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Evolution from quantum anomalous Hall insulator to heavy-fermion
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The ground states of twisted bilayer graphene (TBG) at chiral and flat-band limit with integer fillings are
known from exact solutions, while their dynamical and thermodynamical properties are revealed by unbiased
quantum Monte Carlo (QMC) simulations. However, to elucidate experimental observations of correlated
metallic, insulating, and superconducting states and their transitions, investigations on realistic, or nonchiral
cases are vital. Here we employ momentum-space QMC method to investigate the evolution of correlated states
in magic-angle TBG away from chiral limit at charge neutrality with polarized spin/valley, which approximates
to an experimental case with filling factor ν = −3. We find that the ground state evolves from quantum
anomalous Hall insulator into an intriguing correlated semimetallic state possessing heavy-fermion features as
AA hopping strength reaches experimental values. Such a state resembles the recently proposed heavy-fermion
representations with localized electrons residing at AA stacking regions and delocalized electrons itinerating via
AB/BA stacking regions. The spectral signatures of the localized and itinerant electrons in the heavy-fermion
semimetal phase are revealed, with the connection to experimental results being discussed.
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I. INTRODUCTION

Flat bands of noninteracting magic-angle twisted bilayer
graphene (TBG) can be readily characterized by tight-binding
[1,2] and continuous Bistritzer-MacDonald [3] models. Yet,
in such deceptively simple systems, it is the interplay of
long-range Coulomb interaction, quantum metric of flat-band
wave function and the extremely high tunability, by twist-
ing angles, gating, and dielectric environment, that gives rise
to a plethora of novel quantum states including correlated
insulator [4–14], unconventional metal with linear-T resis-
tivity, superconductor, and beyond [15–20], the underlying
principles and mechanisms of which are still under intensive
investigations.

Among these efforts, exact solutions [14,21–24], mean-
field analyses [23,25–32], density matrix renormalization
group (DMRG) investigations [33,34], and momentum-space
quantum Monte Carlo (QMC) simulations [35–39] reveal
that the TBG model of the first magic angle (1.08◦) with
Coulomb interaction projected into the flat bands possesses
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a quantum anomalous Hall (QAH) ground state with Chern
number C = 1, at chiral (AA stacking hopping u0 = 0) and
flat-band limit (ignoring kinetic energy) with filling factor ν =
±3 (which means one of the eight spin or valley degenerate
bands are occupied for ν = −3, or seven considering particle-
hole symmetry for ν = 3). For the same system away from
chiral limit, which means u0 > 0 (can be varied experimen-
tally by twisting angle, temperature, strain, magnetic field,
or pressure, etc. [16,18]), a DMRG investigation suggests its
ground state remains Chern number polarized until u0/u1 ≈
0.8 (AB/BA stacking hopping u1 ≈ 110 meV [40–42]), be-
yond which competing states such as gapless C2T nematic
and gapped C2T stripe phases emerge [33]. Nevertheless, an-
other DMRG work indicates the ground state a nematic C2T
semimetal when u0/u1 > 0.8 [34], while a recent Hartree-
Fock mean-field study suggests the corresponding state to be
insulating and monolayer charge density modulated with C2T
symmetry [29].

Experimentally, magic-angle (hereafter magic angle refers
to the first magic angle) TBG at ν = −3 is found to be
metallic (or semimetallic considering carrier concentration)
with C3 symmetric electron localization, neighboring to a
superconducting phase, while that of ν = 3 is semicon-
ducting or insulating [6,8,9,11,43–45], when u1 is around
110 meV [40–42] and u0 around 0.8 of u1 [8,46,47] due to
lattice relaxation. The discrepancies between the experimental
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observations (especially for ν = −3) and the above theoretical
proposals are intriguing.

To understand and clarify the discrepancies between the-
ories and experiments, in this work, we apply the unbiased
momentum-space QMC simulation [35–39,48], supplemented
by exact diagonalization (ED) [49], to systematically inves-
tigate the evolution of the correlated states of magic-angle
TBG at ν = −3 and away from chiral limit (increasing u0),
with the Coulomb interaction projected into flat bands. Our
results show the critical transition temperature (Tc) of the
QAH state decreases with increasing u0, and eventually vanish
at u0 ≈ 90 meV, the approximate value of realistic u0, where a
semimetallic (SM) state probably preserving C3 rotation sym-
metry emerges, as meanwhile the quasiparticle gap reduces to
zero. This semimetallic state is gapless in the vicinity of �

point of the moiré Brilliouin zone (mBZ). In real space it has
localized states at the AA stacking region while itinerant states
at the AB/BA stacking regions of the moiré unit cell (mUC),
and the localized states and itinerant states are well separated
in energy—an analog to the experiments [8,9] and recently
found heavy-fermion representations of the TBG system, with
AA stacking regions proposed to hold states of localized flat
bands ( f electrons) and AB/BA stacking regions bridging
itinerant states (c electrons) [32,50–56].

