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Carrier mobility is an essential parameter of semiconductors, characterizing how quickly carriers can move
in a material when driven by an external electric field. Because electron-phonon (e-ph) scattering limits the
room-temperature carrier mobility in high-quality semiconductors, understanding the mechanisms of interaction
between carriers and phonons at the microscopic level is vital to investigate the transport properties, especially
in nanoelectronic devices. Here, we reproduce the experimentally measured electron and hole mobility in silicon
(Si) over a wide temperature range without relying on adjustable parameters by performing the first-principles
calculations. By decomposition of the first-principles calculation-predicted e-ph scattering into the contributions
from different phonon modes and electronic valleys, we show that the transverse acoustic (TA) phonon mode
has a comparable contribution to the longitudinal acoustic (LA) phonon mode in scattering of both electrons
and holes on limiting the carrier mobilities in Si. This is in striking contrast with the common sense that the TA
mode is negligible based on the classical e-ph interaction modes. We unravel that the neglect of TA scattering
is due to the substantial underestimation of the shear deformation potential (associated with the TA mode) with
respect to the dilation deformation potential (associated with the LA mode). We also find that the transverse
optical (TO) phonon mode, rather than the conventionally presumed longitudinal optical (LO) and LA modes,
provides the leading scattering channel (accounting for 58%) in f-type intervalley scattering and the LO mode
is dominant over the LA mode in g-type intervalley scattering for electrons in Si. These findings illustrate why
the technology computer-aided design device simulation loses the predictive capability, although it is possible to
obtain reasonable results using adjustable parameters based on the incorrect physics models. It calls for a revisit
of the mechanisms underlying the carrier mobility in semiconductors.
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I. INTRODUCTION

Carrier-phonon scattering has been widely investigated
over the past seven decades [1,2] since it limits room-
temperature carrier mobility, which is an essential property
of the response of semiconductor quantifying carriers to the
external electric field and thus governs the performance of the
device [3]. Properly Understanding the microscopic mecha-
nisms of carrier-phonon scattering is, therefore, a necessary
foundation for predicting instead of fitting (currently adopted)
and enhancing the carrier transport properties in nanoscale
semiconductor devices. Carrier-phonon scattering is tradition-
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ally described by classical phenomenological models [1,2,4–
7]. Specifically, Shockley and Bardeen [1,2] introduced
the deformation potential theory (DPT) to describe carrier-
phonon scattering in which the acoustic (AC)-phonon-limited
scattering of carriers (electrons and holes) is related to the
lattice-strain-induced local shift of the valence and conduction
band edges due to atomic displacements accompanying the
AC phonons. Herring and Vogt [4] extended DPT to the
optical (OP) phonons, giving rise to nonpolar OP deformation
potential (ODP) scattering. In nonpolar semiconductors such
as group-IV elemental materials of C, Si, Ge, and Sn, AC
deformation potential (ADP) scattering often dominates
over ODP scattering [6,7]. In polar semiconductors such as
group-III–V and II–VI compounds, Fröhlich [5], however,
demonstrated that the scattering of carriers is mainly
caused by electrical dipoles generated by the out-of-phase
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displacement of the charged ions around their equilibrium
position resulting from the longitudinal optical (LO) phonons.

To describe how strain affects the band structure, DPT
[1,2] based on the first-order perturbation theory introduces a
perturbation Hamiltonian H (ε, nk) = ∑3

α,β=1 Dαβεαβ , where
the indexes α and β denote the Cartesian direction (x, y, z),
and Dαβ and εαβ refer to the deformation potential constants
and phonon-induced crystal deformation tensor, respectively.
The number of independent constants Dαβ is determined by
the symmetry of the Brillouin zone (BZ) at the point k. For
instance, the homogenous deformation of a crystal induced by
long-wavelength AC phonons can be described by the sym-
metrical second-rank deformation tensor {εαβ}, and thus, the
interaction Hamiltonian between AC phonons and electrons
at the extremum of the conduction band at the point k = 0 (at
which the second-rank tensor has only one independent com-
ponent) can be defined as Hel = Dac · div u(r) [div u(r) =∑

α εαα = �V/V ], where u(r) is the displacement vector of
lattice vibrations caused by AC phonons and Dac is the defor-
mation potential constant. In this case, the perturbing potential
only applies to longitudinal acoustic (LA) phonons because
transverse acoustic (TA) phonons produce no changes to the
lattice spacing in the first order [3,8]. However, if the cubic
crystal has an off-center extreme in the conduction band (e.g.,
the conduction band extremum of Si and Ge are not located
at the � point but at the � and L points, respectively), the
symmetry of the BZ at these non-� points is lower than the
symmetry of the crystal, resulting in the second-rank strain
tensor having two independent components. The additional
component corresponds to shear deformations, allowing the
scattering of electrons by TA phonons [9]. However, Ham-
aguchi [6] illustrated that the contribution of TA phonons
to electron scattering is negligible since the TA deformation
potential is much smaller than the LA deformation potential,
although TA phonon-assisted scattering of the electron is al-
lowed by symmetry in Si. It leads to much of the literature and
textbooks [3,6–8,10–12] having simply neglected the contri-
bution of the TA mode in electron-phonon (e-ph) scattering
and even in hole-phonon scattering. However, recent first-
principles calculations have evidenced the significant role of
the TA mode in carrier transport. For instance, Li et al. [13]
showed that TA phonons play an equally important role to LA
and LO phonons in the scattering of electrons in Si. Fischetti
and Laux [14] found that the TA deformation potential should
be one order of magnitude stronger than the dilation deforma-
tion potential in both Si and Ge by fitting simultaneously both
the electron and hole mobilities to experimental values. These
clues suggest that it is necessary to revisit the e-ph interactions
in semiconductors.

Notice that the deformation potential constants utilized
in DPT are usually treated as adjustable parameters to re-
produce experimentally measured mobility [14]. Generally,
the solutions of fitting these phenomenological methods to
experimental mobilities are nonunique. One may obtain incor-
rect deformation potentials by an accident agreement [4,15].
For instance, in indirect band gap semiconductors such as
Si and Ge, multivalley and degenerate bands of electrons
involve numerous types of deformation potentials, leading to
multiple sets of these deformation potential constants, giving
rise to the same experimental value of carrier mobility. An

isotropic model is frequently employed to simplify the real
complex band structure, and a single effective deformation po-
tential constant is used to estimate carrier mobilities [14,16],
which mixes up the contributions from both the TA and LA
phonons. However, this approximation will become invalid in
nanoscale devices. For example, the continuous miniaturiza-
tion in device dimension and induction of nonuniform strain
in the channel will significantly alter the electronic struc-
tures in the metal-oxide-semiconductor field-effect transistor
(MOSFET) [17] and modify the relative importance of carrier
scattering channels. Therefore, having precise deformation
potentials of each phonon mode is essential to accurately pre-
dict the transport properties for advanced nanoscale devices
toward developing predictive technology computer-aided de-
sign (TCAD). Although the first-principles method of carrier
mobility can correctly capture the contributions from different
phonon modes, the high computational cost of first-principles
calculations prevents it from directly predicting carrier scat-
tering or transport properties in nanoscale devices. This
limitation poses a challenge to correctly assess the role of
different phonon modes in device modeling. Fortunately, the
recently developed first-principles methods [18–25] for carrier
mobility have provided insights into the relative significance
of all types of phonon-limited scatterings and accurately
deduced deformation potentials, offering the possibility to
predict instead of fitting the mobility in nanoscale devices.
Specifically, Restrepo et al. [26] conducted a work on the first-
principles calculations of the carrier mobilities in Si, followed
by Li [20], Ma et al. [25], Giustino [18], Poncé et al. [19],
Brunin et al. [24], and Zhou et al. [23]. In this paper, we
revisit the carrier-phonon scattering mechanisms in Si based
on first-principles calculations without ad hoc assumptions
as made in classical scattering models. We show that our
computed mobilities are in approximately good agreement
with experiments over a wider temperature range from 100
to 600 K for both types of carriers. By the decomposition of
the first-principles calculation-predicted e-ph scattering into
the contributions from different phonon modes and electronic
valleys, we show that TA scattering has an even comparable
contribution with the LA scattering on carrier mobilities in
Si, in striking contrast with the common belief that the TA
mode is negligible. We reveal that it is primarily because
the shear deformation potential associated with the TA mode
was substantially underestimated previously and should be,
in fact, much higher than the dilation deformation potential
associated with the LA mode. Furthermore, we illustrate that
TA phonons can lead to significant intraband scattering of
carriers in anisotropic bands. We also discuss the effects of
phonon-dependent conduction and valence band deformation
potentials extracted from first-principles e-ph coupling ma-
trix elements. These findings shed light on the role of TA
phonons in carrier transport in semiconductors and could have
important implications for the design of high-performance
electronic devices.

This paper is organized as follows: In Sec. II, we present
the formalism concerning the phonon-limited scattering rate
as well as carrier mobilities, along with associated computa-
tional details. Section III A compares our theoretical carrier
mobilities with experimental data. In Sec. III B 1 (and III C 1),
we examine the role of decomposed phonon-limited scattering
on electrons (holes), in contrast with alternative perspectives

125203-2



UNCOVERING THE IMPORTANT ROLE OF TRANSVERSE … PHYSICAL REVIEW B 109, 125203 (2024)

found in the literature. Section III B 2 (and III C 2) discusses
the types of phonons capable of participating in scattering
via the selection rules based on the lowest-order e-ph inter-
action Hamiltonian. Section III B 3 (and III C 3) involves a
comprehensive analysis of e-ph scattering matrix elements on
electrons (and holes). Moreover, in Sec. III B 4 (and III C 4),
we provide a demonstration of extracting deformation poten-
tials from e-ph scattering matrix elements predicted by the
first-principles method. Finally, our conclusions are drawn in
Sec. IV.

II. COMPUTATIONAL METHODS

Under a low electric field, carriers gain energy from the
electric field E over the mean free path being much less than
the thermal energy kBT ; subsequently, the phonon-limited
relaxation time τnk for carriers located at the band n with
a wave vector k could associate directly with the imaginary
part of the Fan-Migdal electron self-energy Im	FM

nk [19] as
follows:

1

τnk
= 2Im	FM

nk =
∑
m,ν

1

τ ν
nm,k

= 2π

h̄

∑
mν

∫
dq
�BZ

|gmnν (k, k + q)|2

× [(
1 − f 0

m,k+q + nν,q
)
δ(εn,k − εm,k+q − h̄ων,q)

+ (
f 0
m,k+q + nν,q

)
δ(εn,k − εm,k+q + h̄ων,q)

]
. (1)

Here, 1/τ ν
nm,k and |gmnν (k, k + q)| are the e-ph scattering rate

and corresponding scattering matrix element for an electron
from the initial electronic state |n, k〉 (with an eigenenergy
εn,k) into the final state |m, k + q〉 (with an eigenenergy
εm,k+q) caused by a phonon |ν, q〉 (with a frequency ων,q).
Here, f 0

m,k is the occupation number of the electronic state
|m, k〉 in the absence of the electric field according to the
Fermi-Dirac distribution, nν,q the occupation number of the
phonon |ν, q〉 with branch index ν and wave vector q accord-
ing to the Bose-Einstein distribution function, and �BZ is the
volume of the BZ. To obtain a continuous density of states
(DOS) for numerical stability, the sharp δ function is usually
broadened by utilizing a broadening parameter η through a
Lorentzian function.

