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Moiré fractals in twisted graphene layers
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Twisted bilayer graphene (TBLG) subject to a sequence of commensurate external periodic potentials reveals
the formation of moiré fractals (MFs) that share striking similarities with the central place theory of economic
geography, thus uncovering a remarkable connection between twistronics and the geometry of economic zones.
MFs arise from the self-similarity of the emergent hierarchy of Brillouin zones (BZs), forming a nested subband
structure within the bandwidth of the original moiré bands. We derive the fractal generators for TBLG under
these external potentials and explore their impact on the hierarchy of the BZ edges and the wave functions at
the Dirac point. By examining realistic supermoiré structures and demonstrating their equivalence to MFs with
periodic perturbations under specific conditions, we establish MFs as a general description for such systems.
Furthermore, we uncover parallels between the modification of the BZ hierarchy and magnetic BZ formation
in Hofstadter’s butterfly, allowing us to construct an incommensurability measure for MFs versus twist angle.
The resulting band structure hierarchy bolsters correlation effects, pushing more bands within the same energy
window for both commensurate and incommensurate TBLG.
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I. INTRODUCTION

Fractals are fascinating structures that are found in both
natural and abstract forms, from the intricate patterns of Ro-
manesco broccoli to the complex geometry of the Mandelbrot
set [1,2]. Iterated function systems (IFSs) are a powerful tool
for generating fractals, with many unusual geometries emerg-
ing as attractors [3], e.g., Koch curves [4]. Iterated fractals
(IFs) involve applying a generator recursively to a starting
shape—an initiator. Particularly interesting are IFs generated
by

x2 + βx − (LN − β2)/3 = 0, (1)

where for β ∈ N, if it has a discriminant D ∈ Z, then LN ∈
N generate a triangular lattice with integral coordinates [5]
[Fig. 1(a)].

In this paper, we show that Eq. (1) describes an emergent
fractality when commensurate or incommensurate moiré pat-
terns in (twisted bilayer graphene) TBLG [7–43] are subjected
to a sequence of superlattice periodic potentials (SOPPs)
[Fig. 1(b)], having the same moiré periodicity as structures
on which they are applied, but twisted by an angle restoring
commensuration. The sequence of iterated edges of the first
Brillouin zone (FBZ) forms a fractal (Figs. 2 and 4) with
dimensions determined by LN (the number of unit cells in a
newly formed BZ fitting a unit cell of the preceding BZ at
each iteration).

The emergent fractality of Eq. (1), dubbed the moiré
fractal (MF), resembles the hierarchy and fractality of eco-
nomic geography’s central place theory (CPT) as pioneered by
Christaller and Baskin [44–46] and Lösch and Woglom [47],
which terms LN as Löschian numbers [48]. This connection
emerges when densely packed hexagonal trade areas centered
on settlements are multiply stacked with trade areas repre-
senting smaller settlements [46,47,49–54] [Fig. 1(c)]. The MF

dimension (D f ) provides quantitative information about the
band structure of realistic supermoiré structures (SMSs), e.g.,
multiple graphene or hexagonal boron nitride (hBN)-graphene
layers [55–60]. Further, we establish an analogy with Hof-
stadter’s butterfly (HB) [61,62] explaining the topological
quantization of Hall conductivity [63,64], thus formulating an
incommensuration measure for moiré structures.

II. THE HAMILTONIAN AND EMERGENT FRACTALITY
IN MOIRÉ FRACTALS

The rapid progress in the fabrication of two-dimensional
(2D) layered materials, e.g., TBLG, has stimulated interest in
the effect of substrates [65–68]. Such materials experience an
external potential with a moirélike periodicity when placed on
substrates with matching [69] or mismatched layers [70,71],
which may be modeled as perturbations to the Hamiltonian
of TBLG (HTBLG) via external periodic potentials [71–73].
HTBLG subjected to SOPP at the jth iteration is

Hj =
[

ĥk(θ/2) + ∑ j
i=1 Vi(r) T (r)

T †(r) ĥk(−θ/2) + ∑ j
i=1 Vi(r)

]
,

(2)
where ĥk(θ ) = vF σθ · (k̂ − Kθ ) [74] describes single-layer
graphene (SLG) rotated by θ , vF [75] is the Fermi ve-
locity, and Kθ is the rotated, right-valley Dirac point. The
transformed Pauli matrices σθ = e−iσzθ/2(σx, σy)eiσzθ/2 pro-
vide the rotation. The expressions for the interlayer hopping
matrices T (r) [11,76–78] are given in Appendix F. The ex-
ternal potential Vj (r) exhibits a periodicity: Vj (r + n1 t ( j)

1 +
n2 t ( j)

2 ) = Vj (r), where the primitive vectors (PVs) t ( j)
1,2 =

[R(θ )] a( j−1)
1,2 . θ = θr is the twist between the moiré pattern

and the moiré external potential (mEP), leading to commen-
suration between mEP at each jth iteration and TBLG with
all potentials up to the ( j − 1)th iteration. R(θr ) denotes a 2D
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FIG. 1. (a) LN , β, and x over triangular coordinates (the axes are
60◦ with respect to each other). The intersection of β (magenta)
and x (green) lines identify the intersection points (x, y = x + β) at
which LN exists. (b) The real-space creation of each iteration: TBLG
is created by stacking graphene layers with the top layer being the
zeroth iteration j = 0 and the bottom layer being the next j = 1. The
iterations j = 2, 3, . . . are created by applying the z-independent
external periodic potentials identically to both the graphene layers.
(c) The K = 3 CPT hierarchy (since a hexagon of each layer encloses
three hexagons of an adjacent layer) where each layer corresponds to
a particular order of settlement [6]. LN is analogous to K .

rotation matrix at these commensurate angles. The condi-
tion for commensuration under such rotation maps an integer
pair n = {n1, n2} to m = {m1, m2} (Appendix D). The inte-
gral solutions m1, m2, n1, and n2 satisfy the necessary and
sufficient condition when the matrix elements assume only
rational values [12,79], leading to a set of Diophantine equa-
tions (Appendix D) whose solutions provide the PV of the
commensurate supercell, i.e., {a(2)

1 , a(2)
2 } in terms of the PV of

the preceding structure.
For the SOPP of Fig. 1, V1(r) = 0 at j = 1, H1 in (2)

becomes HTBLG, while the potentials for j � 2 are nonzero.
For j = 2, V2(r) is periodic with t (2)

1,2 = [R(θr )]a(1)
1,2 where a(1)

1,2
are the PV of commensurate TBLG. On repeating this pro-
cedure, the commensuration of Vj (r) and the structure up to
the ( j − 1)th-level is spanned by {a( j)

1 , a( j)
2 }. We demonstrate

this via a cosine potential V0 with only six Fourier compo-
nents (Appendix F). The intrinsic Coulomb interactions can
be modeled using such an on-site mEP having the same peri-
odicity as the moiré pattern [80–83] as a starting ansatz for a
self-consistent calculation. For the first iteration of V2(r) (Ap-
pendix G, Figs. 11–15) various SMSs, e.g., trilayer graphene
[55–57,84–86], four-layer graphene [58,59,87,88], and tri-
layer hBN-G-hBN [60,89], are modeled by (2), representing
an MF and a weak periodic perturbation whose details depend
on the system considered. V0 can be controlled by [90] the
interlayer separation (d) and the interlayer bias (VSTM), es-
sentially the bias applied to a scanning tunneling microscope
(STM) tip, i.e., |VSTM| ≈ 20 − 500 meV [91,92]. Typically,
V0 ∼ 1.2 meV for |VSTM| = 45 meV given d ∼ 1 nm.

