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Non-Hermitian dispersion sign reversal of radiative resonances in two dimensions
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In a recent publication [Wurdack et al., Nat. Commun. 14, 1026 (2023)], it was shown that in microcavities
containing atomically thin semiconductors, non-Hermitian quantum mechanics can lead to negative exciton
polariton masses. Here, we study the mass-sign reversal in two-dimensional systems and show that it is not
contingent on the cavity. We show that it can occur generally in radiative resonances in two dimensions and
derive conditions for it (critical dephasing threshold, etc.). In monolayer transition-metal dichalcogenides, this
phenomenon is not invalidated by the strong electron-hole exchange interaction, which is known to make the
exciton massless.
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I. INTRODUCTION

Non-Hermitian quantum mechanics has recently attracted
much interest, both in terms of general physics (a recent
review article is Ref. [1], a recent textbook Ref. [2]) and
also in the area of optics (review article Ref. [3]). While the
concept of exceptional points [4–6] is certainly one major
driving force behind this increasing interest (see for example
Refs. [7–20]), it is only now emerging that non-Hermtian
quantum mechanics can lead to other novel phenomena that
are not expected on the basis of Hermitian physics. For
example, in Ref. [21] it was shown that in a microcavity con-
taining a transition-metal dichalcogenides (TMD) monolayer,
non-Hermitian quantum mechanics can drastically change the
exciton dispersion [22–25] and lead to negative exciton po-
lariton masses. Mass renormalization is a standard concept in
many-particle physics; for example, the coupling of electrons
to the lattice vibrations leads to quasiparticles called polarons,
whose effective mass differs from that of the electrons (p. 496
of [26]). In semiconductor quantum well microcavities, cou-
pling of an exciton resonance to the light field yields the po-
lariton whose effective mass is usually much smaller than that
of the exciton (e.g., [27]). But non-Hermitian effects are usu-
ally associated with simple line broadenings or lifetime reduc-
tions, not with qualitative effects such as strong mass renor-
malization or even reversal of the sign of the effective mass.

Radiative resonances (such as excitons) in two-dimensional
(2D) layers emit light into the surrounding 3D space. In
cavities, this light is reflected back to the layer, similar to
an optical feedback, which then transforms the excitons into
cavity polaritons. The phenomenon of mass-sign reversal was
demonstrated in Ref. [21] for such polaritons in semiconduc-
tor microcavities. The question then arises whether the optical
feedback from the cavity is needed for the mass-sign reversal
to occur, or whether more generally the mass-sign reversal can
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occur in two-dimensional systems without the optical feed-
back from the cavity. We show here that the latter is the case:
that mass-sign reversal is possible in any 2D system with a
massive resonance coupled to the radiation field (if the mass of
the resonance is infinite before the coupling, a finite negative
mass can be generated). We call the electromagnetic modes
coupled to the material polarization “2D-layer polaritons” (in
the literature they are also sometimes referred to as “quantum
well polaritons”). We derive an analytic expression for the
critical dephasing [28] at which the mass diverges and changes
sign, and we discuss an analytical condition for such a sign
reversal to be possible (which we find to be strongly affected
by the dielectric environment). While the effective mass is
related to the second-order Taylor expansion of the dispersion
with respect to the wave vector, we find that for nonzero
dephasings that are much smaller than the critical dephasing,
a sign reversal of the dispersion of orders higher than two
leads to an energy minimum on a ring at the edge of the ra-
diative cone. Similar to the predictions for microcavities [21],
the effective mass reversal will affect possible Bose Einstein
condensates (BECs). In the present case of single layers or
quantum wells, we speculate this would either lead to conical
emission or directional symmetry breaking of the emission
(i.e., the BEC would have one more broken-symmetry vari-
able in addition to the phase of the condensate wave function).
We also clarify that the sign reversal is not affected by the
long-range electron-hole exchange interaction [22,23,25,29–
32], which is known to be strong in monolayer TMDs and to
give approximately linear (i.e., massless) exciton dispersions.

