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Unveiling the chirality of the quantum anomalous Hall effect
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The ordinary and quantum Hall effects with fixed carrier types, electron or hole, exhibit well-defined chirality
under external magnetic fields, but the analogous chirality of the quantum anomalous Hall effect (QAHE)
remains little explored. Here, for the electronic structures of intrinsic QAHE systems, we show that the local
Berry curvature is linked with the angular-momentum difference lδz of the inverted bands. In the presence of
rotation symmetries, the value of lδz will be quantized and set as the Chern number. The quantized lδz will also
give rise to a unique quantized magnetic circular dichroism effect in the case of resonance absorption. By lδz, we
find that the chiral flow-direction of an electron in the QAHE is not explicitly related to the intrinsic spin axis,
thereby enabling the spin-momentum-unlocking edge states in an antiferromagnetic QAHE system. The validity
of our theory is confirmed through rigorous examinations using perturbation theory, k · p modeling, tight-binding
modeling, and first-principle calculations, which predicts exotic behavior in experimentally accessible quantum
materials.
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The investigation of quantized Hall conductance, which
is one of the key fields of condensed matter physics, opens
the door to study topological quantum materials [1–24]. The
quantum Hall effect (QHE) is a consequence of Landau orbits
and related chiral edge modes under strong external magnetic
fields [1–3]. Researchers found that the quantized Hall con-
ductance can also be realized without external magnetic fields,
namely, the quantum anomalous Hall effect (QAHE) [4–6].
The QAHE was experimentally realized by doping magnetic
Cr impurities into thin films of Bi2Te3-based topological insu-
lators (TIs) [6]. Since then, intensive attention has been paid
to searching for candidates for quantum anomalous Hall insu-
lators (QAHIs) with internal magnetic moments [7–10,25].

In the QHE, the flow of the Hall current is directly deter-
mined by the flux of external magnetic fields. In contrast, the
connection between the anomalous Hall current and internal
magnetization remains elusive [6,24,26]. For instance, despite
very similar crystal and electronic structures, the anoma-
lous Hall conductivity in Cr- and Mn-doped Sb2Te3 are of
opposite signs under the same magnetization direction and
carrier types [6,24,26]. Furthermore, when approaching net
zero magnetic moments, the QAHE has also been observed
in noncollinear antiferromagnetic (AFM) Mn3Sn [27], sug-
gesting the possibility of realizing a QAHI with net zero
magnetization [28,29]. Additionally, magnetization easy-axis
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and temperature can both induce the sign change of the Chern
number [30,31], but the microscopic mechanism is still un-
clear. All these observations show that internal magnetization
is associated with the anomalous Hall conductivity indirectly.
Therefore, it is interesting to ask if there is another hidden
internal variable which dominates the flow direction of the
Hall current in QAHE.

Here, in the intrinsic electronic structures of QAHIs, we
find that a unique angular-momentum difference lδz between
the electron and hole of the inverted bands is linked with
the local Berry curvature. Analytically, in the presence of
rotation symmetries, we show that this critical lδz is directly
proportional to the Chern number such as |lδz| = 2, giving
rise to quadratic dispersion and a diploid Chern number in
linear dispersion from |lδz| = 1. This Hall conductance lδz

correspondence makes the magnetic circular dichroism effect
a detection technology for QAHIs. All these conclusions are
successfully verified by the lattice tight-binding model and
first-principles calculations of real materials. Based on our
discovered decoupling between the flow direction of the Hall
current and the intrinsic spin axis of an electron, an AFM
QAHI is made by two ferromagnetic ones with opposite lδz’s,
and the two edge states break the locking between the spin
and the momentum.

