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Spin transport study in a disordered-metal/ferromagnetic-insulator heterostructure
based on full counting statistics within the coherent potential approximation
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We present a theoretical formalism to investigate quantum spin transport in a two-dimensional
metal/ferromagnetic insulator (FI) heterostructure in the presence of disorder. The formalism is based on the
full counting statistics (FCS) within coherent potential approximation (CPA), which is capable of calculating
the disorder average of an arbitrary number of Green’s functions. Due to the convolutional structure of the
self-energy of the FI lead, the conventional FCS-CPA formalism breaks down in our system. We propose
two solutions to solve this problem. We numerically examine the formalism by calculating the average spin
conductance in a disordered nonmagnetic metal/FI (NM/FI) heterostructure and apply it to a disordered
altermagnetic metal/FI (AM/FI) heterostructure. The FCS-CPA results exhibit excellent agreement with brute
force calculations in weak disorders. In AM/FI systems, the spin transport is enhanced in weak disorders and
suppressed in strong disorders. Stronger anisotropic hopping suppresses the spin transport in AM/FI systems.
The average spin conductance is notably sensitive to the spin polarization of AM states. The methods proposed
here are also applicable to the convolutional self-energy in electron-phonon coupling systems.
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I. INTRODUCTION

Spin transport is a major subject of spintronics. Electronic
and magnonic spin currents are its two main components
[1–6]. The electronic spin current is usually generated in a
nonmagnetic metal (NM) via the spin Hall effect [5,7–9] or at
the interface of a ferromagnet and a normal metal via the spin
pumping effect [10–14]. Due to various scattering processes
from phonons, electrons, and defects, the electronic spin
current usually decays over short distances and produces in-
evitable Joule heat. In ferromagnetic insulators (FIs), conduc-
tion electrons are forbidden by the band structure, so the spin
current is carried by spin waves or magnons, i.e., magnonic
spin current. Since scatterings from conduction electrons are
absent, the decay length of magnonic spin current reaches a
macroscopic scale of a millimeter [15], and no waste heat is
produced. Therefore, magnonic spin current serves as a poten-
tial building block of the next-generation computing platform.
Since the infrastructure of conventional electronic devices is
well developed and has several advantages, a feasible option
is to integrate magnonics into the existing electronic archi-
tectures, among which the NM/FI bilayer structure is widely
used in theoretical and experimental investigations [16,17].
Extensive efforts have been made to enhance the spin signals
by inserting layers between the NM layer and the FI layer
[18–22]. A full quantum theory describing the spin current
in an NM/FI heterostructure has been developed [23]. The
spin thermoelectric properties of a quantum dot connected to
magnetic insulator and metal electrodes in the presence of
Coulomb repulsion has also been investigated [24].
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Recently, a unique magnetic phase termed altermagnetism
has been reported in ruthenium dioxide (RuO2) [25–27],
where two sublattices with opposite spins result in anisotropic
spin-splitting with a magnitude of eV scale in reciprocal space
[28]. The spin-splitting alternates in sign across the band
structure. Notably, it has been demonstrated that a strong
transverse spin current can be generated, akin to the spin
Hall effect, by applying an external electric field, even in the
absence of the relativistic spin-orbit coupling [29–31]. Alter-
magnets have significantly broadened the material landscape
for spintronics [32–36]. While the transport across junctions
of altermagnetic metals (AMs) with normal metals and ferro-
magnetic metals has been studied [32], there is still a dearth
of investigation on spin transport in AM/FI heterostructures.

On the other hand, disorder effects in electronic sys-
tem have drawn great attention since the pioneering work
by Anderson [37]. Various interesting transport phenomena
have been uncovered, including weak localization [38–41],
weak antilocalization [39,42], Anderson localization [37],
and universal conductance fluctuation [43–47]. Numerically,
transport properties can be studied using the Landauer-
Büttiker formula in the nonequilibrium Green’s function
framework. Despite the success of numerical investigations
in various electronic systems, the vast computational cost
remains a big challenge. To obtain an accurate estimation of
a disorder-averaged physical quantity, the quantity must be
calculated for a large number of disorder samples. This is
called the brute force calculation. To reduce the computational
cost of brute force calculation, a number of approximated
schemes were developed [48–58]. The coherent potential
approximation [48–51] (CPA) was introduced to calculate
the disorder average of a single retarded Green’s func-
tion 〈Gr〉, from which we can obtain the density of states
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(DOS) of the disordered system. The nonequilibrium vertex
correction (NVC) method [52–55] was invented to deal with
the transmission coefficient, which involves the production of
two Green’s functions. A generalized nonequilibrium vertex
correction (GNVC) method [56,57] was proposed to solve
the disorder average of four Green’s functions, which can
be used to calculate the average conductance fluctuation and
shot noise. As a powerful approach, the full counting statistic
method within CPA (FCS-CPA) is capable of solving the
average of an arbitrary number of Green’s functions [58].
Moreover, the FCS-CPA method has proven to be powerful
in charge and phonon transport studies [58,59]. However, the
existing formalism can not be directly used for spin transport
studies, especially for spin current mediated by magnon in dis-
ordered systems such as NM/FI and AM/FI hybrid systems.