II. THEORY OF 2D-LAYER POLARITONS

We assume the 2D system (e.g., TMD monolayer or thin
quantum well) to be in the x-y plane at z = z0 = 0 and to
have a discrete optical resonance described by the polarization
P3D = δ(z − z0)P(q, ω), where P(q, ω) is the 2D polariza-
tion. We assume the layer to be sufficiently thin so that the
z dependence of P3D can be approximated by the δ function.
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FIG. 1. Sketch of 2D-layer exciton polariton with exciton (yel-
low dot) propagating with wave vector q in the plane of the layer,
and emitted p-polarized (s-polarized) radiation field EL (ET ) with
wave vector qem. Inset: radiative cone.

The geometry is schematically shown in Fig. 1. Maxwell’s
propagation equation for the in-plane components of the light
field (electric field) amplitude, Ej (q, z, ω), then reads{

−q2 + ∂2

∂z2
+ εb

ω2

c2

}
Ej (q, z, ω)

= −δ(z − z0)ηv

[
4πω2

c2
Pj (q, ω) − 4π

εb
q jq · P(q, ω)

]
.

(1a)

Here, j = x, y labels the Cartesian component,
q =

√
q2

x + q2
y is the magnitude of the in-plane wave

vector, εb the background dielectric constant, and ηv the
multiplicity of equivalent valleys (ηv = 3 in TMDs, ηv = 1
in GaAs). The last term in the square bracket stems from the
∇(∇ · E) term in the propagation equation, which in turn
comes from the ∇ × (∇× E) term. In the following, we
assume q = (qx, 0), so that Ex is the longitudinal (L) and
Ey the transverse (T) field component. While the following
discussion is valid for any physical realization of the optical
resonance, we use terminology appropriate for our example,
which is the 1s exciton in a direct-gap semiconductor such
as a GaAs quantum well [33–38] or semiconducting TMD
monolayer [22,23,39–58]. The polarization components
Px,y(q, ω) = ηvD∗

0 p1s
x,y(q, ω) are then a product of the

interband dipole matrix element D0 = ercvφ1s(r = 0), where
φ1s(r = 0) is the 1s exciton wavefunction at zero relative
coordinate, e is the electron charge and ercv the interband
dipole matrix element (for a detailed discussion see Ref. [59]),
and the interband coherence of the 1s exciton p1s

x,y, which in
linear optical response obeys the equation of motion

ih̄
∂

∂t
p1s

j (q, t ) = (
ε1s

q − iγD
)
p1s

j (q, t ) − D0Ej (q, z0, t ) (2)

(where γD is the dephasing), or, after Fourier transformation,

0 = (
ε1s

q − iγD − h̄ω
)
p1s

j (q, ω) − D0Ej (q, z0, ω). (3)

We use a massive (parabolic) dispersion ε1s
qx

= h̄2q2
x

2mx
+ ε1s

0
with the exciton mass mx. Solving the Maxwell equation with
a transfer matrix method [60,61] and assuming only outgoing
waves (no light field incident on the layer), one obtains the
dispersion relation for 2D systems in a form that is by now
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FIG. 2. Real (a) and imaginary (b) part of the dispersion rela-
tion of longitudinal (blue) and transverse (red) 2D-layer polaritons.
The dephasing is γD = 4 meV. The edge of the radiative cone is
approximately at 8.23 µm−1. The real (imaginary) part of h̄ωL is
discontinuous (continuous) at the edge of the radiative cone; the real
and imaginary part of h̄ωT are discontinuous.

well known (see, for example, [62,63] and references therein),
namely

εb/kz − i2πχ (q, ω) = 0 (4)

for the longitudinal waves, and

kz − i2π (ω2/c2)χ (q, ω) = 0 (5)

for transverse waves, with the 2D susceptibility

χ (q, ω) = ηv|D0|2
ε1s

q − iγD − h̄ω
(6)

and kz = √
εb(ω2/c2) − q2

x . The dispersion relation of the 2D-
layer polaritons is an implicit equation for ωL(qx ) and ωT (qx ),
respectively, and we choose qx real valued and ω complex
valued. The 2D-layer polaritons are the system’s eigenmodes,
which are damped (imaginary part of ω) since the system is
open. They can be excited by incident radiation that has the
same qx and Re(ω(qx )). For solutions outside the radiative
cone, excitation schemes usually used for surface-plasmon
polaritons can be applied, such as grating-coupling or prism
coupling (Kretschmann configuration) [64].