Until recently, the e-ph scattering matrix element could
be obtained from first-principles calculations utilizing density
functional perturbation theory (DFPT) [28]:

gmnν (k, k + q) =
√

h̄

2M0ωνq
〈um,k+q|δνqV (r)|un,k〉, (2)

where the perturbation potential δνqV (r) is obtained from the
derivative of the self-consistent potential V (r) with respect
to a collective ionic displacement induced by the phonon
|ν, q〉, |un,k〉 and |um,k+q〉 are Bloch eigenstates of the initial
electronic state |n, k〉 and final state |m, k + q〉, respectively,
and M0 is the total mass of the unit cell. Once we learn the e-ph
scattering rate τnk, we can calculate the carrier mobility tensor

FIG. 1. Phonon-limited electron and hole mobilities as a func-
tion of temperature predicted using the first-principles Boltzmann
formalism compared with experimental data. The discrete points
represent experimental values adopted from the publications cited
in Refs. [31–35]. The solid lines are computed by the first-principles
method as implemented in the EPW package [28].

μe,αβ based on the self-energy relaxation time approximation:

μe,αβ = − e

�ne

∑
n

∫
dk
�BZ

· vα
nkv

β

nk · τnk · ∂ f 0
nk

∂εnk
, (3)

where ne is carrier density, � is the unit cell volume, and
vα

nk is group velocity along the α direction obtained from the
derivative of the band dispersion through ∂εnk/∂kα .

First-principles calculations of the electronic band struc-
ture and phonon dispersion of bulk Si are performed by
utilizing density functional theory (DFT) and DFPT, respec-
tively, using a fully relativistic norm-conserving pseudopoten-
tial under the Perdew-Zunger exchange-correlation functional
as implemented in the QUANTUM ESPRESSO package [27].
In DFT calculations, self-consistent and non-self-consistent
field calculations use a uniform 12 × 12 × 12 �-centered
Monkhorst-Pack k-point sampling of the BZ and an 80 Ry
plane-wave energy cutoff, along with optimal lattice constant
of 10.262 Bohr (or 5.43 Å) for Si. In the DFPT calculation,
the dynamical matrices and the variation of perturbation po-
tential induced by phonon modes are computed on a uniform
6 × 6 × 6 q-point grid. Once the electron and phonon eigen-
values (εm,k and ων,q) and perturbation potentials have been
obtained from the DFT and DFPT calculations, the e-ph scat-
tering matrix elements gmnν and then carrier self-energy are
ready to calculate. Finally, we compute the carrier mobilities
based on the Boltzmann transport equation, as implemented
in the EPW program [28], by interpolating the scattering ma-
trix elements using Wannier functions for the interpolation of
energy bands from a coarse BZ grid (6 × 6 × 6 q-mesh and
12 × 12 × 12 k-mesh) to a dense grid with 85 000 k points
and 200 000 q points [29,30].

III. RESULTS AND DISCUSSIONS

A. First-principles calculation-predicted phonon-limited
electron and hole mobilities in Si

Figure 1 shows the first-principles predictions of phonon-
limited (intrinsic) electron and hole mobilities in Si as a
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function of temperature (ranging from 100 to 600 K) com-
pared with experimental data [31–35]. Without accounting
for defect-assisted and carrier-carrier scattering, theoretically
predicted carrier mobilities align well with experimentally
reported values across a wide temperature range but exhibit
slight overestimation at lower temperatures, which indicates
the contributions of defect-assisted and carrier-carrier scat-
tering. Specifically, our first-principles calculations predict
room-temperature mobilities for electrons and holes in silicon
as μe ≈ 1427 cm2/Vs and μh ≈ 498 cm2/Vs, respectively.
These values fall within the ranges of experimentally mea-
sured drift mobilities of μ

expt
e = 1350–1500 cm2/Vs [19,31]

and μ
expt
h = 450–505 cm2/Vs [19,31,36–38].

Such good agreement is achieved by employing a larger
broadening parameter η = 50 meV instead of the more com-
monly utilized η = 5 meV [19]. According to Eqs. (1) and
(3), carrier mobility depends not only on the e-ph scatter-
ing matrix elements but also on the band structure, which
in turn relies on various computational parameters, includ-
ing pseudopotentials, spin-orbit coupling, lattice parameters,
and BZ sampling. Discrepancies in the treatment of these
computational parameters lead to varying first-principles
values of room-temperature electron mobility in Si as pre-
viously documented: μe = 1915 cm2/Vs [25], 1970 cm2/Vs
[26], 1860 cm2/Vs [20], and 1305–1555 cm2/Vs [19].
Similarly, previously reported first-principles values of room-
temperature hole mobility in Si are μh = 569 cm2/Vs [25]
and 502–820 cm2/Vs [19]. The overestimation of these
predicted mobilities primarily arises from the well-known
deficiency of DFT in underestimating effective masses, de-
fined by the second derivative of the band dispersion with
respect to the wave vector in close proximity to the zone
center for the hole. Poncé et al. [19] demonstrated that the
GW correction to the DFT band structure could decrease
the hole mobility by 2.8%, a finding consistent with our
calculations. Our calculations indicate that the GW correc-
tion decreases room-temperature hole mobility from 510 to
498 cm2/Vs, a value falling within the experimental range of
μ

expt
h = 450–505 cm2/Vs [19,31,36–38]. On the other hand,

two independent groups of Brunin et al. [24,39] and Jhalani
et al. [40] and Park et al. [41] have recently demonstrated the
impact of quadrupoles on carrier mobility, with Brunin et al.
[39] revealing that quadrupoles can modify room-temperature
mobility of Si by 9%. In this paper, we find that a larger
broadening parameter η could also address these issues, as we
can observe a reduction in hole mobility from 607 through
601 to 498 cm2/Vs by incrementally increasing η from 5
through 10 to 50 meV while utilizing the same DFT pseu-
dopotentials as those adopted by Poncé et al. [19]. These
agreements underscore the capability of the first-principles
approach to properly predict carrier mobility without ad
hoc assumptions, which are frequently involved in classical
phenomenological models. It enables us to comprehensively
capture all carrier-phonon scattering channels and revisit the
underlying scattering mechanisms. It is noteworthy that the
adjustable broadening parameter does not alter the results of
the contribution of phonon-decomposed scattering rates and
scattering matrix elements since it affects the mobility only
through the energy conversation law as given in Eq. (1). The
focus of this paper is on examining the scattering channels

instead of developing a method to predict carrier mobility
more accurately.

B. Phonon-limited scattering for electrons in Si

1. Intravalley and intervalley scattering rates for electrons

We calculate the total carrier-phonon scattering rate by
summing all components according to Eq. (1). Figure 2(a)
shows the total scattering rate of an electron against the elec-
tron energy at a temperature of 300 K. Each point indicates
a rate for an electron located at state |n, k〉 with energy
εnk. In indirect band-gap Si, the conduction band minimum
(CBM) is located at the � point, which has six equivalent
points in the BZ, and thus, there are six � valleys. The
long-wavelength phonons can only scatter electrons within
a single valley (termed intravalley scattering), ensured by
the momentum conservation law. In addition to intravalley
scattering, the scattering of electrons from one � valley to
another one (termed intervalley scattering) is also possibly
caused by short-wavelength phonons, which are mainly lo-
cated at the BZ edge. Therefore, we can further decompose
the total scattering into intravalley and intervalley scatterings.
Furthermore, if the intervalley scattering occurs between two
� valleys chosen along two different (orthogonal) axes, it
is named f-type intervalley scattering. Another type of inter-
valley scattering is between two � valleys chosen along the
same axis and is named g-type intervalley scattering. One can
learn from Fig. 2(a) that the long-wavelength limit intravalley
scattering is the leading channel in the low-energy region (or
near the CBM) as a result of the energy conservation and
momentum conservation law. As electron energy increases,
the f- and g-type intervalley scatterings grow up rapidly, which
is absent in the intravalley scattering. The f-type intervalley
scattering becomes the main scattering channel as the electron
energy exceeds 0.15 eV.

To quantify the contribution of each scattering channel
to the total scattering rate, we average the scattering rates
1/τ tot

n,k(i) (here, i stands for intravalley, f- and g-type interval-
ley, and the superscript tot for summing over all phonons) over
energy bands with a finite occupation number and the whole
BZ as follows:〈

1

τ tot (i)

〉
=

∑
n

∫
BZ

1
τ tot

nk (i) · ∂ fnk (εnk )
∂εnk

dk∑
n

∫
BZ

∂ fnk (εnk )
∂εnk

dk
. (4)

Figure 2(e) shows the contribution percentage of each scat-
tering channel to the total e-ph scattering rate. We found
that the intravalley scattering is the leading scattering channel
with a contribution of 63.8%, followed by f-type intervalley
scattering (28.3%). The g-type intervalley scattering only con-
tributes 7.9%. These results contrast sharply with the most
frequently quoted results in the textbooks. For instance, Yu
and Cardona [3] in their classical textbook argued that the
intervalley scattering processes are more significant than the
intravalley scattering processes for the e-ph scattering in Si
and Ge. Hamaguchi [6] suggested that the theoretical electron
mobility can match well with the experimental data only when
the strength of g-type intervalley scattering is comparable
with that of the intravalley scattering. He considered the role
of f-type intervalley scattering negligible since its associated
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FIG. 2. (a) Intravalley (green dots) and intervalley (blue and orange dots for f and g types, respectively) scattering and total scattering
rates (black dots) for electrons in Si at 300 K. The dashed red line represents the total scattering rate based on the semiempirical model
including acoustic-deformation-potential and intervalley optical-deformation-potential scattering, which has been shown in earlier work [8].
(b)–(d) Decomposed phonon-limited intravalley, g-type, and f-type scattering into TA, LA, LO, and TO modes, respectively. (e) Pie chart
representation of the percentages of intravalley scattering (green region), g-type intervalley scattering (orange region), and f-type intervalley
(blue region) electron-phonon (e-ph) scattering at room temperature. (f) The contributions of TA, LA, LO, and TO modes to the total e-ph
scattering rate. Note that TA is a sum of two transverse acoustic modes (TA1 and TA2); LA represents the longitudinal acoustic mode; TO is a
sum of two transverse optical modes (TO1 and TO2); and LO represents the longitudinal optical mode.

deformation potentials are much smaller than that of the g-
type process.