In this paper, we extend the FCS-CPA formalism to the
spin transport study in metal/ferromagnetic insulator (M/FI)
hybrid systems, such as the NM/FI system and AM/FI
system. Conventional FCS-CPA formalism in studying charge
conductance in NM systems relies on an important property
of the cumulant generating function (CGF), i.e., the disorder
in CGF is completely included in the Green’s functions, and
there should be no disorder in self-energies. However, this
property is no longer respected in M/FI system and the self-
energy is expressed as the convolution of Green’s function
of scattering region and the bare self-energy of the FI lead
because of the third-order interaction between the electron
and magnon. Due to the convolutional structure of self-energy,
disorder enters the self-energy through the Green’s function
of the central scattering region. The conventional FCS-CPA
formalism thus breaks down. We propose two solutions
to address this problem within the conventional FCS-CPA
formalism. Subsequently, we apply our methods to numeri-
cally investigate the spin transport in disordered NM/FI and
AM/FI heterostructures. In the NM/FI system, it is found
that in weak disorders, FCS-CPA gives accurate estimations
for average spin conductance. While in strong disorders,
the results deviate from brute force calculation due to the
CPA approximation. Additionally, in the AM/FI system,
the enhancement in spin conductance in weak disorders
is also observed. Stronger anisotropic hopping tJ tends to
facilitate the suppression of spin transport by disorder. The
disorder-averaged spin conductance displays a pronounced
angle dependence, serving as a key signature of altermagnets.

The rest of the paper is organized as follows. In Sec. II,
we first introduce our model and the spin current formula
in the Born approximation (BA). Then we generalize the
conventional FCS-CPA formalism to calculate spin conduc-
tance in M/FI hybrid system and propose two approximate
methods to deal with the convolutional self-energy due to the
electron-magnon interaction. In Sec. III, we apply our method
to investigate the spin transport in a disordered NM/FI
heterostructure and a disordered AM/FI heterostructure.
Section IV is our conclusion part.

II. MODEL AND THEORETICAL FORMALISM

In this section, we introduce our model and outline the
previously obtained spin current formula in the DC case [23].

FIG. 1. Schematic view of the 2D M/M/FI system in considera-
tion. A metal lead and an FI lead are connected to a central metallic
scattering area. In numerical calculations, Anderson-type disorder is
added on the central scattering region. The x direction is the transport
direction.

Then we briefly review procedures in conventional FCS-CPA
formalism and generalize it to M/FI hybrid systems.

A. Model Hamiltonian and spin current formula

The M/M/FI heterostructure considered in this paper is
schematically illustrated in Fig. 1, where a central metallic
region is connected to a left metallic lead and a right FI lead.
The whole structure Hamiltonian is written as (e = 1 and
h̄ = 1)

H = Hcenter + Hleads + Hcoupling. (1)

The first two terms describe the Hamiltonians of center region
(Hcenter) and isolated leads (Hleads), with

Hcenter =
∑
nσ

(εnσ + V )d†
nσ dnσ (2)

and

Hleads = HL + HR. (3)

Here d†
nσ is the creation operator of electrons in the cen-

tral region. In the presence of disorder, a random potential
V is added to the on-site potential εnσ . HL = ∑

kσ (εkσ −
μLσ )c†

kσ
ckσ is the Hamiltonian of the left metallic lead, which

is described by free electrons. Here c†
kσ

creates an electron
with momentum k and spin σ in the left lead. μLσ is the spin-
dependent chemical potential of electrons injected from the
left lead. The right FI lead could be described by the Heisen-
berg model, which under Holstein-Primakoff transformation
[60] and the linear spin-wave approximation [61] reduces to
free magnons [62] described by HR ≈ ∑

q ωqa†
qaq. Operator

a†
q(aq) creates (annihilates) a magnon with momentum q. The

magnon dispersion ωq is given by material details.
The coupling Hamiltonian between the central region and

two leads is

Hcoupling = HT + Hsd, (4)

with

HT =
∑
kσn

[tkσnc†
kσ

dnσ + t∗
kσnd†

nσ ckσ ] (5)

and

Hsd = −
∑
qnn′

Jqnn′ [d†
n↑dn′↓a†

q + d†
n′↓dn↑aq]. (6)
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Here HT describes the electronic hopping between the left lead
and the central region. Hsd is the coupling between electrons in
the central metallic region and magnons in the right FI lead,
which is described by the so-called sd exchange interaction.
Jqnn′ is the scattering strength of the process where an electron
in level n′ with spin σ is scattered to level n with spin σ̄ while
absorbing or emitting a magnon.

