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Theory of interlayer exciton dynamics in two-dimensional transition metal dichalcogenide
heterolayers under the influence of strain reconstruction and disorder
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Monolayers of transition metal dichalcogenides (TMDC) became one of the most studied nanostructures in
the last decade. Combining two different TMDC monolayers results in a heterostructure whose properties can
be individually tuned by the twist angle between the lattices of the two van der Waals layers and the relative
placement of the layers, leading to moiré cells. For small twist angles, lattice reconstruction leads to strong strain
fields in the moiré cells. In this paper, we combine an existing theory for lattice reconstruction with a quantum
dynamic theory for interlayer excitons and their dynamics due to exciton-phonon scattering using a polaron
transformation. The exciton theory is formulated in real space instead of the commonly used quasimomentum
space to account for imperfections in the heterolayer breaking lattice translational symmetry. We can analyze
the structure of the localized and delocalized exciton states and their exciton-phonon scattering rates for single
phonon processes using Born-Markov approximation and multiphonon processes using a polaron transformation.
Furthermore, linear optical spectra and exciton relaxation Green’s functions are calculated and discussed. A
P-stacked MoSe2/WSe2 heterolayer is used as an illustrative example. It shows excitons localized in the potential
generated through the moiré-pattern and strain and a delocalized continuum. The exciton-phonon relaxation
times vary depending on the strain and range from subpicoseconds up to nanoseconds.
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I. INTRODUCTION

After the invention and widespread research of monolayer
graphene [1–5] with its special linear band structure around
the K and K′ valleys [6,7], other monolayer materials with
band gaps and thus suitable for optoelectronic applications
came into the research focus [8–10]. One interesting aspect is
the optical selectability of different K and K′ valleys with po-
larization [11–13]. The most prominent group of materials are
transition metal dichalcogenides (TMDC) monolayers, which
dominated a large part of semiconductor research in physics
for the last decade [14–22]. One major topic for understanding
the optical properties of TMDCs is devoted to understanding
optically induced electron-hole complexes predominantly ex-
citons, but also trions and biexcitons [23–32]. In this area,
monolayer TMDCs as two-dimensional systems are analog
to quantum wells in earlier two-dimensional semiconductor
nanostructures. For the earlier quantum wells, heterostruc-
tures were formed by combining multiple quantum wells
[33–40]. The analog for TMDCs monolayers are the hetero-
layers formed from different monolayers such as a MoSe2

monolayer and a WSe2 monolayer. One significant differ-
ence with quantum wells is that the different monolayers are
weakly bound by the van der Waals force instead of the strong
covalent bounding in the quantum-well case. The strong co-
valent bounds in the quantum-well case limited the realized
heterostructures to materials with very close lattice constants.
Also, the orientation of unit cells of the materials to each other
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is set by the covalent binding. This is not the case for the van
der Waals-bound materials. The two layers can be moved and
rotated relatively freely to each other. The lattice mismatch
and relative positioning lead to the formation of moiré super-
cells [41], whose size is determined by the lattice mismatch
and the local stacking angle θ . These layers are often embed-
ded inside hBN layers to stabilize the structure mechanically.
Recently, it has been suggested by [42–47] that mechanical
interactions lead to mechanical reconstruction, changing the
strain field in the unit cells of the moiré pattern substantially.
For quantum wells also in almost perfectly grown samples,
certain fluctuations in alloys or through interface roughness
still lead to a small degree of disorder. Conversely, the strain,
through incomplete relaxation or reconstruction or at borders
or cracks, may serve as a source of disorder for the TMDC
heterostructure.1

To achieve this, we combined the available theory for strain
reconstruction [42,43,45] in Sec. II together, with exciton
theory with the disorder in real space adapted from quantum
wells [37,48] in Sec. III. The exciton theory also includes the
electron and hole single-particle potentials originating from
strain [49–51]. In Sec. IV, the overall structure of the inter-
layer exciton states is analyzed for one first example. In the
following section, exciton-phonon (with and without polaron
transformation) and exciton-photon coupling and rates are
derived and analyzed for the example structure. Finally, in

1Note that we consider very little disorder, but even the best exper-
imental procedure never reaches the idealized theoretical models, so
studying the disorder’s influence is worthwhile.
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FIG. 1. (a) Illustration of the interlayer exciton formed between
a hole in WSe2 and an electron in MoSe2, (b) Illustration of the
monolayer Brillouin zone with the special points K, K′, Q and �

and the reciprocal-lattice vectors Gi.

Sec. VI, linear optical spectra, as well as exciton relaxation,
are analyzed. Overall, a theoretical framework is set up, which
will be used to analyze different TMDC (interlayer) excitons
under the influence of strain, including disorder or other im-
perfections such as cracks, holes, or borders.

As an example to illustrate the theory, we focus on inter-
layer exciton in a MoSe2/WSe2 heterobilayer for one specific
configuration [cf. Fig. 1(a)]. The lowest energy difference
between the valence and conduction bands is at the K and K′

points [cf. Fig. 1(b)] of the Brillouin zone of the monolayer.
Thus, the lowest energy intralayer exciton states reside at K
and K′ points. The interlayer exciton of MoSe2/WSe2-hetero
bilayer with the electron in the K valley of the conduction
band of MoSe2 layer and hole in the K valley of the valence
band of WSe2 layer.

II. STRAIN RECONSTRUCTION

To retrieve the strain field for the subsequent calculations,
we aim to obtain the mechanical strain of the hetero bilayer
close to equilibrium with some remaining disorder. This is
the first step before a quantum dynamical calculation of the
exciton migration. For calculating the strain fields, we fol-
low the approach from Ref. [42] with elements also from
Ref. [43]. Generally, we use periodic supercells of a recon-
structed moiré pattern with different sizes and aspect ratios
for the computational domain. We start from the energy of
the lattice containing the intralayer U (r) and interlayer Ws(r)
strain contributions [42]

E =
∫

S
[U (r) + Ws(r)]d2r. (1)

The intralayer contribution reads [42]

U (r) =
∑
l=t,b

[
λl

2

(
u(l )

ii

)2 + μl
(
u(l )

i j

)2
]
, (2)

with the first Lamé coefficient λt/b, shear modules μt/b and
the strain tensors u(t/b)

i j = 1
2 (∂ ju

(t/b)
i + ∂iu

(t/b)
j ) describing lo-

cal in-place displacement in top or bottom layer respectively
[42].

The interlayer contribution has the form [42,43] Ws(r) =
Vs(r) − εZ2

s (r) with s = P, AP stacking.

Vs(r) =
3∑

n=1

[A1e−Qd0 cos (ϕn(r)) + A2e−Gd0 sin (ϕn(r) + ϕs)],

(3)

Zs(r) = 1

2ε

3∑
n=1

[QA1e−Qd0 cos (ϕn(r))

+ GA2e−Gd0 sin (ϕn(r) + ϕs)]. (4)

Here, ϕn(r) = gn · r + Gn · [u(t )(r) − u(b)(r)] with gn = δ

Gn − θez × Gn with Gn being the vectors of the first star
of the reciprocal lattice ±Gn(n = 1, 2, 3) with G = |Gn| =
4π/

√
3a [cf. Fig. 1(b)], Q = (G2 + ρ−2)1/2. Parameters are

the lattice parameter a, ϕAP = 0, and ϕP = π/2. Parameters
ε, A1, A2, minimum of the potential Ws in the z direction d0,
and ρ were obtained from Ref. [42] using a fitting procedure.
θ is the local stacking angle, and δ is the parameter for the
lattice mismatch of the two layers. Used material parameters
are given in Table I.

