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Dynamics of vacancy-induced modes in the non-Abelian Kitaev spin liquid
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We study the dynamical response of vacancy-induced quasiparticle excitations in the site-diluted Kitaev spin
liquid with a magnetic field. Due to the flux-binding effect and the emergence of dangling Majorana fermions
around each spin vacancy, the low-energy physics is governed by a set of vacancy-induced quasi-zero-energy
modes. These localized modes result in unique characteristics of the dynamical spin correlation functions, which
intriguingly mimic the single-quasiparticle density of states and further exhibit a quasi-zero-frequency peak. By
recognizing the potential observability of these local correlation functions via scanning tunneling microscopy
(STM), we show how the STM response is sensitive to the local flux configuration, the magnetic field strength,
and the vacancy concentration. Constructing a simple model of the localized modes, we also elucidate how the
local correlation functions can be interpreted in terms of the hybridization between these modes.
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I. INTRODUCTION

Quantum spin liquids (QSLs) are currently of large in-
terest, in part because of their non-Abelian quasiparticles
that may enable topological quantum computing [1–7]. A
famous example of QSLs is realized in the exactly solvable
Kitaev spin model on the honeycomb lattice, which supports
a gapped non-Abelian chiral QSL in a magnetic field [2].
In this non-Abelian Kitaev spin liquid (KSL) state, an iso-
lated flux pins a topologically protected zero-energy Majorana
mode, which is of great interest for quantum information
processing. With site dilution, each isolated vacancy in the
KSL binds a Z2 flux and, consequently, is associated with a
localized Majorana mode [8,9]. In fact, the introduction of
vacancies into the non-Abelian KSL gives rise to an entire
set of quasi-zero-energy Majorana modes from which the true
zero mode emerges [10–13]. The localized nature of these
vacancy-induced quasi-zero-energy modes simplifies their de-
tection and manipulation, two key ingredients in proposed
implementations of Majorana quantum computation. Also,
with the ability to deliberately introduce vacancies into can-
didate materials such as α-RuCl3 [14–17], these systems have
the potential to realize a scalable network of such vacancy-
induced Majorana modes.

In the companion paper [18], we put forth a proposal
for the detection of the vacancy-induced quasi-zero-energy
Majorana modes. We suggested using inelastic scanning tun-
neling microscopy (STM) setups in which a non-Abelian
KSL, containing a finite density of spin vacancies, acts as a
tunneling barrier between a tip and a substrate. Our results
revealed several important features in the STM response that
originate from the quasi-zero-energy modes. Most notably,
we observed a pronounced peak near zero bias voltage in
the derivative of the tunneling conductance. Both the voltage
position and the intensity of this peak exhibit an increase

with the density of vacancies, indicating the fractionalized
nature of the quasi-zero-energy modes. We also demonstrated
that the STM response can effectively probe the single-
particle density of states of the Majorana fermions in the
non-Abelian KSL.

We further note that similar setups were previously pro-
posed to study the zero-energy Majorana modes in the clean
non-Abelian KSL [19–22] and in the non-Abelian KSL with
an isolated pair of vacancies [13]. For instance, when two
flux excitations are created and well separated from each
other in the non-Abelian KSL, localized almost-zero-energy
Majorana modes are attached to each flux. The presence of
these modes manifests as an additional, nearly zero-energy
peak inside the bulk gap of the dynamical spin correlation
function. As the support for this peak comes only from on-site
terms and nearest-neighbor bonds directly enclosing the flux,
the intensity of this peak in the STM response diminishes
rapidly as the tip-to-flux distance increases [22]. It is also
worth noting that with the recent strong experimental effort
in imaging anyons with STM [23], these proposals for the
non-Abelian KSL become more and more viable. Addition-
ally, tunneling experiments recently performed on α-RuCl3
have yielded intriguing results concerning low-energy exci-
tations [24], which further underscores the feasibility and
relevance of using STM for studying features of spin liq-
uidity in real materials. Consequently, there is a need to
gain a comprehensive understanding of the STM response
in QSLs.

In this paper, we delve into the intricate physics that under-
lies the STM response in the site-diluted non-Abelian phase
of the Kitaev honeycomb model [10]. Notably, this model
remains exactly solvable even in the presence of vacancies.
As demonstrated in prior research [13,18,21,22], the inelastic
STM response, specifically the second derivative of the tun-
neling current with respect to the bias voltage, is proportional
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to the dynamical spin correlation function of the Kitaev spin
liquid. In the presence of vacancies, the STM setup allows
us to investigate not only the bulk dynamical spin correlation
function, which is probed when the tip is positioned away
from vacancy sites, but also other kinds of dynamical spin
correlation functions when the STM tip is positioned directly
on top of a vacancy site. These vacancy-related spin correla-
tion functions probe either the usual “bulk” spin components
or special “dangling” spin components that exhibit divergent
local susceptibilities [8,9].