In the electronic structure of an intrinsic QAHI, spin-
polarized bands cross at the band crossing point, mix and gap
because of spin-orbit coupling (SOC), and give rise to large
local Berry curvature at the band crossing point. To figure out
how ubiquitous variables such as spin and orbital angular
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FIG. 1. The simultaneous Berry phase and δ jz from bands cross-
ing and interlevel spin-orbit coupling (SOC) interaction. Two pure
states (solid red and blue dots at north and south poles) and two
mixing states (solid black and hollow dots which are far away from
the poles) are on a Bloch sphere. Pure states represent the two states
at the band crossing point before inducing SOC. Two mixing states
represent the electron and hole after the inclusion of interlevel SOC
interaction. Four panels around the Bloch sphere are the schematic
diagram of the inverted bands before and after the inclusion of SOC,
in which solid lines correspond to the points on the Bloch sphere.
Horizontal dashed gray lines represent Fermi levels.

momenta, S and L, vary in this process, we scrutinize the
SOC interaction at the band crossing point. We treat the two
eigenstates at the band crossing point before inducing SOC as
a two-level system, described by the Hamiltonian:

H0 =
(

E1

E2

)
, (1)

where E1/2 denote energies of the two unperturbed states.
Then we added the perturbation (interlevel SOC interaction
Ĥsoc = λL̂ · Ŝ, where λ represents the interaction strength) to
this system which induces an interlevel coupling:

H =
(

E1 Hsoc

H∗
soc E2

)
(2)

(see Sec. I in the Supplemental Material [32]). Through the
orthogonality of eigenstates, we know that the interlevel per-
turbation from SOC gives rise to a total angular-momentum
difference δ jz between the new eigenstates, namely, the ul-
timate electron and hole around the Fermi level. Specifically,
the requirement for the unperturbed states to interact with each
other sets a limit to their angular momenta, which indicates
a zero angular-momentum difference before SOC interaction
(δsz + δlz = 0) [33]. Hence, the resultant inter-level δ jz serves
as a unique characteristic of the inter-level SOC interaction.
This can be sketched on a Bloch sphere [Fig. 1(a)]. The
north and south poles represent two unperturbed states with-
out coupling and Berry phase. The SOC interaction induces
the mixing of two unperturbed states and sets opposite Berry

phases to the electron and hole. As a result, the production of
the local Berry curvature is accompanied by the emergence of
δ jz, which are two simultaneous processes.

To quantificationally reveal the correspondence between
such an angular-momentum difference and the quantized Hall
conductance, we examine systems that exhibit discrete rota-
tion symmetries Cn, where n equals 2, 3, 4, or 6, along the
z axis, with the inclusion of out-of-plane magnetization. In
this context, all unitary components of the resultant magnetic
space group are reduced to the cyclic group (Sec. II, Table S2
in the Supplemental Material [32]). Given that angular mo-
mentum is the generator of the rotation operator, potential
values of jz for the electronic state on the rotation axis can be
derived. The eigenspinors with the eigenvalue of the rotation
operator exp(±i jz

2π
n ) are bisected on the complex plane, as

depicted in Figs. 2(a)–2(d) (Sec. II, Table S3 in the Supple-
mental Material [32]).

We subsequently examine possible values of the angular-
momentum differences, denoted as δ jz = jc − jv , where jc
and jv represent the total angular momentum of conduction
and valence bands at the band crossing point after inducing
SOC. It is noteworthy that δ jz is quantized with a minimum
unit of ±1, correlating to the phase difference exp(±i 2π

n )
under rotation operation, as demonstrated by the curved red
arrows in Figs. 2(a)–2(d). Moreover, under rotation constraint,
j′z = jz + pn (p = 0,±1,±2, . . . ) equates to jz. For instance,
jz = − 3

2 and jz = 3
2 at a C3 rotation axis are equivalent

[Fig. 2(b)]. Consequently, the angular-momentum differences
δ jz = − 3

2 − 1
2 = −2 and δ jz = 3

2 − 1
2 = 1 at a C3 rotation

invariant point both signify the phase difference exp(i 2π
3 )

[Fig. 2(b)]. In this context, we use a quantized lδz = δ jz + pn
to denote all δ jz’s with the actual phase difference exp(ilδz

2π
n )

under the effect of rotation operation Cn, n = 2, 3, 4, and 6,
where lδz is within the range [−n/2, n/2].