For a calculation of the local in-place displacement ut/b,
the integral in E is discretized on a regular grid along
the unit-cell basis vectors using finite differences. E is
minimized using the TAO package from the portable, ex-
tensible toolkit for scientific computation (PETSC) [55–57]
using the bound-constrained limited memory variable metric
(BLMVM) algorithm. Mathematica [58] analytically calcu-
lated the required gradients on the grid for the optimization.
We started the minimization process in the procedure from
different random distributions with strain islands of different
sizes and magnitudes. The result seems stable to the naked
eye against initial random strain field variations. However,
minor variations on a larger scale than the moiré pattern unit
cell remain in the supercell case after minimization. The case
is similar to a not totally but almost relaxed structure—a
typical experimental situation even for a nearly pristine pre-
pared sample. These variations are only visible in optical
spectra, resulting in inhomogeneous lineshapes but allow us
to incorporate disorder. The two monolayers can be stacked
using parallel (P) or antiparallel (AP) orientation of the unit
cells. For the first example, we choose a sample with 0.9◦
rotation in P stacking of a MoSe2-WSe2 bilayer. Therefore,
the interpretation in this paper is restricted to P stacking; the
overall structure and physics of states in AP stacking can
differ significantly. Figure 1(a) shows the bottom interlayer
displacement of an 8 × 4 supercell after relaxation. We see a
strong reconstruction around the corners of a triangular shape
visible in the interlayer strain plotted in Fig. 1(b). The trian-
gular shape in the x and y component of the displacement (not
shown) of u(·)(r) as predicted in Ref. [42] is clearly visible
also in the strain field Fig. 1(b) and shows no immediately
visible deviation from a 1 × 1 moiré cell. The area captured
in optical experiments is typically 7 to 8 times larger than
the area of the 8 × 4 supercell. Therefore, later, an averaging
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FIG. 2. For the WSe2/MoSe2 heterolayer example, (a) the dis-
placement |u·| of the bottom layer, (b) the absolute intralayer strain
of the bottom layer |∂ux/∂x| + |∂uy/∂y|, (c) intralayer hole potential
V intra

h (·), and (d) interlayer hole potential 1
2V inter

h (·). The white circle
marks the position of state 1 for visual orientation.

of calculated spectra from multiple computational domains is
necessary to capture typical experimental signals.

III. (INTERLAYER-) EXCITON STATES IN
TWO-DIMENSIONAL STRUCTURES

This paper will describe the dynamics of interlayer ex-
citons in monolayer heterostructures under the influence of
strain, including the influence of phonons and radiative decay.
As a first step to cover the quantum dynamics, we focus on
the interlayer excitons between an electron in K valley in one
layer and holes in K valley in another layer influenced by
strain, cf. Fig. 1. Intervalley scattering and including multiple

TABLE I. Parameters used for the illustrative calculations of a
MoSe2/WSe2 hetero bilayer.

Mechanical and grid parameters

a1 = 0.329 nm, a2 = 0.328 nm,
d0 = 0.69 nm, ρ = 0.052 nm,
λMoSe2 = 263.982 eV/nm2, λWSe2 = 185.227 eV/nm2,
μMoSe2 = 309.892 eV/nm2, μWSe2 = 302.212 eV/nm2,
A1 = 77 621 500 eV/nm2, A2 = 84739 eV/nm2,
ε = 189 eV/nm4 [42]
Exciton parameters
Vexc = 0.0018 eV (AP stacking) [50]
Vexc = 0.018 eV (P stacking) [51]
�Eh

gap = 5.3 eV (WSe2),
�Ee

gap = −6.9 eV (MoSe2) [49]
me = 0.80 (MoSe2), mh = 0.45 (WSe2) [41]
εr = 2.4 [41]
r∗ = 3.979 nm/εr (MoSe2),
r′
∗ = 4.511 nm/εr (WSe2) [41,52]

d = 0.702 nm [27,41]
Phonon parameters
Dc

1,ac = 3.4 eV (MoSe2), Dc
0,opt = 58 eV/nm (MoSe2) [53]

ρ = 27 837 133 fs2 eV/nm4 (MoSe2) [54]
vA = 0.0041 nm/ f s (MoSe2) [53]
ωLO,� = 36.6 meV, ωT O,� = 36.1 meV,
ωA1,� = 30.1 meV, ωLO,Q = 37.5 meV,
ωT O,Q = 36.4 meV, ωA1,Q = 27.1 meV (MoSe2) [53]

Dv
1,ac = 2.1 eV (WSe2), Dv

0,opt = 31 eV/nm (WSe2) [53]
ρ = 37698719 fs2 eV/nm4 (WSe2) [54]
vA = 0.0033 nm/ f s (WSe2) [53]
ωLO,� = 30.8 meV, ωT O,� = 30.5 meV,
ωA1,� = 30.8 meV, ωLO,Q = 32.5 meV,
ωT O,Q = 27.3 meV, ωA1,Q = 30.4 meV (WSe2) [53]

exciton types (such as intralayer excitons) is subject to future
studies.

The interlayer exciton wave function �(re, rh) for two
fixed bands obeys a two-dimensional (2D) Schrödinger equa-
tion:

E�(re, rh) =
[

− h̄2�e

2me
− h̄2�h

2mh
+ Veh(re − rh) + Vh(rh)

+ Ve(re)

]
�(re, rh), (5)

with the energy E of the exciton, the in-plane coordinates re/h

of electron and hole, and effective masses me/h of electron
and holes forming the selected interlayer exciton. Veh(·) is
the Coulomb interaction between electron and hole, where
a Rytova-Keldysh potential was used together with the in-
terpolation formula from Ref. [59] and the modifications for
heterolayers [41]:

Veh(r) = e2

4πε0εr

1

reff

[
log

(
r

r + reff

)
+ [γ−log(2)]e− r

reff

]
(6)

with the natural logarithm.
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Here, reff = r∗ + r′
∗ + d and r∗ and r′

∗ are the material pa-
rameters for the two layers, which are related to the in-plane
electric susceptibilities [41], and γ is Euler’s constant.