We study the behavior of both types of vacancy-related
spin correlation functions, namely, those associated with bulk
and dangling spin components. Exploring how these cor-
relations evolve in response to variations in magnetic field
strength, vacancy concentration, and the local flux environ-
ment, we reveal a pronounced difference in their behavior.
Bulk spin correlation functions, much like their counterparts
in the clean Kitaev model [25–27], are ultrashort ranged,
i.e., only on-site or nearest-neighbor correlation functions
with the same spin component are nonzero. They exhibit
a finite flux gap, a strong peak above the flux gap, and a
diffuse continuum at higher energies. Furthermore, when the
time-reversal symmetry is broken by the magnetic field, the
vacancy-related bulk spin correlation functions show a dis-
tinctive in-gap peak structure that reflects the vacancy-induced
quasi-zero-energy modes. In contrast, dangling spin correla-
tion functions can be long ranged, with no restrictions on the
spin components or the distance. They also exhibit a set of
low-energy peaks in the presence of a magnetic field, pro-
viding a complementary perspective on the quasi-zero-energy
modes.

Our paper demonstrates that the distinct structures ob-
served in the bulk and dangling dynamical correlations can
be comprehended with the help of a simple tight-binding
model describing hybridization among various quasi-zero-
energy Majorana modes attached to each vacancy. Crucially,
this model elucidates the emergence of the Majorana zero
mode bound to each vacancy when the number of quasi-zero-
energy modes is odd. At the same time, it correctly explains
the structures of the sharp peaks that are found inside the
bulk gaps of both the bulk and the dangling spin correlation
functions, and reveals how these peaks directly reflect the
various vacancy-induced quasi-zero-energy modes.

II. SITE-DILUTED KITAEV HONEYCOMB MODEL

A. Model Hamiltonian

We consider a site-diluted version of the Kitaev honey-
comb model [2] where a finite number of spins are removed
at random sites j ∈ V , belonging equally to the A and B
sublattices [28]. The Kitaev interactions comprise nearest-
neighbor bond-anisotropic Ising couplings emanating from
each spin-1/2 degree of freedom. To account for a magnetic
field, we also introduce the standard three-spin interactions
[2] in the bulk, as well as the bare Zeeman terms ∝ σα

j at the
sites j ∈ Dα that share an α bond 〈 jk〉α with a vacancy site
k ∈ V . By using Kitaev’s four-Majorana representation, σα

j =
ibα

j c j , and the definition of Z2 gauge fields, u〈 jk〉α = ibα
j b

α
k ,

we obtain a quadratic fermionic Hamiltonian coupled to the

FIG. 1. Site-diluted Kitaev honeycomb model. Around any va-
cancy, each of the sites 1, 2, and 3 has one dangling spin component
σ̃ α

i that is directly coupled to the Zeeman field. The green dashed
lines connect the sites coupled by the κ term, for which the con-
vention of chirality follows Ref. [2]. The hexagonal plaquette (flux)
operator is defined as Wp = σ z

0 σ̃
y
1 σ x

5 σ z
7 σ

y
8 σ x

9 .

gauge fields:

H = −
∑
〈 jk〉α

J〈 jk〉ασ
α
j σα

k − κ
∑

〈 jkl〉αβ

σ α
j σ

γ

k σ
β

l −
∑
j∈Dα

hασα
j

= iJ
∑
〈 jk〉α

u〈 jk〉α c jck + iκ
∑

〈 jkl〉αβ

u〈 jk〉α u〈kl〉β c jcl

− ih
∑
j∈Dα

bα
j c j, (1)

where the summations are only over nonvacancy sites, and we
assume hx = hy = hz ≡ h and J〈 jk〉α ≡ J . In terms of the Ma-
jorana fermions c j , the J term corresponds to first-neighbor
hopping, whereas the κ term corresponds to second-neighbor
hopping, as shown in Fig. 1. The flux operator Wp, which is
a local symmetry defined on each plaquette, is related to the
gauge fields by Wp = ∏