Thus, inspired by the quantization of lδz under rotation
symmetries, it is natural to ask how the two nonzero quantized
properties link exactly in the QAHE: the Hall conductance and
the interlevel angular-momentum difference. To unveil this
plausible connection, we built a k · p model by considering
the leading term (symmetry-allowed lowest order) (Sec. III A
in the Supplemental Material [32]):

h(k) =
[

�
2 exp (−ilδzφ)

exp (ilδzφ) −�
2

]
, (3)

where φ = arctan( kx
ky

) is the azimuthal angle in momentum
space circling the crossing point, and � is the band gap with
positive values.

The contributed Hall conductance from the effective model
is equal to the Berry phase integration around the center of the
model [34] (Sec. III B in the Supplemental Material [32]):

σ H
xy = lδz

2

e2

h̄
. (4)

It is evident that the Hall conductance exhibits a direct
proportionality to the effective angular momentum, denoted
as lδz, as defined herein. Specifically, when lδz = +1 (lδz =
−1), the Hall conductance σ H

xy is equal to the half-quantized

value e2

2h̄ (− e2

2h̄ ), as indicated in Fig. 2(e), the scenario where
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FIG. 2. Classification of the conductance δ jz correspondence via rotation symmetries. (a)–(d) Possible values of jz and the eigenvalue of
the generated rotation operator exp(±i jz

2π

n ) on the complex plane, where n = 2, 3, 4, and 6 correspond to rotation symmetries C2, C3, C4, and
C6, respectively. The cambered red (cyan) arrows represent lδz = 1 (2). (e) The band structure and Hall conductance calculated from Eq. (3)
when |lδz| = 1, in which the dispersion is linear, and lδz = +1 (lδz = −1) gives rise to positive (negative) half-quantized Hall conductance.
(f) Same as (e) but for |lδz| = 2, in which the dispersion is quadratic, and lδz = +2 (lδz = −2) gives rise to positive (negative) quantized Hall
conductance. (g) The sketch of light absorption of right-handed circularly polarized light in a quantum anomalous Hall insulator (QAHI) with
interlevel angular-momentum difference lδz = 1. The light carries spin angular momentum σ = 1 but zero orbital angular momentum m = 0.
The total angular momentum of the electron (orange ball) and the photon before excitation should be equal to the electron (purple ball) after
excitation. (h) The sketch of light absorption of photons carrying orbital angular momentum m = 2 (with zero spin angular momentum σ = 0)
in a QAHI with lδz = 2.

lδz = ±1 corresponds to the gapping of a linear Dirac cone
[34]. According to the no-go theorem, gapped linear Dirac
cones are expected to manifest in pairs throughout the Bril-
louin zone [35,36]. Thus, two gapped linear Dirac cones
possessing |lδz| = 1 are needed to yield quantized Hall con-
ductance.

Under C4 or C6 rotations, the effective angular momentum
|lδz| can also equal 2, as indicated by cyan arrows Figs. 2(c)
and 2(d). Consequently, when lδz = ±2, the contributed Hall
conductance is equal to ± e2

h̄ . This can be understood as
massive double-Dirac fermions with quadratic dispersions
[Fig. 2(f)].

In an insulator without time-reversal symmetry, multiple
band crossing may occur either at a single point or at multiple
points across the entire momentum space. In such cases, the
total Hall conductance for the system can be expressed as
σ H

xy = ∑a
1 lδz,a

e2

2h̄ , where a represents the count of the band
crossing points featuring angular-momentum difference lδz,a.
To exemplify this, we built a magnetic triangle lattice model
with three band crossing points, two at K points with C3 rota-
tion and one at � with C6 rotation (Sec. IV in the Supplemental
Material [32]). In accordance with our theoretical framework,
we observed that, at K points, lδz = −1 and σ H