Each commensuration of either TBLG or TBLG plus the
mEPs gives (Appendix D)

A( j−1)
FBZ /A( j)

FBZ = LN = p2
1 + p2

2 + p1 p2, (3)

where A( j)
FBZ = |b( j)

1 × b( j)
2 | represents the area of the first

BZ at jth iteration and a( j)
i · b( j)

k = 2πδik ∀ i, k = 1, 2 and
p1(p, q), p2(p, q) ∈ Z+ (Appendix D, Fig. 8), with p, q being
coprime numbers. For a hexagonal lattice, p2 = p1 + β such
that LN with β = 0 lie on the line X = Y while the numbers
with β > 0 lie on lines parallel to X = Y [Fig. 1(a)], convert-
ing Eq. (3) into Eq. (1), therefore making each LN lie at an
intersection of the x and β rays [Fig. 1(a)].

For each LN and β, the corresponding fractal generator
(FG) is generated by applying IFSs to one side of the initiator
A0 [3], i.e., the rotated BZ of SLG (a constituting layer in
TBLG) (details in Appendix A). Applying this FG to each
arm of A0 generates the edges of successive BZs, continuing
the recursive process to produce a sequence of BZs.

The hierarchical construct in CPT, i.e., LN exhibits suc-
cessively smaller regions within a trade area at each stage.
Number theory [93] identifies conditions for LN fulfilling
Eq. (1). This connection between the CPT lattice partition
and Eq. (1) facilitates the systematic determination of lattice
coordinates for economic zones and the corresponding FG
responsible for CPT associated with LN . For TBLG in the
presence of specific mEPs, we begin with the transforma-
tion mappings of the FGs for q = 3, p = 1 and q = 2, p =
1, corresponding to θ ∼ 21.79◦ [94] and θ ∼ 32.20◦. D f =
ln(nc)/ ln(s) for the attractor A [1], where s = √

LN is the
contractivity factor (Appendix A, Fig. 5).

III. IMPLICATIONS OF THE ABOVE CONSTRUCTION
FOR THE BAND STRUCTURE

Figures 2(a1) and 2(b1) display the superimposed BZs
for j = 1, 2, 3 corresponding to the hierarchical mEP applied
to two commensurate structures at θ = θr ∼ 21.79◦ and θ =
θr ∼ 32.20◦. The FG shape is shown in the next column. For
both, it is applied alternately outside and inside the edges of
the initiators [red dashed lines, Figs. 2(a2) and 2(b2)], exhibit-
ing emergent fractality with D f = 1.129 and D f = 1.255.
The real-space fractals corresponding to q = 3, p = 1 are
shown in Appendix B, Fig. 7. The reciprocal lattice vectors
(RLV) magnitudes for i = 1, 2 form a Cauchy sequence [95]

as lim j→∞{ |b±θ/2
i |

s( j−1) } → 0 whose convergence rates depend on
q, p (solid blue and red lines in the insets of Fig. 2).

The commuting translation operators (TOs) at the jth it-
eration with the Hamiltonian (2) for the rotated mEP with
PV a( j)

1 = p1a( j−1)
1 + p2a( j−1)

2 and a( j)
2 = −p2a( j−1)

1 + (p1 +
p2)a( j−1)

2 differ from the PV at the ( j − 1)th iteration. They
satisfy T̂a( j)

1
T̂a( j)

2
= T̂a( j)

2
T̂a( j)

1
, leading to a large real-space super-

cell with a more squeezed BZ scaled by s [Figs. 2(a1) and
1(b1)], conventionally termed as a minizone [68,97]. This has
similarities with the HB problem [61,98,99], where the mag-
netic TOs do not commute. Consequently, for a time reversal
(TR) symmetric, commensurate TBLG in a rotated mEP, we
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FIG. 2. (a1), (b1) The BZ for j = 1 (black), 2 (magenta), and 3 (green), where {b(1)
1 , b(1)

2 } are the reciprocal lattice primitive vectors for
j = 1. (a2), (b2) The fractal structures at the BZ edges. The dashed red hexagon represents the initiator, i.e., the BZ of SLG rotated by θ/2.
The solid blue lines outline the fractal structures’ outer boundary. The generators (inside) attach alternately to the initiator, forming the fractal
structure. The copies of the BZ at each iteration are added such that they overlap with the BZ of SLG [red solid lines in (a1) and (b1)] and
these overlaps lead to IFs. The insets between (a1), (a2) and (b1), (b2) display reciprocal and real-space lattice vectors for q = 3, p = 1 and
q = 2, p = 1, respectively. The shift between the Dirac points is equal to the hexagon’s side length for q = 3, p = 1, and twice its side for
q = 2, p = 1. (a3), (b3) The band structures for V0 = 1.2 meV and the DOS (with a Gaussian smearing of 0.002 meV). (a4), (b4) ρnk(r) of the
lowest conduction band (dashed-dotted line) at the Dirac point (see text, Appendix H).

define a dimensionless incommensurability measure [100],

�A(θ )

A( j−1)
FBZ

=
(

1 −
⌊

A( j−1)
FBZ /A( j)

FBZ

⌋
A( j−1)

FBZ /A( j)
FBZ

)
, (4)

where 
. . . � denotes the greatest integer function.
Following Refs. [11,96,101] for any θ between TBLG and

mEP [Fig. 2(b1)], b( j)
1,2 of the mBZ are obtained from �K =

Kθ/2 − K−θ/2. These definitions coincide for p = 1 and odd
integer q with the lattice vectors giving the hexagonal BZ

side length as 	 = | 2b(1)
1 +b(1)

2
3 | [Figs. 2(a1) and 2(b1)], such

that A( j−1)
FBZ /A( j)

FBZ = LN ⇒ �A = 0, corresponding to the blue
points in Fig. 3.

For generic (q, p), the two definitions do not coincide and
�A/A( j−1)

FBZ shifts upward from the �A = 0 line by differing
amounts (Fig. 3). The angles corresponding to the minima
of the V regions are commensurate angles where the ratio
becomes rational (Appendix E). Figure 3 (inset) shows that
these minima are not vertically collinear: the lateral shift is
∼0.002◦.