〈 jk〉α∈p u〈 jk〉α = ±1.
From now on, we use a tilde to distinguish the “dangling

spin components” σ̃ α
j ≡ σα

j = ib̃α
j c j with j ∈ Dα and the as-

sociated “dangling b̃ fermions” b̃α
j ≡ bα

j from the remaining
spin components and b fermions in the bulk. Since these
dangling b̃ fermions do not have counterparts to form gauge
fields, they are treated together with the c fermions in the
tight-binding matrix of Eq. (1). In order to have the same
structure of the tight-binding matrix as in the clean model,
we assign each b̃α

j to either the A or the B sublattice. We

use the convention that the dangling b̃ fermions belong to the
sublattice of the corresponding vacancy site. For example, if
the vacancy is on the A sublattice, then the neighboring dan-
gling spin component σ̃ α

j on the B sublattice decomposes into

c j on the B sublattice and b̃α
j on the A sublattice. Therefore,

the Zeeman term also looks like a nearest-neighbor hopping
between A- and B-sublattice sites, and the Hamiltonian takes
the general form

H = i

2
(cA cB)

(
F M

−MT −D

)(
cA

cB

)

= 1

2
( f † f )

(
h̃ �

�† −h̃T

)(
f
f †

)
, (2)
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where the complex matter fermions are defined as(
f
f †

)
= 1

2

(
1 i
1 −i

)(
cA

cB

)
. (3)

Note that, in the site-diluted model, entries in the tight-
binding matrix corresponding to vacancy sites are removed,
and those corresponding to the dangling b̃ fermions are added.
Therefore, the complex matter fermions are, in general, not
formed by two Majorana fermions in the same unit cell.
However, by the above assignment and the fact that only an
equal number of vacancies on A- and B-sublattice sites are
considered, each complex fermion still consists of one Majo-
rana fermion from the A sublattice and the other from the B
sublattice. The resulting Hamiltonian has the Bogoliubov–de
Gennes form and thus can be diagonalized by a Bogoliubov
transformation, (

a
a†

)
=

(
X ∗ Y ∗

Y X

)(
f
f †

)
, (4)

into the standard free-fermion form

H =
∑

n

εn

(
a†

nan − 1

2

)
, (5)

with the excitation energies εn > 0. The ground-state energy
for a given flux sector is then E0({u}) = − 1

2

∑
n εn.

In the numerical calculation, the real-space Majorana tight-
binding matrix is diagonalized by the above transformations
for an L × L honeycomb lattice with linear size (number of
unit cells) L and periodic boundary conditions in both dimen-
sions. Once the eigenenergies and eigenvectors are obtained,
the density of states,

N (E ) =
∑

n

δ(E − εn), (6)

and the inverse participation ratio (IPR) for each eigenstate,

Pn =
∑

j

|φn, j |4, (7)

can be calculated. The wave function amplitudes φn, j connect
the fermion eigenstates an to the original Majorana fermions
c j on the lattice sites j according to an = 1√

2

∑
j φn, jc j with∑

j |φn, j |2 = 1 for each n. Therefore, the IPR measures the
level of localization for a given eigenstate on the lattice sites.

B. Ground-state flux sector

For the clean Kitaev honeycomb model, the Lieb theorem
predicts that the ground-state flux sector is the zero-flux sector,
where all hexagonal plaquette operators have eigenvalue +1
[29]. In the general case, the ground-state flux eigenvalue (i.e.,
plaquette-operator eigenvalue) is determined by the number of
sides n for the plaquette:

〈Wp〉GS ∼ ei�GS , �GS =
(

n − 2

2

)
π mod 2π. (8)

Interestingly, several works [8,30,31] show that even without
the requirement of reflection symmetry as used in the math-
ematical proof, numerically the ground-state flux eigenvalues

FIG. 2. (a) Zero-flux and bound-flux sectors for the same va-
cancy configuration. In the bound-flux sector, the black thick lines
mark flipped gauge variables u〈 jk〉α = −1 and the shaded plaquettes
indicate flipped flux operators Wp = −1. (b) Ground-state crossover
between the zero-flux and the bound-flux sectors, as calculated from
L = 40 systems with 4% vacancies. The shading corresponds to the
energy difference per vacancy between the two flux sectors.

still follow the prediction of the Lieb theorem. The most ex-
otic case is the recently studied amorphous Kitaev spin liquid,
in which the system contains all random shapes of plaquettes,
and yet the ground-state eigenvalue of each plaquette is still
determined by the Lieb theorem [31].

For each isolated vacancy in the site-diluted honeycomb
model, three hexagonal plaquettes merge into a single 12-site
vacancy plaquette after removing one site at the center of the
three hexagons. According to the Lieb theorem, the vacancy
plaquette should carry a π flux in the ground state, and this
expectation has indeed been numerically verified in previous
studies [8–10,12]. The corresponding ground-state flux con-
figuration, where only vacancy plaquettes carry a π flux, is
called the bound-flux sector [see Fig. 2(a)]. However, in the
model of quasivacancies with the three-spin interaction κ , it
was shown that a crossover from the bound-flux sector to the
zero-flux sector is possible [10]. Here, for true vacancies with
dangling spins, we show that the ground-state flux sector ex-
hibits a crossover even at κ ≈ 0 as the strength of the Zeeman
field h on the dangling spins is increased [see Fig. 2(b)].