Figure 2 shows an example for the longitudinal and trans-
verse waves using parameters typical for monolayer MoSe2,
with γD = 4 meV, inside and outside the radiative cone, which
is at kc(ω) = √

εb(ω/c). These results look similar to those
shown in Ref. [65], except for the T branch inside the cone (we
believe an effective-mass approximation, which is not valid
close to the edge of the radiative cone, was used in that refer-
ence). Moreover, [65] finds that both L and T modes inside the
radiative cone have a curvature (or effective mass) similar to
the free exciton mass, mx. In Ref. [65], the dephasing was zero
or negligible. In our results, the total decay of the eigenmode
includes the radiative decay and the dephasing, and therefore
the curves for the imaginary parts of ω(qx ) are approximately
shifted by γD.

We will now show that the inclusion of the dephasing γD

has important consequences for the dispersion of the longi-
tudinal 2D-layer dispersion ωL(qx ), highlighting the effects of
non-Hermitian quantum mechanics, which, as mentioned, had
been pointed out in [21] for the case of microcavities. We will
analyze the behavior of the L mode inside the radiative cone of
a 2D system with a massive radiative resonance. We suppress
from now on the subscript L.
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FIG. 3. (a) Same as Fig. 2(a) for longitudinal mode, but only
showing inside the radiative cone. (b) Same as (a) for blue curve,
plus dispersion for γD = 0 (red curve), 0.1 meV (green), and 1 meV
(magenta). The red dashed curve shows the exciton dispersion.

We expand the dispersion relation to lowest order in qx

(which is q2
x ). We write the dispersion ω(qx ) = ω0 + �ω(qx )

and keep only terms linear in �ω(qx ). The expression for the
real part of �ω(qx ), being quadratic in qx, can then be used to
define the effective radiative mass mRad via

Reh̄�ω(qx ) = h̄2q2
x

2mRad
. (7)

The radiative mass depends on the radiative decay rate at
qx = 0, γR = 2π√

εbh̄c ηv|D0|2ε1s
0 , and the dephasing γD. We

find two values of the dephasing, denoted by γ
c(+/−)
D , at

which the radiative mass diverges and changes sign. Further-
more, the condition that γ

c(+/−)
D is real valued is 2εb(ε1s

0 )2 �
mxc2γR[1 + (γR/ε1s

0 )2]. Further details are given in the Ap-
pendix. We see that a sign change of the radiative mass is
only possible if the background dielectric function εb is suffi-
ciently small. Typical parameter values for freestanding TMD
monolayers fulfill the criteria for sign changes, while typical
GaAs quantum wells (QWs) with εb ≈ 10 do not. Fabrication
techniques (including transfer printing using plastic stamps)
of monolayers from van der Waals materials, freestanding
or deposited on transparent substrates, have by now become
widely available. However, similar techniques have also been
developed for thin films or membranes from non-van der
Waals materials, for example GaAs microtubes with five
monolayer thick [66] and thin (150 nm) GaAs buckled films
[67–69] have been fabricated. These techniques could lead to
planar GaAs nm-thick membranes with εb ≈ 1, if bending and
wrinkling can be avoided [70,71], thus fulfilling the conditions
for mass-sign reversal. Alternatively, one could have a dielec-
tric environment with εb ≈ 0, in so-called epsilon-near-zero
(ENZ) materials (e.g., [72]). We note, however, that reducing
εb also reduces the radiative cone (Fig. 1), thus limiting the
range of wave vectors for in-plane propagation with negative
mass.

Continuing the discussion of Fig. 2 for monolayer MoSe2,
we see in Fig. 3(a) that for γD = 4 meV the curvature is
negative throughout the entire radiative cone, implying a neg-
ative radiative mass mRad . To verify that 4 meV is indeed
above the critical value, we show in Fig. 4 the variation of
the effective mass as a function of dephasing. We see that

FIG. 4. Radiative mass in units of exciton mass vs dephasing.
The inset shows the inverse radiative mass in the region of the
extremum.