Figures 2(a3) and 2(b3) display the band structures for
j = 1 (HTBLG) and j = 2 in the presence of mEP V2(r) and
the density of states (DOS). Precisely, 2(2e2 ln(nc )/D f − 1) (Ap-
pendix C) bands, per Eq. (3), populate the band gap of 6.38 eV
for θr ∼ 21.79◦ and 5.04 eV for θr ∼ 32.20◦ between the two
lowest bands at the 
 point, without the mEP. Additional
bands at K and K ′ occupy an even narrower range within
the band gap versus the 
 point, with the two lowest bands

meeting at the Dirac point. Figures 2(a4) and 2(b4) provide the
probability density ρnk = |ψnk|2 of the Bloch wave functions
obtained by diagonalizing (2) at the Dirac point. The number
of maxima and minima within the Wigner-Seitz cell for the
lowest conduction band is 2e2 ln(nc )/D f (Appendix H). The MFs
in (2) therefore provide precise control over the number of
in-gap states given D f by changing θr , which is in contrast
to other such methods for small-angle TBLG [102–104] and
SMSs [56,105].

For magic-angle TBLG (MATBLG) [8,11,106,107], the
flat bands facilitate various correlated phases [22,23,108–
115]. The FGs apply alternately outside and inside the edges
of their initiators, which are the mBZ of MATBLG [red
dashed lines in Figs. 4(a) and 4(b)], also showing the superim-
posed BZs for j = 1, 2, 3 at the first magic angle θ ∼ 1.05◦).
For Fig. 4(a), θr ∼ 13.17◦ and D f = 1.093, while for Fig. 4(b)
θr ∼ 21.79◦ and D f = 1.129. The change in D f and LN alters
the number of bands pushed towards the Fermi level EF at
the 
 point within a band gap of ∼13.76 meV for MATBLG,
preserving the emergent fractality similar to commensurate
structures. An additional 2(e2 ln(nc )/D f − 1) inner bands again
exhibit significantly reduced curvature compared to the orig-
inal flat bands. Figure 10 verifies that TBLG’s renormalized
vF remains indifferent to the presence of hierarchical mEP,
despite the shift in EF . The Hamiltonian (2) ignores lattice
relaxation effects, namely, the variations in the interlayer
hopping amplitudes in the AA-BB- and AB-BA-rich regions.
Their [24,28,101,116] inclusion doesn’t alter this emergent
fractality linked to the band structures (Appendix F, Fig. 9).
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FIG. 3. �A

A( j−1)
FBZ

vs θ : The blue rectangles represent commensurate

(closest) angles for odd q and p = 1. The first BZ area for incom-
mensurate angles is determined using moiré vectors [96]. The inset
confirms the absence of the apparent multivaluedness in the lowest
values of the V regions between the dashed lines, with a separation
of ∼0.002◦.

Much like how the recursive stacking of nets in CPT leads
to a proliferation of smaller settlements within a designated
area, the recursive mEP in TBLG produce an expanding count
of electronic bands within a defined energy range, thereby
amplifying correlation effects, with both scenarios character-
ized by LN . The impact of this band engineering and emergent
fractality on electronic correlation can be understood through
the Hubbard parameter ratio between the interaction energy U

FIG. 4. The band structures at θr ∼ 21.79◦ in (a) and θr ∼ 13.17◦

in (b) along K ′ − M − 
 − K . The twist between the layers is the
first magic angle θ ∼ 1.05◦. The interlayer hopping parameters:
tAA/BB = tAB/BA = 110 meV (Appendix F) and V0 = 1.2 meV. Left
to right: The emergent fractal structure in reciprocal space, 2D band
structure: orange (blue) bands without (with) mEP, the DOS, and the
spatial profiles of ρK (r) of the lowest conduction band with j = 2.
Changing θr from (b) to (a) modifies Df , shifting more bands towards
EF .

and the bandwidth tW (the difference between the band max-
ima and minima). Since in (2), HTBLG and the rotated MEP
have different translational symmetries, limV0→0

U
tW

doesn’t
yield the same ratio for pristine TBLG [23]. However this
ratio depends on mEP V0 when EF lies within the flat band,
U
tW

� 1. Under an mEP, U → U
s ,for U = e2θ/4πκε0a with-

out any mEP (Appendix I), where e is electronic charge
and κ = 4. However,the closest flat band near EF experi-
ences a significantly larger reduction in bandwidth versus
s, e.g., in Fig. 4(a), the bandwidth decreases from ∼6meV
to ∼0.23meV (Fig. 16), leading to ∼9 times increase in U

tW
versus MATBLG. The effective mass m∗ scales as

√
n/vF at

EF , increasing with the superlattice density n scaled by LN ; so
does DOS.

IV. CONCLUSION

In summary, we have introduced MFs in TBLG subjected
to a sequence of commensurate, rotated external potentials,
thus establishing a framework for studying their properties
and drawing parallels between emergent fractality in sp2 car-
bons and the agglomeration of CPT trade zones. The band
structure of several SMSs can be understood via MFs and
a weak perturbation enabling insertion of a controlled num-
ber of in-gap bands determined by D f . We analyzed the
restructuring of the moiré unit cell and established an incom-
mensurability measure, linking it to correlation effects and
D f . The MFs remained robust despite corrugation effects.

Amidst the emerging domain of SMSs, including trilayer
[57,84–86], tetralayer [87,117–119], and pentalayer graphene
[88,120], scenarios where slight rotations of SLG interact
with thin graphitic crystals [121,122], dissimilar layers like
encapsulated SLG and bilayer graphene between hBN layers
[60,89,123,124], and moiré lattices in photonic crystals [125]
and ultracold atom systems [126–128], we’ve provided a gen-
eral framework allowing such systems to be understood as
MFs under weak perturbations.

The increase in the number of MF bands near EF can
be detected via differential tunneling conductance measure-
ments for the corresponding SMS under suitable conditions
(Appendix J) as was done for quasicrystals with a Penrose
tiling [129]. Real-space scanning probes like the quantum
twisting microscope [94] offer another approach by gating the
vdW device on a rotating platform, thereby enabling a rotated
moiré effect. The optical conductivity, absorption coefficient,
and the photocurrent which depend on the interband transi-
tions [43,130,131], and experiments analogous to cryogenic
nanoscale photovoltage measurements [132] (Appendix J) on
hBN-encapsulated TBLG may also exhibit the MF signatures.
Future research will investigate MF symmetry [133], impli-
cations for strong-correlation physics, extension to external
potentials without common moiré periodicity [134–136], any
nontrivial topological properties embedded in our incommen-
suration measure, and the possibility of fractality in moiré
quasicrystals [57,137–140].
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TABLE I. Each commensuration is characterized uniquely by a
pair of coprime integers (q, p). The Löschian number LN and the FG
are obtained by identifying the number of sides nc in the FG. The
fractal dimension (Df ) corresponding to the various q, p are calcu-
lated using LN and nc [141]. The outer boundary of the minizones
superposed over the FBZ of SLG is generated by attaching the FG
on a hexagonal initiator.

θ q p LN β nc Generator Df

21.79◦ 3 1 7 1 3 1.129

32.20◦ 2 1 13 2 5 1.255

13.17◦ 5 1 19 1 5 1.093

38.21◦ 5 3 7 1 3 1.129

17.90◦ 11 3 31 4 9 1.280
...