The algorithm for generating the bound-flux sector for
random site-diluted configurations is based on our previous
work [10]. Additional care is taken to prevent a situation
where two vacancy plaquettes are too close and merge into
a larger vacancy plaquette because the evaluation of local spin
correlations would be more complicated in such a case.
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C. Local symmetry and expectation values

The presence of an extensive number of local symmetries
in the Kitaev model can lead to predictions of vanishing
expectation values of spin operators. The simple arguments
presented below are related to the Elitzur theorem, which
states that if an operator is not invariant under local sym-
metry transformation, then its expectation value must be
zero [32,33].

First, we consider the clean Kitaev model without any
vacancies. In this case, all minimum-size loops are hexagons,
and each site (i.e., spin) belongs to three hexagonal plaquettes.
From the definition of Wp (shown in Fig. 1), we observe that
any spin operator σα

j anticommutes with at least one adjacent
flux operator, {σα

j ,Wp} = 0, which means that it is not invari-
ant under the corresponding local symmetry transformation:
Wpσ

α
j Wp = −σα

j W 2
p = −σα

j . Therefore, we conclude that the
expectation value must be zero for all spins:

〈0|σα
j |0〉 = 〈0|Wpσ

α
j Wp|0〉 = −〈0|σα

j |0〉 = 0. (9)

Here |0〉 refers to the ground state of the Kitaev model in the
zero-flux sector satisfying Wp|0〉 = |0〉.

Similar arguments can be applied to the spin-spin correla-
tion functions 〈σα

j σ
β

l 〉 [25]. If the second spin σ
β

l is located
beyond the nearest neighbor of σα

j , we can always find a flux
operator that commutes with one spin and anticommutes with
the other, [σα

j ,Wp] = {σβ

l ,Wp} = 0, which implies

Wp
(
σα

j σ
β

l

)
Wp = −σα

j σ
β

l �⇒ 〈0|σα
j σ

β

l |0〉 = 0. (10)

For a nearest-neighbor pair, if the spin components are not
the same, we can still find a flux that anticommutes with only
one of them, and hence 〈0|σα

j σ
β

k |0〉 = 0 if α = β. Therefore,
the spin-spin correlation functions are ultrashort ranged in
the Kitaev model; only the on-site correlation functions and
the nearest-neighbor correlation functions with the same spin
component exhibit nonzero expectation values:

〈0|σα
j σα

k |0〉 = 0 if j = k or j, k ∈ 〈 jk〉α. (11)

In the presence of vacancies, the above arguments for spin
expectation values and spin-spin correlation functions remain
valid, except for the dangling spin components σ̃ α

j ( j ∈ Dα)
around each vacancy. The key point here is that no flux op-
erator anticommutes with a dangling spin operator. Hence,
any expectation values involving exclusively dangling spin
components are generically nonzero:

〈0̃|σ̃ α
j |0̃〉 = 0, 〈0̃|σ̃ α

j σ̃
β

l |0̃〉 = 0. (12)

Here |0̃〉 refers to the ground state of the site-diluted Kitaev
model, which may be in the bound-flux or the zero-flux sector.
The nonzero expectation values in Eq. (12) provide the basis
for the vacancy-induced local-moment formation [8,9] and
show that spin-spin correlation functions between dangling
spins have no restrictions in terms of spin components or
distance. If j and l are around the same vacancy, we refer
to 〈σ̃ α

j σ̃
β

l 〉 as an intravacancy correlation function, otherwise
we call it an intervacancy correlation function. In this paper,
we focus on the intravacancy correlations, which can pos-
sibly be measured by a single STM tip [18]. The nonlocal
behaviors of intervacancy correlations can be measured by a

multiple-tip setup [13], but due to the localized wave functions
of the vacancy-induced low-energy states, this inter-vacancy
response is expected to be much smaller.

Finally, the spin-spin correlation functions between a bulk
(i.e., nondangling) spin and a dangling spin necessarily vanish
because we can always find a flux operator that anticommutes
with the bulk spin but commutes with the dangling spin,
implying 〈0̃|σα

j σ̃
β

k |0̃〉 = 0.