xy = − 1
2

e2

h̄ ,

while at �, lδz = 2 and σ H
xy = e2

h̄ were obtained.
We further discuss the light absorption of a QAHI in the

case of quantized lδz due to the preservation of rotation sym-
metries. The light transition from the SOC-forced electron to
the hole is scrutinized, where the photon possesses angular
momentum, denoted jL. In line with the principle of angular-
momentum conservation, the angular momenta of the electron
and photon remain constant, as defined by the equation jc =
jv + jL [37]. This observation elucidates that the discerned
value of lδz within a QAHI corresponds to the momentum

of the absorbed photon, that is, lδz = jL, thereby highlighting
the presence of selective light absorption. For instance, when
lδz = 1, the QAHI tends to absorb right-circularly polarized
light, characterized by a spin polarization of σ = 1, as op-
posed to left-circularly polarized light (σ = −1) [Fig. 2(g)].
This phenomenon is recognized as the quantized magnetic
circular dichroism effect. Moreover, a QAHI with an abso-
lute value of lδz � 2 is a potential candidate for realizing the
magnetic circular dichroism effect for lasers with quantized
orbital angular momentum >1 [Fig. 2(h)]. Now we directly
verify our findings with real materials, specifically MnBi2Te4

[24,38–45] and Cr-doped Sb2Te3 [6,7,46,47]. The two materi-
als have been previously experimentally identified as QAHIs
with opposite Chern numbers [6,24]. Thanks to their reten-
tion of C3 rotation symmetry, it becomes feasible to evaluate
the angular momentum using first-principles calculations di-
rectly [48]. Figure 3(a) represents the band structure of three
septuple layers (SLs) of MnBi2Te4 near the � point. A
Chern number −1 arises from the TI Dirac cones at the
top and bottom surfaces [Figs. 3(a) and S3 in the Sup-
plemental Material]. The energy-increasing ordered angular
momenta of the four bands in MnBi2Te4 are + 1

2 , + 1
2 , − 1

2 , − 1
2 .

The momentum-resolved circularly polarized light absorption
calculations show that left-handed light, with σ = −1, is
absorbed [Fig. 3(b)]. Conforming to our theory, the local
dispersions proximate to these four states in MnBi2Te4 could
be conceptualized as two linear gapped Dirac cones with lδz =
−1 − 1 = −2 [Fig. 2(e)]. In stark contrast, although similar
bands with gapped linear Dirac cones are observed in Cr-
doped Sb2Te3, the sign of the Berry curvature in this material
is inverted [Fig. 3(c)]. Our calculations further demonstrate
that the effective angular momentum lδz is also inverted from
−2 to 2 in Cr-doped Sb2Te3, as evidenced by the absorption
of right-handed light associated with a positive lδz [Fig. 3(d)].
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FIG. 3. Local Berry curvature and circularly polarized light-
transition in real materials. (a) Berry curvature-colored bands of
3-SL MnBi2Te4 around the � point, where the bands cross. The
pseudototal angular momenta jz are labeled. (b) Simulation of the
intensity of interband light transition η of 3-SL MnBi2Te4. η(k) =
|P+ (k)|2−|P− (k)|2
|P+ (k)|2+|P− (k)|2 , where P+ (P−) is the transition matrix element of
right-handed (left-handed) circularly polarized light [49]. (c) and
(d) Same as (a) and (b) but for Cr-doped Sb2Te3 around the � point.

To understand the chiral orbiting in the QAHE, we fur-
ther discuss the anomalous transport of an electron in the
intrinsic QAHE by contrast with metal conducting. In band
theory, metal conducting is regarded as that the electronic
state around the Fermi level will drift toward the adjacent-
momentum state since the spatial amplitude distribution of
the wave function is continuously varied in the momentum
space, and two adjacent-momentum states have similar spatial
amplitude distributions [Fig. 4(a)]. In the scenario of band
crossing and SOC-forced gapping, and for one of the bands,
SOC only impacts the angular momenta, so the spatial am-
plitude distribution of the wave function is still delocalized
[50] and continuously varying in terms of momentum. Hence,
the electron near the Fermi level which tends to drift along
the electrical field is obstructed by the energy gap and ex-
pected to adjust its angular momentum by lδz to reach the
adjacent-momentum state (the hole state) [Fig. 4(b)]. Since lδz

is totally from the interlevel coupling between spin and orbital
angular momenta [Fig. 1(a)], the electron should not only spin
intrinsically but also orbit in the real space [51] to achieve the
ladder or lower of the total angular momentum.