We can further decompose the intravalley, f-type interval-
ley, and g-type intervalley scatterings into phonons of TA, LA,
TO, and LO modes, as illustrated in Figs. 2(b)–2(d). Similarly,
to quantify the contribution of different phonon modes to the
total scattering rate, we average the scattering rates 1

τ ν (i) (here,
ν denotes the phonon mode, such as TA, LA, TO, and LO)
over the whole BZ as follows:〈

1

τ ν (i)

〉
=

∑
n

∫
BZ

1
τ ν

nk (i) · ∂ fnk (εnk )
∂εnk

dk∑
n

∫
BZ

∂ fnk (εnk )
∂εnk

dk
. (5)

Here, phonon modes ν are approximately distinguished
through projecting the phonon eigenmode near the BZ center
q� = (0, 0, 0) for the intravalley scattering, q f [e.g., (0.82,
0.82, 0)2π/a] for f-type intervalley scattering, and qg [e.g.,
(1.64, 0, 0)2π/a] for g-type intervalley scattering based on
the momentum conservation law.

Figure 2(f) shows the contribution of each phonon mode
ν to the total scattering rate ∼〈1/τ ν〉/∑

ν〈1/τ ν〉. Surpris-
ingly, scattering from the TA mode is unexpectedly strong
[3], which is even comparable with the contribution from
the LA mode to total e-ph scattering and contrary to the
common perception that the TA mode is negligible in e-
ph scattering for electrons in Si [6,8,42]. Specifically, the
intravalley scattering is predominantly caused by AC phonons

[∼99% contribution according to Eq. (5)] with a negligible
contribution from OP phonons, as shown in Fig. 2(b). This re-
sult aligns with the selection rules based on symmetry analysis
[3], which identifies that the OP phonons are forbidden in the
intravalley scattering. However, one can also see that the TA
mode possesses a comparable contribution with the LA mode
to the intravalley scattering, as shown in Fig. 2(b), and is in-
deed negligible in both f- and g-type intervalley scatterings, as
shown in Figs. 2(c) and 2(d). Therefore, the TA mode phonons
presented in the e-ph scattering are exclusively involved in
intravalley scattering. In f-type intervalley scattering, Fig. 2(d)
shows that the TO mode provides the predominant scattering
channel [58% contribution according to Eq. (5)] with finite
contributions from LA and LO phonons. This result is dif-
ferent from previous reports, which underscored the larger
contributions of the LO and LA modes than the TO mode
in f-type intervalley scattering [6] despite the selection rule
allowing only the LA- and TO-assisted transitions in f-type
intervalley scattering [3]. For g-type intervalley scattering,
however, the TO mode is negligible since the LO mode pri-
marily governs the scattering at low-energy regions and the
LA mode dominates the scattering at high-energy regions, as
shown in Fig. 2(c). Note that the LA mode is less important
to total scattering due to its modest contribution [constituting
only 8% according to Eq. (5)] as a result of its small occu-
pation number. This finding disputes the conclusion in the
literature [3,12,43] that LA scattering is so strong that its in-
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clusion in g-type intervalley scattering becomes necessary to
explain the experimentally observed temperature dependence
of the electron mobility in Si.

2. Symmetry analysis and selection rules based
on the scattering matrix

Bir and Pikus [9] illustrated that the e-ph scattering tran-
sitions between two arbitrary k points ki and k f [which is
equal to ki + q in Eq. (1)] are subject to the selection rules
of their nearby extrema k0i and k0 f of sufficiently high sym-
metry regarding the probability of transitions from ki to k f

will be small if the transitions from k0i to k0 f are forbidden
by symmetry. Selection rules must, therefore, be determined
specifically for band extremum points, which are �, X, and
L points in conventional semiconductors. Here, we revisit the
selection rules according to the classical phenomenological
models. According to Eq. (1), it is straightforward to learn that
the key factor governing e-ph scattering is the e-ph scattering
matrix element, which describes the strength of an electron
being scattered from the initial electronic state ψnk to the final
electronic state ψ∗

mk+q by a phonon with mode μ and wave
vector q:

gtot
nmν = 〈ψmk+q|He-ph(ν)|ψnk〉. (6)

The scattering matrix element gnmν provides a selection rule
depending on the symmetries of the e-ph Hamiltonian and
initial and final electron states. Thus, which phonon modes
interact with the electrons depends upon the symmetries of
the initial and final electronic states and whether an Umklapp
process is involved (as is the case for intervalley scattering).
To gain insight into the e-ph interaction and to link with classi-
cal e-ph scattering models, the scattering rate for each phonon
mode must be considered separately. To do so, we could
construct the e-ph interaction Hamiltonian He-ph utilizing the
phenomenologically effective e-ph interaction Hamiltonian.
In Si, a nonpolar semiconductor in which the Fröhlich and
piezoelectric e-ph interactions are absent, He-ph can be decom-
posed into HADP causing ADP scattering, HODP causing ODP
scattering for intravalley scattering, and HIV for intervalley
scattering, given by

He-ph = HADP + HODP + HIV. (7)

a. Selection rules for phonon-limited scattering of �-valley
electrons. The energy and momentum conservation laws re-
strict e-ph intravalley scattering to AC or OP phonon modes
with small q (named the long-wavelength limit). The atomic
displacement caused by the long-wavelength AC phonons is
like that caused by a macroscopic strain of the crystal, of
which the effect on energy can be described by deformation
potentials according to DPT [2]. Thus, analogous to the strain
Hamiltonian, the electron-AC-phonon interaction Hamilto-
nian HADP can be defined as [4,9,42,44]

HADP =
∑
α,β

�nk
αβ · εαβ. (8)

Here, �nk
αβ are deformation potentials for an electron state in

an energy band n and wave vector k, and εαβ = 1
2 ( ∂δRα

∂Rβ
+

∂δRβ

∂Rα
) is a strain tensor describing the homogeneous defor-

TABLE I. Part of compatibility relations between the � point in
the Oh group and the symmetry axis (�, 	, and �) in the diamond
structure. The notation is that of Koster (molecular) notation [48,49].

� point(Oh) � axis(C4v) 	 axis (C2v) � axis (C3v) L point (D3d )

�1 �1 	1 �1 L1

(A1g) (A1) (A1) (A1) (A1g)

�−
4 �1 ⊕ �5 	1 ⊕ 	3 ⊕ 	4 �1 ⊕ �3 L2′ ⊕ L3′

(T1u) (A1 ⊕ E ) (A1 ⊕ B2 ⊕ B1) (A1 ⊕ E ) (A2u ⊕ Eu)

�+
5 �4 ⊕ �5 	1 ⊕ 	2 ⊕ 	3 �1 ⊕ �3 L1 ⊕ L3

(T2g) (B2 ⊕ E ) A1 ⊕ A2 ⊕ B2 (A1 ⊕ E ) (A1g ⊕ Eg)

mation of a crystal induced by long-wavelength AC phonons
(here, δR represents the AC-phonon-induced displacement, of
which that located at BZ center belongs to the T1u presen-
tation in the Oh point group). Note that, the representation
T1u is expressed in Molecular notation, also named as the �−

4
representation in Koster notation. Commonly, the Koster no-
tation could be linked to the Molecular notation according to
Table I. Since both �nk

αβ and εαβ are symmetrical second-rank
tensors, nine elements reduce to six independent quantities.
In general, six deformation potentials are required to describe
the strain Hamiltonian without considering the symmetry of
wave vector k, which could further reduce the number of
independent elements. Notably, the symmetry of the strain
Hamiltonian HADP is determined by the direct product of
the symmetry of the vector R with the symmetry of the AC
phonon displacement δR under the wave vector group for a
particular k point since deformation potential constants �nk

αβ

are scalar. Note that the AC phonons at the � point belong to
T2 in the zinc-blende structure (Td point group) and belong
to T1u in diamond structure (Oh point group). Considering
the symmetry, the strain Hamiltonian HADP for electrons lo-
cated at the CBM in Si can be described by two independent
deformation potential constants �d and �u, through the rela-
tionship �d = �xx = �yy and �u = �yy − �zz.

Unlike AC phonons, long-wavelength OP phonons possess
finite energy, and thus, the atomic displacement induced by
the long-wavelength OP phonons can affect the electronic en-
ergy of the involved electron states directly. Subsequently, the
electron-OP-phonon interaction is a zeroth-order Hamiltonian
with the form [3,6,8]:

HODP = �n,k
ODP · δR. (9)

Here, δR represents the relative displacement of two atoms
in the unit cell caused by long-wavelength OP phonons. The
symmetry of HODP is simply determined by the symmetry of
OP-phonon-induced displacement δR. Note the OP phonons
located at the BZ center belong to T2 representation in the Td

point group or T2g representation in the Oh point group.
Most semiconductors have direct band gaps with both

CBM and valence band maximum (VBM) located at the �

point [3]; the scattering of electrons in the nondegenerate
s-like � valley is well established based on a simple single
isotropic band. Specifically, in zinc-blende GaAs (diamond
Si) crystal, the wave vector group of the � point is the Td

point group in zinc-blende structure (or the Oh point group
in diamond structure), in which both the vector R of atomic

125203-6



UNCOVERING THE IMPORTANT ROLE OF TRANSVERSE … PHYSICAL REVIEW B 109, 125203 (2024)

TABLE II. Summary of the selection rules of carrier scattering from the initial state |i〉 with irreducible representation Gi to the final state
| f 〉 with representation Gf by phonons with TA, LA, TO, and LO modes, respectively [45–47]. The numbers in parentheses beneath the states
are k wave vectors. Production stands for symmetry production of the initial and final states under the group of wave vector with the symbol
in parentheses.

e-ph Hamiltonian He-ph

Initial state |i〉, Gi Final state | f 〉, Gf ProductionGi ⊗ Gf (HADP, HODP, HIV) 〈 f |He-ph|i〉
A1g(�1c ) A1g(�1c ) A1g HADP : LA A1g ⊕ Eg ⊕ T2g 
= 0
(0,0,0) (0,0,0) (Oh) (A1g ⊕ Eg ⊕ T2g) TA Eg ⊕ T2g 0

HODP : LO T2g 0
(T2g) TO T2g 0

T2g(�+
5 ) T2g(�+

5 ) A1g ⊕ Eg ⊕ T2g ⊕ T1g HADP : LA A1g ⊕ Eg ⊕ T2g 
= 0
(0,0,0) (0,0,0) (Oh) (A1g ⊕ Eg ⊕ T2g) TA Eg ⊕ T2g 
= 0

HODP : LO T2g 
= 0
(T2g) TO T2g 
= 0

A1(�1c ) A1(�1c ) A1 HADP : LA A1 ⊕ E 
= 0
(u,0,0) (u,0,0) (C4v ) (A1 ⊕ E ⊕ B1 ⊕ B2) TA A1 ⊕ E ⊕ B1 ⊕ B2 
= 0

HODP : LO B2 0
(B2 ⊕ E ) TO E 0

A1(�1c ) B2 H ′
IV(AC) : LA A1 0

(-u,0,0) (C4v) (A1 ⊕ E ) TA E 0
(g type) H ′

IV(OP) : LO B2 
= 0
(B2 ⊕ E ) TO E 0

A1(�1c ) A1 ⊕ B1 H ′
IV(AC) : LA A1 
= 0

(0,±u,0) (C2v) (A1 ⊕ B1 ⊕ B2) TA B2 ⊕ B1 0a

(f type) H ′
IV(OP) : LO B2 0

(B2 ⊕ A1 ⊕ A2) TO A1 ⊕ A2 
= 0

aForbidden due to time-reversal symmetry.

positions and AC-phonon-induced displacement δR belong
to the T2 irreducible representation (or the T1u irreducible
representation of the Oh point group).