III. VACANCY-INDUCED LOCALIZED MODES

A. Elementary modes and hybridization

In the presence of the three-spin interaction κ that mimics
an external magnetic field and breaks time-reversal symme-
try, the Majorana density of states becomes gapped, and the
Majorana band structure acquires nontrivial topology. From
the dispersion of the clean Kitaev model, the bulk Majorana
gap can be approximated by �M ≈ 6

√
3κ for κ � J . In the

resulting non-Abelian phase, if two fluxes are created and then
separated from one another, a Majorana bound state with zero
energy is supported and thus corresponds to an Ising anyon.
These Majorana zero modes are highly localized around the
π -flux plaquettes and are therefore called flux modes ( f
modes) in this paper [see Fig. 3(e)].

When vacancies are introduced into the Kitaev spin liquid,
two other types of localized modes emerge below the bulk
gap. First, the unpaired b̃-Majorana fermions come from the
fractionalization of dangling spins and couple to the bulk
via the Zeeman term h. Each vacancy site exhibits three of
these b̃ modes, as shown in Figs. 3(a)–3(c). Second, each
vacancy gives rise to a peripheral mode (p mode) around
the vacancy position [see Fig. 3(d)]. This p mode is similar
to the quasilocalized mode with wave function amplitudes
on the opposite sublattice sites to the vacancy, previously
discussed in the tight-binding model of site-diluted graphene
[34,35]. However, in the KSL with κ = 0, the wave function
amplitudes of this p mode are more localized and on both
sublattices [10].

Since the wave functions of these b̃, p, and f modes are all
localized around the vacancy site, they can easily hybridize
with each other, and the in-gap Majorana density of states is
determined by the resulting eigenmodes (see Fig. 4). In the
bound-flux sector, the π flux resides on the 12-site vacancy
plaquette, and the f mode wave function has a similar ampli-
tude distribution to the p mode wave function. Consequently,
these two Majorana modes are strongly coupled by both the
first-neighbor and the second-neighbor hopping terms of the
Hamiltonian, and the energy of the resulting eigenmode [see
Fig. 4(c)] can be written as f (J, κ ). These p- f hybridized
modes correspond to the peak at E ≈ 1.16J in the density
of states [see Fig. 4(a)]. In contrast, the peak at E ≈ 0 is
attributed to the b̃ modes that can only weakly couple to any
other modes (including each other) via h.

In the zero-flux sector, only three b̃ modes and one p
mode are available for each vacancy. Hence, two modes from
the linear combinations of the b̃ modes are almost intact at
E ≈ 0 and the third one hybridizes with the p mode to form
a complex fermion of energy E ∼ h [see Fig. 4(f)]. The un-
derstanding of the in-gap spectrum based on the hybridization
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FIG. 3. Different types of localized Majorana modes in the presence of vacancies and/or fluxes. (a)–(c) The vacancy-induced b̃ modes
come from the fractionalization of the dangling spin components around vacancies. (d) The vacancy-induced peripheral mode (p mode) has
finite wave function amplitudes on the vertices of the vacancy plaquette. (e) The flux-induced mode ( f mode) is localized around each π -flux
plaquette in the non-Abelian Kitaev spin liquid.

picture of localized Majorana modes is crucial for the later
discussion on the dangling spin correlation function, so we
discuss it in more detail in the next section.

B. Simple model for hybridization

To develop a better understanding of the in-gap fermion
modes, we analyze a simple tight-binding model describing
the hybridization among the b̃, p, and f modes attached to
a single vacancy, and then compare the predictions of this
effective model to the results from the exact diagonalization
of the whole system with two well-separated vacancies.

We first consider the bound-flux sector, in which case the
basis modes are b̃x, b̃y, b̃z, cp, and c f . On the vacancy pla-
quette, the p mode and the f mode are strongly hybridized
via both J and κ couplings, and the net hybridization can
be described by a homogeneous function f (J, κ ). The three
b̃ modes, on the other hand, couple to the p and f modes

by the Zeeman fields with hybridization strengths γph and
γ f h, respectively, where γp, f ≈ 1. Moreover, the b̃ modes
can further hybridize among themselves via the higher-energy
bulk modes (not included in the basis modes themselves).
From second-order perturbation theory, we can estimate this
hybridization as γbh2 with γb ∼ J−1. Due to the threefold
rotation symmetry relating the three b̃ modes, the effective
Hamiltonian in the (b̃x, b̃y, b̃z, cp, c f ) basis is then given by

Hbound

= i

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 γbh2 −γbh2 γph γ f h

−γbh2 0 γbh2 γph γ f h

γbh2 −γbh2 0 γph γ f h

−γph −γph −γph 0 f (J, κ )

−γ f h −γ f h −γ f h − f (J, κ ) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(13)