Then the connection between the magnetization M and the
magnetic-field-like lδz in a QAHI can also be illustrated. In
the classical QHE, electron motion within a magnetic field
is driven by the Lorentz force F = −ev × B, wherein the
external magnetic field and the skipping orbits on the edge
conform to the left-hand rule [2,3]. Thus, flipping the direction
of the magnetic field can invert the direction of skipping or-
bits. In contrast, within a field-free QAHI, although inverting
the direction of magnetization M can flip the Hall current,
no established chirality exists between the Hall current and
a true effective field. Instead, there are two opposite loops
of magnetic field dependence of σ H

xy in MnBi2Te4 [Fig. 4(c)]

M Lδ

M Lδ

σH
xy 

H

M Lδ

σH
xy

H

M Lδ

cyclotron

drift

virtual drift

EFermi

E

E

: the same delocalized orbital

(a) (c)

(b)

(d)

FIG. 4. lδz-forced orbiting of an electron and the chirality of a
quantum anomalous Hall insulator (QAHI). (a) In metal, the delocal-
ized orbital lies on the Fermi level, in which the electron (green balls
with arrows which represent spin axes) could drift freely in terms of
the electrical field. In this case, there is no change of angular momen-
tum (yellow curved arrow). (b) In a QAHI, one delocalized orbital is
split and distributed around the Fermi level. The electron state under
the electrical field which tends to drift toward the hole state in one
delocalized orbital should experience a ladder (or lower) of the total
angular momentum (black curved arrow) and subsequently orbit in
the real space. (c) The Hall current is locked with Lδ by the left-hand
rule. When Lδ (dash arrow) and M (solid arrow) are antiparallel to
each other, the field-dependence Hall conductance loop is shown by
the middle panel. We use a cyan-colored slab to represent the QAHI
in which Lδ and M are antiparallel to each other. (d) Same as (c),
the Hall current is still locked with Lδ by the left-hand rule. The
brown-colored slab represents the QAHI in which Lδ and M are
parallel to each other.

and Cr-doped Sb2Te3 [Fig. 4(d)]. With the understanding of
the chiral orbiting from lδz, we now represent lδz through
an effective field Lδ , where a positive (negative) z direction
represents lδz > 0 (lδz < 0), as indicated by the dashed arrows
in Figs. 4(c) and 4(d). Interestingly, both MnBi2Te4 and Cr-
doped Sb2Te3 exhibit left handedness between the effective
field Lδ and the Hall current. Hence, by mapping the inter-
nal orbital field Lδ to the external magnetic field H and the
anomalous Hall current onto the skipping orbit on the edge,
an analog of the classical QHE [52] in a QAHI is built.

The two opposite loops of the magnetic-field-dependent
Hall current [6,24] in a QAHI can be explained by the relative
orientation between M and Lδ . More specifically, when M is
antiparallel (parallel) to Lδ , the Hall current concerning M
adheres to a right-hand (left-hand) rule [Figs. 4(c) and 4(d)].
In a ferromagnetic QAHI, a M reversal by the magnetic field
is equivalent to a spin S inversion. Because of the fixed sign
of L · S, the orbital L aligns with the spin S. As a result, total
angular momentum J and effective angular momentum lδz and
Lδ will also flip subject to inversion of M, inducing the sign
change of the Hall conductance. The relative orientation of M
and Lδ is fixed within a material, leading to the preservation
of the magnetic-field-dependent loop with a fixed chirality. To
realize the transition of the magnetic-field-dependent Hall cur-
rent loop from one handedness to the other, modifications to
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FIG. 5. Spin-momentum-unlocking edge states and reversal quantum anomalous Hall effect (QAHE) in an antiferromagnetic (AFM)
quantum anomalous Hall insulator (QAHI). (a) and (b) Double-layer system with the same (opposite) chirality QAHE systems. Magnetization
direction M and sign of angular-momentum difference Lδ are labeled by solid and dashed arrows, in which red (blue) represents upward
(downward) direction and positive (negative) sign. Spin-up (down) states of the edge are labeled by the horizontal red (blue) arrow. (c) and
(d) Spin-resolved edge states for a double-layer system in (b) stacked by monolayer PdBr3 and PdCl3 with zero and nonzero net total
magnetization but nonzero and zero total lδz. (e) Schematic of reversal QAHE in comparison with conventional QAHE. (f) Schematic of
field-dependence QAHE loop, in which the reversal QAHE can be realized at the region of hysteresis difference (black line) of two opposite
QAHE systems (orange and cyan lines).