In the presence of a temperature gradient �T between
the left and right lead or a spin voltage μs = μL↑ − μL↓, a
pure spin current flows through the heterostructure due to the
longitudinal spin Seebeck effect [16,17]. After performing the
perturbation expansion in the nonequilibrium Green’s func-
tion formalism, we obtained the pure spin current Is in the het-
erostructure [23]. In the DC case, the spin current is given by

Is = −
∫

dETr[Gr
↑(E )�L↑(E )Ga

↑(E )�̄R↑(E )]. (7)

The Green’s function Gr,a
↑ is defined as

Gr,a
↑ (E ) = 1

E − H − �r,a
L↑(E ) − �̄r,a

R↑(E )
, (8)

and �L↑(E ) = −2Im�r
L↑(E ) is the linewidth function of the

left lead, where �r
L↑ is the self-energy of left metallic lead.

The effective self-energy of the right FI lead is formulated as

�̄r
R↑(E ) =

∫
dω

2π

[
fR(ω)Gr

L↓(Ē )

+ i fL↓(Ē )ImGr
L↓(Ē )

]
�R(ω), (9)

which is an energy convolution of local partial DOS with the
spectral function of FI lead. Here we define Ē = E + ω. Gr,a

L↓
is the Green’s function when central region is connected to
left lead only, which is defined as

Gr,a
L↓(Ē ) = 1

Ē − H − �r,a
L↓(Ē )

. (10)

We note that the effective self-energy of the right FI lead here
is a key quantity in M/FI system. It makes the enhancement
of spin current by manipulating interfacial potentials possible
[23], which provides insight into amplifying SSE signals.
Inthe BA, the effective linewidth function of the right lead is
given by

�̄R↑(E ) = i�̄<
R↑(E ) − 2 fL↑(E )Im�̄r

R↑(E ), (11)

with

�̄<
R↑(E ) = i

∫
dω

(
1

2
+ f B

R (ω)

)
fL↓(Ē )D0

L↓(Ē )�R(ω), (12)

in which f B
R (ω) = 1/[exp(βRω) − 1] is the Bose-Einstein

distribution for the right magnonic lead, fLσ (E ) =
1/[exp(βL(E − μLσ )) + 1] is the Fermi-Dirac distribution for
the left electronic lead, and f B

L (ω) = 1/[exp(βLω + μs) − 1]
is an effective Bose-Einstein distribution for the left
Fermion lead [23]. βL = 1/kBTL and βR = 1/kBTR are
the inverse temperatures of the left and right leads.
D0

L↓(E ) = Gr
L↓(E )�L↓(E )Ga

L↓(E ) is the injectivity from
the left lead, �R = i(�r

R − �a
R) is the linewidth function

of right magnonic lead. We can see that self-energies,
thus the effective linewidth function of the right lead, is
disorder-dependent due to the convolution of the central
region Green’s functions in self-energy expression.

In the linear-response regime, the spin current can be ex-
pressed as

Is = GT �T − Gμμs, (13)

with GT and Gμ the linear-response coefficients in small tem-
perature difference �T and spin voltage μs. Coefficients GT

and Gμ characterize the ability the heterostructure transports
the spin flow. We call them spin conductance driven by tem-
perature gradient and spin conductance driven by spin bias,
respectively.

B. FCS-CPA formalism in M/FI system

For electronic transport studies in the presence of Anderson
disorder, an on-site potential Vi is added on each lattice site i.
Here Vi is a random energy chosen from a box distribution in
the range of [−W/2,W/2], where W is the disorder strength.
To obtain an accurate estimate of the disorder average of a
transport quantity, one must collect a large number of dis-
order samples for a specific disorder strength. This can be
quite time-consuming for large or interacting systems. By
using a dimension expansion, the FCS-CPA formalism maps
the nonlinear functional dependence of the generating func-
tion on multiple Green’s functions into a linear dependence
on the dimension-expanded Green’s function, avoiding the
complicated diagrammatic expansion operation [63–67]. All
high-order cumulants can thus be evaluated through the av-
erage of the dimension-expanded Green’s function in CPA.
In this sense, the FCS-CPA formalism has made significant
progress in reducing computational costs.