FIG. 4. Density of states (DOS), inverse participation ratio (IPR), and absolute wave function amplitudes of in-gap eigenmodes in (a)–(c)
the bound-flux sector and (d)–(f) the zero-flux sector. For the bound-flux sector, each vacancy contributes three b̃ modes to the central peak
around E = 0 and two hybridized p- f modes to the finite-energy peaks around E ≈ ±1.16J in (a). For the zero-flux sector, each vacancy
contributes three b̃ modes and one p mode; one of the b̃ modes strongly hybridizes with the p mode and thus a clear peak splitting is shown
around E = 0 in (d). Numerical results in (a) and (d) are calculated from a L = 40 system containing 2% vacancies with h = κ = 0.2J . The
intensity of IPR in (a) and (d) estimates the level of localization for the corresponding eigenmodes. It clearly shows that the vacancy-induced
modes are much more localized than the modes in the continuum above the bulk gap.
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Assuming h � J , the eigenvalues of Hbound up to O(h2) are

ε ≈ 0, ±
√

3γbh2, ±
[

f (J, κ ) + 3
(
γ 2

p + γ 2
f

)
2 f (J, κ )

h2

]
. (14)

The first three eigenmodes have dominant b̃ fermion char-
acter, while the last two correspond to the p- f hybridized
modes with mainly c fermion character. The four finite-energy
Majorana modes on each vacancy combine into two complex-
fermion modes. However, the remaining zero-energy b̃ mode
needs another zero-energy mode on a different vacancy to
form a complex fermion. Therefore, this zero-energy mode is
a protected Majorana bound state. To distinguish this true zero
mode from the other hybridized b̃ mode with h2 dependence,
we call the former the b̃0 mode and the latter the b̃h mode.
In Fig. 5(a), we present the numerical eigenenergies of a full
honeycomb-lattice system with two well-separated vacancies.
The results confirm the picture from the simple model; the b̃0

mode is clearly seen at the bottom of the spectrum, while the
remaining two modes have quadratic h dependence.

When a flux pair is excited from the bound-flux sector, as
shown in Fig. 5(b), the p mode and the f ′ mode are both zero
modes at h = 0 because any hybridization between them is
forbidden by symmetry [36]. Note that we use f ′ to denote
the flux-induced mode that is localized on a normal plaquette
instead of the vacancy plaquette. At h > 0, the b̃ modes couple
to the p mode on the vacancy plaquette and the f ′ mode
on the normal plaquette. Given that only one b̃ mode can
directly couple to the f ′ mode, the effective Hamiltonian in
the (b̃x, b̃y, b̃z, cp, c f ′ ) basis reads

H′
bound = i

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 γbh2 −γbh2 γph γ f ′h

−γbh2 0 γbh2 γph 0

γbh2 −γbh2 0 γph 0

−γph −γph −γph 0 0

−γ f ′h 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (15)

and the corresponding eigenvalues expanded up to O(h2) are

ε ≈ 0, ±γ−h, ±γ+h (16)

with γ 2
± = 1

2 (3γ 2
p + γ 2

f ′ ±
√

9γ 4
p − 2γ 2

p γ 2
f ′ + γ 4

f ′ ). The two

complex-fermion modes with linear h dependence can be
interpreted as b̃-p and b̃- f ′ modes [see Fig. 5(b)], although in
general each of them has both b̃-p and b̃- f ′ character. Again,
the remaining b̃0 mode is at exactly zero energy.

For the zero-flux sector, there are only four in-gap Majo-
rana modes on each vacancy, and the effective Hamiltonian in
the (b̃x, b̃y, b̃z, cp) basis is given by

Hzero = i

⎛
⎜⎜⎜⎜⎝

0 γbh2 −γbh2 γph

−γbh2 0 γbh2 γph

γbh2 −γbh2 0 γph

−γph −γph −γph 0

⎞
⎟⎟⎟⎟⎠, (17)

with the corresponding eigenvalues up to O(h2) being

ε ≈ ±
√

3γbh2, ±
√

3γph. (18)

FIG. 5. Different flux sectors around a vacancy and the corre-
sponding fermion excitation energies. (a) Bound-flux sector. (b) Two
flux excitations on top of the bound-flux sector; one flux is re-
moved from the vacancy plaquette and another one is created on a
neighboring hexagonal plaquette. (c) Zero-flux sector. (d) Two flux
excitations on top of the zero-flux sector. For all subfigures, the f
mode ( f ′ mode) denotes the flux-induced localized mode on the
vacancy (hexagonal) plaquette. Excitation energies are calculated in
L = 40 systems with two well-separated vacancies and κ = 0.2J .
The dashed lines are linear or quadratic fits in accordance with the
simple model discussed in Sec. III B. The nomenclature of excitation
modes in each subfigure is based on the dominant characters after
hybridization.