APPENDIX A: THE PROPERTIES OF THE FRACTAL
GENERATORS (FG)

Here we provide details of the transformation mappings
for FGs corresponding to q = 3, p = 1 and for q = 2, p = 1,
respectively, whose effect on the band structure was shown
in Fig. 2 of the main text. More examples with additional
discussion are provided in Table I. The first case corresponds
to the commensurate angle θ ∼ 21.79◦, which has recently
been explored experimentally for pristine TBLG [94]. The
number of contraction mappings, that is, an associated car-
dinal number nc of IFS W = {wn : n = 1, 2, . . . , nc} [3] is
obtained for each LN and β. In this case, LN is found to
be 7 and lie at the intersection of x = 1 and β = 1 lines
as shown in Fig. 1(a) of the main text. Correspondingly,
nc of the IFS comes out to be 3, giving W = {w1,w2,w3},
where w1 = R(−φ1)Is ,w2 = R(φ2)Is + w1,w3 = w1 + w2

with s = √
LN = |b( j−1)

1/2 |/|b( j)
1/2| being the contractivity factor

and I is a 2 × 2 identity matrix. For {p1, p2, s} = {1, 2,
√

7},
φ1 = cos[−1]( 2p1+p2

2s ) and φ2 = π
3 − φ1. D f of the attractor A

is obtained using LN as D f = ln(nc)/ ln(s) [1].
To understand wn’s action on one of the sides of A0 (BZ

of SLG), rotated clockwise with the angle θ/2 ∼ 10.89◦,
and represented by reciprocal lattice vector u = 1

3 (2b−θ/2
1 +

b−θ/2
2 ) (see Fig. 5), where b−θ/2

1 and b−θ/2
2 are the two re-

ciprocal lattice vectors of the rotated graphene layers, we
note that w1 shortens |u| by s = √

7 times and rotates u
clockwise by an angle cos[−1](2/

√
7), providing the first side

FIG. 5. (a) The stepwise creation of the FG for LN = 7 with q =
3 and p = 1, and (b) LN = 13 with q = 2 and p = 1. The red dashed
line is the side u of A0 as defined in Appendix A.

FIG. 6. (a) The fractal corresponding to one more entry in Ta-
ble I, where q = 11 and p = 3, having LN = 31 with β = 4 at an
angle of θr = 17.89◦ for j = 1, 2. (b) The fractal corresponding to
the iteration j = 3.

of the FG, namely, u1. Similarly, the successive mappings
are u2,3 = w2,3u. The second case mentioned in the main
text, corresponds to the commensuration θ ∼ 32.20◦ with
q = 2 and p = 1, for which LN = 13 and nc = 5. Considering
the side of the initiator to be identical to u, the mappings
become w1 = R(φ1)Is ; w2 = R(−φ2)Is + w1; w3 = w1 +
w2; w4 = w2 + w3; w5 = R( − ( π

3 + φ2))Is + w4, where
p1 = 1, p2 = 3, and s = √

13. The application of the con-
traction mappings wn’s for the first two entries in Table I are
shown in Fig. 5.

The other FGs in Table I, such as for q = 5 and p = 3,

lead to the same values LN = 7 and β = 1 as for q = 3 and
p = 1, but the shift between the Dirac points for commensu-
rate TBLG is �K = bc

2. However, the FG remains identical
to the one for q = 3 and p = 1. In fact, the mappings for
the FGs corresponding to the other values of q being an
odd number with p = 1 remain the same with an increasing
cardinal number nc. Therefore, the class of commensurate
structures with q being an odd number and p = 1 associate
with the FGs having the same shape but with a different
number of sides. If one draws a line that is perpendicular to
the red dashed line in Fig. 5(a) which bisects the FG, it exactly
cuts it into two pieces with one becoming the other with a
rotation of π in the plane containing the FG. In the case of
q = 11 and p = 3, the shift �K = bc

2 is the same as for q = 5
and p = 3 but the FG is asymmetric about the perpendicular
bisector. The corresponding FG is shown in Fig. 6. It shows
the j = 1, 2-level iterations in (a) and the one for j = 3 in (b).
Similarly, for q = 4 and p = 1, the shift in the Dirac points
�K = 2(2bc

1 + bc
1)/3 is very different from the previous cases

but the FG has a similar shape as for q = 2 and p = 1, where
�K is identical.

APPENDIX B: THE REAL-SPACE CONSTRUCTION
OF THE MOIRÉ FRACTALS

While the contraction mappings {w1,w2,w3, . . . } for a
MF in real-space corresponding to a given value of q, p re-
main identical, the initiator, however, is different. In reciprocal
space, the FG is applied to the side of a hexagon of a rotated
SLG in the commensurate case, while it’s applied to an arm
of the moiré BZ for the incommensurate case to obtain the IF.
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(a)

(c)

(b)

FIG. 7. (a) The real-space structure of commensurate TBLG at
θ ∼ 21.79◦ and two levels of periodic potentials for j = 2, 3. The
direct-lattice primitive vectors are also shown for each level. (b) The
corresponding moiré fractal along the edges of the Wigner-Seitz unit
cell at j = 3. (c) The initiator, the arm of the hexagon corresponding
to j = 3, and the FG.

However, the initiator in the real space is the arm of a hexagon
which corresponds to the highest-level of iteration of the cho-
sen j values. e.g., Fig. 7(b) shows the MF corresponding to
q = 3 and p = 1. Since the j values considered are 0, 1, 2, 3,
the initiator is the side of the hexagon corresponding to the
commensurate cell of j = 3.

APPENDIX C: THE RELATION OF THE NUMBER OF
BANDS WITH THE FRACTAL DIMENSION (Df )

As given in the main text, the number of bands for θ = θr

within the band gap of the two lowest bands at the 
 point is
4e2 ln(nc )/D f − 2 [see Figs. 2(a3) and 2(b3) of the main text],
while for θ �= θr , the number of bands is 2e2 ln(nc )/D f − 2 (see
Fig. 4 in the main text). The dependence of the number of
bands on the cardinal number nc and the fractal dimension D f

is obtained from LN , which is related to nc and D f as

D f = ln(nc)

ln(
√

LN )
. (C1)

After some rearrangement, the crucial quantity LN can be
written as

LN = e2 ln(nc )/D f . (C2)

The number of bands depends upon LN and, therefore, it
depends upon nc and D f through (C2).

APPENDIX D: DERIVATION OF EQ. (3)
OF THE MAIN TEXT

For a general 2D-Bravais lattice case, the direct lattice PVs
of the constituting layers a1 and a2 are not necessarily or-
thogonal, i.e., a1 · a2 = a1 a2 cos(φ) �= 0 and also |a1| �= |a2|.
Therefore, the general square matrix that maps an integer pair
n = {n1, n2} to m = {m1, m2} is given by

m =
[

cos θr − ε
(σz cos(φ)a1 + iσya2)

a1 sin(φ)
sin θr

]
n. (D1)

FIG. 8. p1 vs p2 for two maximum values of q. Evidently, the
points arrange themselves in hexagons and each point is associated
with a Löschian number LN .