The strain tensor is related to both R and δR, and its sym-
metry should be a direct product of the symmetry of R and δR:
T2 ⊗ T2 = A1 ⊕ E ⊕ T2 ⊕ T1 in GaAs (or T1u ⊗ T1u = A1g ⊕
Eg ⊕ T2g ⊕ T1g in diamond Si). However, the strain tensor is
symmetric and is incompatible with the antisymmetric T1 (or
T1g) representation. Thus, the AC-phonon strain Hamiltonian
HADP has a symmetry of A1 ⊕ E ⊕ T2 (or A1g ⊕ Eg ⊕ T2g in
diamond Si), as given in Table II. The LA mode component
of the strain Hamiltonian belongs to A1 (or A1g in diamond
Si), indicating that the LA-phonon-induced displacement δR
produces a volume dilation strain associated with A1 (A1g)
symmetry, while the shear TA mode component belongs to
E ⊕ T2 (Eg ⊕ T2g), indicating that the TA-phonon-induced
displacement produces a shear strain associated with E or
T2 (Eg or T2g) symmetry. Subsequently, the scattering ma-
trix element of electrons between two nondegenerate s-like
�1 electron states (A1 representation in molecular notation)
caused by LA phonons is nonzero since the direct product of
the irreducible representations of the initial and final electron
states (A1 in the Td point group or A1g in the Oh point group)
and strain Hamiltonian (A1 in the Td point group or A1g in
the Oh point group) involved in the scattering matrix element
is A1 ⊗ A1 ⊗ A1 = A1 (or A1g ⊗ A1g ⊗ A1g = A1g in the Oh

group) and contains the scalar representation A1 (A1g as shown
in Table II); whereas the TA-phonon-caused scattering matrix
element of electrons between two A1 states is zero because
the direct product A1 ⊗ (E ⊕ T2) ⊗ A1 [or A1g ⊗ (Eg ⊕ T2g) ⊗

A1g in the Oh group] contains no A1 (A1g as shown in Table II).
Moreover, the electron-OP-phonon strain Hamiltonian HODP

has a symmetry T2 (or T2g in the Oh group), giving rise to
scattering matrix element vanishing since A1 ⊗ T2 ⊗ A1 = T2

(A1g ⊗ T1u ⊗ A1g = T1u). Therefore, it is well known that LA
phonons dominate e-ph scattering in the nondegenerate con-
duction band with negligible contribution from the TA and TO
phonons [6,8,42].

To confirm it, we have taken GaAs, a prototypical direct-
band-gap semiconductor, as an example to examine the
first-principles results. Figure 3 illustrates the scattering
matrix element |gmnν (k, k + q)| related to both electrons
of GaAs in the s-like � valley and AC phonons along
different wave vector directions, where we have temporar-
ily disregarded the long-range part of the matrix elements.
The electron-TA-phonon scattering is much weaker than the
electron-LA-phonon scattering, indicating that TA phonons
have little effect on the scattering of electrons in the s-like
� valley.

b. Selection rules for intravalley scattering of �-valley
electrons. In indirect-band-gap Si, however, electron-AC-
phonon scattering differs from direct-band-gap GaAs because
its CBM is located at six equivalent � points (close to the X
points) in the first BZ. Thus, AC phonons can scatter electrons
from one state to another within the same valley (intravalley
scattering) or from one valley to another (intervalley scatter-
ing). In intravalley scattering, both the initial and final electron
states have nearly the same k vector as the one of the �

points, and thus, the scattering matrix is invariant under the
transformations of the C4v wave vector group of a � point.
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FIG. 3. (a)–(i) Intraband electron-phonon (e-ph) scattering matrix elements gmnν (k, k + q) for the conduction band of GaAs vs the phonon
wave vector q along several directions with θ = 0, 0.25, 0.306, 0.5, 0.694, and 0.75 π . The initial electronic state |n, k〉 is located at the
conduction band minimum (CBM; �) for electrons, whereas the corresponding final states |n, k + q〉 are in the same band.

The electron state of the � valley belongs to the A1 (�1 in
Koster notation) irreducible representation of the wave vector
point group C4v , and the direct product of the initial state with
the final state is A1 ⊗ A1 = A1 (or �1 ⊗ �1 = �1 in KSW no-
tation). Under the C4v wave vector group, the vector of atomic
positions transforms as A1 ⊕ E , the LA phonon transforms
as A1 (�1), and the TA phonon as E (�5), as displayed in
Fig. 4(b). Therefore, the AC-phonon strain Hamiltonian has
a symmetry of A1 ⊕ B1 ⊕ B2 ⊕ E since (A1 ⊕ E ) ⊗ (A1 ⊕
E ) = 2A1 ⊕ A2 ⊕ B1 ⊕ B2 ⊕ 2E and the antisymmetric A2 is
incompatible with the symmetric strain tensor in the Hamil-
tonian. The LA component of the strain Hamiltonian is
associated with A1 ⊕ E symmetry, and the TA component is
associated with A1 ⊕ B1 ⊕ B2 ⊕ E symmetry, as given in Ta-
ble II. Since both the LA and TA strain Hamiltonians contain
A1 representation, the scattering matrix element is nonzero
for both LA and TA phonons, scattering electrons within the

same valley in Si (given in Table I for intravalley scattering).
Under the C4v wave vector group, the electron-OP-phonon
strain Hamiltonian HODP has a symmetry of B2 ⊕ E because
OP phonons belong to T2g in the Oh point group and transform
according to B2 ⊕ E in the C4v point group, and thus, the
scattering matrix element between two A1 electron states is
zero. It indicates that OP phonons are forbidden for e-ph
intravalley scattering.

c. Selection rules for intervalley scattering of �-valley
electrons. In addition to intravalley scattering, interval-
ley scattering contributes significantly to e-ph scattering in
indirect-band-gap semiconductors such as Si. The momentum
conservation law demands short-wavelength (large-wave-
vector) phonons involved in intervalley scattering since any
two different � valleys in Si are separated by a k vector
with a finite length. These short-wavelength phonons at or
near the zone edge have frequencies virtually independent
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FIG. 4. (a) Electronic band structure of Si. The conduction band minima occur along the �-X at ∼0.82 of the Brillioun zone (BZ) edge
with �1 representation. The valence band maximum is located at the center of the BZ with �+

5 representation. (b) Phonon dispersion curves
of Si. The lowest three branches are acoustic phonons and high-lying three branches are optical phonons, which are both threefold degenerate
at � (acoustic phonons belong to �−

4 and optical phonons belong to �+
5 of diamond structure Oh point group) and split into nondegenerate

longitudinal acoustic (LA) and longitudinal optic (LO) and twofold degenerate transverse acoustic (TA) and transverse optic (TO), respectively,
along the �-X direction (phonons along this direction are so-called � phonons). Along the 〈110〉 direction from � to K, the threefold degenerate
acoustic (optical) phonons (called the 	 phonons) split into three modes belong to irreducible representations 	1, 	3, and 	4 (	1, 	2, and
	3) of the wave vector group C2v .

of the wave vector, whether OP or AC modes. The finite
energy of these short-wavelength phonons renders their in-
duced displacements to directly affect the electronic energy
in scattering. Therefore, the intervalley e-ph interaction is a
zeroth-order Hamiltonian like the electron-OP-phonon inter-
action Hamiltonian given in Eq. (9) and is defined as [3,8,50]

HIV = �i j · δR. (10)

Here, �i j is the intervalley deformation potential for an elec-
tron scattered from � valley i to � valley j (i 
= j), and the
Hamiltonian HIV has the symmetry of the phonon-induced
displacement δR. We should note that AC and OP phonons
could be involved in intervalley scattering. Due to the wave
vectors of the initial and final electron states being different in
intervalley scattering, the transformations that leave the scat-
tering matrix invariant are those common to both wave vectors
[51]. The group formed from these common transformations
is named the intersection group, which may be lowered from
the C4v wave vector group of the � point to the C2v group, e.g.,
	 phonons participate in f-type intervalley scattering. Another
type of intervalley scattering is by � phonons, named g-type
intervalley scattering, in which the intersection group remains
the C4v group.

For g-type intervalley scattering, electrons are scattered
from a given � valley [say k = (u, 0, 0), u = 0.82 × 2π

a ] to
one on the opposite side (−k) of the same axis, and the
direct product of the initial � valley with the opposite �

valley is �1(k) ⊗ �1(−k) = �1(2k) under the C4v group.
Because |k| = 0.82(2π/a) is larger than half the zone edge
X and 2k is a vector entering the second BZ, �1(2k) needs
to be translated back to the first zone by subtracting 4π/a,
giving rise to �1(2k) transforming as �4 (or B2 in molecular
notation) of the C4v group [45]. Furthermore, Table II shows
that the LA and TA phonons transform according to the A1

and E irreducible presentations of the C4v group, respectively.
Therefore, both LA and TA phonon modes are absent in the
g-type intervalley scattering, whereas the LO and TO phonons
transform according to B2 and E irreducible presentations of

the C4v group, respectively, indicating that the LO phonons
could participate in g-type intervalley scattering, but TO with
E symmetry is absent.