In this subsection, we demonstrate that spin transport in
M/FI systems can also be formulated using the FCS-CPA
formalism. We begin with the most important quantity in
the FCS-CPA formalism, the CGF. Similar to the CGF for
charge conductance in normal metal systems, the CGF for
spin current in M/FI is given by

lnZ = Tr ln[I + T̂ (eκ − 1)], (14)

where κ is the counting field [58] and T̂ is the operator to be
averaged for different disorder samples. The nth cumulant Cn

of operator T̂ can be calculated by taking the nth derivative
of lnZ with respect to κ at κ = 0. For instance, the first and
second cumulants of T̂ can be readily verified as

C1 = Tr(T̂ ) = ∂ lnZ
∂κ

∣∣∣∣
κ=0

, (15)

C2 = Tr(T̂ − T̂ 2) = ∂2 lnZ
∂κ2

∣∣∣∣
κ=0

. (16)

In the presence of disorder, the average of cumulants Cn is
equal to the nth derivative of the disorder-averaged CGF

〈Cn〉 = ∂n〈lnZ〉
∂κn

∣∣∣∣
κ=0

, (17)

where 〈· · · 〉 denotes the disorder average on a physical quan-
tity. For charge-transport studies in normal metal systems,
T̂ = �LGr�RGa naturally relates C1 and C2 to the charge
conductance and conductance fluctuation. To formulate the
spin current Eq. (7) in FCS-CPA formalism, we define

T̂ = Gr
↑(E )�L↑(E )Ga

↑(E )�̄R↑(E ). (18)
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Then the spin current for a clean system can be expressed by
the CGF as

Is = −
∫

dEC1 = −
∫

dE
∂ lnZ

∂κ

∣∣∣∣
κ=0

. (19)

The disorder average of the first-order cumulant gives the spin
current average:

〈Is〉 = −
∫

dE
∂〈lnZ〉

∂κ

∣∣∣∣
κ=0

. (20)

In the following, we will take Eq. (18) as an example to
illustrate the procedures in FCS-CPA formalism. Since the
Green’s functions and linewidth functions share the same
variable E , we will omit the E dependence for convenience.
The FCS-CPA formalism discussed below transforms the
multi-Green’s functions in T̂ to a single dimension-expanded
Green’s function, whose disorder average can be further
solved within CPA. Note that the CGF in Eq. (14) can be
reformulated as

lnZ = Tr

[∫ ζ

0
dxG(x)M

]
, (21)

with

G(x) = 1

G−1 + Mx
, (22)

where G is the dimension-expanded Green’s function and ζ =√
eκ − 1. G and M are defined as

G =
(

Gr
↑ 0

0 Ga
↑

)
, (23)

M =
(

0 −�L↑
�̄R↑ 0

)
, (24)

in which the Green’s function Gr,a
↑ and linewidth function �̄R↑

are defined in Eqs. (8) and (11), respectively. In the dimension
expansion of the Green’s function, the equality ln Det X =
Tr ln X for matrix X is used [58]. The matrix design of G and
M for a specific operator T̂ is a key step in implementing the
FCS-CPA formalism.

If matrix M is independent of the disorder sample, the
disorder average of the CGF can be expressed as

〈lnZ〉 = Tr

[∫ ζ

0
dx〈G(x)〉M

]
. (25)

However, this assumption does not hold in our system. De-
spite this, we will illustrate the main procedures of the
FCS-CPA formalism assuming that the above equation is
valid. We will discuss the difficulty brought in by the disorder-
dependent M and how to overcome it at the end of this
subsection. The averaged Green’s function 〈G(x)〉 can be eval-
uated within the CPA approach [58]. In CPA, the disorder
effect on the Green’s function is collected in an effective
potential matrix V ,

〈G(x)〉 = 1

G−1 + Mx − V
, (26)

V =
(

V11 V12

V21 V22

)
. (27)

To obtain a closed equation for V , the single-site approxi-
mation (SSA) is commonly used, in which the contribution
of multiple scatterings from the same sites is neglected [58].
However, this approximation can lead to large errors when
local resonances or bound states exist in the system [68]. In
the SSA, Vαβ is a diagonal subblock matrix of V . Alterna-
tively, the effective on-site potential of site i for CGF can be
expressed as

V ii =
(

V ii
11 V ii

12

V ii
21 V ii

22

)
, (28)

which satisfies the CPA self-consistent equation

V ii =
∫

dviiρ(vii )vii[I − 〈G(x)〉ii(viiI − V ii )]−1. (29)

Here ρ(vii ) is the distribution function of disorder strength v

at site i. For the Anderson-type disorder:

ρ(vii ) =
{

1/W, −W/2 � vii � W/2

0, otherwise.
(30)

Converging the effective potential matrix V self-consistently
and substituting these equations into Eq. (20), we finally ob-
tain the average spin current in FCS-CPA formalism in the
small ζ limit:

〈Is〉 = 1

2ζ

∫
dE Tr [〈G(ζ )〉M]. (31)

Note it has been shown [58] that in the limit of ζ = 0,
Tr[〈G(ζ )〉M]/ζ is finite.

We note in Eq. (25) that for normal metal systems the ma-
trix M is independent of disorder. This property ensures that
the disorder average of CGF reduces to the disorder average
of a single Green’s function, which can be further evaluated
in CPA. However, this property is not respected in our M/FI
system due to the energy convolution in �̄R↑ and �̄r

R↑. This
convolutional structure presents a major challenge in solv-
ing this model within the FCS-CPA formalism. Since the
self-energy in electron-phonon coupling system has a similar
convolutional structure, we expect the same problem to arise
when applying the FCS-CPA formalism to electron-phonon
interacting system.