Since our model has no prior heavy-fermion representation
in the first place but mainly the approximation of projecting
the Coulomb interaction into the flat bands, our observa-
tion, the evolution from QAH insulator to heavy-fermion
semimetal at ν = −3, provides an unbiased and unifying in-
terpretation of the ground-state transition of magic-angle TBG
from topological insulator (at chiral limit) to the SM state
(nonchiral) with topological heavy-fermion features.

II. MODEL AND METHOD

The real-space moiré superlattice generated by TBG is
shown in Fig. 7. In principle, the Hamiltonian of TBG con-
tains kinetics and interaction, H = H0 + HI . The kinetic part
is

H0 =
∑

k,G,G′,η,s

c†
k,G,η,sH

η,s(k)G,G′ck,G′,η,s, (1)

where

Hη,s(k)G,G′ = δk1,k2 h̄νF

(−(k1 − Kη

1 ) · ση 0

0 −(k1 − Kη

2 ) · ση

)

+
(

0 T η

1

T η

2
† 0

)
(2)

is the BM model [3] with

T η

l =
(

u0 u1

u1 u0

)
δk1,k2 +

(
u0 u1e−i 2π

3 η

u1ei 2π
3 η u0

)
δk1,k2+(−1)l ηG1

+
(

u0 u1ei 2π
3 η

u1e−i 2π
3 η u0

)
δk1,k2+(−1)l η(G1+G2 ). (3)

Here k is a momentum in mBZ, G is a momentum dif-
ference for k, as k1 = k + G and k2 = k + G′, to account
for the contribution from extended Brillouin zones. G, G′ ∈
{N1G1 + N2G2}, the combinations of lattices of mBZ, with N1

and N2 being integers, and a cutoff, |G|, |G′| � 4|G1|, is ap-
plied. c†

k,G,η,s is a 1 × 4 vector of creation operators, c†
k,G,η,s,X ,

where X is the index referring to layers and sublattices, as
X ∈ {A1, B1, A2, B2} for layers (1, 2) and sublattices (A, B).
In addition, s specifies spins (↑,↓) and η = ± labels the two
valleys. νF is the Fermi velocity and we set h̄vF/(

√
3a) =

2.37745 eV corresponding to flat bands, with a the distance
of nearest carbon atoms. ση = (ησx, σy), where σx and σy are
Pauli matrices refer to sublattices. The first part of Hη,s(k)G,G′

stands for intralayer hopping of the top (1) layer and the
bottom (2) layer, respectively, and the second part stands for
interlayer hopping, which is actually the moiré potential.

The interaction part is of density-density, as

HI = 1

2�

∑
q∈mBZ,G

V (q + G)δρq+Gδρ−q−G, (4)

where

δρq+G =
∑

k,G′,η,s,X

(
c†

k,G′,η,s,X ck+q+G,G′,η,s,X − ν + 4

8
δq,0δG,0

)
.

(5)

Here δρq is the electron density operator with the reference to
(ν + 4)/8, where ν is the filling parameter with ν = 0 as the
charge neutrality. V (q) is the long-range screened Coulombic
interaction decaying as V (q) = e2

2ε
1
|q| (1 − e−|q|d ) [38], where

d/2 is the distance between TBG and a bottom gate [57] (here
we set d = 40 nm) and ε (= 7 ε0) is the dielectric constant.
The fermion momentum transfer, q + G, is cut off at the
amplitude of |G1|. � = Nk|aM1||aM2|

√
3/2 is the total area

of moiré superlattice that we consider in real space, where
Nk = L × L is the number of k points sampling in mBZ and
L is the linear size, and aM1 and aM2 are the lattice vectors of
mUC as shown in Fig. 7, with |aM1/M2| = √

3a/[2sin(θ/2)]
and θ = 1.08◦, the twisting angle.

As shown in Fig. 8 in the Appendix, even in nonchiral
cases (u0 > 0), the two low-energy bands of H0 are quite flat
and isolated from the remote bands, except when u0 ≈ u1 and
u0 > 160 meV. In these isolated flat-band cases, therefore, the
low-energy physics of H = H0 + HI can be well captured by
the two flat bands, and H can thus be projected onto them.
Setting the eigenvalues and eigenvectors of Hη,s(k) to be
εη,s

m (k) and |uk,m,η,s〉, where m = ± is the index for the flat
bands, and projecting H onto the flat bands, as c†

k,m,η,s =∑
G,X c†

k,G,η,s,X |uk,m,η,s〉G,X , yields

H0 =
∑

k,m,η,s

εη,s
m (k)c†

k,m,η,sck,m,η,s,

HI = 1

2�

∑
|q+G|
=0

V (q + G)δρq+Gδρ−q−G, (6)