For f-type intervalley scattering, electrons are scattered
from say the k = (u, 0, 0) valley to the k′ = (0, u, 0) valley
by a 	 phonon with q′ = (−u, u, 0); the selection rule be-
tween the initial and final electron states is �1(k) ⊗ �1(k′) =
	1 ⊕ 	4(q′) (or A1 ⊕ B1 in molecular notation) [46]. In the
C2v intersection group of f-type intervalley scattering, the
LA phonons transform as A1 and TA phonons as B2 ⊕ B1,
giving rise to the LA component of HIV associated with A1

symmetry and TA component associated with B2 ⊕ B1 sym-
metry. It indicates that both LA and TA modes can participate
in f-type intervalley scattering according to the point-group
theory of scattering matrix element. However, it was found
that the latter is forbidden according to time-reversal sym-
metry [45–47], while the LO- and TO-phonon-induced dis-
placements transform according to B2 and A1 ⊕ A2 irreducible
presentations of the intersection group C2v , respectively.
Therefore, LO phonons are forbidden, and TO phonons
are allowed in f-type intervalley scattering, as shown in
Table II.

The selection rules in the above discussion are based on the
lowest-order e-ph interaction Hamiltonian for each phonon
mode. The long-wavelength AC phonons possess almost zero
energy, and their atomic displacements cannot affect the elec-
tronic energies directly. Therefore, the zero-order term in
atomic displacements is absent in the AC deformation Hamil-
tonian. However, the strain of the gradient of the atomic
displacements in a crystal can shift the electronic energies.
Therefore, the first-order term (strain) is the lowest order
of the AC deformation Hamiltonian HADP. In contrast, the
OP phonon deformation Hamiltonian and intervalley Hamil-
tonian consider only the zero-order term because associated
phonons have finite energy, and the atomic displacements
of these finite-energy phonons can affect the electronic en-
ergy directly. Therefore, in the presence of the zeroth-order
term, the first-order term is usually disregarded due to its
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(d)

(b)(a)

(c)

FIG. 5. The phonon structure of Si with a color map of the electron-phonon (e-ph) scattering matrix elements |gmnν (k, k + q)| at 300 K for
band indexes m and n located at the lowest conduction band k = (0.82, 0, 0)(2π/a) and phonon wave vector q along the high-symmetry path:
(a) �1-X1-�-X along the [100] direction entering into the adjacent Brillouin zone (BZ; here, the high-symmetry path X1-�-X is in the first BZ,
while X1-�2 are inside the adjacent BZ), and (b) �-K2-K3-�3 along the [1̄10] direction entering into the second and third BZ (here, � and K
points are in the first BZ and �3 and K3 points are their counterparts in the other BZ). An electron with �1 symmetry at k = (0.82, 0, 0)(2π/a)
can be scattered into the opposite valley k′ = (−0.82, 0, 0)(2π/a) along the same axis or equivalent nearby valley k′ = (1.18, 0, 0)(2π/a)
in the adjacent BZ via phonons with finite wave vector q, labeled as gN and gU , respectively. The former and the latter represent normal and
Umklapp g-type intervalley scattering, respectively. Similarly, an electron with �1 symmetry at k = (0.82, 0, 0)(2π/a) can be scattered into
the equivalent perpendicular valley k′ = (0, 0.82, 0)(2π/a) in the same BZ along the 	 axis via 	 phonons with a wave vector labeled as f .
(c) Schematic diagram of the first BZ in Si. (d) Schematic diagram of the g- and f-type intervalley scattering for electrons in the conduction
band minimum (CBM) of Si, showing the involved phonon wave vectors.

relatively weak strength. We note that the LO-related f-type
intervalley scattering process makes significant contributions
based on first-principles calculations, although they are for-
bidden according to the selection rules given in Table II.
It illustrates that the first-order term arising from strain (in
analogy to the AC deformation Hamiltonian) must be consid-
ered once the zeroth order is forbidden by symmetry for a
specific phonon mode. Specifically, the LO-phonon-induced
first-order Hamiltonian H (′′ )

IV for f-type intervalley scattering
can be described as the strain Hamiltonian, like Eq. (8).
Thus, the symmetry of this first-order Hamiltonian is con-
structed by the direct product of the symmetries of a vector
and of LO-phonon displacements, denoted as A1 ⊕ A2 ⊕ B2

(or 	1 ⊕ 	2 ⊕ 	3), rendering the scattering matrix element
of LO-related f-type intervalley scattering to be finite. It
explains why first-principles calculation predicts finite LO-
related f-type scattering, as shown in Fig. 2(d), although
it is forbidden according to symmetry analysis as given in
Table II.

3. First-principles calculations of scattering matrix elements
for electrons in Si

While selection rules are applicable for determining
whether the scattering transitions induced by a specific
phonon mode are allowed or forbidden, assessing their relative
strength presents a more intricate challenge. In this section, we
will delve into the relative importance of e-ph scattering ma-
trix elements concerning intravalley and intervalley scattering.

a. Intravalley scattering matrix elements. Figure 5 shows
the intravalley scattering matrix elements |gmnν (k, k + q)| ob-
tained via first-principles calculations for different phonon
modes ν, plotted against the phonon wave vector q at room
temperature in Si. Specifically, we consider the scenario of an
electron originating from one of the six equivalent � valleys,
specifically at k = (0.82, 0, 0) 2π

a . Along the �-X direction,
one can see from Fig. 5(a) that LA phonons possess the largest
scattering matrix element among all phonon modes including
TA modes for small wave vector q (resides near the � point),
indicating intravalley scattering. This observation underscores
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FIG. 6. Intravalley scattering matrix elements |gmnν (k, k + q)| for electrons in the conduction band of Si against the phonon wave vector
q along (a) [100], (b) [110], (c) [110], (d) [111], (e) [111], (f) [011], (g) [010], (h) [111], and (i) [110] directions with θ = 0, 0.25, 0.36, 0.5,
0.694, or 0.75 π . The initial electron state |n, k〉 is located at one � valley, whereas the corresponding final states are |n, k + q〉 within the
same � valley.

a strong interaction between electrons and long-wavelength
LA phonons, consistent with the findings reported in re-
cent literature [13,52]. However, when considering alternative
directions, as depicted in Fig. 5(b), a compelling and strong
interaction between electrons and TA phonons emerges. This
interaction is responsible for the unexpected and substantial
contribution of the TA mode to intravalley scattering obtained
from the first-principles computations (see Fig. 2).

Furthermore, the scattering matrix elements exhibit
anisotropy across various directions. We turn to examine the
orientation dependence of the e-ph scattering matrix elements
|gmnν | for the long-wavelength limit (q → 0) since |gmnν | is
high anisotropy with respect to the angle θ between phonon
wave vector q and the main axis of the specified valley k
[9]. Setting the longitudinal axis of the [100] valley as the

main axis, we calculate scattering matrix elements along 26
distinct q directions in the BZ. These directions encompass
six 〈100〉 orientations, 12 〈110〉 orientations, and eight 〈111〉
orientations, thereby yielding θ values of 0, 0.25, 0.36, 0.5,
0.694, 0.75, and 1.0π . Figure 6 shows the intravalley scat-
tering matrix element |gmnν | in 9 out of 26 q directions (the
results for the remaining directions align closely with these
nine instances). One can observe a remarkable anisotropy in
the intravalley scattering matrix elements. Specifically, along
the [100] direction, the LA mode has a much larger scatter-
ing matrix element than that of the TA modes as expected,
whereas along other directions, one of the two TA modes (de-
noted as TA1 and TA2) alternately exhibits a strong scattering
matrix element comparable with the LA mode, with another
having a vanishing scattering matrix element. On average, we
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can deduce that the TA mode contributes significantly, on par
with the LA mode, to the total intravalley scattering.

b. Intervalley scattering matrix elements. Figure 5(a) shows
that the scattering matrix element of LO phonons in g-type
intervalley scattering becomes finite as the phonon wave vec-
tor q moves away from the � point along the �-X direction,
which is aligned with the selection rules discussed above. The
LO mode has the largest scattering matrix element among
all phonon modes, exhibiting the predominant role of the LO
phonon mode governing the g-type intervalley scattering. This
result validates the highest scattering rate from the LO mode
as shown in Fig. 2(c), which supports the arguments made in
some literature [3,45,47] but also challenges the viewpoints
stated in other literature [46,53]. The latter argues that only
the LA phonons could scatter electrons from one valley to
its opposite valley in the g-type intervalley scattering process.
Yu and Cardona [3], in their textbook, also suggested that the
LA mode should play a significant role in g-type scattering
regarding the LA phonons with an energy of 16 meV, which
must be included to reproduce the experimentally measured
temperature dependence of the electron mobility in Si.

Figure 5(b) shows the scattering matrix element of 	

phonons for f-type intervalley scattering since the involved
phonons in f-type intervalley scattering are mainly from the 	

phonons, located along the �-K direction. In the proximity of
the f point, the scattering matrix elements of LA, TO, and LO
phonons exhibit finite values, and TO phonons have the largest
matrix elements, followed by LA phonons, whereas the f-type
intervalley matrix elements of TA phonons tend to be zero.
These results are consistent with the phonon-decomposed
scattering rates predicted by first-principles calculations, as
shown in Fig. 2(d). Regarding the LO phonons being symme-
try forbidden in the zero-order f-type scattering, the observed
finite scattering of the LO phonons should be caused by a
first-order scattering process [54], which has been discussed
above.

4. Extracting the deformation potential constants for electrons

In the phenomenological e-ph scattering models, the e-ph
scattering matrix elements are determined by the adjustable
deformation potential constants, which may give rise to incor-
rect assignment of scattering channels due to their nonunique
solutions. It is thus interesting to extract these deformation
potential constants directly from the first-principles calcula-
tions of the e-ph scattering matrix elements. Such treatment
not only facilitates an insightful perspective into the observed
phenomenon but also provides insights into the historic un-
derestimation of the TA mode. The deformation potential
constants can be extracted from the first-principles calcula-
tion of e-ph scattering matrix elements through the following
relationship [18,30,55]:

Dmnν (k, k + q) =
√

2M0ωνq

h̄
gmnν (k, k + q). (11)

Generally, the OP deformation potential constant �ODP

defined in Eq. (9) and intervalley deformation potential con-
stants �i j defined in Eq. (10) can be directly obtained through
Eq. (11). Note that OP phonons are forbidden in intravalley
scattering, and thus, the corresponding OP deformation po-

tential constants are zero. Table III summarizes the extracted
intervalley deformation potential constants and correspond-
ing phonon energies for all phonons participating in both g-
and f-type intervalley scatterings in Si in comparison with
available data reported in the literature [3,6,13,36,56]. Specif-
ically, it exhibits that our extracted LO deformation potential
constant for g-type scattering is 3.3 eV, which is within the
range of 3–11 eV quoted in the literature [3,6,13,36,56],
whereas our extracted LA deformation potential constant is
only 0.04 eV, which is an order of magnitude smaller than
that commonly quoted in the literature [6]. Therefore, the
deformation potential constant of the LA mode is significantly
overestimated relative to the LO mode, leading to the common
perception that the LA mode predominates g-type intervalley
scattering over other phonon modes, including the LO mode
[3]. Table III also gives the extracted deformation potential
constants and corresponding phonon energies for f-type in-
tervalley scattering. Note that, to the best of our knowledge,
the LO deformation potential constants for f-type intervalley
scattering have not been given in the literature, but Adachi
[36] suggested a range from 0.15 to 4.0 eV. Our extracted
LO deformation potential constant of 1.0 eV falls within the
suggested range by Adachi [36]. Table III shows that our
extracted deformation potential constants of other phonon
modes are also in reasonable agreement with the literature. It
is worth stressing that the fourfold degeneracy leads to f-type
intervalley scattering being four times stronger than g-type
scattering even though the deformation potentials in f- and
g-type intervalley scattering are comparable in magnitude.