γ
c(−)
D = 3.36 meV is indeed smaller than 4 meV. As the de-

phasing goes from zero to infinity, the first singularity of
the radiative mass is at γ

c(−)
D . It then has an extremum at

about 1.56 eV, and then another singularity at γ
c(+)
D , which

for practical purposes does not seem relevant.
If the exciton has a dephasing γD smaller than γ

c(−)
D , its

in-plane motion is that of a conventional quasiparticle with
positive mass. For a dephasing approaching γ

c(−)
D , the exciton

behaves like a localized particle as its mass diverges. For a
dephasing above γ

c(−)
D , where the effective mass is negative,

its kinetic properties are unconventional, with the sign of the
velocity being opposite to that of the momentum and particle
current. In the limit of large γD, where it could approach γ

c(+)
D ,

the notion of a quasiparticle is no longer applicable, as the
lifetime and hence spatial propagation distance goes to zero.

A convenient and simple expression for the radiative mass,
analytically obtained in the limit of small wave vectors, is
given in the Appendix,

mRad ≈ mx

1 − γD/γ c
D

(8)

[with an approximate form for γ c
D ≡ γ

c(−)
D given in Eq. (A9)].

This expression clearly shows the divergence and change of
sign at γD = γ c

D. It is valid under the conditions given in the
Appendix.

It is, however, not only the effective mass, that changes sign
as the dephasing increases. Figure 3(b) shows that for (numer-
ically) abitrarily small γD, the dispersion relation “rolls over”
close to the edge of the radiative cone. This implies that in
a higher-order Taylor expansion of �ω(qx ) we probably have
different critical dephasings for each order in q2

x . Interestingly,
the groundstate of the longitudinal 2D-layer polariton is, for
many values of γD, at the edge of the radiative cone. This
brings up the question of possible excitonic Bose-Einstein
condensates (BECs) [73]. If the BEC forms at the edge of the
radiative cone, then there are two possible scenarios: (i) the
BEC emission would be conical (if the entire ring contains the
BEC), or there is a second spontaneous symmetry breaking
[in addition to the U(1) phase symmetry that is related to the
BEC even at zero wave vector] which would choose a certain
point on the ring of the radiative cone and thus lead to directed
emission with arbitrary direction. However, whether or not a
BEC can occur in this system still needs further research, in-
cluding the issue of opposite temperature requirements (BEC
benefits from low temperatures, large dephasing from high
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FIG. 5. (a) Blue curve same as blue curve in Fig. 2. The redline
shows ε1s,static

qx ,L . (b) Group velocity corresponding to blue curve in (a).

temperatures), and the issue of dispersion. The mathematical
form of the dispersion (e.g., massive vs massless [74]) affects
the system’s ability to undergo BEC transitions. Also, the
phase space (3D vs 2D, e.g., [75]) in the vicinity of the energy
minimum, which is usually at one point (such as zero wave
vector) in wave vector space, affects condensation. In our case
the minimum is on a ring in wavevector space. Since, in our
case, the kinetics and transport are not described by an effec-
tive mass means that the conventional treatment of (cavity)
polariton BECs with the Gross-Pitaevskii equation (e.g., [27])
is not applicable, since that equation has a kinetic energy term
of a conventional massive particle.

III. INFLUENCE OF ELECTRON-HOLE
EXCHANGE INTERACTION

We finally discuss the issue of long-range electron-hole
(e-h) exchange interaction, which in TMD monolayers is
known to be very strong, and which is related to a linear (in
qx) dispersion (e.g., [22,23,25,30,40,76]). In other words, it
has been found to make the exciton massless. This issue has
been in principle already addressed in Ref. [65], where it was
pointed out that the self-consistent solution of the radiation
field and the material response includes the effects of long-
range e-h exchange interaction. If the latter is treated with a
static Coulomb interaction, then that treatment is only valid at
wave vectors much larger than the radiative cone, for example
on a wave vector scale that is relevant for the binding of two
excitons into a biexciton [76]. However, some publications
extend the linear dispersion obtained from a static Coulomb
interaction explicitly down to wave vectors inside the cone,
where the assumption of static Coulomb interactions and the
neglect of radiation retardation effects is not valid [65].