Here ε = sgn[(a1 × a2)z], a1/2 = |a1/2|, and φ represents the
angle between a1 and a2. For the present hexagonal case,
|a1| = |a2| and φ = 60◦, the necessary and sufficient con-
dition for the integer solutions m1, m2, n1, and n2 demands
the matrix elements to assume only rational values [79]. The
commensurate angle θr then becomes

θr (q, p) = 2 tan−1(p/
√

3q), (D2)

where q > p > 0. As p/q → 0 gives θr → 0 and p/q →
1 gives θr → 60◦. The commensurate structures are distin-
guished on the basis of δ = gcd(p, 3) and the direct lattice
primitive vectors are

[
ac

1

ac
2

]
=

[
p1 p2

−p2 p1 + p2

][
a1

a2

]
, (D3)

where p1 = (3q − p)/γ and p2 = 2p/γ for δ = 3 and p1 =
(q − p)/γ and p2 = (q − p)/γ for δ = 1 and the quantity
γ = gcd[3q + p, 3q − p]. For both cases δ = 1 and δ = 3,
the two elements in the first row, p1 and p2, are positive
integers Z+. Corresponding to the direct space PVs ac

1 and
ac

2, the reciprocal space PVs bc
1 and bc

2 are defined such that
ac

i · bc
j = 2πδi j ∀ i, j = 1, 2. Then, the number LN of the BZ

hexagons of a commensurate cell enclosed within the BZ of
SLG formed by {b1, b2} are

LN = |(b1 × b2) · ẑ|∣∣bc
1 × bc

2 · ẑ
∣∣ = p2

1 + p2
2 + p1 p2. (D4)

1. Fractal dimension (Df ) in the metric space of p1, p2

An irregular hexagon is formed for higher magnitudes of
p1, p2 along with the smaller hexagons for lower magnitudes.
This self-similar, small irregular hexagons lead to the frac-
tality in the metric space (Z2, Euclidean). The fractality in
the arrangement of the coefficients p1, p2 in this space is
shown in Fig. 8. Here we calculate the Hausdorff dimension
D f in the metric space (Z2, Euclidean) of coefficients p1, p2

with the Euclidean distance. We calculate the D f using the
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box-counting theorem [1,4]

D f = lim
k→∞

ln(nk )

ln(2k )
, (D5)

where nk is number of smaller polygons that completely fit
inside a bigger polygon at the kth iteration. There are 3k small
irregular hexagons that fit inside the bigger irregular hexagon
at the kth iteration and, therefore, the fractal dimension is then
given by

D f = ln(3)

ln(2)
∼ 1.585.

Note that the fractality in this metric space of p1, p2 is differ-
ent from the fractality that we observed in MFs, where D f is
a function of q, p that characterizes a given commensuration,
whereas D f ∼ 1.585 in the metric space of p1, p2 is constant.

APPENDIX E: MORE ON THE
INCOMMENSURATION MEASURE

It can be shown that for a generic (q, p),

�K =
⎧⎨
⎩

2p
3γ

(
2b( j)

1 + b( j)
2

)
if gcd(p, 3) = 1

2p
3γ

b( j)
2 if gcd(p, 3) = 3,

(E1)

where γ = gcd(3q − p, 3q + p) [142]. For q = 2n + 1 with
n = 1, 2, 3, . . . and p = 1, the shift �K always equals the
side length of the hexagon (	) as shown in Fig. 2(a1) of the
main text [12]. Further, the moiré lattice vectors coincide with
the lattice vectors of the commensurate cell. In this case, we
get

A( j−1)
FBZ

A( j)
FBZ

= LN ⇒ �A

A( j−1)
FBZ

= 0. (E2)

Similarly, if q = 2n with n = 1, 2, 3, . . . and p = 1, the shift
|�K| = 2	 as shown in Fig. 2(b1) of main text, and the ratio

A( j−1)
FBZ

A( j)
FBZ

= 4χ (q) + 1

4
⇒ �A

A( j−1)
FBZ

= 1

4χ (q) + 1
, (E3)

where χ (q) is a positive integer dependent on q.

APPENDIX F: THE DETAILS OF THE POTENTIAL,
INTERLAYER TUNNELING MATRICES, AND THE BAND

STRUCTURES WITH CORRUGATION EFFECTS

The cosine potential that we considered in the main text
has a cosine profile, namely,

Vj (r) = V0

3∑
i=1

cos
(
G( j)

i · r
)
, (F1)

where G( j)
1 , G( j)

2 , and G( j)
3 = −G( j)

1 − G( j)
2 are the reciprocal

lattice vectors satisfying t ( j)
i · G( j)

k = 2πδik ∀ i, k = 1, 2. V0 is
the strength of the potential and the t ( j)

i vectors are defined in
the main text.

FIG. 9. The inclusion of corrugation effects leads to differ-
ent interlayer hopping parameters, namely, tAA,BB = 79.7 meV and
tAB,BA = 97.5 meV [96]. This does not change the 2e2 ln(nc )/D f − 2
bands inserted within the band gap of the two lowest bands at the 


point (shown by the two arrows) in the absence of mEP and hence
the corrugated TBLG also does not affect the emergence of fractality.

The spatially dependent interlayer tunneling T (r) in the
Hamiltonian in Eq. (2) of the main text is given by [11,77,78]

T (r) =
3∑

i=1

Tie
−iqi·r

=
3∑

i=1

{σ0tAA,BB + [σx cos(i − 1)φ

+ σy sin(i − 1)φ]tAB,BA}e−iqi·r, (F2)

where tAA,BB and tAB,BA are the interlayer hopping parameters
in the local AA/BB regions and AB/BA regions, respectively.
σ0 is a second-order identity matrix and (σx, σy) are the Pauli
matrices. The band structures in Figs. 2 and 4 of the main text
are obtained by considering the hopping parameters tAA,BB =
tAB,BA = 110 meV [11] where we ignore the variations in
the hopping parameters which occur due to corrugation or
atomic relaxations [24] in different regions. The inclusion of
this effect leads to different interlayer hopping parameters in
both the regions, namely, tAA,BB = 79.7 meV and tAB,BA =
97.5 meV [96]. The band structures with these values of hop-
ping parameters are shown in Fig. 9. The emergent fractality
remains unaffected and when the fractal dimension is changed
from D f = 1.129 to D f = 1.093 in going from left to right, an
identical number 2e2 ln(nc )/D f − 2 of bands are inserted within
the band gap of ∼13 meV at the 
 point.

APPENDIX G: SOME REALISTIC SYSTEMS TO REALIZE
THE MODEL HAMILTONIAN (2) OF THE MAIN TEXT AT

THE FIRST ITERATION OF THE POTENTIAL

To supplement our assertion in the main text that the MFs
introduced through the model Hamiltonian H2(r) in Eq. (2) of
the main text can provide a general description of a number
of realistic SMSs, we shall explicitly provide the modeling
for three representative SMSs in terms of MFs. For the first
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TABLE II. Explicit form of Hpert for trilayer and tetralayer graphene systems after ignoring the vector potential term. The quantity I2 is
the second-order identity matrix and σz is z component of the Pauli matrix. V S (r) in (G3) consists of various moiré potentials V eff

i j between the
layers. The integer subscripts i j in different terms appear above, referring to the layer indices as indicated in Fig. 11. The detailed expressions
for various terms in Hpert for each SMS are given in the text.