where δρq+G = ∑
k,m1,m2,η,s λm1,m2,η,s(k, k + q + G)(c†

k,m1,η,s

ck+q+G,m2,η,s − ν+4
8 δq,0 δm1,m2 ), and the form factor

λm1,m2, η,s (k, k + q + G) ≡ 〈 uk, m1, η,s | uk + q + G, m2,η, s 〉.
To efficiently simulate the system at filling ν = −3, same
as earlier studies [33,34], we take two half-filled flat bands
of η = + & s =↑ into consideration due to its spin- and
valley-polarized ground state [29,33,34], while other flat
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bands of the rest combinations of spin and valley, which
remain empty, can be safely ignored in the simulations. Note
that we strip the indices of valley and spin, η and s, in the
following. The above H is tackled by determinant QMC
method, the detail of which is depicted in Appendix A. We
would like to note that our simulation ingnores the kinetic
term H0, due to its flat dispersion, after the projection onto
flat bands, thus corresponding to a perfect flat-band limit.
Moreover, our model tends to predict the nature of pristine
TBG and does not take any heterostrain into account, and
therefore the incommensurate Kekule spiral state found in
experiments [58–61] will not be detected.

III. RESULTS

The ground state of this system at chiral limit is found to
be a Chern-number polarized QAH state [38]. To investigate if
the QAH state sustains in nonchiral cases, the correlation of its
QAH order is calculated. The QAH order parameter is defined
as PC/Nk, where PC = N+ − N− and Nm = ∑

k c†
k,mck,m, the

occupation number operator of two flat bands. The correlation
of this QAH order, or Chern-number polarization, is S ≡
〈(N+ − N−)2〉/N2

k . Its T and u0 dependence for L = 4 system
is shown in Fig. 1(b). For specific u0, S increases with decreas-
ing T , which manifests spontaneous time-reversal symmetry
breaking and a QAH ground state (a topological insulator)
at low temperature [38,62,63]. For each fixed u0, finite-size
scaling is carried out to derive the Tc of the spontaneous time-
reversal symmetry breaking of the QAH state, as shown in
Figs. 1(c)–1(f), where the two-dimensional (2D) Ising expo-
nents β = 1/8 and ν = 1 for the scaling form S(T, L)L2β/ν =
f [(T − Tc)L1/ν], with f being the scaling function, are used.
The obtained Tc reduces with increasing u0, as shown in
Fig. 1(a), and it can be extrapolated that, when u0 ≈ 90 meV,
Tc is zero within our resolution as indicated by the dashed
fitting line with an error of 5 meV.

Such vanishing of the QAH phase as a function of u0 is
consistent with the evolution of the quasiparticle gap of �,
�� , with different system sizes (Nk) at the temperature 3 meV,
as shown in Fig. 2(a). The counterparts from ED also yield
the same tendency, as shown in Fig. 11. The values of ��

are obtained from fitting imaginary time (τ ) Green’s functions
(GFs) to a range with linear τ dependence of logarithmic GFs,
see Figs. 9 and 10 in the Appendix. As a system should be
gapless if there is at least one kind of gapless quasiparticles,
therefore, the marginal and converged values of �� of differ-
ent system sizes indicate the system gapless when u0 > 0.8u1,
as shown in Fig. 2(a) and Fig. 11, although quasiparticle gaps
of other k points of mBZ remain significant even for large u0,
as shown in Fig. 10, suggesting an SM phase. In addition, as
also depicted in Fig. 2(a), due to finite-size effect, the value
of �� with a small u0 increases but converges as the system
size enlarges. It is found as well that the values of Tc are much
smaller than those of the quasiparticle gaps, due to particle-
hole excitons with smaller energies above the QAH phase,
which restore the broken time-reversal symmetry above Tc and
has been evidenced in our previous works [38,63]. Moreover,
the spectra (will be discussed below) of quasiparticles of the
Dirac points in mBZ, K1 and K2 (see Fig. 7 for their positions),
from the 6 × 6 system are always and well gapped through

FIG. 1. QAH state to heavy-fermion semimetal transition away
from chiral limit in the magic-angle TBG of ν = −3. (a) The phase
diagram, where Tc refers to the transition temperature of the QAH
state, marking the time-reversal symmetry breaking and being deter-
mined by finite-size scaling crossings in (c)–(f), and the dased line
is a fit to the data. (b) Chern number polarization, S, obtained from
the L = 4 system, where the simulation T for each u0 reaches as low
temperature as possible. (c)–(f) Finite-size effect crossings with 2D
Ising exponents to derive Tc.

the u0 range investigated, as shown in Figs. 3(b)–3(d), which
thus prove that the Dirac points do not play key roles in the
transition towards the SM phase.