For long-wavelength AC intravalley scattering, the
angular-dependent AC deformation potential should be ex-
pressed by �ν=ac(k, θ ) = limq→0 |Dmnν (k,k+q)

q | (here, θ is the
angle between the phonon wave vector q and the principal
axis of the valley) [6,13]. Thus, the deformation potentials
�LA(k, θ ) and �TA(k, θ ) related to LA and TA modes are
equal to �ν=ac(k, θ ) when the phonon mode ν corresponds
to the LA and TA modes, respectively. According to the the-
ory of Herring and Vogt [4,6,9,12], the effective deformation
potentials for the LA mode and the sum of two TA modes are
expressed as

�LA(θ ) = �d + �u cos2 θ, (12a)

�TA(θ ) = �u sin θ cos θ. (12b)

Here, �d represents the hydrostatic deformation potential
constant, and �u denotes the uniaxial shear deformation po-
tential constant. The ratio of �u and �d reflects the relative
strength of the TA and LA scattering channels. We can now
deduce �d and �u by fitting the θ -dependent �LA(θ ) and
�TA(θ ) to that obtained from first-principles calculations ac-
cording to Eqs. (12a) and (12b). In doing so, we first compute
scattering matrix elements gmnν (k, k + q) employing the first-
principles approach and then get the deformation potential
Dmnν (k, k + q) along various directions utilizing Eq. (11).
Subsequently, the AC deformation potential Dac is deduced
by considering the slope of Dmnν (k, k + q) with respect to
|q| in the limit of the long-wavelength approximation. This
approach yields �LA(θ ) when the phonon mode ν corresponds
to the LA mode, and �TA(θ ) when ν pertains to the TA mode.
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TABLE III. Intervalley phonon energies (ω) and their deformation potentials in Si. NA stands for not available.

g-type f-type

Phonon mode ω (meV) DPs (eV/Å) ω (meV) DPs (eV/Å)

TA Literature 12a 0.5a 19a 0.3a

This paper 12.33 0.14 20.43 0.06
LA Literature 18.5a, 22.7a 0.8a 46.67b, 47.3c, 1.83b,3.4b,

45d, 47.4a 2.51c, 2a

This paper 21.53 0.04 46.66 1.36
TO Literature NA NA 56.4b, 57.2c, 3.55b, 2ab, 4.44c

57d, 59a

This paper 60.30 0.5 57.96 3.52
LO Literature 61.06b, 61.6c, 3.86b, 11b, 3b, NA NA

63d, 61.2a 4.73b, 3-11c, 11a

This paper 62.33 3.32 48.02 1.00

aReference [6]; bReference [13]; cReference [56]; dReference [3].

According to Eq. (12a), �LA(θ ) approximates �d when θ =
0.5 π , and a fitting procedure is applied to four distinct direc-
tions characterized by θ = 0.5 π (namely, [010], [01̄0], [001],
and [001̄] directions) essentially due to the inherent anisotropy
of Dmnν (k, k + q). We follow this fitting process to obtain
�d = 0.8 eV. In parallel, �u is extracted from �TA(θ ), which
holds a nonzero value only for θ deviating from 0, π/2, and
π , according to Eq. (12b). We obtain �u = 9.0 eV by fitting
to directions with θ values of 0.25, 0.306, 0.694, and 0.75π .

A comparison of our extracted �d and �u from first-
principles calculations, with the sets of values reported in
existing literature for Si [3,6,12,14,36,57,58], is presented in
Table IV. Our deduced �u = 9.0 eV is very close to that
commonly quoted in the literature [13,14], whereas our de-
duced �d = 0.8 eV is an order of magnitude smaller than the
values quoted in the literature [3,6,12,36,57,58]. The ratio of
�u/�d = 11.4 according to our deduced potential constants
is approximately an order of magnitude larger than that from
most literature, with the exception of Refs. [13,14], explain-
ing why the TA mode was usually regarded as negligible
in an e-ph scattering [6,8] since it is a pivotal factor in de-
termining the relative importance of TA and LA modes in
intravalley scattering. Note that Fischetti and Laux [14] ob-
tained (�u, �d ) = (10.5, 1.1) eV with the ratio �u/�d = 9.5,
which are in remarkable proximity to our results extracted
from first-principles calculations by simultaneously fitting
electron and hole mobilities to experimental data to avoid
uncertainties.

We next proceed to disclose how �u and �d determine the
relative importance of LA and TA to intravalley scattering,
relying on the Herring-Vogt relation [Eqs. (12a) and (12b)].
Figure 7(a) shows the θ -dependent deformation potentials
�LA(θ ) and �TA(θ ) based on two frequently cited sets of
deformation potential constants (�u, �d ) = (10, −11.5) and
(8.3, 5.0) eV [6,57,58] according to Eqs. (12a) and (12b). Both
sets of (�u, �d ) constants give rise to �LA(θ ) much larger
than �TA(θ ), especially within the angular range of θ = π/2
(spanning from π/4 to 3π/4). This angular segment plays a
paramount role in intravalley scattering as restricted by the
conservation laws of momentum and energy. Therefore, the
TA mode is commonly thought to be negligible in determining
the electron mobility in Si [6,8], whereas corresponding re-
sults obtained from our first-principles calculations are shown
in Fig. 7(b). Remarkably, the TA and LA deformation po-
tentials �TA(θ ) and �LA(θ ) obtained from the Herring-Vogt
relation using the extracted �d = 0.8 eV and �u = 9.0 eV
reproduce well those directly obtained from first-principles
calculations over a wide span of angular values. This good
agreement underscores the robustness of the fitting proce-
dure employed to extract deformation potential constants.
Interestingly, it exhibits that the LA deformation poten-
tial �LA(θ ) undergoes a significant reduction, approaching
�TA(θ ), within the angle range of π/4 to 3π/4. In proximity
to θ = π/2, �TA(θ ) is even larger than �LA(θ ), illustrating
the substantial contribution of the TA mode to the intravalley
scattering.

TABLE IV. Comparison of the intravalley deformation potentials for electrons in Si quoted in the literature and our extracted values from
the first-principles calculation.

�d (eV) �u (eV) �u/�d

Yu and Cardona, 2010a and Blacha et al., 1984b 5.0 8.3 1.7
Ridley, 2013c and Neuberger, 1971d −6.0 7.8, 9.2 1.3 or 1.5
Hamaguchi, 2017e −11.5, 5 10.0, 9.2 0.9, 1.8
Fischetti and Laux, 1996f −10.7, 1.1 8.86, 9.2,7.3, 10.5 9.5
Adachi, 2006g 2.9 8.6 3.0
This paper 0.8 9.0 11.4

aReference [3]; bReference [57]; cReference [12]; dReference [58]; eReference [6]; fReference [14]; gReference [36].
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FIG. 7. Comparison of the deformation potentials for intravalley scattering of electrons in Si as a function of angle θ between the phonon
wave vector q and the principal axis of the valley. The θ dependence of effective transverse acoustic (TA) and longitudinal acoustic (LA)
deformation potentials obtained from the theory of Herring and Vogt [4,6,9,12] according to Eqs. (12a) and (12b) by setting constants �u and
�d of the hydrostatic deformation potential and uniaxial shear deformation potential to (a) (�u, �d ) = (10.0, −11.5) eV and (�u, �d ) = (8.3,
5.0) eV, which are two sets frequently quoted in the literature [6,57,58], and (b) our extracted (�u, �d ) = (0.8, 9.0) eV from the first-principles
calculation-predicted TA (marked by red dots) and LA deformation potentials (marked by black dots). Note that the TA deformation potential
is a sum of two TA modes.

C. Phonon-limited scattering for holes in Si

1. Hole-phonon scattering rates

Figure 8 shows the hole-phonon scattering rates in Si at
the temperature of 300 K. Different from electrons occupying
the � valley of the conduction bands, holes occupy the �

valley of the valence bands, which are fourfold degenerate

at the � point (zone center) and split into heavy-hole (hh)
and light-hole (lh) bands away from the � point. Phonons
have no sufficient energy to scatter holes from the � valley
to other valleys since their energy separation is in several eV,
but phonons can scatter holes from hh to hh (so-called intra-
band scattering) or from hh to lh or from lh to hh (so-called
interband scattering) within the � valley, as schematically

hh - lhhh - hh
(b) Schematic diagram of intra- (hh-hh) and inter-band (hh-lh) scatteringh (d) hh - lh

(a) Phonon-limited scattering rates of hh (c) hh - hh

FIG. 8. (a) Heavy hole (hh) scattering rate decomposed into different phonon branches with respect to different electron energies from the
band extrema at 300 K. (b) Schematic diagram of intraband and interband scattering induced by acoustic (AC) and optical (OP) phonons for
hh. Pie chart representation of the proportion of average electron scattering rate induced by different phonon-limit scattering channels (c) to
hh intraband scattering and (d) interband scattering from hh to light hole (lh) band. Here, the transverse modes consider both branches.
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FIG. 9. Hole-phonon scattering matrix elements gmnν (k, k + q) in Si for a hole initially located at the valence band maximum (VBM;
heavy hole [hh] band) transition to the hh band (intraband scattering) as a function of the phonon momentum q along (a) [100], (b) [110],
(c) [110], (d) [111], (e) [111], and (f) [111] directions. Since optical phonons are forbidden by symmetry in the hole-phonon scattering, here,
we only show the acoustic phonon scattering matrix elements for two transverse acoustic (TA) modes (denoted as TA1 and TA2) and one
longitudinal acoustic (LA) mode.