The single-particle potentials Vh(rh), Ve(re) result from
different physical processes. In quantum wells, interface and
alloy fluctuations (in principle impurities) usually cause a
random disorder potential [37,48]. Here, for a 2D monolayer
heterostructure, we focus on the influence of strain due to
lattice reconstruction and some remains of an initial random
strain field that is almost but not entirely relaxed. Analog
to the quantum-well case interface fluctuations, we initial-
ize the strain field, assuming strain fluctuations of different
island sizes and amplitudes. Random fluctuation due to va-
cancies may be added in later studies. Concerning strain,
there are at least two contributions to the single-particle
potentials Ve/h(re/h) = V inter

e/h,s(re/h) + V intra
e/h,s(re/h) + V conf

e/h (re/h)
together with a confinement potential useful in later studies.
The first contribution is caused by the relative displacement
of the two layers of the heterostructure (interlayer contribu-
tion) and was derived in Refs. [50,51] for the center-of-mass
(COM) motion:

V inter
e/h (re/h) = Vexc

3∑
n=1

cos(ϕn(re/h) + ϕexc,s), (7)

where we add to the ansatz from Refs. [50,51], that ϕn(r) is
also modified through u(t/b)(r). This contribution was missing
in Refs. [50,51] since Refs. [50,51] did not include lattice
reconstruction due to strain. Also, instead of the approach
from Refs. [50,51], where the interlayer contribution is added
on the exciton level, we apply V inter

e/h (re/h) to the individual
electron and holes (scaled by a factor 1/2) also to include
the smearing effect of the convolution with the relative wave
function. The physical origin of this potential should be the
individual carrier and not the exciton as a whole (although
the distribution of Vexc between hole and electron requires
further studies). Figure 2(d) shows for one 8 × 4 supercell the
interlayer strain contribution V inter

e/h (re/h) of the single-particle
contribution of an electron or hole. The contribution has a
maximum of ten meV in the middle of the triangular area
formed by reconstruction. In contrast, the contribution to the
potential is minimal on the sides and corners of the triangles.
The minima are relatively sharp (and form ridges between the
triangle corners beside the minima at the corners), and the
maxima are relatively flat and cover almost the whole trian-
gular area. The potential amplitude is similar to the result in
Ref. [51]. However, the sharp potential minima in the triangle
points are twice as deep due to reconstruction.

Furthermore, the intralayer strain modifies the band-gap
offset of the electron or hole respectively inside the indi-
vidual layers. In Ref. [49], the influence of intralayer strain
on the band gap, effective masses of electrons, and holes in
monolayers were calculated. The impact on effective masses
was negligible compared with the effect on the band gaps.
Therefore, for electrons and holes in the respective layer, we
calculate a potential based on the intralayer-induced change
of the local band-gap energy as

V intra
e/h (re/h) = �Ee/h

gap

(
∂ux

∂x
+ ∂uy

∂y

)
, (8)

assuming isotropic strain. Note that electron and hole reside
in different materials, so �Ee/h

gap provides only a rough esti-
mate since [49] provides only a parameter for the band gap,
i.e., the difference between electron and hole at the K point.
(Since both valence and conduction band shift to negative for
tensile strain, this translates to negative �Ee

gap and positive
�Eh

gap.) For the 8 × 4 supercell, we see in Fig. 2(c) also a
triangular-shaped intralayer strain potential V intra

e/h (re/h). The
potential is positive in the order of 10 meV in the middle of
the triangular areas. In the edges and corners of the triangles,
the potential reaches a negative minimum in the order of
10–20 meV. However, the intralayer potential transition from
minima to maxima is relatively smooth compared with the
interlayer potential. Intralayer strain manifests in a piezoelec-
tric polarization of the layers, which will also influence the
carriers in the other layer [42,47], leading to an additional
interlayer contribution. However, to our knowledge, currently,
no terms and parameters available in the literature allow a
treatment independent from the intralayer term based on den-
sity functional theory (DFT). Therefore, we do not include the
piezoelectric contribution and may underestimate the strength
of the potential. Altogether, the contributions to the single-
particle potential can reach differences between minimum
and maximum around 40–60 meV. However, the areas with
minimal potential remain slim and will have limited confined
exciton states. V conf

e/h (re/h) is a confinement potential that is
zero inside the structure and has a finite value outside the
structure. It will be used in future studies for noninfinitely
extended structures.

While we restrict the analysis to bright interlayer excitons,
also interlayer couplings can be modulated by strain, which
is, for example, discussed in Refs. [60,61] using a description
in dressed states that behave like particles in an effective
magnetic potential. Future studies may also include transfer
from intralayer excitons to interlayer excitons via an interlayer
coupling. As a result, we expect a strain-modulated interlayer
coupling that results in a position-dependent transfer of carri-
ers, especially affecting the transfer of more localized exciton
states.

Due to the strong Coulomb interaction in TMDCs, the
exciton wave function is factorized into relative and center-
of-mass (COM) movement �(re, rh) = ψ (R)φ(r) with the
COM coordinate R = (mere + mhrh)/(me + mh) and relative
coordinate r = rh − re. Separating the Schrödinger equa-
tion into the relative and COM coordinates leads to the
Wannier equation for the relative part of the wave function:

Eφ(r) =
[
− h̄2�r

2mr
+ Veh(r)

]
φ(r), (9)

with the relative mass 1/mr = 1/me + 1/mh. The Wannier
equation is solved numerically using PETSC [55–57], and
SLEPc [62] using finite differences for the partial differential
equation. We restrict the following discussion to the 1s relative
wave function and, thus, the lowest interlayer exciton states.
For the example discussed in this paper, we consider a K-K
interlayer exciton with the electron residing in the top WSe2

layer and the hole in the bottom MoSe2 layer (cf. Fig. 1). The
Schrödinger equations of the exciton’s COM wave function
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�com(r) has a local potential Vcom(R):(
− h̄2�R

2M
+ Vcom(R)

)
ψ (R) = Eψ (R), (10)

where the local strain and confinement potential influence
enters through Ve/h(re/h).

This exciton COM wave-function potential Vcom(R) is con-
nected to the electron and hole potentials Ve/h(re/h) as follows
[37,48]:

Vcom(R) =
∫

d2r|φ1s(r)|2
[
Ve

(
R − mh

M
r
)

+ Vh

(
R + me

M
r
)]

.

(11)

IV. COMPUTATIONAL DOMAIN AND EXCITON STATES

We use a periodic computational domain—supercell—
consisting of several moiré unit cells to calculate the COM
wave function. We choose an integer multiple along the basis
vectors of the moiré unit cell to span the computational do-
main. For the boundary conditions of the strain, the strain can
either match the nonreconstructed moiré structure strain field
at the boundary or have loose boundary conditions. The COM
exciton potential would be set to a high positive finite value in
parts with no material.

To cover all the relevant dynamics inside the spectral range,
we typically calculate up to 2500 COM excitons. The 2500
COM excitons wave functions were calculated within a feasi-
ble computation time of several days to a week. The covered
spectral range varies depending on the size of a moiré super-
cell. As a rule of thumb, the calculated exciton states should
at least cover a spectral range one-third larger than the range
of interest. Furthermore, the real space COM wave functions
allow a straightforward characterization of the exciton states
contributing to peaks in spectroscopy.