1. J2 approximation

To avoid the disorder-dependent matrix M in Eq. (25), we
propose two solutions in this paper. One intuitive idea is to
eliminate the energy convolution. If we keep the spin current
in only J2

q order, there will be no �̄r
R↑ dependence in the

Green’s functions since �R is proportional to J2
q already [see

Eq. (41)]. This is a stronger approximation than the BA. We
denote this approximation as the J2 approximation, which has
been used in other studies [69–71]. In the J2 approximation,
the spin current formula Eq. (7) reduces to

Is = −
∫

dω

2π

[
f B
R (ω) − f B

L (ω)
] ∫

dE [ fL↑(E )

− fL↓(E + ω)]TrA(E , ω), (32)
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with

A = D0
L↑(E )D0

L↓(Ē )�R(ω). (33)

In carrying out FCS-CPA in the J2 approximation, the T̂
operator in Eq. (14) is denoted as T̂1:

T̂1 = A = D0
L↑(E )D0

L↓(Ē )�R(ω). (34)

For Eq. (34), there are four Green’s functions in operator T̂1.
The formalism introduced above is still valid in this case, but
with a different construction of matrices G and M. For T̂1, we
have

G =

⎛
⎜⎜⎝

Gr
L↑(E ) 0 0 0

0 Gr
L↑(Ē ) 0 0

0 0 Ga
L↑(Ē ) 0

0 0 0 Ga
L↑(E )

⎞
⎟⎟⎠, (35)

M =

⎛
⎜⎜⎝

0 0 0 �L↑(E )
0 0 −�L↑(Ē ) 0

�R(ω) 0 0 0
0 I 0 0

⎞
⎟⎟⎠, (36)

where the I is a unit matrix of the same size as �R. The
average spin current is thus given by

〈Is〉 = − 1

4ζ 3

∫
dω

2π

(
f B
R (ω) − f B

L (ω)
) ∫

dE

2π
( fL(E )

− fL(E + ω)) Tr [〈G(ζ )〉M], (37)

with ζ = (eκ − 1)1/4 in this case. Again, in the limit of ζ = 0,
Tr[〈G(ζ )〉M]/ζ 3 converges.

2. Mean-field approximation

The other solution is to make a mean-field-like approxi-
mation on top of the BA. We assume �̄R↑ in matrix M to
be independent of disorder samples by replacing it with its
disorder-average 〈�̄R↑〉. We denote the operator T̂ in this
approximation as

T̂2 = Gr
↑(E )�L↑(E )Ga

↑(E )〈�̄R↑(E )〉. (38)

In this approximation, the disorder average of the CGF
becomes

〈lnZ〉 = Tr

[∫ ζ

0
dx〈G(x)〉M̃

]
, (39)

with

M̃ =
(

0 −�L↑
〈�̄R↑〉 0

)
, (40)

in which, 〈�̄R↑〉 is prepared by CPA calculation in advance.
The dimension-expanded Green’s function G(x) is the same
as Eq. (23).

III. NUMERICAL RESULTS AND DISCUSSION

In this section, we present FCS-CPA results on the average
spin conductance in the two approaches proposed above. We
first demonstrate the performance of FCS-CPA by comparing
it with BF results in an NM/FI heterostructure under the J2

approximation and mean-field approximation, and then use

it to investigate the spin transport in a disordered AM/FI
heterostructure under J2 approximation.

The central scattering region consists of a two-dimensional
square lattice with a size of 20a × 20a. The effect of the left
NM lead on the central scattering region is taken into account
by the self-energy, which is calculated from the transfer-
matrix method [72]. The coupling between the right FI lead
and the central scattering region is modeled by an Ohmic
linewidth function

�R(ω) = αωe−ω/ωc t�0, (41)

where α ∼ J2
q is the dimensionless effective coupling

strength. As discussed in Ref. [73], α is related to the spin
mixing conductance [10,74]. ωc is the cutoff frequency used
to truncate the Ohmic spectrum in high frequency. �0 is a unit
matrix with nonzero elements at the NM/FI interface. This �0

assumes that the scattering between electrons and magnons
only occurs at the interface, as used by other studies [69–71].
Other choices of �R will not change the results qualitatively.
In numerical calculations, we choose α = 100.

In the linear-response regime, a small temperature bias
�T is applied symmetrically to the two leads, or a small
spin voltage μs is introduced in the left NM lead. The spin
conductance GT is evaluated by setting μs = 0, while the spin
conductance Gμ is evaluated by setting �T = 0.