System Hpert(r)

Trilayer system

⎛
⎝h̄2v2

F Meff
11′ (r)σz 0

0 h̄2v2
F Meff

21′ (r)σz + I2V eff
21′ (r) − I2V eff

11′ (r)

⎞
⎠

Tetralayer system

⎛
⎝h̄2v2

F Meff
11′ (r)σz + I2V eff

12′ 0

0 I2V eff
21′ (r) + h̄2v2

F Meff
21′ (r)σz + I2V eff

22′ (r) + h̄2v2
F Meff

22′ (r)σz − I2V eff
11′ (r)

⎞
⎠

iteration j = 2 of the mEP, the supermoiré Hamiltonian H (r)
can be written as a combination of the Hamiltonian of the MF
and a weak periodic perturbation as

H (r) = H2(r) + Hpert(r), (G1)

where the periodic perturbation Hpert(r) satisfies

Hpert
(
r + n1a(2)

1 + n2a(2)
2

) = Hpert(r), (G2)

where a(2)
i for i = 1, 2 are the primitive lattice vectors of the

supermoiré cell as defined in the main text. To do this, let
us note that it has already been established [69,70] that for
moiré systems such as graphene-graphene or graphene-hBN,
the full Hamiltonian can be written as an effective one-layer
Hamiltonian experiencing a moiré-periodic potential as

Vmoiré = V S(r)I2 + h̄2v2
F Meff(r)σz + h̄vF eAeff(r) · σ. (G3)

On the left-hand side (LHS) of Eq. (G3), the strength of
each term is of the same order and is directly proportional
to the square of the interlayer hopping parameter and can be
controlled by the interlayer bias VSTM (inversely proportional),
which is typically of the order of the bias applied to the
tip of the STM that ranges from 20–500 meV [91,92]. V S(r)
preserves the inversion symmetry, the effective mass term
Meff(r) breaks the inversion symmetry while the effective vec-
tor potential Aeff(r) represents a pseudomagnetic field. In the
rest of the calculation, we ignore the effective vector potential
(G3) since it does not change the proposed insertion of in-gap
bands. Thus, the first two terms on the LHS of Eq. (G3) form a
Hpert whose details for both the tri- and tetralayer supermoiré
graphene systems are given in Table II. In the following, we
provide the specifics for each SMS.

1. A graphene trilayer system

We consider an AAA-stacked trilayer system [55–57] such
that the top graphene layer is at a distance d = 3 d0 ∼ 1 nm,
where d0 is the interlayer perpendicular distance between
the remaining two layers. The configuration is shown in
Fig. 11(a), where the top layer is rotated to an angle 3θr/2,
the middle layer is rotated to θr/2 while the bottom layer is
rotated at an angle −θr/2 such that the relative misorientation
between any two layers is θr . Due to the relatively large
distance (d/d0 > 1), the top layer couples only weakly with
the remaining two layers. The details of the various terms that
appeared in the corresponding Hamiltonian H as had appeared

in (G1) are as follows:

H2(r) =
(

h1(θr/2) + V eff
11′ (r) T12(r)

T †
12(r) h2(−θr/2) + V eff

11′ (r)

)
.

(G4)
The integer subscripts i j that appeared in different terms in the
Hamiltonian (G4) again refer to the layer indices as indicated
in Fig. 11. These terms, as well as the terms that appeared
in Hpert as shown in Table II have the detailed expression as
follows:

V eff
l1′ (r) = 6t2

l1′

VSTM
+ t2

l1′

VSTM

3∑
j=1

cos
(
Gl1′

j · r
)
, (G5a)

h̄2v2
F Meff

l1′ (r) =
√

3t2
l1′

VSTM

3∑
j=1

sin
(
Gl1′

j · r
)
. (G5b)

For the moiré reciprocal lattice vector, the superscript l
indicates the layers involved and is numbered accord-
ing to Fig. 11, with l = 1, 2. The subscript j num-
bers such reciprocal lattice vectors between the two
surfaces and Gl1′

3 = −Gl1′
1 − Gl1′

2 . For l = 1, V eff
11′ (r) and

h̄2v2
F Meff

11′ (r) are shown in Fig. 12. The hopping pa-
rameters are t11′ = tAA/BB(d ) = tAB/BA(d ) ∼ 7.31 meV, t21′ =
tAA/BB(d + d0) = tAB/BA(d + d0) ∼ 1.41 meV. As a represen-
tative value, for VSTM = 40 meV, the strength of the potential
becomes t2

11′/VSTM ∼ 1.334 meV and t2
21′/VSTM ∼ 0.05 meV.

To proceed further with the calculation, we note that for
a commensurate angle θr corresponding to q, p in (D2), the

FIG. 10. (a) The renormalized Fermi velocity v∗
F /vF as a func-

tion of α2 and hence the twist angle θ . (b) The Fermi energy (EF ) as
a function of α2. Similar to the case of a pristine TBLG [11] or an
unrotated mEP to TBLG [83], the renormalized Fermi velocity in the
presence of a rotated mEP remains unaffected both in the absence
and the presence of the corrugation effect.
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(a) (b) (c)

FIG. 11. (a) Trilayer-, (b) four-layer-twisted graphene, and (c) a trilayer boron nitride-graphene-boron nitride system. The above denote
carbon, boron and nitrogen atoms, respectively. The angle θr is one of the commensurate angles and d0 ∼ 0.335 nm is the interlayer
separation in TBLG. The number beside each layer represents the layer index used in the text in Appendix H.

two coprime integers for 2θr are q′, p′ that can be obtained
from q, p as p′ = 6pq/gcd(6qp, 3q2 − p2) and q′ = (3q2 −
p2)/gcd(6qp, 3q2 − p2). After doing straightforward algebra,
one can obtain the relation between the reciprocal lattice vec-
tors of two interfaces as(

G11′
1

G11′
2

)
=

(
Z1(q, p) Z2(q, p)

Z3(q, p) Z4(q, p)

)(
G21′

1

G21′
2

)
, (G6)

where Z1, . . . , Z4 are integers and are functions of q, p. As
an example, for q = 3 and p = 1, the two coprime integers
are obtained as q′ = 13 and p′ = 9, yielding Z1 = 1, Z2 =
−1, Z3 = 1 and Z4 = 2, in (G6). With these, we calculate
the first-order correction to the energy eigenvalues of H2(r)
due to Hpert(r). The unperturbed eigenvalues of H2(r) and the
corrected eigenvalues to the first order in perturbation Hpert are
shown in Fig. 13 for q = 3 and p = 1 for different values of
VSTM. From the band structure, we see that the first-order cor-
rections to the energy eigenvalues of H2(r) become smaller as
the interlayer bias VSTM increases. Therefore, we can conclude
that the number of bands 4e2 ln(nc )/D f − 2 do not change under
the effect of the perturbation.

FIG. 12. (a) The spatial variation of the inversion symmetry pre-
serving part V eff

11′ (r), where the color bar is in the units of t2
11′/VSTM,

and (b) the spatial variation of the mass-dependent term Meff
11′ (r) that

breaks the inversion symmetry. Here, the color bar is in the units of√
3t2

11′/VSTM.