Therefore, in the zero-flux sector, the simple model predicts
a b̃h mode quadratic in h and a b̃-p mode linear in h, but
no protected zero mode. This prediction is confirmed by the
numerical calculation on the whole system [see Fig. 5(c)].

Finally, when two fluxes are created from the zero-flux sec-
tor [see Fig. 5(d)], two additional in-gap f and f ′ modes are
introduced on two different plaquettes. Assuming that the hy-
bridization at h = 0 is mainly between the p and f modes, the
effective Hamiltonian at h > 0 in the (b̃x, b̃y, b̃z, cp, c f , c f ′ )
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basis can be written as

H′
zero = i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 γbh2 −γbh2 γph γ f h γ f ′h

−γbh2 0 γbh2 γph γ f h 0

γbh2 −γbh2 0 γph γ f h 0

−γph −γph −γph 0 f (J, κ ) 0

−γ f h −γ f h −γ f h − f (J, κ ) 0 0

−γ f ′h 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (19)

and the corresponding eigenvalues expanded up to
O(h2) are

ε ≈ ±γbh2, ±γ f ′h, ±
[

f (J, κ ) + 3
(
γ 2

p + γ 2
f

)
2 f (J, κ )

h2

]
. (20)

The physical picture is that the p and f modes first form a
complex fermion of energy f (J, κ ) already at h = 0, then one
of the b̃ modes couples to the f ′ mode with hybridization
strength γ f ′h, and finally the remaining two b̃ modes hybridize
via the second-order effect (γbh2) to give the b̃h mode with
quadratic h dependence [see Fig. 5(d)]. Note that considering
an additional f - f ′ hybridization at h = 0 does not lead to a
qualitative change of this picture.

In summary, the protected zero-energy mode only appears
when the total number of vacancy-induced modes around each
vacancy is odd, which is the case for the bound-flux sector. In
contrast, for the zero-flux sector, the total number of vacancy-
induced modes is even, and the lowest-energy eigenmode
thus shows an h2 dispersion instead of being at exactly zero
energy. We note that these general statements are true not only
for the ground states but also for the corresponding two-flux
excited states that have the same parities of vacancy-induced
modes.

IV. DYNAMICAL CORRELATION FUNCTIONS

A. Bulk spin correlation functions

We derive the dynamical spin correlation functions involv-
ing spin components in the bulk, and consider the ground
state as a product state of the flux ground state and the
fermion ground state, |0〉 = |F 〉 ⊗ |M〉. It is helpful to first
define complex bond fermions in terms of the b-Majorana
fermions:

χ〈 jk〉α ≡ 1
2

(
bα

j − ibα
k

)
, ( j ∈ A, k ∈ B). (21)

The number operator for this bond fermion is related to the Z2

gauge-field operators by u〈 jk〉α = 1 − 2χ
†
〈 jk〉αχ〈 jk〉α . Note that

our definition is different from that in Ref. [27], because we
choose the fixed gauge of the zero-flux sector (u〈 jk〉α = 1 for
all bonds) to correspond to the vacuum of the bond fermions,
that is χ〈 jk〉α |F 〉 = 0. This leads to the representation of spin
operators

σα
j ≡ η j

(
χ

†
〈 jk〉α + ζ jχ〈 jk〉α

)
c j, (22)

where the sublattice-dependent prefactors are (η j, ζ j ) = (i, 1)
for j ∈ A and (η j, ζ j ) = (1,−1) for j ∈ B. The dynamical

spin correlation function can then be derived as

Sαβ

jk (t ) = 〈0|σα
j (t )σβ

k (0)|0〉
= η jηkζ j〈0|eiHtχ〈 jk′〉α c je

−iHtχ
†
〈 j′k〉β ck|0〉

= (−η jηkζ j )〈M|eiHt c je
−iH′t ck|M〉δαβδ〈 jk〉α , (23)

where we use the property

χ〈 jk′〉α e−iHt = e−iH′tχ〈 jk′〉α , H′ = H − 2iJc jck′ . (24)

Note that we start with a general spin correlation function
without assuming that j and k must be on the same bond.
However, the selection rule of the flux sectors leads to the con-
clusion that the correlation function beyond nearest neighbors
or with different spin components must be zero.