A. FCS-CPA in J2 approximation in NM/FI heterostructure

In the NM/FI heterostructure, we set the lattice constant
a = 5 nm, resulting in a hopping constant of t = 21.768meV
in tight-binding calculations. The temperature of the
heterostructure is set to T = 5K and the chemical potential
of the left NM lead is set to μL = 0.9 meV, with the chemical
potential of the right FI lead as the reference point. The cutoff
frequency in the magnon spectrum is set to ωc = 0.24 meV.
These parameters set the entire scattering process in the first
subband. The transport behaviors in the second subband are
qualitatively similar to those in the first subband [75].

In the J2 approximation, Eq. (34) is used. To reduce the
computational cost, we have used the relation Gr

Lσ�Lσ Ga
Lσ =

i(Gr
Lσ − Ga

Lσ ), then the operator T̂1 is simplified to

T̂1 = −Gr
L↑(E )Gr

L↓(Ē )�R(ω) + Gr
L↑(E )Ga

L↓(Ē )�R(ω)

+ Ga
L↑(E )Gr

L↓(Ē )�R(ω) − Ga
L↑(E )Ga

L↓(Ē )�R(ω). (42)

We substitute the above T̂1 into Eq. (32) and perform double
integration using both brute force and FCS-CPA methods. For
brute force calculations, we collect 60 000 disorder samples to
smooth out the average spin conductance curve. For FCS-CPA
calculations, we use similar matrix constructions as shown in
Eqs. (23) and (24). For example, the matrix constructions for
the first term Gr

L↑(E )Gr
L↓(Ē )�R(ω) in the above T̂1 are

G =
(

Gr
L↑(E ) 0

0 Gr
L↓(Ē )

)
, (43)

M =
(

0 I
−�R(ω) 0

)
. (44)

The results are shown in Fig. 2. In Fig. 2(a), we plot
the average spin conductance 〈GT 〉 for a wide range of
disorder strength. 〈GT 〉 in the J2 approximation exhibits a
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FIG. 2. The average spin conductance 〈GT 〉 and 〈Gμ〉 as a func-
tion of disorder strength W in units of hopping constant t for brute
force and FCS-CPA calculation in J2 approximation. Sixty-thousand
disorder samples are collected for brute force calculation. (a), (b) The
spin conductance 〈GT 〉. (c)–(d) The spin conductance 〈Gμ〉.

nonmonotonic dependence on disorder strength W , which is
also found in the BA [75]. It was found that this nonmono-
tonic behavior is the consequence of competition between
disorder-enhanced DOS at NM/FI interface and Anderson
localization [75]. In weak disorders, the interfacial DOS is
enhanced due to potential dips introduced by disorders. The
convolution of enhanced interfacial DOS in turn enhances
the spin conductance. In strong disorders, the localization of
electrons in central region blocks the spin transport.

In the strong disorder regime, the linear dependence in a
log plot suggests that in this regime the electron is localized
[76]. Since the J2 approximation neglects the right self-energy
in the denominator of Green’s functions, the evaluated average
spin conductance is much larger than that in BA [75]. In
Fig. 2(b), we compare the brute force and FCS-CPA results. In
weak disorders, the FCS-CPA result agrees well with the brute
force calculation. However, for disorder strength W > 0.7,
FCS-CPA starts to overestimate the average spin conductance
〈GT 〉. We also calculate in Fig. 2(c) the spin conductance
〈Gμ〉 driven by a spin voltage using the brute force method.
The curve shows similar nonmonotonic behavior. Finally, in
Fig. 2(d), we compare results of spin conductance 〈Gμ〉 in
brute force and FCS-CPA methods. The FCS-CPA is accurate
for W < 0.8. Moreover, for stronger disorder W ∼ 2, FCS-
CPA also gives fair estimation to 〈Gμ〉.

We note that the deviation from brute force calculation
in larger disorders is due to nature of CPA method, which
is present in all CPA-related approaches. As mentioned in
Sec. II B, SSA is used to obtain a closed form equation for
the effective potential V . This approximation works well in
weak disorders. While in strong disorders, multiple scattering
events are expected to play important roles. The failure of SSA
leads to the deviation of FCS-CPA results. Additionally, this

FIG. 3. Brute force and CPA calculations for 〈�̄R↑〉 as a function
of disorder strength. (a), (b) The summation and variance of diagonal
elements of the disorder-averaged matrix 〈�̄R↑〉 obtained from brute
force calculation (black box) and CPA approximation (red circle).
(c), (d) The summation and variance of off-diagonal elements of the
disorder-averaged matrix 〈�̄R↑〉.

overestimation behavior in larger disorders is also observed in
electron and phonon transport studies [58,59].

B. FCS-CPA in mean-field approximation
in NM/FI heterostructure

As mentioned earlier, the J2 approximation is a strong
approximation that completely ignores the effective right self-
energy considered in BA. For FCS-CPA calculation in the
mean-field approximation, we start with T̂2 and decouple
the disorder correlation between Green’s functions and self-
energies by replacing �̄R↑ with its average 〈�̄R↑〉.