Illustrative example of the excitons in a heterolayer. We use
the example of a MoSe2/WSe2 heterolayer with P stacking
and a twist angle of 0.7◦ to discuss the exciton structure. Note
that the interlayer component of the exciton potential Vexc is
ten times stronger in P stacking than in AP stacking, so a more
quantum-dot-like behavior will be observed in the selected
example with P stacking. In AP stacking, the exciton states
will be more delocalized. However, a discussion of this case
is beyond the scope of this article. If not mentioned otherwise,
we use an 8 × 4 supercell and one random realization for this
example. In Fig. 3(a) the exciton state energy over the index
of the exciton state is plotted (lower energy to higher en-
ergy), we see different steps in the plot separating the exciton
states of different characters, which form different peaks in
the spectrum. The overall qualitative structure is independent
of the random realization. These peaks may be interpreted
as different mini bands if the simulation does not contain
disorder. The peaks can also be related to levels of localized
(an-)harmonic oscillators [50] for the two lower peaks. The
third peak contains contributions from several higher localized
oscillator levels and the transition to delocalized states at the
mobility edge. The energetically lowest set of exciton states
(area A and B in Fig. 3) are completely localized anharmonic
oscillator states, as can be seen in the absolute square of some
selected COM wave functions plotted in Figs. 4(i) and 4(ii).

FIG. 3. For the WSe2/MoSe2 heterolayer: (a) state index over
energy for an 8 × 4 and 1 × 1 moiré supercell, (b) size of the exciton
states in x and y direction, (c) dipole moment component for σ+
and σ -heterostructure energy, (d) exciton lifetime at 20 K in polaron
transformation including all scattering contributions (all), includ-
ing only exciton-phonon scattering (phon.), excluding the optical
phonon contribution (no opt.), at 5 K, without polaron transforma-
tion: standard Born Markov (BM) and only including the radiative
contribution. The states are sorted into energy ranges with common
properties. This includes the first localized states in area (A), the
second localized states in area (B), the higher energy localized states
in area (C), and the transition at the mobility edge to the delocalized
states in area (D).

The states in area A correspond to the lowest s-type state,
and the states in area B to the higher p-type localized states.
In area C, below the mobility edge, various higher localized
anharmonic oscillator states are present [see exemplary states
Figs. 4(iii) to 4(v)]. The delocalized states start at the mobility
edge starting at area D. As seen in Fig. 4(vi), the lower de-
localized states are still limited to the ridges of the structure,
only the higher delocalized states [see Figs. 4(vii) and 4(viii),
for example] are freely distributed over the structure. Also,
the long-range modulation of the strain-induced potential is
visible in these states, but of course, it also causes the inho-
mogeneous distribution of the lower states. The patterns found
in the delocalized states are diverse and include states concen-
trated at the triangle corners, others focused at one edge of the
triangle, or others concentrated at the other edge. Also, various
superpositions of these states, all spatially modulated by the
remaining strain disorder, are present. The mobility edge can
also be seen in Fig. 3(b), where the size of the COM wave
functions is plotted over energy. However, due to a long-range
modulation of the strain, the mobility edge is blurred, and in
part of area D, predominantly localized states exist, as can be
seen in Fig. 3(b). The nature of the localized states changes
compared with earlier calculations without reconstruction and
remaining disorder, in which for interlayer excitons [50], the
wave function showed the same symmetries but were rather
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FIG. 4. For the WSe2/MoSe2 heterolayer for an 8 × 4 and 1 × 1
moiré supercell, (i) state 1 at −3.57 meV, (ii) state 98 at 17.38 meV,
(iii) state 210 at 30.12 meV, (iv) state 280 at 33.22 meV, (v) state
410 at 39.35 meV, (vi) state 1000 at 49.11 meV, (vii) state 2000 at
64.05 meV, and (viii) state 2320 at 67.88 meV (energy relative to the
bound interlayer exciton energy). The white circle marks the position
of state 1 for visual orientation.

sharp lines and spread over all moiré unit cells. Here, an
inhomogeneous distribution is created.

V. EXCITON SCATTERING

A. Exciton-phonon scattering

Exciton-phonon scattering is the major component deter-
mining the exciton dynamics in our setup. It is described by
an electron-phonon Hamiltonian (in second quantization):

He−ph =
∑

qλkαG

gλ
q+Gαa†

λk+qaλk (bqα + b†
−qα ), (12)

with the electron creation a†
λk and annihilation operator aλk

with quasimomentum k for valence λ = v and conduction
λ = c band in electron picture and the phonon creation
b†

qα and annihilation operators bqα for phonons of mode α

and quasimomentum q. Please note, the expression using

quasimomenta q and k in Eq. (12) appears before transforming
the exciton wave functions into position space. The formula-
tion in position space does not require a restriction to mini
bands, nor is it allowed as disorder order breaks the discrete
translation invariance on the moiré level.

We focus on acoustical phonons with deformation coupling
[53]:

gλ
qα,ac =

√
1

h̄2ρvAqA
Dλ

1α|q|, (13)

with the density ρe/h (see Table I) of the top or bottom layer,
the speed of sound va the deformation potential of electron
and holes D1α

e , D1α
h of their respective materials and optical

phonons also with deformation coupling [53]:

gλ
qα,opt =

√
1

h̄2ρωqαA
Dλ

0α, (14)

again with the deformation potential of the respective layer.
A derivation similar to [37] leads to a Hamiltonian for the

electron-phonon coupling in a single exciton basis (|α〉):

Hex-ph =
∑

αβqα̃G

tqGα̃

αβ (bqα̃ + b†
−qα̃ )|α〉〈β|, (15)

with matrix elements

t qGα̃

αβ = h̄ge
q+Gα̃

∫
d2r|φ1s(r)|2e−ir· (q+G)

βe

×
∫

d2Rψ∗
α (R)e−i(q+G)·Rψβ (R)

− h̄gh
q+Gα̃

∫
d2r|φ1s(r)|2e−ir· (q+G)

βh

×
∫

d2Rψ∗
α (R)e−i(q+G)·Rψβ (R), (16)

with βe = M/mh and βh = M/me. Please note that, if electron
and holes are not residing in the same monolayer, a different
phonon mode branch is acting on the electron and hole so that
only one of ge

q+Gα̃ or gh
q+Gα̃ is nonzero for a given phonon

mode. The phonon branch index is included as a multi-index
inside q. We still included all q indices. Effects like zone
folding for q that appear for strict periodic moiré unit cells
would enter implicitly through the COM exciton wave func-
tion ψ∗

α (R) and does appear explicitly in the matrix elements
for the formulation in position space. However, as disorder is
present effects of zone folding only occur approximately.

We can rewrite Eq. (16) using form factors χ (q) =∫
d2r|φ1s(r)|2e−iq·r and Fourier transforms of the overlap of

the COM states Oαβ (q) = ∫
d2Rψ∗

α (R)e−i(q+G)·Rψβ (R):

t qGα̃

αβ = h̄ge
q+Gα̃χ

(
q + G

βe

)
Oαβ (q + G)

− h̄gh
q+Gα̃χ

(
q + G

βh

)
Oαβ (q + G). (17)
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1. Fermi’s golden rule

Applying Fermi’s golden rule to the exciton-phonon inter-
action yields

γβ←α = 2π

h̄

∑
qα̃

∣∣t qα̃

αβ

∣∣2{n(h̄ωq)δ(εβ − εα − h̄ωq)

+ [1 + n(h̄ωq)]δ(εβ − εα + h̄ωq)}, (18)

with the Bose-Einstein distribution n(·). Since electron and
hole would reside in different monolayers, the rates scale
roughly as |De

1|2 + |Dh
1|2 (omitting some electron- or hole-

dependent prefactors for readability). In contrast, for an
intralayer process within the same monolayer, the rate would
scale as |De

1 − Dh
1|2, again without some electron and hole-

dependent prefactors, in front of the deformation potential.
The rate has the same form for all contributing phonon modes,
including the acoustic phonons LA and TA and the usual
optical phonons LO, TA, and A1. For the numerical imple-
mentation, we use h̄ωq = h̄vaα|q| with the speed of sound va

for LA and TA phonons in the respective layer of the phonon
mode, when applying the δ distribution.