To clarify this point, we show in Fig. 5(a) the dispersion
on a wave vector scale six times larger than the radiative
cone. We also plot the result from the static calculation (cf.
[22–24,31,76]),

ε1s,static
qx,L/T = h̄2q2

x

2mx
+ ε1s

0 + Jexch
L/T (qx ), (9)

with Jexch
L/T (qx ) = J intra (qx ) ± J inter (qx ). The exchange contri-

butions for L and T are Jexch
L (qx ) = ηv2π |D0|2qx/εb and

Jexch
T (qx ) = 0, respectively. For L it includes the sum of in-

tervalley and intravalley e-h exchange (these contributions
cancel each other for T). Here, we omit qx-dependent screen-
ing, as would be included in the Rytova-Keldysh interaction
and improved versions thereof [53]. We see that, at wave vec-

tors considerably larger than the radiative cone (but still small
enough for the q2

x -term to be negligible), the linear dispersion
from the e-h exchange is included in ωL(qx ), as was noted
in Ref. [65]. Importantly, we find that the effect of mass-sign
reversal (and more generally dispersion sign reversal) is not
affected by the long-range e-h exchange interaction, as it is a
phenomenon limited to the inside of the radiative cone. We
also show in Fig. 5(b) the group velocity of the L waves,
which is relatively large close to the radiative cone, and in
our example negative inside the cone.

IV. CONCLUSION

In summary, we have shown that, as a consequence of
non-Hermitian coupling, 2D-layer polaritons (without a cav-
ity) can exhibit mass-sign reversal similar to microcavity
polaritons and have derived an analytic expression that sets
conditions on the mass-sign reversal. We noted that even with-
out the mass-sign reversal, the dispersion can roll over at the
radiative cone and discussed hypothetical scenarios for BECs
with ground states on a ring. Future research is needed into
the condensation behavior in these systems. Our findings may
also be relevant for TMD-based lasers (e.g., [77–79]). Finally,
we clarified that the long-range e-h exchange interaction does
not affect the sign reversal inside the radiative cone.
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APPENDIX: LIMIT OF SMALL
IN-PLANE WAVEVECTORS

In this Appendix, we present additional mathematical de-
tails about the 2D-layer polariton dispersion in the limit of
small in-plane wave vectors, where the effective-mass approx-
imation is valid.

We expand the dispersion relation given as Eq. (4) in the
main text to lowest order in qx (which is q2

x ). We write the
dispersion ω(qx ) = ω0 + �ω(qx ) and keep only terms linear
in �ω(qx ). For the solution at qx = 0, we find

h̄ω0 = ε1s
0 − iγD

1 + iγR/ε1s
0

, (A1)

where γR = 2π√
εbh̄c ηv|D0|2ε1s

0 is the radiative decay at qx = 0.
This equation contains both the radiative shift of the resonance
and its decay. The complex-valued dispersion at nonzero qx

reads (to order q2
x )

h̄�ω(qx ) = 1

1 + iγR/ε1s
0

h̄2q2
x

2mx
+ i

h̄2c2γRq2
x

2εbε
1s
0

(
ε1s

0 − iγD
) . (A2)

For the real part, we therefore obtain

Reh̄�ω(qx ) = 1

1 + (
γR/ε1s

0

)2

h̄2q2
x

2mx
− h̄2c2γR

2εbε
1s
0

γD(
ε1s

0

)2 + γ 2
D

q2
x .

(A3)
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We can use this equation to define an effective radiative ex-
ction mass mRad via

Reh̄�ω(qx ) = h̄2q2
x

2mRad
. (A4)

The first term in Eq. (A3) comes from the exciton disper-
sion and contains a radiative correction to the effective mass.
This correction is present even without dephasing. However,
in our numerical example, this correction is negligible.