The charge compressibility, κ = d〈N〉/dμ/n0/Nk =
β(〈N2〉 − 〈N〉2)/n0/Nk , where N = ∑

m Nm and n0 is the
particle density, is also calculated to to evidence the transition
from the QAH state to the SM state, whose values are
shown in Fig. 2(b). The vanishing of κ indicates the state
incompressible and insulating, and compressibly conducting
otherwise. Therefore, a small u0 yields an insulating ground
state, which is the QAH phase, while a large u0 leads to a
conducting ground state, corresponding to the SM phase.
Such that the Chern-number polarization, the quasiparticle
gap, and the charge compressibility yield the same physics.

To further reveal the evolution from the QAH phase to
the SM phase with increasing u0, we derive the quasiparti-
cle spectra, A(k, ω), and the corresponding local density of
state, LDOS = ∑

k A(k, ω)/Nk, from the stochastic analytic
continuation scheme [64,65], the results of L = 6 system at
T = 3 meV of which are shown in Fig. 3. As is consistent
to Tc of the QAH phase at a specific u0, A(k, ω) is gapped
for all k points when T is below Tc as shown in Fig. 3(b),
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FIG. 2. Quasiparticle gap of �, �� , and charge compressibility,
κ , as functions of u0 or T . (a) The simulation temperature is 3 meV
considering the sign problem and the consistency to those of ED.
(b) The system size is L = 3.

FIG. 3. LDOS and quasiparticle spectra with L = 6 and T =
3 meV. (a) Normalized local density of states (LDOS) versus energy
ω and u0. (b), (c), and (d) Single-particle spectra A(k, ω) along a
high-symmetry path when u0 = 0, u0 = 40 meV, and u0 = 90 meV,
respectively, where the blue lines denote the spectra of �, while the
orange lines are A(k, ω) of other momentum points. Please note that
the vertical axis in (d) is broken, due to the sharp peak of �, to make
the drawing compact. Mind that T = 3 meV is below Tc when u0 = 0
but above it when u0 = 40 meV.

FIG. 4. (a) The decaying of average Green’s function and the
(c) reducing of the peak at Fermi level of LDOS with the system
size up to L = 8 when u0 = 90 meV. The extrapolations of G(β/2)
and the intensity of the peak of LDOS at Fermi level to larger sizes
are shown in (b) and (d), respectively, where the fitting is quadratic
due to that it is versus 1/L, except the horizontal part in (d).

and gapless around � when T is slightly above Tc as shown
in Fig. 3(c), suggesting the state above QAH a semimetal
and the quasiparticles high-energy excitons. Therefore, Tcs set
the phases boundary between QAH state and SM, indicating
again the ground state of magic-angle TBG is semimetallic
when u0 > 0.8u1, as being further evidenced by Fig. 3(d),
which is consistent to the experimentally found SM phases
[43–45]. The gap of A(�,ω) is the least and gradually de-
creases with growing u0 [Figs. 3(b)–3(d)], where two peaks
gradually merge into a single one. The gap totally closes when
u0 = 90 meV [Fig. 3(d)]. The LDOS remains gapped except a
peak around Fermi level arises as u0 increases [Fig. 3(a)]. This
peak comes from the closing of �� , as shown in Figs. 3(c)
and 3(d), while the spectra of other quasiparticles remain well
gapped.

Average Green’s function summing over k points and
LDOS with different linear sizes are demonstrated in Fig. 4,
where u0 = 90 meV. The convergence of decaying of G(τ )
can be seen, and G(β/2) reduces probably to a minimum but
finite value at the large L limit, as shown in Figs. 4(a) and
4(b), respectively, suggesting that there are finite electrons
at the Fermi level. Meanwhile, the peak of LDOS at Fermi
level decreases probably to a minimum but finite value as
the system size is larger than 6, as depicted in Fig. 4(d).
The probable nonzero extrapolations suggest quadratic band
touching of the semimetallic phase of the magic-angle TBG
when u0 = 90 meV. However, a linear fit extrapolating to 0,
indicating degenerate Dirac cone touching, cannot be totally
ruled out in both Figs. 4(b) and 4(d). To further verify that the
probable semimetallic state is of quadratic band touching, here
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FIG. 5. Real-space spectra A(r, ω) at various u0 and ω when T = 3 meV. Here u0 equals to (a) 0 meV, (b) 40 meV, and (c) 90 meV,
respectively, while ω is chosed to be 0, 7.5, 15, and 22.5 meV in each figure. The intensity of blue stands for the value of A(r, ω), with a color
bar locating at the right of (c). Positions of AA, AB, and BA stacking areas are labeled in (c).

we check if the C3 rotation symmetry is broken by scrutinizing
the correlation of a nematic order parameter, which is defined
as N = 1

Nk

∑
k c†

k,+ck,−. The correlation of N , SN = 〈N †N 〉,
is calculated and illustrated in Fig. 12, as the system is in
the SM phase. Since the value of SN extrapolates to zero
towards the thermodynamic limit, the C3 rotation symmetry
is probably not broken. Therefore, our found SM phase is
probably not nematic, enhancing the probability of the SM
state being a quadratic band touching semimetal.