A constant energy value often approximates the optical
phonon’s energy in Einstein’s approximation. We include
here a linear correction: h̄ωph,α,q = ω

(0)
ph,α,q + ω

(1)
ph,α,qq, where

ω
(1)
ph,α,q is determined by the difference in phonon energy at

the � and Q point [cf. Fig. 2(b)]. Thus, the phonon energies
for different q form a narrow continuum.

As we see later, the linewidth of localized states in ab-
sorption spectra is predominantly caused by the multiphonon
processes (mostly acoustic with optical satellite peaks) in-
cluded by polaron transformation, which we introduce in the
following section. The relaxation processes are relatively slow
and give only a negligible contribution. On the other hand,
optical phonons are crucial for the long-time dynamics be-
tween localized states at different positions because of the
large energy spacing.

2. Polaron transformation and modified Fermi’s golden rule

So far, Fermi’s golden rule has only included single-
phonon-scattering processes. Especially for energetically
deep localized states, as we find here, multiphonon pro-
cesses might be necessary for a correct description of the
system. Otherwise, we may see in the simulation the phonon-
bottleneck effect (e.g., see discussion for quantum dots [63]),
i.e., that relaxation to localized states is effectively prohib-
ited due to a mismatch between optical phonon energy and
energy difference to the next states. In real systems, the
phonon bottleneck effect is often softened or eliminated by
scattering processes involving multiple phonons (e.g., a mix-
ture of optical and acoustic). For localized and energetically
well-separated exciton states, especially the exciton-phonon
coupling diagonal in the exciton states [cf. in Eq. (16), α = β]
is essential for the exciton lineshape and also for modifying or
softening energy conservation in the δ distribution in Eq. (18).
Thus, we carry out a polaron transformation for diagonal cou-
pling on the Hamiltonian to include multiphonon processes.

A polaron transformation [64–68] is a canonical transfor-
mation, that transforms any operator A as

A′ = e
∑

α sα Ae− ∑
α sα , (19)

where we include only diagonal couplings in the generating
operators:

sα = |α〉〈α|
∑
qGα̃

t qGα̃
αα

h̄ωqα̃

(b†
−qα̃ − bqα̃ ). (20)

The transformation of the phonon and exciton Hamiltonian
shift the exciton energies by the polaron shift E ′

α = Eα −∑
qGα̃ |t qGα̃

αα |2/h̄ωqα̃ . The transformation removes the diagonal
exciton-phonon coupling Hamiltonian and results in a trans-
formed off-diagonal exciton-phonon Hamiltonian:

H ′
ex-ph =

∑
α 	=βqα̃G

tqGα̃

αβ Bα
+(bqα̃ + b−qα̃† )Bβ

−|α〉〈β|, (21)

where the operators Bα
± change the phonon equilibrium posi-

tion from one exciton state α to β:

Bα
± = exp

⎛
⎝±

∑
qGα̃

t qGα̃
αα

h̄ωqα̃

(b†
−qα̃ − bqα̃ )

⎞
⎠. (22)

H ′
ex-ph does not include only the dynamic contribution

of the exciton-phonon interaction but also a static off-
diagonal tunnel-like contribution. For the calculation of
transfer rates similar to Fermi’s golden rule, we sepa-
rate the static contribution from the dynamic contribution:
H ′′

ex-ph + H static
ex-ph = H ′

ex-ph:

H ′′
ex-ph =

∑
α 	=βqα̃G

tqGα̃

αβ |α〉〈β|Bα
+ζ

qGα̃

αβ Bβ
−,

Hstatic
ex-ph =

∑
α 	=βqα̃G

tqGα̃

αβ |α〉〈β|Bα
+
(
t−qGα̃
αα + t−qGα̃

ββ

)
Bβ

−, (23)

with the shifted phonon operators ζ
qGα̃

αβ = bqα̃ + b†
−qα̃ −

t−qGα̃
αα − t−qGα̃

ββ , which accounts for the shift of the equilibrium
position. The static contribution accounts for the shift of the
potential surface caused by the transition from one exciton
state to another. We assume its effects were included in the
underlying band structure or negligible in line with previous
treatments using a polaron transformation [67].

To obtain the analog of Fermi’s golden rule for the polaron-
transformed Hamiltonian, the temporal correlation function of
H ′′

ex-ph is evaluated:

trB(〈α|H ′′
ex-ph(t )|β〉〈β|H ′′

ex-ph(0)|α〉ρB)

= exp(i(εβ − εα )t/h̄ + Gαβ (t ))Hαβ (t ), (24)

Gαβ (t ) =
∑
qα̃G

∣∣t qGα̃
αα − t qGα̃

ββ

∣∣2

h̄2ω2
qα̃

[nqα̃ (eiωqα̃t − 1)

+ (nqα̃ + 1)(e−iωqα̃t − 1)], (25)
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Hαβ (t ) =
∑
qα̃G

∣∣t qGα̃

αβ

∣∣2
[nqα̃eiωqα̃t + (nqα̃ + 1)e−iωqα̃t ]

+
⎛
⎝∑

qα̃G

tqGα̃

αβ t−qGα̃

ααββ [nqα̃eiωqα̃t − (nqα̃ + 1)e−iωqα̃t ]

⎞
⎠

×
⎛
⎝∑

qα̃G

tqGα̃

βα t−qGα̃

ααββ [nqα̃eiωqα̃t − (nqα̃ + 1)e−iωqα̃t ]

⎞
⎠,

(26)

with t−qGα̃

ααββ = t−qGα̃
αα − t qGα̃

ββ and where nqα̃ is the Bose distribu-
tion with energy h̄ωqα̃ . Here, we assumed an initial harmonic
bath and used cumulant expansion in the second order of
the phonon couplings for the calculation. The second-order
cumulant expansion is exact, as Wick’s theorem holds. Gαβ (t )
accounts for the spectral phononic overlap of the initial and
final states in the transition from α to β. If the final and initial
exciton states have the same interaction with the phonon en-
vironment, then Gαβ (t ) will vanish as the phononic lineshape
has the same form. The first term at Bαβ (t ) describes a typical
transition from exciton state α to state β, including the nondi-
agonal exciton phonon interaction in second order, where the
phonon emitted or absorbed at the first interaction is also in-
volved in the second interaction. The second term is different
as a different phonon is involved in each off-diagonal inter-
action as the process involves additional diagonal interaction.
As in the exponential, the second term will only contribute
if the interaction of the initial and final state differs. Using
a second-order quantum master equation in the off-diagonal
exciton phonon coupling, we can extract a polaron scattering
rate:

γβ←α =
∫ ∞

0

e−γ t

h̄2 trB([H ′′
ex-ph(t )]αβ[H ′′

ex-ph(0)]βαρB)dt, (27)

with Aαβ = 〈α|A|β〉, where we added a phenomenological
γ = 0.0001 eV to achieve numerical convergence (and is
required to approximate the δ distribution in case the phononic
environment does not substantially differ between states α and
β).