The second term is another radiative correction to the
dispersion, but one that is present only if the dephasing is
nonzero. Its size depends therefore on the value of γD. To
get an estimate of the importance of this term, we define
a critical dephasing γ c

D such that the curvature vanishes,
Reh̄�ω(qx; γ c

D) = 0, or in other words, the radiative 2D-layer
polariton mass diverges. We find two critical dephasings,

γ
c(+/−)
D = 1

2
εRad

(
1 ±

√
1 − 4

(
ε1s

0 /εRad
)2)

, (A5)

with εRad = γR[1 + (γR/ε1s
0 )2]mxc2/(εbε

1s
0 ). As we will show

below, the smaller critical dephasing γ
c(−)
D is more relevant

than γ
c(+)
D , but both give us a complete picture of the evo-

lution of the radiative mass as the dephasing is varied from
zero to infinity. The requirement that the square root in this
equation is real-valued gives us the following condition for the
possibility of a sign reversal of the effective radiative mass:

2εb
(
ε1s

0

)2 � mxc2γR

[
1 + (

γR/ε1s
0

)2
]
, (A6)

which can also be written as

ε
3/2
b ε1s

0 � m̃xηv|D̃0|2ε̂
[
1 + (

γR/ε1s
0

)2
]
, (A7)

where we define mx = m̃xm0 (m0 being the electron mass
in vacuum), and |D0|2 = |D̃0|210−9 eVcm (since in TMDs
and GaAs |D0|2 is approximately 10−9 eVcm), and ε̂ =
πm0c210−9 eVcm/h̄c ≈ 80 eV. The relatively small value of
ε̂ shows that the possibility of the mass-sign reversal depends
sensitively on the exact numbers, such as the dielectric con-
stant of the background material and the effective exciton

mass. For example, for TMDs we use |D0|2 = 0.96 × 10−9

eV cm, m̃x = 1.67, ηv = 3, and εb = 1 (for free-standing or
suspended monolayers, e.g., Ref.s [80–82]), and ε1s

0 = 1.6 eV.
Then the left-hand side (LHS) of Eq. (A7) is 1.6 eV and the
right-hand side (RHS) about 384 eV (where we neglect the
correction from the square bracket). To estimate a GaAs QW
embedded in GaAlAs, we take |D0|2 = 0.46 × 10−9 eV cm,
m̃x = 0.2, ηv = 1, and εb = 16. Now the LHS increases to
96 eV (mostly because of the dielectric environment described
by the factor ε

3/2
b ), while the RHS reduces to 9 eV. Hence, the

condition for mass-sign reversion is not fulfilled. If, however,
one could use a free-standing QW membrane (if bending and
wrinkling can be avoided), the condition would be fulfilled.
Similarly, our numerical values for γR, which are 1.5 meV
in TMDs and 0.057 meV in GaAs, show that even the large
factor mxc2 is not sufficient for the condition to be fulfilled
in GaAs in the presence of a strong dielectric environment.
We note that one could have a dielectric environment with
εb ≈ 0, in so-called epsilon-near-zero (ENZ) materials. In
such an environment, the mass-sign reversal would work even
for arbitrarily small mx and γR.

In our numerical example, we find γR � ε1s
0 for TMDs and

GaAs, and for TMDs we also find γD � ε1s
0 . In the latter case,

the expression for the radiative exciton mass simplifies to

mRad ≈ mx

1 − γD/γ c
D

, (A8)

with

γ c
D ≈ h̄2

2mx

2εb
(
ε1s

0

)3

h̄2c2γR
. (A9)

Note that this approximate formula, when applied to TMDs,
gives a reasonable estimate of γ c

D = 3.3 meV, while for GaAs
this gives a value much larger than ε1s

0 and therefore contra-
dicts the assumption for the approximate formula.

We also find that, in the case of infinite exciton mass mx =
∞ (localized excitons), the non-Hermitian coupling creates a
finite mass. In this case, the first term in Eq. (A3) is zero, and,
to order q2

x , the second term creates an effective negative mass,
for any nonzero dephasing (i.e., γ c

D = 0).
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