2. A graphene tetralayer system [87,88]

The second example of the SMS that we consider is where
TBLG is sandwiched between two graphene layers, each of
which lie at a distance d = 3d0 from it as shown in Fig. 11(b).
For this system too, the unperturbed Hamiltonian can be pre-
sented as H2(r) in (G4). For the expression of Hpert, we only
retain the interlayer coupling between the nearest-neighbor
layers which are dominant over the strengths of the interlayer
potential in the next-nearest neighbor coupling. Therefore, we
ignore V eff

12′ (r), V eff
12′ (r) and h̄2v2

F Meff
21′ (r) in the Hpert in Table II,

FIG. 13. The band structure corresponding to the trilayer
graphene system with increasing values of the interlayer bias voltage
(a) VSTM = 10 meV and (b) VSTM = 40 meV. The solid orange lines
show the band structure in the absence of the potential while the blue
lines represent the eigenvalues of H2(r) without the perturbation,
while the cyan lines show the band structure of H2(r) + Hpert(r)
calculated up to the first order in perturbation. The dotted cyan lines
show 4e2 ln(nc )/D f − 2 bands within the band gap of lowest two bands
at the 
 point.
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FIG. 14. The band structure of the tetralayer graphene system as
shown in Fig. 11(b) for VSTM = 20 meV. The solid orange lines show
the band structure in the absence of the potential while the blue lines
represent the eigenvalues of H2(r) without the perturbation, while
the cyan lines show the band structure of H2(r) + Hpert(r) calculated
up to the first order in perturbation. The dotted cyan lines show
4e2 ln(nc )/D f − 2 bands within the band gap of lowest two bands at
the 
 point.

and Hpert finally becomes

Hpert(r)

=
(

h̄2v2
F Meff

11′ (r)σz 0

0 V eff
22′ (r) + h̄2v2

F Meff
22′ (r)σz − V eff

11′ (r)

)
.

(G7)

Explicit form of different terms in H2(r) and Hpert(r) can be
written as

V eff
ll ′ (r) = 6t2

ll ′

VSTM
+ t2

ll ′

VSTM

3∑
j=1

cos
(
Gll ′

j · r
)
, (G8a)

h̄2v2
F Meff

ll ′ (r) =
√

3t2
ll ′

VSTM

3∑
j=1

sin
(
Gll ′

j · r
)
. (G8b)

The different superscripts and subscripts used have the same
meaning as in the previous case. With the Hpert given in (G7),
we calculate the first-order correction to the energy eigenval-
ues. The unperturbed and perturbed band structures to the
first order in perturbation theory are shown in Fig. 14 for
q = 3 and p = 1 for comparison. Evidently, the number of
bands 4e2 ln(nc )/D f − 2 do not change under the effect of the
perturbation up to the leading order correction.

3. A trilayer system of dissimilar layers

To show that the modeling of a SMS with the Hamilto-
nian H2(r) of MF and a periodic perturbation holds beyond
merely multilayer graphene systems, we consider a system of
dissimilar layers [60] such that a graphene layer is sandwiched
between two hBN layers which are a distance d0 apart as
shown in Fig. 11(c). This system can be modeled as a MF
at the first iteration of the potential without any perturbing
potential, but with a modified H2(r), namely,

H2(r) → H ′
2(r) = −ih̄vF σθr/2 · ∇ + V21(r) + V23(r), (G9)

where V2l (r) is the effective periodic potential due to the hBN
layer-l = 1, 3 on the graphene layer 2. This is in contrast to
examples 1 and 2 above since the Hamiltonian H ′

2(r) itself
describes the MF at the first iteration and the perturbation is
zero. To progress further, we first find the relative misorienta-
tion between the hBN and graphene layer, using

θ = sin−1[(1 + δ) sin(φ)] − φ, (G10)

such that they make a commensurate angles θr between them,
i.e., we want the difference |φ1 − φ2| to be one of the com-
mensurate angle θr (q, p), where φ is the orientation of the
moiré pattern with the graphene layer. Each potential consists
of three terms [70], where the different spatially dependent
terms are given as

V eff
2l (r) = −3t2

0

(
1

VN
+ 1

VB

)

− t2
0 e−iψ

(
1

VN
+ ω

1

VB

) 3∑
l=1

cos α2l
l (r),

(G11a)

h̄2v2
F meff

2l (r) = −
√

3t2
0 e−iψ

(
1

VN
+ ω

1

VB

) 3∑
l=1

sin α2l
l (r),

(G11b)

h̄evF Aeff
2l (r) = −2t2

0 e−iψ

(
1

VN
+ ω

1

VB

) 3∑
l=1

{cos[φ(l + 1)]x̂

+ sin[φ(l + 1)]ŷ} cos α2l
l (r), (G11c)

where t0 = 0.152 eV, ω = ei 2π/3, ψ ∼ −0.29 rad, VN =
3.34 eV and VB = −1.4 eV for boron and nitride atoms [73],
and

α2l
l = G2l

l · r + ψ + 2π/3. (G12)

For three different values of q, p and hence the θr , the
band structures along the high symmetry path X-Y-K-X are
shown in Fig 15. It may be noted that in the band structure
plot we have chosen the path through the high-symmetry
points differently as compared to the one used in the pre-
ceding two examples of supermoiré structures consisting only
out of graphene layers. This is in accordance with the con-
vention used in [73]. The high-symmetry point Y encloses
2e2 ln nc/D f − 1 in-gap bands within the band gap of the lowest
two bands shown by the double-headed arrow. This example
of dissimilar layers also exhibits the robustness of the inser-
tion of a controlled number of bands determined by the fractal
dimension D f of the MF. Therefore, the MF can also explain
the band structure of such a system.

APPENDIX H: DISCUSSION ON THE
PROBABILITY-DENSITY PLOT FOR THE

MOIRÉ-FRACTAL WAVE FUNCTIONS GIVEN
IN FIGS. 2 AND 4 OF THE MAIN TEXT

The probability density corresponding to the wave func-
tions of the MF at the first iteration j = 2 for the Hamiltonian
(2) of the main text were plotted in Figs. 2(a4) and 2(b4)
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FIG. 15. (a) The two blue and dashed blue hexagons show the
moiré BZ of the top and bottom moiré interfaces for the trilayer hBN-
G-hBN shown in Fig. 11(c). The inner red hexagon is the super-moiré
BZ. (b) The band structures for two different values of q, p along
the high-symmetry path X -Y -K-X [73] as shown in (b). The solid
blue lines show the band structures of the graphene-hBN system with
V2(r) = 0 while the solid red lines represent graphene sandwiched
between two hBN layers as in Fig. 11(c). The two dark-gray arrows
show the band gap between two lowest bands at the Y point where
the 2e2 ln(nc )/D f − 1 bands are inserted.

and also in the third column of Fig. 4 in the main text.
To that purpose, we have calculated the spatial variation of
the probability density ρnk(r) = |ψnk(r)|2 of the Bloch states,
where n is the band index and k is the Bloch wave vec-
tor. Specifically, we calculated ρnk(r) corresponding to the
conduction band at the Dirac point over the area in real space
covering the first supermoiré-cell. θ = θr (3, 1) ∼ 21.79◦ and
θr (2, 1) ∼ 32.20◦, the ρK (r) is shown in the Figs. 2(a4) and
2(b4) of the main text and θ ∼ 1.05◦ and θr (3, 1) ∼ 21.79◦ is
shown in Fig. 4(a) and for θ ∼ 1.05◦ and θr (5, 1) ∼ 13.17◦ in
Fig. 4(b).