B. Radiative decay

Besides the exciton-phonon interaction, exciton light re-
combination is another possible scattering event. The dipoles
of the interlayer excitons are tiny compared with the sin-
gle monolayer excitons and act on a longer timescale [69],
so their influence is almost negligible to exciton dynamics
on the timescales relevant for exciton-phonon dynamics. In
general, the starting point is the electron-photon interaction.
To include the influence of reconstruction, we build upon
[50]. Analogous to Ref. [50] [Eq. (8) ibid], we introduce a
parametrization of the current:

D(r) = D+
3

(1 + e+iϕ3(r) + e−iϕ2(r) )e+

+ D−
3

(1 + eiϕ3(r)−iG3·r0,1 + e−iϕ2(r)+iG2·r0,1 )e−, (28)

FIG. 5. For the WSe2/MoSe2 heterolayer example in an 8 × 4
supercell, the absolute value of dipole element for the (a) σ+ and
(b) σ−. Arbitrary units but scale to the ratio of microscopical ele-
ments from Ref. [50]. The white circle marks the position of state 1
for visual orientation.

with r0,n := −(4π )n/(3G2)G0, where we replaced the global
lattice displacement dependence from Ref. [50] with local
phase variation due to reconstruction. Even in Ref. [50] D(r)
was defined as related to the current of the whole exciton. It
is directly connected to the current matrix element dvc(r) of a
unit cell, with

dvc(r) =
∫

�(r)
d3r′u∗

k≈0,v (r′)
e

m
puk≈0,c(r′), (29)

with �(r) the volume of the unit cell at position r through
D(r) = dvc(r)/�(r). Plots of σ− and σ+ components of the
8 × 4 supercell in Fig. 5, respectively, again correlate to the
triangular-shaped pattern in the moiré cell. The σ− compo-
nent shows a flat triangular shape, while the σ+ component
has the most prominent contribution along the edges of the
triangle. The σ− component is much larger than the σ+ com-
ponent, which can be traced back to the DFT parameters from
Ref. [50]. So, the valley selectivity is limited in this type of
heterostructure, especially the localized states that reduce the
selectivity. Of course, if the K valley is exchanged with the K′

valley, the selection rule flips so that both signals are detected
simultaneously for spectroscopic signals.

The oscillator strength of the calculated exciton states [cf.
Fig. 3(c)] behaves differently to the quantum-well case, where
the few localized lower energy states carry much higher indi-
vidual oscillator strength than the higher energy delocalized
states above the mobility edge. Here, we see a repetitive pat-
tern in the delocalized states, where some delocalized states
have a stronger dipole strength than the lower localized states,
but some have a lower dipole strength. This can be traced
back to the dipole moments in Fig. 5. Specifically, the larger
dipole moment for the σ− contribution has a minimum at
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the corners of the triangles, where the localized states reside.
Furthermore, the σ+ component is maximal at the corners,
explaining the reduced valley selectivity of the localized states
compared with the delocalized states.

Since the potential is relatively deep (40–60 meV for the P
stacking case instead of a few meV typical for quantum wells),
the localized state covers most of the visible optical features.
The delocalized states in Area D cover only a minor portion
of the visible spectrum. The localized states supply most other
parts.

We can use the current parametrization to define the
electron-photon Hamiltonian in the rotating wave approxima-
tion:

Hel-ph = −
∑

kσk1k2

√
h̄

2ε0c
√

εBkV
Akσ

k1k2
b†

kσ
a†

vk1
ack2 + H.a.,

(30)

for a transition between valence band λ = v and conduction
band λ = c with the coupling element

Akσ
k1k2

=
∫

d2Rei(k1−k2+k)Reσ · D(R). (31)

A transformation to the exciton basis yields

Hex-ph =
∑
kσα

ϕ1s(0)

√
h̄

2ε0c
√

εBkV
b†

kσ
ekσ

·
∫

d2rD(r)ψα (r)eik·r|g〉〈α| + H.a. (32)

Again analog to [37], we obtain an exciton-photon decay rate:

rα = Eα

√
εB

2ε0c3h̄2 |φ1s(0)|2
∣∣∣∣
∫

d2re∗
kσ · D(r)�α (r)

∣∣∣∣
2

, (33)

assuming that the states are much smaller than the photon
wavelength.

VI. QUANTUM DYNAMICS AND NUMERICAL RESULTS

The quantum dynamics accessed in optical spectroscopy
are typically expressed in correlation functions [70]. For ex-
ample, in linear spectroscopy, where at t0 = 0 the exciton
α is created from the ground state using σ+

α = |α〉〈g| from
the electron-light and interaction and then measured (de-
stroyed through the microscopic polarization operator α− =
|g〉〈α′| for exciton α′ at time t), the correlation functions
tr(σ−

α (t )σ+
α (0)ρ) and tr(σ+

α (t )σ−
α (0)ρ) in Heisenberg picture

contain all required information about linear absorption or
luminescence (respectively) spectroscopy in secular approx-
imation [70]. If we use scattering rates without a polaron
transformation, simple equations of motion for the density-
matrix elements are sufficient [48]. In this case, the correlation
function can be evaluated using the ground-to-one-exciton
coherence ραg dynamics, calculated using the equation of
motion:

∂tραg = −i(Eα − Eg − iγα )ραg, (34)

where the single exciton decay rate γα is calculated using
the rates using γα = 1

2 (rα + ∑
α 	=α′ γα→α′ ) the inverse life-

time of the exciton states. In this approximation, the Green’s

functions of the ground to excited-state coherences are di-
rectly connected to the absorption and photoluminescence
spectra. As we will see, this description is insufficient to
explain the lineshapes, especially of the localized states,
so we must use the formulation in polaron transformation.
After polaron transformation σ+

α and σ−
α in the exciton-

light interaction is replaced with Bα
+σ+

α and σ−
α Bα

−, so that
the correlations functions tr(σ−

α (t )Bα
−(t )Bα

+(t )σ+
α (0)ρ) and

tr(Bα
+(t )σ+

α (t )σ−
α (0)Bα

−(0)ρ) determine linear absorption and
luminescence, respectively. The appearing Bα

± describes the
nuclear reorganization from the diagonal exciton-phonon in-
teraction after optical excitation, especially for localized
lower-energy states. We will see that it is the dominating con-
tribution to the exciton lineshape. In the polaron formulation,
the remaining time propagation between 0 and t contains the
homogenous exciton and phonon part H0 of the Hamiltonian
and nondiagonal exciton-phonon interaction H ′′

ex-ph. Similar to
Ref. [64], we assume that the nondiagonal exciton-phonon in-
teraction is much weaker than the diagonal part (which should
be valid for most of the localized states and is less critical for
the delocalized states) and acts on longer timescales, where
the nuclear reorganization is already finished. Therefore, as
an approximation, the time propagator in the correlation func-
tion is expanded in a second-order cumulant expansion [71]
concerning nondiagonal exciton-phonon interaction H ′′

ex-ph, in
the spirit of Ref. [71] a secular and Markov approximation is
carried out, yielding the correlation functions:

tr(σ−
α (t )Bα

−(t )Bα
+(0)σ+

α (0)ρ)