We first prepare the disorder average 〈�̄R↑〉 in matrix M̃
defined in Eq. (40). By using D0

L↓ = −2ImGr
L↓, we have

〈�̄<
R↑(E )〉 = −2i

∫
dω

(
1

2
+ f B

R (ω)

)
fL↓(Ē )

Im
〈
Gr

L↓(Ē )
〉
�R(ω) (45)

and 〈
�̄r

R↑(E )
〉 =

∫
dω

2π

[
fR(ω)

〈
Gr

L↓(Ē )
〉

+ i fL↓(Ē )Im
〈
Gr

L↓(Ē )
〉]
�R(ω). (46)

From Eq. (11), the calculation of disorder average 〈�̄R↑〉
reduces to the disorder average 〈Gr

L↓〉, which can be further
obtained using CPA approximation [58] or brute force calcu-
lation.

Figure 3 presents statistics for matrix 〈�̄R↑〉 obtained from
both the CPA approximation and brute force calculation.
Figures 3(a) and 3(b) show the summation and variance of
the diagonal elements of the disorder-averaged matrix 〈�̄R↑〉.
The statistical quantity s1 is defined as s1 = ∑

i Xi, where
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FIG. 4. Brute force and FCS-CPA calculations for average spin
conductance 〈GT 〉 and 〈Gμ〉 as a function of disorder strength in
mean-field approximation. 〈�̄R↑〉 is prepared in advance by CPA
calculation. In obtaining average spin conductance, 20000 disorder
samples are collected in brute force calculation.

Xi = [Im〈�̄R↑〉]ii represents the diagonal elements of the ma-
trix. Figures 3(c) and 3(d) show the same for the off-diagonal
elements of the matrix 〈�̄R↑〉. The statistical quantity s2 is
defined as s2 = ∑

i Yi, where Yi = [Im〈�̄R↑〉] jk are the off-
diagonal elements of the matrix with indices j �= k. The
results are averaged over all discrete energy points used in
the spin current integration. Figure 3 indicates that the matrix
〈�̄R↑〉 obtained using brute force and CPA are nearly the same
over a wide range of disorder strength [0,6]. This allows us to
calculate 〈�̄R↑〉 using the CPA approximation and develop a
formalism that is free from brute force calculation. Note that
in previous CPA studies, the interested quantities are scalars.
For instance, the conductance, shot noise, etc. Here we verify
that CPA is able to accurately describe a matrix, in our case
the self-energy of FI lead.

Once 〈�̄R↑〉 is obtained, the average spin conductance can
be calculated in the same procedures as that of the aver-
age electronic transmission in normal metal systems, i.e.,
Eqs. (22)–(31) with matrix M̃ defined in Eq. (40). As a
comparison, the average spin conductance 〈GT 〉 and 〈Gμ〉
are calculated using the brute force method in the mean-field
approximation in Fig. 4. In the brute force calculation, we use
the same disorder-averaged linewidth function 〈�̄R↑〉 obtained
earlier. We collect 20000 disorder samples for each disorder
strength.

Figures 4(a) and 4(c) show the average spin conductance
〈GT 〉 and 〈Gμ〉 as functions of disorder strength W . We ob-
serve that the magnitudes are much smaller compared to those
in J2 approximation. This is due to the consideration of the
right self-energy �̄r

R↑ in BA. The nonmonotonic dependence
on disorder strength is similar in 〈GT 〉 and 〈Gμ〉. The av-
erage spin conductance is enhanced in weak disorders and
suppressed in strong disorders. The results are qualitatively

FIG. 5. (a), (b) Spin conductance for clean AM/FI heterostruc-
ture for different hopping parameter tJ and angle θ . (c), (d) The
average spin conductance of AM/FI heterostructure in the presence
of Anderson-type disorder. θ = 0 in (c) and tJ = 0.1 in (d). Other
parameters: μ = 0.9, α = 100, and ωc = 0.012.

similar to brute force results in BA without mean-field ap-
proximation [75].

We examine the performance of FCS-CPA in Figs. 4(b)
and 4(d). For disorder strength W < 0.75, the FCS-CPA for-
malism gives accurate estimation to 〈GT 〉 and 〈Gμ〉. However,
when disorder strength exceeds 0.75, the FCS-CPA begins to
overestimate the average spin conductance. Once again, this
overestimation is present in all CPA-related studies.