For both plots, the WS unit cell is shown with solid black
lines (see Figs. 2 and 4) that encloses 2e2 ln(nc )/D f local max-
ima or minima of ρc(v)K (r). We numerically verified that this
happens for both the high-symmetry K and M points, while
the number of maxima or minima enclosed by the WS cell at
the 
 point is different.

APPENDIX I: CALCULATION OF THE
HUBBARD PARAMETERS

The Hubbard interaction UH can be written as [143]

UR′m′,Rm =
∑
XX ′

∫
dr′dr

∣∣φX ′
m′ (r′, R′)

∣∣2
UC(r′, r)

∣∣φX
m (r, R)

∣∣2
,

(I1)

where UC(r′, r) is the screened Coulomb interaction and
φX

m (r, R) is the Wannier orbital of the sublattice X and band
index m that is centered at the Rth lattice site. For pristine
TBLG, the localized Wannier orbitals can be constructed from
the Bloch states of the Hamiltonian H1 in Eq. (2) of the main
text corresponding to the two flat bands near the Fermi level
and these orbitals are centered at the local AB/BA regions
of the moiré pattern [96,144,145]. Following this prescription

[145], for the on-site Hubbard interaction U0 one can write

U0 ∝ e2

a(1)
, (I2)

where e is the electronic charge and the moiré wavelength a(1)

provides the cutoff for the screening. In the MF model due to
the presence of the mEP in Hj for j � 2 in Eq. (2) of the main
text, the Bloch states ψ

( j)
nk (r) corresponding to the jth iteration

of the potential have the Bloch periodicity corresponding to
the moiré supercell that can be expressed as

ψ
( j)
nk (r + a( j) ) = eik·a( j)

ψ
( j)
nk (r). (I3)

The translational-invariant Wannier functions, made out of
superposing these Bloch states, will be centered at the lattice
sites given by a( j). Accordingly, the on-site Hubbard interac-
tion U0 that has the lattice constant as a cutoff length will be
scaled. However it may be mentioned that the Wannier orbitals
are constructed through self-consistent ab initio calculations
and depend upon the number of chosen bands [144–146]. In a
MF, 2e2 ln(nc/D f ) − 2 inner bands can be considered, since they
are well separated from the other higher bands (see Fig. 4 in
main text and Fig. 5 here). A more detailed calculation may
lead to a more precise quantitative estimate of U0 in the MF,
but this is beyond the scope of the current paper. Nevertheless,
following the above argument, we can estimate the on-site
Hubbard interaction for the jth iteration of the potential as

U ( j)
0 ∝ e2

ε a( j)
. (I4)

If U0 is the on-site Hubbard interaction for pristine TBLG,
then for j = 2, it becomes U0 → U0/s, where s is the
contractivity factor as defined in the main text. Particularly,
for q = 3 and p = 1, the contractivity factor s = √

7. For
the bandwidth tW , however, we do not have any such simple
scaling argument. The bandwidth tW = max(En) − min(En),
where En is the energy of the nth band, can be determined
as a function of the strength of the potential V0. Hence
we determine this numerically and present the results in
Figs. 16(a) and 16(b). It can be seen that that the bandwidth
depends on both V0 as well as the hopping parameters. Even
though the bandwidth gets significantly reduced as compared
to pristine TBLG, the full behavior is not amenable to simple
explanation. As an example, tw/tw0 ∼ 0.04 for the conduction
band at V0 = 1.2 meV as shown in Fig. 16(a) for tAA/BB =
tAB/BA = 110 meV [11]. Therefore, the Hubbard ratio U/tw
becomes 1/(

√
7 × 0.04) ∼ 9.4 of the ratio of pristine TBLG.

APPENDIX J: MORE ON THE EXPERIMENTAL
SIGNATURES OF MOIRÉ FRACTALS

In the presence of the first iteration of an external potential
V2(r), the in-gap bands near the Fermi surface, situated within
the energy window of the lowest two bands, contribute to a
greater number of dips and peaks in the density of states (refer
to Figs. 2 and 4 of the main text). This effect arises from
the curvature of these additional bands, resulting in changes
to the density of states within that energy range. Since the
differential conductance (dI/dV ) in the various real-space
probes is proportional to the DOS of the sample at a particular
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FIG. 16. The bandwidth of the conduction and valence band in the presence of mEP for q = 3, p = 1 for (a) tAA,BB = tAB,BA = 110 meV
[11], (b) tAA,BB = 79.7 meV, and tAB,BA = 97.5 meV [24,96]. The bandwidth tw is in the unit of tw0, which is the bandwidth of pristine TBLG at
θ ∼ 1.05◦.

bias volatge Vbias [147],

dI/dV ∝ ρsample(−eVbias), (J1)

where e is the fundamental electron charge. The increased
DOS of the sample leads to an increased conductance within
a given energy window. In the case of the quantum twisting
microscope [94], which offers better real-space probing due to
the local interference at the tip, the increased number of states
at a particular location r may lead to an enhanced coupling
among these states and therefore alter the transport properties
in contrast to the case when there is no such external potential.

The calculation of experimentally measurable optical prop-
erties involves the calculation of the optical matrix elements
between the Bloch states of different (same) band indices,
i.e., the interband (intraband) transitions [43,130,131]. Due to
the greater number of states available within a given energy
window, there may be nonvanishing optical matrix elements
between the induced in-gap states that can further tune those
properties and, therefore, optical measurements also provide
a technique for characterizing MFs.

A recent article [132] reported cryogenic near-field op-
toelectronic measurements of hBN-encapsulated MATBLG
where the photovoltage measurements revealed a supermoiré
pattern whose periodicity was embedded in the photovolt-
age response. In their experiment, the top graphene layer
was aligned with the top encapsulating hBN layer, while
the bottom graphene layer was twisted by an angle θhBN

with respect to the hBN layer, and the two graphene layers
were relatively twisted by θTBLG. Since the Moiré wave-
length for the graphene-hBN interface is limited to ∼14 nm
due to the lattice mismatch of 1.8%, there is a finite mis-
match in the moiré wavelengths of both the graphene-hBN
and the graphene-graphene interfaces at smaller angles. For
MFs in hBN-encapsulated graphene (Fig. 15), both the hBN
layers with respect to the graphene layer are rotated to the
same angle, thereby enabling the same moiré wavelengths
in both the graphene-hBN interfaces. Thus, for the two
cases with (q, p) = (3, 1) and (q, p) = (5, 1), the supermoiré
wavelengths become λSM ∼ 36.13 nm and λSM ∼ 60.24 nm,
respectively. A similar photovoltage response measurement
in hBN-encapsulated graphene may also show supermoiré
signatures.
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