≈ exp[−i(Eα − Eg − iγα )t + gα (t )], (35)

where γα contains the exciton-phonon scattering rates ob-
tained in polaron picture Eq. (27) and gα (t ) is the lineshape
caused by diagonal exciton-phonon coupling:

gα (t ) =
∑
qα̃G

∣∣t qGα̃
αα

∣∣2

h̄2ω2
qα̃

[nqα̃ (eiωqα̃t − 1)+(nqα̃ + 1)(e−iωqα̃t − 1)],

(36)

the typical form is known from the independent boson model
[64].

The following numerical evaluation of scattering rates,
spectra, Green matrices, etc., always includes all 2500 calcu-
lated COM exciton states. No manual selection and truncation
had been performed besides the restriction to the lowest 2500
states.

A. Analysis of scattering rates

γx is the inverse lifetime of the exciton states, plotted in
Fig. 3(d) for the 8 × 4 supercell over energy. The lifetime
is mainly determined by exciton-phonon contribution, as the
exciton-photon lifetimes all exceed nanoseconds or longer.
For the localized states in areas A, B, and partly area C, the
radiative lifetime is more or less the same as for states in the
same energy area. For area C and higher, the radiative lifetime
values show a broader range of values, but generally, the radia-
tive lifetimes are higher since these states have less oscillator
strength. Overall, the lifetime is dominated by exciton-phonon
coupling, not radiative coupling for all states.
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For quantum wells [37,48,72,73], few localized exciton
states below the mobility edge of a single peak often have
much stronger oscillator strengths and thus reduced radiative
lifetimes, while the delocalized states from the same peak
have increased radiative lifetimes. This is not the case for
the heterolayer. In fact, for the heterolayer, many delocal-
ized states have a shorter radiative lifetime than the localized
states [cf. Fig. 3(d)]. One crucial difference is the position-
dependent matrix element D(r) entering the exciton lifetime
in Eq. (33), which is one for the quantum well and has its
minimum at the position of the localized state (cf. Fig. 5 for
dominating σ− polarization). For most other states, the radia-
tive lifetimes are more or less comparable low and differ from
the quantum-well case. Hence, the overall structure resembles
more quantum dot states but with reduced optical activity
inside a wetting layer as a fluctuating quantum well interface
(see discussion in Sec. III). The dominating exciton-phonon
lifetimes for the standard Born-Markov case in Fig. 3(d) are
very long for the first two bound states in areas A and par-
tially B, so the overall lifetime in area A is dominated by
radiative decay. However, for the exciton-phonon lifetimes
in delocalized higher energy areas, more scattering channels
are, even in Born-Markov approximation, open, and so for
these states, exciton-phonon scattering dominates with their
lifetime contribution ranging from microseconds to picosec-
onds. In the Born-Markov approximation, all states in area A
and some in area C have reduced exciton-phonon scattering
rate, which is further reduced for lower temperatures. These
lower energy states are dominated by phonon absorption and
thus can only scatter to energetically higher states. In po-
laron transformation, exciton phonon scattering significantly
contributes to the lower-lying states in areas A and B as the
involved multiphonon processes relax the dominance of one
phonon absorption and result in a much lower temperature
dependence. Overall, including the multiphoton processes,
the lifetime distribution in Areas A and B are in the same
order and longer compared with Areas C and D. There is
a clear trend that lifetimes decrease towards lower energy.
These deeper localized states have reduced scattering chan-
nels compared with the more delocalized states. Overall, this
indicates that the so-called phonon bottleneck is entirely re-
laxed by including multiphonons in polaron transformation. In
Fig. 3(d), the phonon lifetimes caused by acoustic and optical
phonon scattering in with polaron transformation are plotted
separately, as we see optical phonons have minimal impact
on lifetimes as the lifetimes with and without optical phonons
overlap. So, the lifetime of the excitons is predominantly de-
termined by acoustic phonons. However, optical phonons are
especially crucial for relaxation into the lower localized states,
which happens on a longer timescale. Acoustic phonons cause
the fast initial exciton reorganization, visible in the exciton
relaxation Green’s functions, which are analyzed later.

B. Linear absorption spectrum

A Fourier transform of the correlation function
tr(σ−

α (t )σ+
α (0)ρ) yields the lineshape Lα (ω) of contribution

from exciton α to linear absorption spectra. The contributions
to linear absorption involve one exciton interaction with the
optical field, including a coupling element. They are detected

FIG. 6. The WSe2/MoSe2 heterolayer linear spectra: for a sin-
gle realization of an 8 × 4 supercell (a) spectrum at 20 K for σ+
polarization in Born-Markov approximation with and without a con-
volution with Gaussian accounting for a typical spectral resolution
of 0.15 meV and using a polaron transformation [panels (b)–(d) use
polaron transformation], (b) at 20 K for σ− and σ+ polarization and
sum effectively collecting K and K′ contributions, (c) for σ+ polar-
ization at different temperatures, (d) for σ+ polarization comparison
to a 1 × 1 supercell (scaled), two different random supercells (run A
and run B) and averaging over 20 realizations.

via the microscopic current, which includes another coupling
element Dαg = ∫

d2rD(r)�α (r). Overall the linear absorption
for incoming polarization ep and detected polarization ep′

reads

αpp′ (ω) =
∑

α

Dαg · epD∗
αg · e∗

pLα (ω). (37)

For the nonpolaron case, we can retrieve the Lorentzian line-
shape to get:

α
np
pp′ (ω) =

∑
α

Dαg · epD∗
αg · e∗

pγα

(Eα − Eg − ω)2 + γ 2
x

. (38)

For the example of one random realization of the 8 × 4
supercell, linear spectra are given in Fig. 6.

In area A (up to area C), the spectra are dominated by many
low-energy localized states inside the minima at different
parts of the supercell. Most of the lowest localized states are
well separated from other states and have, especially for low
temperatures, a long lifetime in Born-Markov approximation,
resulting in many narrow resonances Fig. 6(a). Beginning in
areas C and D close but below or above the mobility edges,
the exciton lifetimes are much shorter (caused mainly by
spontaneous emission to exciton states with lower energy) in
the Born-Markov approximation, so it is challenging to locate
the mobility edges even at low temperatures. The narrow
resonances in areas A, B, and C in Fig. 6(a) have a linewidth
far below typical optical resolutions in experiments. For a
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plot comparable to experimental results, we convolute the
calculated Born-Markov spectra with a Gaussian linewidth
of 0.15 meV in Fig. 6(a), which simulates typical experi-
mental resolution. Furthermore, the localized isolated states
in areas A, B, and C are expected to have phonon sidebands
similar to quantum dots [74–76]. The phonon sidebands are
visible in the polaron calculation in Fig. 6(a) and dominate
the localized states in areas A, B, and C. In contrast, in
area D, the significant contribution of the linewidth seems to
be the state’s energy distribution and, thus, inhomogeneous
broadening. As it is clear, for a correct physical picture of
the states, the polaron picture is crucial, and the simple Born-
Markov calculation (including convolution or not) will differ
significantly from experiments. Therefore, in the following,
we only include spectra calculated using the polaron picture
in Figs. 6(b)–6(d).