the internal properties of the system are required. One feasible
method entails altering the signs of SOC. To exemplify this,
we use PdBr3 and PdCl3, which are predicted to be QAHIs
with Chern numbers of opposite signs. Our first-principles
calculations show they exhibit opposite signs of lδz due to the
opposite signs of SOC (Figs. S4 and S5 in the Supplemental
Material [32]).

In a ferromagnetic QAHI, we have shown that magnetiza-
tion M is indirectly linked to the Hall conductance σ H

xy through
interlevel angular-momentum difference. We then utilize the
reality of decoupling M and σ H

xy and design a QAHI with zero
total magnetic moment. The entire internal effective orbital
field of the system can be expressed as Ltotal

δ = Ltop
δ + Lbottom

δ .
In a conventional case, both layers possess the same relative
orientation between Lδ and M, and Ltotal

δ of the whole sys-
tem cancels out if the magnetizations in the two layers are
oppositely oriented [Fig. 5(a)]. As a result, quantized edge
states are gapped out [24,45,53]. However, if Lδ and M are
in opposite relative orientations in two layers, the total Ltotal

δ

is nonzero even when the total magnetization (M) cancels
out [Fig. 5(b)]. In this case, two copropagating chiral modes
of opposite spin directions can be protected with net zero
magnetization [Fig. 5(c)], whereas the edges will be gapped
when the system is in ferromagnetic orders [Fig. 5(d)]. This
means that, in a QAHI with a net zero magnetization, |σ H

xy |
will drop to zero as the external magnetic field increases to
a critical point [Fig. 5(e)]. To emphasize the unconventional
magnetic responses of the QAHE with net zero magnetization,
we introduce the term reversal QAHE as a distinctive label
from its conventional counterpart.

Though a QAHI has been recognized as an ideal resistance
standard in quantum metrology [54], the stray magnetic fields
from a traditional QAHI could interfere with other sensi-
tive quantum devices, thereby limiting their integration and
broader use. In contrast, the reversal QAHE could lead to
the development of highly efficient, low-power-consumption
devices with minimized interference. The manifestation of the

reversal QAHE within the Bi2Te3 family is indeed feasible in
experiments. One proposed methodology involves the layered
stacking of MnBi2Te4 and Cr-doped Sb2Te3 [9]. Notably,
even if the Cr and Mn atoms exhibit identical magnetization
directions within the sample, their coercive field strengths can
be exploited to establish opposite magnetization directions
between them [Fig. 5(f)] [55]. An alternative method involves
magnetizing the top (bottom) surface of the Bi2Te3 thin film
by doping Mn (Cr) atoms independently. This becomes fea-
sible under weak magnetic fields when the top and bottom
surfaces are adequately separated from each other. It is worth
noting that both methodologies necessitate precise control of
the doping level of Cr atoms. The objective is to ensure that
the net magnetization induced by the Cr atoms is equivalent
to that from the Mn atoms.

In summary, we show that the QAHE can be associated
with an angular-momentum difference between the electron
and hole around Fermi level, which also gives rise to a unique
magnetic circular dichroism effect. With the introduction of an
effective internal field stemming from the angular momentum,
we illustrate the force of chiral orbiting in the QAHE. It
further paves the way for understanding an axion insulator
[45] and the layer Hall effect [56] with alternative spin con-
figurations.
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