorder. We also estimate the critical density
by considering inhomogeneous density fluctuations induced
by long-range Coulomb disorder in the system and find a
larger critical density compared to the one obtained from
the Anderson-Ioffe-Regel criterion. To gain a more compre-
hensive understanding of the metal-insulator transition, more
extensive future experimental studies of the temperature and
density dependence of the conductivity should be conducted.
A brief theoretical prediction for the finite-temperature resis-
tivity is as follows. At low temperature T < EF , it is possible
to observe the linear-in-T resistivity due to screened Coulomb
impurities (see, for example, Ref. [89] and the references
there). On the other hand, the ln T insulating behavior due
to quantum weak localization is difficult to observe because
of the linear-in-T metallic Boltzmann resistivity, which may
only become apparent at extremely low temperatures outside
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FIG. 12. Mobility (μ) vs electron density (ne) for quantum wells with widths of 5 nm (red) and 7 nm (blue). The experimental data are
depicted by red and blue curves, with corresponding error bars shown as shaded areas. The solid black curves represent the theoretical transport
mobility, while the dashed black curves denote the quantum mobility, both calculated using the finite potential well approximation with gate
screening and the local field correction, assuming the total quantum degeneracy g = 2. Subfigures (a) and (b) incorporate RI, IR, and AD
scattering, whereas (c) and (d) consider BI, IR, and AD scattering. Fitting parameters: (a) nr = 3.6 × 1012 cm−2, � = 3.5 Å, and � = 20 Å;
(b) nr = 3.6 × 1012 cm−2, � = 8 Å, and � = 15 Å; (c) N1 = 3.3 × 1015 cm−3, N2 = 0, � = 4 Å, and � = 15 Å; (d) N1 = 3.3 × 1015 cm−3,
N2 = 0, � = 6.5 Å, and � = 18 Å.

the experimental temperature range [31]. At high temperture
T > EF , the resistivity due to screened Coulomb scattering
decreases in T , while the acoustic phonon scattering leads
to a resistivity increasing linearly in T at T > TBG = 2h̄vskF

where vs is the sound velocity. This interplay of mechanisms
may lead to a complex, possibly nonmonotonic, resistivity
behavior on the metallic side of the 2D MIT at low carrier
densities [90]. We also predict the electron mobility with
reduced quantum degeneracy, where the spin is fully polarized
by an external parallel magnetic field, for future experimental
validation.
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APPENDIX: BEST-FIT RESULTS ASSUMING g = 2

In this Appendix, we present the best-fit results of mobility
curves and the corresponding MIT critical densities assuming

the total quantum degeneracy g = 2. Figure 12 shows the
mobility and quantum mobility as a function of the electron
density. By comparing Figs. 10 and 12, it is evident that the
disorder parameters for g = 4 are generally higher than those
for g = 2, due to the fact that screening increases monotoni-
cally as g increases. Table III shows the corresponding results
of MIT critical densities. We see that nc and ncq are in general
smaller than the g = 2 results shown in Table I, because the
values of best-fit mobility and quantum mobility are higher.

TABLE III. Critical density nc and ncq in units of 1011 cm−2.
The results are obtained from kF l = 1 and kF lq = 1 using the same
impurity parameters as in Fig. 12 calculated in the finite potential
well approximation with gate screening and local field correction. RI
(BI) indicates the dominant scattering mechanism at low densities.
5 nm (7 nm) means the calculation for a 5 nm (7 nm) QW.

RI (5 nm) RI (7 nm) BI (5 nm) BI (7 nm)

nc (g = 2) 0.44 0.41 0.16 0.15
ncq (g = 2) 0.68 0.63 0.15 0.14
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