In Fig. 6(b), we study the polarization dependence of the
different peaks. Similar to the work without reconstruction,
the peaks do not follow the expected valley selectivity of the
single monolayer. The peaks in areas A and B have a relatively
strict valley selectivity but with reversed polarizations com-
pared with the monolayer case. This is likely caused by the
strong position dependence of the current element, which has
a minimal σ− contribution in the potential minima (cf. Fig. 5).
The two peaks in area C also show a strong valley selectivity,
but the two peaks show an opposite valley selectivity. This
property may be somewhat usable in optical devices such
as transistors connecting or converting the two polarization
directions. The delocalized states in area D show almost no
valley selectivity concerning polarization.

Figure 6(c) compares the linear absorption spectra for tem-
peratures of 5, 20, and 50 K. For the localized states in areas
A, B, and C, we see the strongest temperature dependence in
the lineshapes, as most of the homogeneous lineshape is de-
termined by phonons. However, the temperature dependence
is not very strong as most of the linewidth is also caused
by inhomogeneous broadening. Concerning the lineshapes of
the lower states, we have to note that the optical phonon
satellite peaks, e.g., of areas B and C, overlap partially with
the signatures in area A (the same is true for areas B and
C) so that interpretation of the temperature dependence and
dynamics of these peaks have to be carried out with caution.
Only a minor effect is visible at increased temperatures for the
delocalized states in area D (and at the mobility edge at the
upper edge of area C). Here, most lineshapes are determined
by the distribution of the exciton states. Phonon lineshapes for
the delocalized states are also relatively small, as the nuclear
reorganization for delocalized states is relatively small.

Comparing the linear spectra of two random realizations
in Fig. 6(d) (and also with a 1 × 1 supercell), we see no
visible difference between the realizations in the 8 × 4 super-
cell (which is visible without polaron transformation in pure
Born-Markov). Including polaron transformation, the 8 × 4
cell seems sufficient for describing the disorder in the struc-
ture. For the 1 × 1, a splitting of the states due to the phonon
side peaks occurs, which is hidden in the 8 × 4 case inside the
inhomogeneous broadening.

In Fig. 6(d), a linear spectrum averaged over 20 realizations
of the 8 × 4 supercell is shown (and two different contributing

sets are shown) and shows no significant difference to the
individual calculations.

C. Exciton migration

In nonlinear experiments, calculating the optical signals,
including the full non-Markovian phonon dynamics, requires
the computation of the multitime-correlation function. How-
ever, the nuclear wave packets can be neglected if the
experiment involves sufficient long delay times longer than
typical phonon reorganization times. In this case, we can
describe Exciton densities ραα dynamics using the calculated
rates (nonpolaron or polaron rates), respectively :

∂tραα = −2γαραα +
∑

α̃

γα̃→αρα̃α̃, (39)

which can also be written with a relaxation tensor �αα̃ as

∂tρ(t ) =
∑

α̃

�α′α̃ρ(t ), (40)

and define the relaxation Green’s function Gαα′ (t1, t ) with
Gαα′ (t1, t1) = δαα′ and

∂t Gαα′ (t1, t ) =
∑

α̃

�α′α̃Gαα̃ (t1, t ). (41)

The Green’s function Gαα′ (·, ·) tells us with which probability
an exciton in state α at time t1 ends up at exciton state α′
at time t . Green’s functions (including Green’s function for
the coherences) allow the calculation of various spectroscopic
signals [70,77]. For plots over the energy of the Green’s func-
tion, which we discuss later, the following form is used:

G(E f , Ei = ωxg; T ) =
∑
α′

Gαα′ (T )δ(E f = ωα′g), (42)

with the initial Ei and final exciton energy E f , respectively.
The relaxation-Green’s function is an ingredient for the

calculation of various spectroscopic signals such as photon
echo, double quantum coherence [48,77,78], pump-probe, or
photoluminescence. In Figs. 7 and 8, the relaxation Green’s
function is given for different delay times and temperatures
(T = 5 K and T = 20 K). The initial relaxation occurs within
the first tenth of picoseconds, after which almost all probabil-
ity is concreted in areas A and B of localized states. The initial
relaxation passes through many intermediate states, which can
be seen as an off-diagonal contribution in Figs. 7 and 8. After
the relaxation, we see only contributions in the final states in
areas A and B visible as a horizontal line at the final energy in
the plot in Figs. 7 and 8. The dynamics from 1 to 10 ns indicate
that, finally, all excitons will be migrated to area A and that
the lifetime of excitons in area B is in the nanosecond range.
Between 5 and 20 K, we see a faster relaxation time at higher
temperatures and a higher exciton occupation at higher-energy
states in line with the equilibrium distribution. The Green’s
function calculated using polaron transformation does not
show the phonon-bottleneck effect. A calculation in the Born-
Markov calculation (not shown) leaves substantial occupation
in areas C and D even for delay times in the nanosecond range
due to the phonon bottleneck effect emerging in the lower
order and quality of the Born-Markov calculation.
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FIG. 7. The exciton relaxation Green’s function WSe2/MoSe2

heterolayer in an 8 × 4 supercell using polaron theory at 5 K for
a delay time between excitation and luminescence of (i) 100 fs,
(ii) 1 ps, (iii) 10 ps, (iv) 40 ps, (v) 100 ps, (vi) 500 ps, (vii) 1 ns,
(viii) 10 ns.

VII. CONCLUSION

A framework was developed for simulating the inter-
layer exciton’s dynamics, including exciton-photon scattering
in transition metal dichalcogenides moiré heterostructures
suitable to include the influence of strain and address im-
perfections such as disorder and cracks. The framework was
formulated in real rather than momentum space to include
deviations from the standard translational periodic treatments.
For the influence of disorder, the localized exciton states
show spectroscopic resonances broadened by the inhomoge-
neous exciton distribution. After nanoseconds, only the lowest
two exciton states are significantly occupied in polaron the-
ory, including multiphonon processes. In the Born-Markov

FIG. 8. The exciton relaxation Green’s function WSe2/MoSe2

heterolayer in an 8 × 4 supercell using polaron theory at 20 K for
a delay time between excitation and luminescence of (i) 100 fs, (ii)
1 ps, (iii) 10 ps, (iv) 40 ps, (v) 100 ps, (vi) 500 ps, (vii) 1 ns, (viii)
10 ns.

approximation, the higher energy delocalized states would
be occupied- a consequence of the phonon bottleneck effect
caused by the single phonon approximation present in the
Born-Markov approximation.

The presented framework can be useful for calculating
spectroscopic signals because it considers the influence of
natural imperfections in experiments.
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