As degenerate Dirac cone touching cannot be ruled out, we
argue that it is less probable in our case. Based on the Nielsen-
Ninomiya theorem of fermion doubling [66], Dirac cones
shall appear in pairs. The only way of obeying the fermion
doubling theorem is to have two degenerate Dirac cones at
�. However, considering that we only have one valley/spin
degree of freedom (no symmetry to enforce twofold degen-
eracy), there is no obvious reason why the system would
stabilize such a twofold degenerate energy spectrum. Never-
theless, it should be emphasized that this is not impossible,
and it would imply that this semimetal phase is highly uncon-
ventional. Aside from the unconventional pathway towards
Dirac semimetal, there is another less exotic possibility pro-
ducing Dirac points: nematic Dirac semimetal. The system
has a pair of Dirac points near �, one at a momentum point
q and the other at −q. However, such a scenario requires the
breaking of rotational symmetry, which is probably preserved
in our case, as indicated by SN . For quadratic band touching,
as there is no constraint of doubling theorem, it is allowed to
have a single quadratic band crossing at �.

The closing of the quasiparticle gap of � is consistent with
the recently proposed heavy-fermion picture of magic-angle
TBG [32,50–56]. In the heavy-fermion representations, the
flat bands are mostly composed of localized electrons, except
for the tiny vicinity of �, which is mainly contributed by
delocalized electronic states. In the flat-band limit, strong in-
teractions between localized electrons ought to induce energy
gaps in the quasiparticle spectra. However, these interaction-
induced gaps are expected to be much smaller in the narrow
surrounding of �, since the fermion states there are delo-

calized with weaker interaction, and it is indeed so at chiral
limit and when u0 = 40 meV, as shown in Figs. 3(b) and 3(c).
Moreover, the interactions among fermions around � can be
further weaker as the system deviates from chiral limit, and
the corresponding quasiparticle gaps decline and eventually
close when u0 goes beyond a threshold value (u0 ≈ 0.8u1

judged from Tc), as also illustrated by Fig. 3(d).
To further scrutinize the heavy-fermion features of the

SM phase, here we directly probe the localized and de-
localized electron states via real-space spectra by pro-
jecting A(k, ω) of the L = 6 system at T = 3 meV with
the real-space wave function ψk(r, X ) of H0, A(r, ω) =∑

k,X ψ
†
k (r, X )A(k, ω)ψk(r, X ), as a function of u0 and

shown in Fig. 5. It can be clearly seen that the density of
low-energy electrons [ω = 0 meV, first row of Figs. 5(a)–
5(c)] increases in AB/BA stacking regions (or is lifted as
the maximum values are around AA stacking center, where,
however, the minimum values locate), marking the emergence
of the SM state. Meanwhile, the localized electrons [ω =
15, 22.5 meV, bottom two rows of Figs. 5(a)–5(c)] always and
further concentrate at AA centers as u0 grows, which is consis-
tent with the heavy-fermion picture [50,51] and experiments
[8,9]. Furthermore, the density of electrons with intermediate
energy [ω = 7.5 meV, second row in Fig. 5(c)] manifests a
minimum value, separating the itinerant and localized elec-
trons when u0 = 90 meV. These observations suggest that the
realistic (when u0 ≈ 0.8u1) magic-angle TBG of ν = −3 can
be preliminary viewed as a heavy-fermion system. Besides,
the itinerant electrons of A(r, ω = 0) in Fig. 5(c) come from
A(�,ω = 0) in Fig. 3(d).

IV. DISCUSSIONS

In this study, an evolution from the Chern insulator to a
heavy-fermion semimetal probably preserving C3 symmetry
is found for ν = −3 filling magic-angle TBG by increasing
AA hopping strength, u0, which can be experimentally altered.
The ground-state phase transition happens at u0 ≈ 0.8u1 or
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90 meV, where the Chern-number polarization and the quasi-
particle gap of � vanish, the system becomes compressible,
and a peak in LDOS at Fermi level emerges due to the gap’s
closing. The intensity of this peak rises as u0 increases for a
specific system size, but reduces probably to a minimum but
finite value as L enlarges for a specific u0, which manifests
a semimetal state as the gaps of other momenta remain sig-
nificant. The momentum and real-space distributions of the
localized electrons are well separated from those of itinerant
electrons, which are of the � point. The nature of the found
semimetal state implies that the magic-angle TBG can be
preliminarily, based on the numerics here, treated as a heavy-
fermion system when ν = −3. Our findings shed new light on
the correlated nature of TBG and provide critical information
for understanding this fascinating system.
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APPENDIX A: MOMENTUM-SPACE
DETERMINANT QMC METHOD