diagramed in Fig. 8(b). Figure 8(a) shows the phonon-limited
hole scattering rates as a function of hole energy εhh,k for
a hole initially located at the hh band and wave vector k
in Si. It can be further divided into intraband and interband
scatterings. Specifically, Fig. 8(c) displays the contribution
of each phonon mode to the intraband scattering of a hole
from hh band to hh band (hh-hh), and Fig. 8(d) displays
the interband scattering from hh band to lh band (hh-lh). In
the low-energy region (εhh,k <0.05 eV), AC-phonon scat-
tering is slightly stronger than OP-phonon scattering, and
their transversal components (TA and TO) are stronger than
their longitudinal components (LA and LO). With increasing
the energy, OP-phonon scattering rises at a much faster rate
than AC-phonon scattering and then becomes predominant
over AC-phonon scattering in the high-energy region (εhh,k
>0.1 eV). However, the contribution of AC-phonon scattering
is comparable with that of OP-phonon scattering, as shown
in Figs. 8(c) and 8(d). This is because most of the holes
are in the low-energy region at room temperature according
to the Fermi-Dirac distribution [Fig. 8(a)]. Interestingly, we
again find that TA phonons contribute remarkably to hh-hh
intraband scattering in a similar role as LA phonons, as shown
in Fig. 3(c). In hh-lh interband scattering, the contribution of
TA phonons is further increased to the extent that it is twice
that of the LA phonons, as shown in Fig. 8(d). It is in contrast
to the common belief that TA phonons are negligible in the
hole-phonon scattering [6,10,15,42]. For instance, Hamaguchi
[6] and Gantmakher and Levinson [42] emphasized that hole

mobility depends strongly on the interaction between holes
and LA phonons. Ehrenreich [10] underlined that LA scat-
tering is stronger than TA scattering within a given valence
band (intraband scattering), whereas both types are equally
significant in interband scattering. Madarasz and Szmulowicz
[15], based on a multiband model calculation, also illustrated
that the contribution of the LA phonons to hole-phonon scat-
tering is significantly greater than that of two TA modes in
both hh intraband and interband scatterings. Li et al. [13] also
neglected the contribution of TA phonons in the analysis of
first-principles calculations of hole mobility in Si with the ar-
gument that AC-phonon scattering of holes exclusively arises
from LA phonons since the dilation component (associated
only with the LA mode) of the AC-phonon-induced strain
holds a role of greater importance than the shear components
(associated with both LA and TA modes) in the deformation
potential scattering for holes [3,8,13].

2. Selection rules for hole-phonon scattering

In diamond-type Si, the VBM located at the zone-center
� point is derived from threefold degenerate p states and
belongs to the �+

5 (T2g) irreducible representation of the Oh

group without considering spin-orbit coupling. Due to the
holes being in the single � valley, which is far away from the
L and X valleys in energy, intervalley scattering is negligible
for holes. The direct product of the initial and final states in
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FIG. 10. (a)–(i) Hole-phonon scattering matrix elements gmnν (k, k + q) for the transition of holes in Si from the heavy hole (hh) band to
the light hole (lh) band as a function of the phonon momentum q.

hole-phonon scattering is expressed by

T2g ⊗ T2g = A1g ⊕ Eg ⊕ T2g. (13)

The energy and momentum conservation laws restrict hole-
phonon scattering to long-wavelength modes, and thus, the
hole-phonon interaction Hamiltonian is the combination of
HADP [Eq. (8)] for AC phonons and HODP [Eq. (9)] for
OP phonons. The AC-phonon-strain Hamiltonian HADP has
a symmetry of A1g ⊕ Eg ⊕ T2g with the LA component be-
longing to A1g ⊕ Eg ⊕ T2g and TA components to Eg ⊕ T2g.
The scattering matrix elements are nonzero for both LA and
TA modes, whereas the OP-phonon-strain Hamiltonian HODP

has a symmetry of T2g with LO and TO modes degenerate at
the � point. The scattering matrix elements are also nonzero
for both LO and TO modes. Therefore, all LA, TA, LO, and
TO phonon modes are allowed for hole-phonon scattering, as
given in Table II.

3. First-principles calculations of scattering matrix elements
for holes in Si

Figure 9 shows the matrix elements of holes scattering
from the VBM to a final state at q along various directions
by LA and TA (two TA modes are denoted as TA1 and TA2)
mode phonons for hh-hh intraband transitions. More details
for hh-lh interband transitions have been displayed in Fig. 10.
Specifically, Fig. 9(a) displays that the scattering of holes by
the TA mode is unexpectedly finite and so strong that it is only
slightly smaller than that of the LA mode, for phonon mo-
mentum vector (q) along the [100] direction . The finding is
consistent with earlier first-principles calculations reported in
Ref. [52] but in sharp contrast with the classical deformation
potential models [15,42,59]. Without taking a reduction from
six to four bands for the valence band structure, Bir and Pikus
[9,16] demonstrated that the deformation potential matrix ele-
ment (Bxy and Bxz) should be finite even for θ = 0. Figure 9(a)
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FIG. 11. (a)–(i) Hole-phonon scattering matrix elements gmnν (k, k + q) for the transition of holes in GaAs from the heavy hole (hh) band
to the hh band as a function of the phonon momentum q.

also shows that the scattering matrix elements of two TA
modes are degenerate, as expected. However, Figs. 9(b) and
9(c) show that the degeneracy of the scattering matrix ele-
ments of two TA modes is lifted for phonons along the [110]
and [11̄0] directions, and TA1 mode scattering probability
diminishes gradually and eventually becomes negligible, but
TA2 scattering probability raises in the same trend as the LA
mode as the phonon momentum away from the zone center.
Hole-phonon scattering is different along [110] and [11̄0]
directions, which are equivalent in the valence band structure,
implying a high anisotropy in hole-phonon scattering. For q
along eight equivalent 〈111〉 directions, Figs. 9(d)–9(f) show
that the hole-phonon scattering of two TA modes is degenerate
but nonequivalent between these eight equivalent directions.
This high anisotropy in hole-phonon scattering questions the
validity of the classical models with an isotropic phonon as-
sumption [15,42,59]. We can safely conclude that our results
uncover a significant role of TA modes in hole-phonon scat-

tering for Si. This conclusion is also applicable to compound
semiconductors, as shown in Figs. 11–12 for GaAs as a repre-
sentative example.

Considering the strong angular dependence of hole-phonon
scattering matrix elements within the classical deformation
potential model [42], we proceed to examine it based on first-
principles calculations. Considering a hole initially located
at a state along the [100] direction in close proximity to the
VBM, we calculate the scattering matrix elements by TA and
LA modes as a function of scattering angle θ . Figure 13
shows the averaged hole-phonon scattering matrix elements
by LA (red dots) and TA (black dots for a sum of TA1 and
TA2) modes, respectively. The error bars indicate the range
of scattering matrix elements at the same scattering angle
but in different directions, reflecting the anisotropic proper-
ties of hole-phonon scattering. Hole-TA-phonon scattering is
remarkably strong even at θ = 0 and π rather than vanishing,
as obtained in the classical models, which take an assumption
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FIG. 12. (a)–(i) Hole-phonon scattering matrix elements gmnν (k, k + q) for the transition of holes in GaAs from the heavy hole (hh) band
to the light hole (lh) band as a function of the phonon momentum q.

of isotropic phonons. The scattering matrix elements of LA
and TA modes are in high overlap and are insensitive to the
scattering angle, in sharp contrast to the classical models. At
θ = π/2, two TA modes give an even stronger scattering than
the LA mode. These results explain why we can obtain a
significant contribution of TA mode scattering (in a magnitude
comparable with LA mode scattering) to the hole mobility
from first-principles calculations, as shown in Fig. 8.

4. Extracting the deformation potential constants for holes

We now turn to directly extracting the deformation poten-
tial constants from first-principles calculations of hole-phonon
scattering matrix elements. Although the significant role
of the TA phonons in hole-phonon scattering has been
underestimated remarkably in the classical deformation po-
tential models, we can still extract the deformation potential

constants from first-principles calculations of hole-phonon
scattering based on a simplification by combining the con-
tributions of LA and TA modes to hole-phonon scattering
into total AC scattering in an isotropic band model for hole
scattering [6,14,16,60]. According to Lawaetz [16], total AC
scattering can be described by the same single deformation
potential constant |�eff| for all types of transitions with |�eff|
defined as follows:

|�eff|2 = β + 2

3β
·
[

a2 + β

(
b2 + 1

2
d2

)]
. (14)

Here, β is the ratio of the longitudinal (cl ) to transverse
(ct ) elastic constants and is ∼2.86 for Si [13,35]. It has
been established that this effective deformation potential con-
stant is related to the LA and TA scattering matrix elements
through |�eff|2 = β+2

3β
[�2

LA + β�2
TA] [13], where �2

LA = a2

and �2
TA = (b2 + 1

2 d2) by neglecting the shear components
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FIG. 13. Comparison of angular-dependent hole-phonon scatter-
ing matrix elements |g| obtained from the classic deformation model
[42] (solid lines) and from the first-principles calculations (dots with
error bar) for intraband transitions by longitudinal acoustic (LA) and
transverse acoustic (TA) modes.

of the LA mode. If we learn �TA and �TA, we can thus ob-
tain Bir-Pikus deformation potentials a, b, and d utilizing the
empirical relationship d/

√
3b = 1.39 fi + 1.1 (here, fi is the

Phillips ionicity) proposed by Adachi [36]. To account for the

nonparabolic property of the band in the multiband model (i.e,
valence bands), Gantmakher and Levinson [42] developed
a formula to connect �LA and �TA with angular-dependent
deformation potentials �m→n

LA (θ ) and �m→n
TA (θ ), respectively:∣∣�m→n

LA (θ )
∣∣2 = |�LA|2|Gmn(θ )|2, (15a)∣∣�m→n

TA (θ )
∣∣2 = |�TA|2|Gmn(θ )|2. (15b)

Here, |Gmn(θ )|2 [≈ 1
4 (1 + 3 cos2 θ ) for intraband transi-

tions and 3
4 sin2 θ for interband transitions] are the overlap

factors between the periodic parts of the initial and final
Bloch states, which have been calculated analytically by
Costato and Reggiani [61] and Gantmakher and Levinson
[42]. The angular-dependent LA and TA deformation po-
tentials �m→n

LA (θ ) and �m→n
TA (θ ) can be obtained through

the relationship �m→n
ν (θ ) = limq→0|Dmnν (k,k+q)

q | (setting ν =
TA and LA phonon modes, respectively) by deriving de-
formation potential matrix elements |Dmnν (k, k + q)| from
|gmnν (k, k + q)| according to Eq. (11). Table V summarizes
the extracted �m→n

LA (θ ) and �m→n
TA (θ ) for hh-hh intraband

(m, n = hh) scattering and hh-lh interband (m = hh, n = lh)
scattering. Once we learn the angular-dependent deformation
potentials, we can obtain deformation potentials �LA and
�TA according to Eqs. (15a) and (15b). It is straightforward
to finally gain the Bir-Pikus deformation potential constants

TABLE V. Intraband (hh→hh) and interband (hh→lh) AC deformation potentials (in units of eV) related to hole-TA-phonon and hole-
LA-phonon coupling in Si along different directions of q with q → 0.