C. FCS-CPA in J2 approximation in AM/FI heterostructure

In previous subsections, we examined the performance of
FCS-CPA. In this subsection, we explore the spin transport
in a disordered AM/FI heterostructure using FCS-CPA. The
left lead and central region are AMs, whose Hamiltonians are
given by [35,36] (h̄ = e = 2m = 1)

HAM = k2 − μ + t1
(
k2

x − k2
y

)
σz + t2kxkyσz. (47)

Here, σz is the Pauli spin matrix, k = (kx, ky) is the two-
dimensional electron momentum, and μ is the Fermi energy.
Coupling strengths t1 = tJcos2θ, t2 = tJsinθcosθ , with tJ the
spin-dependent hopping due to the anisotropic exchange in-
teraction in the altermagnetic state. θ parameterizes the angle
of the AM/FI interface relative to the crystalline axes. In
numerical calculations in AM/FI systems, eV is chosen as the
energy unit. We use μ = 0.9, T = 30K, and ωc = 0.012. We
present the results of FCS-CPA in the J2 approximation in
Fig. 5.

Figures 5(a) and 5(b) show the spin conductance of a
clean AM/FI heterostructure for different coupling strengths
tJ and angles θ . For the case of small tJ (0 < tJ � 1), the
Fermi surfaces for up spin and down spin cross each other
and enables the spin-flipping process scattered by magnons at
AM/FI interface. While for larger tJ , the Fermi surfaces of up
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spin and down spin are well separated, resulting in larger spin
polarization in central AM region [36]. This, in turn, leads to a
smaller spin-flipping rate. Consequently, the spin conductance
decreases while increasing tJ . For the Fermi energy μ = 0.9
we used here, only up-spin channels are opened in large tJ , and
the spin-flipping scattering is forbidden. Thus the magnon-
mediated spin transport vanishes. The spin conductance of the
clean AM/FI heterostructure oscillates with θ in the period
of π . Moreover, it is symmetric with respect to θ = π/2.
We observe that the hopping strength tJ suppresses the spin
conductance systematically except angles θ = π/4 and 3π/4.
These angles correspond to t1 = 0 and t2 �= 0. In this scenario,
the system always has zero spin-splitting regardless of the
value of tJ [35], thus the spin conductance remains unaffected.

When the Anderson disorder is turned on, we observe in
Fig. 5(c) that the spin conductance in AM/FI heterostructure
is first enhanced in weak disorders and then suppressed in
strong disorders. This behavior is similar to the one in the
disordered NM/FI heterostructure [see Fig. 2(a)]. The reason
spin conductance got enhanced is that the electron density of
states at the AM/FI interface is enhanced by disorder, leading
to an increased spin-flipping scattering rate at the interface
[75]. In strong disorders, the spin transport is suppressed by
Anderson localization of electrons in the central region. Upon
increasing anisotropic hopping tJ , the average spin conduc-
tance curve is overall suppressed in the same sense that tJ
decreases the spin-flipping scattering rate in central region.
The maximum suppression occurs at peak position W ∼ 5.
We also note that the FCS-CPA overestimates 〈GT 〉 at strong
disorders according to calculations in NM/FI system.

In Fig. 5(d), we plot the average spin conductance as
a function of θ for different disorder strengths W . The
anisotropic hopping is chosen as tJ = 0.1. We find that the
spin conductance enhancement in weak disorders strongly
depends on θ . For θ = (2n + 1)π/4 with integer n, the spin
bands of electrons are unpolarized. In this case, the spin
transport is significantly enhanced by disorder. While for
θ = nπ/2, the spin polarization of electrons in AM reaches
its maximum. We observe that the enhancement is small. Our

study indicates that in the AM/FI system, the influence of
disorder on the system is closely related to the spin polariza-
tion of electrons in AM. When the spin polarization is large,
the impact of disorder on the system is minimal. Conversely,
when the spin polarization is small, the influence of disorder
on the system becomes more significant.

IV. CONCLUSION

In this paper, we developed a theoretical formalism to
investigate the magnon mediated spin transport in a 2D M/FI
heterostructure. Our theoretical formalism is based on full
counting statistics within the CPA. It is capable of calculating
the disorder average of an arbitrary number of Green’s func-
tions. Due to the convolutional structure of the self-energy
of the right magnonic lead in M/FI system, the conventional
FCS-CPA formalism breaks down. To address this difficulty,
we proposed two solutions, namely, the J2 approximation and
mean-field approximation.

Using brute force method and our FCS-CPA formalism, we
have calculated the average spin conductance in the presence
of a small temperature difference or a small spin voltage in
a disordered NM/FI heterostructure and a disordered AM/FI
heterostructure. The numerical results show excellent agree-
ment with brute force calculation in weak disorders. For
strong disorders, our formalism overestimates the average
spin conductance, which is an inherent flaw of the coherent
potential approximation. In addition, the calculations in the
AM/FI system show that the spin transport enhancement in
weak disorders also exists. The spin-dependent hopping tJ
suppresses the spin conductance enhancement and the dis-
order enhancement depends strongly on spin polarization of
AM states. Our study shows that FCS-CPA is suitable for spin
transport studies in disordered M/FI heterostructures.
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