Due to the flatness of the lowest-energy bands, as shown in
Fig. 8, H0 is ignored in our simulations. The partition function
thus reads Z = Tr(e−βHI ), where β = 1/kBT and T is the
temperature. Z can be Trotter decoupled after splitting inverse
temperature into Nτ pieces, β = 
τNτ , with an error of order

τ 2. That is

Z = Tr(e−βHI )

= Tr((e−
τHI )Nτ )

= Tr

⎛
⎝ β∏

τ=
τ

e−
τHI

⎞
⎠ + O(
τ 2). (A1)

Denoting Q = q + G, HI can be rewritten as

HI =
∑
|Q|
=0

1

2�
V (Q)δρQδρ−Q

=
∑
Q

1

2�
V (Q)(δρQδρ−Q + δρ−QδρQ)

=
∑
Q

1

4�
V (Q)((δρ−Q + δρQ)2 − (δρ−Q − δρQ)2), (A2)

FIG. 6. 〈sign〉 of magic-angle TBG with ν = −3, when (a) L = 4
varying T and u0, and (b) L = 5, 6 and T = 3 meV varying u0. 〈sign〉
reaches 0 when u0 � 40 meV as T = 1 meV in (a), while 〈sign〉 of
L = 6 reaches 0.01 when u0 = 40 meV in (b).

where Q is the half of |Q| 
= 0 [35]. Thus, e−
τHI

can be further decoupled to an auxiliary field by the
Hubbard-Stratonovich transformation, with an error of

FIG. 7. Moiré unit cell (blue hexagon) and its Brillouin zone
(black hexagon), as well as three kinds of stackings and hoppings
(AA, AB, and BA) of TBG. u0 and u1 are hopping strengths of AA-
and AB/BA-stacking areas, respectively. The top (bottom) layer of
TBG are denoted by cyan (red) color. {aM1, aM2} and {G1, G2} are
the lattice vectors of mUC and mBZ, respectively. � is the origin of
mBZ, and K1 and K2 are the two Dirac points of the same vellay and
different layers (1, 2). The twisted angle θ in this schematic is 10◦,
while that of the case we investigate in the main text is 1.08◦.
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FIG. 8. Single-particle dispersions of H0 at the first magic angle and along a high-symmetry line. The remote bands are beyond the scale
when u0 < 70 meV, and approaches the flat bands around � point as u0 further increases. Note that the lowest remote bands touch the flat
bands at � point only when u0 = 110 meV (u0 = u1). The band width of the flat bands enlarge as u0 increases, but remains a quite small value
(less than 5 meV when u0 = 90 meV).

order 
τ 4, as

e−
τHI =
∏
Q

1

16

∑
l1Q,l2Q

γ (l1Q)γ (l2Q)

× ei
√

αη(l1Q )(δρ−Q+δρQ )e
√

αη(l2Q )(δρ−Q−δρQ )

+ O(
τ 4), (A3)

where l = ±1,±2, is the auxilariy field, and γ (±1) =
1 + √

6/3, γ (±2) = 1 − √
6/3, η(±1) = ±

√
6 − 2

√
6, and

η(±2) = ±
√

6 + 2
√

6. α = 
τV (Q)/4�.
The partition function can be finally written as Z =∑
{lτ1Q,lτ2Q} TrUC , with

UC =
β∏

τ=
τ

∏
Q

1

16
γ (lτ1Q)γ (lτ2Q)

× ei
√

αη(lτ1Q )(δρ−Q+δρQ )e
√

αη(lτ2Q )(δρ−Q−δρQ ), (A4)

a configuration of {lτ1Q, lτ2Q} labeled by C. Physical quan-
tities, O, can thus be obtained by sampling the auxiliary

field, as

〈O〉 = Tr(e−βHI O)

Z

=
∑

C

Tr(UCO)

Z

=
∑

C

Tr(UC )

Z

Tr(UCO)

Tr(UC )
, (A5)

with Tr(UC )/Z or Tr(UC ) the sampling weight and denoted
as PC .

However, PC of the magic-angle TBG with ν = −3 is not
constantly positive, or sign problematic, as shown in Fig. 6.
Nevertheless, the symmetries of TBG make PC real [35] and
the average of its sign, 〈sign〉 = ∑

C sgn(PC ), is always posi-
tive and ranges from 0–1. Here 1 means no sign problem while
0 means the simulation is valueless. It is quite intuitive how to
avoid negative weight. Denoting OC = Tr(UCO)/Tr(UC ), 〈O〉
can be rewritten as

〈O〉 =
∑

C OCPC∑
C PC

=
∑

C OCsgn(PC )|PC |/∑
C |PC |∑

C sgn(PC )|PC |/∑
C |PC | . (A6)
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FIG. 9. Decaying of imaginary time Green’s function of � point
with L = 3, 4, 5, 6, when (a) u0 = 0 meV, (b) u0 = 60 meV, and (c)
u0 = 90 meV, where the log scale is used. Mind that the vertical
scales of (b) and (c) is different from that of (a). The fitting dashed
lines are also shown in each panel, the slopes of which give the
quasiparticle gaps in Figs. 2(a) and 10.