Intraband Interband

Direction θ (π ) |�TA
hh→hh(θ )| |�LA

hh→hh(θ )| |�TA
hh→lh (θ )| |�LA

hh→lh (θ )|
[100] 0 1.614 7.247 0.057 0.008
[11̄0] 0.25 4.6 4.625 3.57 0.126
[110] 0.25 3.491 2.946 3.624 0.044
[101̄] 0.25 4.6 4.625 3.569 0.125
[101] 0.25 3.491 2.946 3.627 0.044
[11̄1̄] 0.306 4.632 4.306 3.796 2.948
[11̄1] 0.306 5.128 2.263 3.609 3.224
[111̄] 0.306 5.128 2.263 3.608 3.224
[111] 0.306 3.374 2.209 3.36 3.258
[01̄1̄] 0.5 1.201 1.226 0.48 4.957
[01̄1] 0.5 0.068 0.304 0.131 5.103
[011̄] 0.5 0.068 0.304 0.127 5.103
[011] 0.5 1.187 1.319 0.052 4.934
[010] 0.5 1.657 0.211 7.153 0.035
[01̄0] 0.5 1.649 0.193 7.141 0.045
[001] 0.5 1.657 0.211 7.153 0.027
[001̄] 0.5 1.649 0.193 7.141 0.033
[1̄1̄1̄] 0.694 3.527 2.041 3.192 3.506
[1̄1̄1] 0.694 5.228 2.12 3.439 3.452
[1̄11̄] 0.694 5.228 2.12 3.439 3.452
[1̄11] 0.694 4.761 4.27 3.724 3.12
[1̄1̄0] 0.75 3.59 2.861 3.731 0.055
[1̄10] 0.75 4.757 4.572 3.659 0.024
[1̄01̄] 0.75 3.59 2.861 3.731 0.055
[1̄01] 0.75 4.757 4.572 3.654 0.019
[1̄00] 1 1.58 7.36 0.006 0.12
Average 3.162 2.699 3.337 1.809
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TABLE VI. Bir-Pikus deformation potentials (a, b, and d) extracted from hole-phonon matrix elements predicted by first-principles
methods in Si compared with previous experimental and theoretical results. All quantities are in units of eV.

a (eV) b (eV) d (eV) |�eff| (eV)

This paper 2.36 −1.87 −3.60 4.40
Adachi, 2016a −5.0 −2.3 −5.3 6.74
Blacha et al., 1984b −10.2 −3.5, −2.3 −3.9 9.54, 8.93
Fischetti and Laux, 1996c 2.1 −2.33 −4.75 5.44
Wiley, 1970d 2.1 −1.5 −3.4 3.94
Friedel et al., 1989e 2.06 −2.27 −3.69 4.67
Li et al., 2021f 5.48 (for LA)
Ottaviani et al., 1975g,
Gantmakher and
Levinson, 1987h

2 2.2

Cardona and Pollak, 1966i −2.58 −5.3
Others −9.7c −2.1j, −2.33k, −2.12l, −2.35m, −2.58i −4.85j, −5.3im 5.48f, 5.39c, 5.0no, 6.2p, 3.1q

aReference [36]; bReference [57]; cReference [14]; dReference [62]; eReference [63]; fReference [13]; gReference [65]; hReference [42];
iReference [72]; jReference [68]; kReference [69]; lReference [70]; mReference [71]; nReference [8]; oReference [64]; pReference [66];
qReference [67].

a, b, and d . The extracted Bir-Pikus deformation potentials
a, b, and d scattering matrix elements calculated directly
from first-principles methods are summarized in Table VI
in comparison with frequently quoted sets of deformation
potentials obtained from fitting to the hole mobility of Si
[8,14,36,42,57,62–72]. By fitting to hh-hh intraband and hh-lh
interband scattering matrix elements, respectively, we obtain
two different sets of deformation potentials: one is a = 3.21, b
= −1.76, and d = −3.37 eV from hh-hh intraband scattering,
and another is a = 2.36, b = −1.87, and d = −3.60 eV, an
average of intraband and interband scatterings (presented in
Table VI). From Table VI, our extracted average deforma-
tion potentials are in good agreement with three sets given
by Wiley [62], by Friedel et al. [63], and by Fischetti and
Laux [14]. The last one has become the benchmark of Si
deformation potentials. On the other hand, the overestimated
a = −10.2 eV [57], −9.7 eV [14], and −5 eV [36] give rise
to a pronounced hole-phonon interaction, which leads to an
underestimation of hole mobility at 300 K [14]. To check the
validity of extracting the deformation potentials (a, b, d) from
scattering matrix elements, we calculate the temperature-
dependent hole mobility based on the classical model [73]
using our deduced sets of deformation potentials, as shown
in Fig. 14. We also compare predicted hole mobility with
that using the standard set given by Fischetti and Laux [14]
and obtained directly from first-principles calculations and
experimental measurements [31–33]. Surprisingly, our two
extracted sets of deformation potentials can both reproduce
the hole mobility in the investigated temperature range very
well, even though they have rather different a’s. Their good
agreement is due to the fact that they have a similar �eff

(4.40 vs 4.49 eV), which is a combination of TA and LA
modes and implies the difficulty in correctly distinguishing
the contributions of TA and LA modes by fitting to the hole
mobility. It is worth mentioning that, in Fig. 14, there are
two sets of hole mobilities for a single set of deformation
potentials given by Fischetti and Laux [14]: one (solid green

FIG. 14. Comparison of phonon-limited hole mobility in Si as a
function of temperature. The black solid line and dots represent hole
mobilities predicted by first-principles methods and measured by
experiment, respectively, as shown in Fig. (1). Dashed lines represent
the predicted hole mobilities by the classical model (see details in
Ref. [73]) with deformation potentials (a, b, d) of (2.36, −1.87,
−3.60) eV [orange, fitted from heavy hole (hh) matrix elements],
(3.21, −1.76, −3.37) eV (blue, fitted from hh intraband matrix el-
ements), and (2.1, −2.33, −4.75) eV (green, obtained by Fischetti
and Laux [14]), respectively. The solid green line is the data adopted
directly from Ref. [14].
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line) is directly adopted from Fig. 9 in Ref. [14], and the
other (dashed green line) is calculated also using the classical
model but using a |k|-dependent DOS effective mass (see
details in Refs. [14,73]). One can note that the hole mobility
obtained from Fischetti and Laux [14] is in excellent agree-
ment with experimental data in the high-temperature regime
(T > 250 K), but a noticeable divergence emerges at lower
temperatures. Such a divergence (the overestimation of hole
mobility) in low temperatures is caused by the approximation
of |k|-independent (although angular-dependent) DOS effec-
tive mass since it has a larger �eff = 5.44 eV than our deduced
�eff = 4.40 eV.

Our extracted deformation potential constants from first-
principles calculations are within the range utilized in
classical models, but the latter generally underestimate the
role of TA modes. The underlying reason can be addressed
from the comparison of hole-phonon scattering matrix el-
ements obtained from the classical models and from our
first-principles calculations as discussed above. Specifically,
our first-principles calculation yields hole-phonon scattering
matrix elements of both TA and LA modes being insensitive
to angle θ and comparable with each other in magnitude,
as shown in Fig. 13. However, with a set of compara-
ble Bir-Pikus deformation potentials a = 2.36, b = −1.87,
and d = −3.60 eV with respect to our extracted set from
first-principles calculations, the classical models with an
assumption of the isotropic bands give a high angular depen-
dence of hole-TA-phonon scattering matrix elements, which
vanishes at θ = 0 and π , and its maximum at θ = π/2 is
also smaller than that of the LA mode. It implies that the
underestimation of the TA mode in hole-phonon scattering by
the classical models is embedded in their physics roots with
ad hoc assumptions.

IV. CONCLUSIONS

In this paper, we have re-examined the e-ph and hole-
phonon scattering in Si by conducting first-principles calcu-
lations for carrier mobilities. Our predicted electron and hole
mobilities are in approximately good agreement with experi-
mental data over a wide range of temperatures even without
ad hoc adjustable parameters. We demonstrated that the e-ph
scattering mechanisms revealed in this paper are dramatically
different from what is the common belief established based on
classical models involving relying on adjustable parameters.
Specifically, we found that TA phonons have a comparable
contribution with LA phonons in the scattering of both elec-
trons and holes on limiting the carrier mobilities in Si by
decomposition of first-principles calculation-predicted e-ph
scattering into the contributions from different phonon modes
and electronic valleys. We also revealed that the TO phonon
mode, rather than the conventionally presumed LO and LA
modes, provides the leading scattering channel (accounting

for 58%) in f-type intervalley scattering, and the LO mode
is dominant over the LA mode in g-type intervalley scattering
for electrons in Si. It calls for developing a correct semiempir-
ical carrier-phonon scattering model.

Specifically, in the popular three-dimensional (3D) TCAD
simulator nextnano, the phonon-limited lattice mobility μl

p,n
(subscript n indicates electron and p for hole) at room temper-
ature in Si and Ge considering only the interaction with AC
phonons is given by [74–76]

μl
p,n =

√
8πqh̄4Cl

3D2
acm∗5/2

c kBT 3/2
. (16)

Here, Cl signifies the average longitudinal elastic constant,
Dac represents the deformation potential of the band edge, and
m∗

c denotes the conductivity effective mass. The deformation
potential Dac in Eq. (16) is determined by fitting μl

p,n(T )
to experimentally measured values (calibration process) to
account for the effects of neglected TA and TO phonons on
carrier scattering, which are found to be important in this pa-
per. Furthermore, in the Sentaurus (the Synopsys TCAD tool),
the temperature-dependent phonon-limited lattice mobility is
even taken as an adjustable parameter for all semiconductors
without relying on the detailed scattering processes [77]:

μl
p,n(T ) = μl

p,n(T = 300 K)

(
T

300 K

)−r

, (17)

where a power factor r and μl
p,n(T = 300 K) are

material-dependent fitting parameters via fitting temperature-
dependent mobility to experimental data. With properly
calibrated physical models, it is expected that TCAD simu-
lation can accurately model integrated circuit-manufacturing
processes and predict the electrical characteristics of
fabricated devices. Because it lacks the capability of
prediction, the calibration process of TCAD simulators
is a crucial step in technology characterization. Our findings
indicate that the physical models of phonon-carrier scattering
used in the state-of-the-art TCAD device simulation are
improperly treated, which hinders the development of
predictive TCAD tools.
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