Thus, the numerator and the denominator can be sampling
separately by |PC |/∑

C |PC |, with OCsgn(PC ) and sgn(PC ) be-
ing the measured quantities, and 〈O〉 can be further obtained.

Our stable and reproducible results show that a QMC simu-
lation can still be efficiently and reliably done when 〈sign〉 >

0.01 with reasonable computing resources. In the obtaining
of reliable imaginary time Green’s function, the simulation
temperature is set to be T = 3 meV considering the 〈sign〉 of
the L = 6 system, while the T can be lowered when measuring
Chern-number polarization. With the reliable imaginary time
Green’s function, we further employ the stochastic analytic
continuation (SAC) [36,38,67–70] method to extract the real
frequency spectra.

APPENDIX B: MOIRÉ SUPERLATTICE
AND SINGLE-PARTICLE DISPERSIONS

The real-space moiré superlattice generated by TBG is
shown in Fig. 7, where a mUC and its reciprocal first Brillouin
zone (mBZ) are drawn. The module of the lattice vectors of
mBZ is |G1|, |G2| = 8πsin(θ/2)/(3a). Kη

1 and Kη

2 are Dirac
points from the top (1) and bottom (2) layers, respectively.
Schematics of hopping patterns are also shown in the right

panel of Fig. 7. In this work, we consider the system with the
first magic angle (θ = 1.08◦).

From this moiré superlattice, a momentum space single-
particle Hamiltonian, H0, considering intralayer hopping and
interlayer hopping, can be constructed, as described in the
main text. The dispersions of H0 at the magic angle with dif-
ferent u0 are shown in Fig. 8, where two low-energy bands are
quite flat and isolated from remote bands when u0 � 90 meV.
It implies that the low-energy physics can be well captured by
these two bands. The projection of H onto flat bands, as de-
picted in the main text, makes the description of H easier since
only two bands are considered. However, we suppose that the

FIG. 10. Quasiparticle gaps of two bands, ±, (a) and (b), of k
points in mBZ with L = 4 and varying u0. Here � and M refer
to the red circle line and the black circle line, respectively, and
the rest circle lines or star lines are those of the rest momentum
points. Error bars of many data points are smaller than corresponding
markers’ sizes. Note that the gaps of − band remain quite large
values (>8 meV) when u0 = 150 meV, as shown in (b).
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projections when u0 = 110 (meV) and u0 > 160 (meV) fail as
remote bands are too close to flat bands.

APPENDIX C: CALCULATION
OF CHERN-NUMBER POLARIZATION

A perturbation term, which reads

δH =
(

0 0
0 δσz

)
, (C1)

with δ = 1 meV and σz being the third Pauli matrix, is
added to the bottom layer of H0 to break inversion and an
isolated Chern bands basis |ψ〉 is obtained. This perturba-
tion term breaks C2zT but T , which means the spontaneous
time-reversal symmetry breaking of the TBG system is still
allowed. Denoting the original basis as |φ〉, the imaginary-
time Green’s function in the isolated Chern bands basis
can thus be related to the original basis, by 〈ψ |G(k)|ψ ′〉 =∑

φ,φ′ 〈ψ |φ〉〈φ|G(k)|φ′〉〈φ′|ψ ′〉. Thus, the correlation func-
tion of the QAH order, or Chern-number polarization, can
be calculated in the isolated Chern band basis. As this per-
turbation term resembles an h-BN potential, therefore the
strength, δ, which can be as low as 0.3 meV, is chosen
to be 1 meV to minimize the relevance. This perturba-
tion term is only added when calculating Chern-number
polarization.

APPENDIX D: IMAGINARY TIME GREEN’S
FUNCTION AND DERIVED GAPS

The decaying of G(�, τ ) is depicted in Fig. 9, where the
convergence of decaying can be seen with increasing L. The
minimum single-particle gap of each momentum can be ob-
tained by fitting G(τ ) = exp(−�τ )/2 + exp[−�(β − τ )]/2
to the data in a range with linear τ dependence of logarithmic
GFs as shown in Fig. 9, and the obtained gaps are demon-
strated in Fig. 2(a) and Fig. 10, where those of other k points
are also shown.

The gaps of L = 3 from ED, considering the computational
complexity, is calculated as well and shown in Fig. 11 (green
squares), where counterparts from QMC (red squares), with
the simulation temperature being 3 meV, are also shown. As
the result from ED is of ground state, gaps from QMC at
3 meV are slightly lower than those from ED, and the lowering
of simulation T can reduce the deviation. Besides, the same
tendency is obtained that the gap closes at u0 ≈ 0.8u1. In
addition, the detail of implementation of ED is depicted in
Appendix F.

APPENDIX E: C3 ROTATION SYMMETRY
OF THE SEMIMETALLIC PHASE

The correlation of the nematic order, N , as a function
of reversed linear size, 1/L, with u0 = 90 meV is shown in
Fig. 12. As there might be some correlation in a small sys-
tem, there is none in the thermodynamic limit, suggesting the
absence of this nematic order and the presence of C3 rotation
symmetry.

FIG. 11. Quasiparticle gaps of � from ED (green squares) when
L = 3 compared with counterparts from QMC (red squares) with
T = 3 meV.

APPENDIX F: IMPLEMENTATION
OF THE EXACT DIAGONALIZATION

Exact diagonalization (ED) is implemented to obtain the
charge gap of the system in comparison to those from QMC.
For L × L (≡ Nk) systems with the two nearly flat bands
taken into account, there are 2L2 single-particle states in total,
which are labeled by momentum and band index. Here we
use an integer i ∈ [0, 2L2 − 1] to label each single-particle
state, d†

i ≡ d†
km, whose momentum k and band index m are

determined by i. The Hamiltonian in Eq. (6) can be rewritten
in the following form by moving all electron creation operator
to the left:

H =
∑

i,i′, j′, j

V2(i, i′, j′, j)d†
i d†

i′ d j′d j +
∑
i, j

V1(i, j)d†
i d j + V0.

(F1)

FIG. 12. Correlation, SN , of the nematic order parameter, N , as
a function of reversed linear size, 1/L.
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The matrix element between arbitrary many-body states can
be obtained from Eq. (F1). Let |ψ〉 be a simple direct product
state |ψ〉 = C†

iN−1
...C†

i0
|0〉 whose creation operators are ordered

by iN−1 > · · · > i1 > i0. Then |ψ〉 can also be represented
by a string of bits with length 2L2 such as |1101001...〉.
The Hamiltonian can be written in the basis made of these
distinct direct product states. For a given product state |ψ〉,
if there is another product state |ψ ′〉 such that 〈ψ ′|H |ψ〉 
=
0, then either of the two situations occurs: (i) there exist
distinct numbers i 
= i′ such that |ψ ′

1〉 ∝ d†
i′ di|ψ〉; (ii) there

exist distinct numbers i, j, i′, j′ with i > j, i′ > j′ such that
|ψ ′

2〉 ∝ d†
j′d

†
i′ did j |ψ〉. Then, according to Eq. (F1), we have

〈ψ ′
2|H |ψ〉 = (−1)μ(i, j)(−1)μ

′(i′, j′ )[V2( j′, i′, i, j)

− V2( j′, i′, j, i) −V2(i′, j′, i, j) +V2(i′, j′, j, i)].

(F2)

Here μ(i, j) is the number of “1” between the ith and jth bits
in the bit representation of |ψ〉. This sign factor comes from

the Fermi anticommutation of creation operators. Similarly,
for |ψ ′

1〉 ∝ d†
i′ di|ψ〉, we have

〈ψ ′
1|H |ψ〉 =

∑
j

(−1)μ(i, j)(−1)μ
′(i′, j)[V2( j, i′, i, j)

− V2(i′, j, i, j) − V2( j, i′, j, i) + V2(i′, j, j, i)]

+ V1(i′, i). (F3)

The diagonal matrix elements are

〈ψ |H |ψ〉 = V0 +
∑

i> j,ψi=ψ j=′′1′′
[V2( j, i, i, j) − V2( j, i, j, i)

− V2(i, j, i, j) + V2(i, j, j, i)] +
∑

i,ψi=′′1′′
V1(i, i).

(F4)

Then H can be diagonalized in the basis of |ψ〉 to obtain its
eigenvalues.
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[52] D. Călugăru, M. Borovkov, L. L. Lau, P. Coleman, Z.-D. Song,
and B. A. Bernevig, TBG as topological heavy fermion: II.
Analytical approximations of the model parameters, Low Temp.
Phys. 49, 640 (2023).

[53] H. Hu, B. A. Bernevig, and A. M. Tsvelik, Kondo lattice model
of magic-angle twisted-bilayer graphene: Hund’s rule, local-
moment fluctuations, and low-energy effective theory, Phys.
Rev. Lett. 131, 026502 (2023).

[54] H. Hu, G. Rai, L. Crippa, J. Herzog-Arbeitman, D. Călugăru,
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