1. One-particle contribution and adiabatic approximation

For the nearest-neighbor correlation function with the same
spin component, δαβδ〈 jk〉α = 1, and by combining the sublat-
tice prefactor as ξ jk ≡ −η jηkζ j , the correlation becomes

Sαα
jk (t ) = ξ jkeiE0t 〈M|c je

−iH′t ck|M〉. (25)

Next, we apply the Lehmann representation for eigenstates
of H′, and only keep the one-quasiparticle excitation sector
{|λ〉 = (a′

λ)†|M ′〉}, where H′|λ〉 = (E ′
0 + ε′

λ)|λ〉 and |M ′〉 is
the ground state of perturbed Hamiltonian H′. It was shown
that the one-particle approach is a quantitatively good approx-
imation since it contributes the most to the intensity under
exact calculations [27]. We further apply the adiabatic approx-
imation, and the correlation function in the frequency domain
is then written as

Sαα,(1)
jk (ω) = ξ jk

∑
λ

〈M ′|c j (a
′
λ)†|M ′〉〈M ′|a′

λck|M ′〉

× δ[ω − (E ′
0 + ε′

λ − E0)], (26)

where the resonance frequency involves the two-flux excita-
tion gap �2 f ≡ E ′

0 − E0.
To evaluate the matrix elements, we recall the transforma-

tion from c-Majorana fermions to complex fermions, and then
to the Bogoliubov quasiparticles:

c j → (−iη j )( fl + ζ j f †
l ), fl =

∑
λ

[
X T

lλa′
λ + Y †

lλ(a′
λ)†

]
,

(27)

125150-7



KAO, HALÁSZ, AND PERKINS PHYSICAL REVIEW B 109, 125150 (2024)

which leads to

〈M ′|c j (a
′
λ)†|M ′〉 = −iη j

(
X T

lλ + ζ jY
T

lλ

)
,

〈M ′|a′
λck|M ′〉 = −iηk (Y †

mλ + ζkX †
mλ). (28)

By defining W ≡ X + Y and Z ≡ X − Y , we summarize
the final results for the dynamical spin correlation function:

Sαα,(1)
j∈A,k∈A(ω) =

∑
λ

W T
lλW †

mλδ[ω − (�2 f + ε′
λ)],

Sαα,(1)
j∈A,k∈B(ω) =

∑
λ

W T
lλZ†

mλδ[ω − (�2 f + ε′
λ)],

Sαα,(1)
j∈B,k∈A(ω) =

∑
λ

ZT
lλW †

mλδ[ω − (�2 f + ε′
λ)],

Sαα,(1)
j∈B,k∈B(ω) =

∑
λ

ZT
lλZ†

mλδ[ω − (�2 f + ε′
λ)]. (29)

In the presence of vacancies, this derivation remains the
same for the dynamical correlation function of the bulk spin
components, and only the notation |M〉 is replaced by |M̃〉 as
the fermion ground state of the site-diluted Kitaev model.

B. Dangling spin correlation functions

To compute the dynamical spin correlation functions for
the dangling spins, Sαβ

jk , with j ∈ Dα and k ∈ Dβ , we treat the

corresponding dangling b̃-Majorana fermions as c-Majorana
fermions. They recombine into complex matter fermions in-
stead of bond fermions as

b̃α
j → (−iη̃ j )( fl + ζ̃ j f †

l ). (30)

It is important to note that the sublattice prefactor for dan-
gling b̃-Majorana fermions has the opposite definition to the
c-Majorana fermions, namely, (η̃ j, ζ̃ j ) = (1,−1) if j ∈ A and
(η̃ j, ζ̃ j ) = (i, 1) if j ∈ B. This is because of our convention
that, if σ̃ α

j is on the A sublattice, the corresponding c j is

defined on the A sublattice while b̃α
j is defined on the B

sublattice.

We can then directly apply the Lehmann representation for
the ground-state flux sector:

Sαβ

jk (t ) = 〈0̃|σ̃ α
j (t )σ̃ β

k (0)|0̃〉
= −

∑
λ

ei(E0−Eλ )t 〈M̃|b̃α
j c j |λ〉〈λ|b̃β

k ck|M̃〉. (31)

The leading terms are the zero-particle contributions with
|λ〉 = |M̃〉 and Eλ = E0,

Sαβ,(0)
jk (t ) = −〈M̃|b̃α

j c j |M̃〉〈M̃|b̃β

k ck|M̃〉, (32)

and the two-particle contributions with |λ〉 = a†
γ a†

δ |M̃〉 and
Eλ = E0 + εγ + εδ:

Sαβ,(2)
jk (t ) = −

∑
γ ,δ

e−i(εγ +εδ )t 〈M̃|b̃α
j c ja

†
γ a†

δ |M̃〉

× 〈M̃|aδaγ b̃β

k ck|M̃〉. (33)

1. Zero-particle contribution

By transforming to the Bogoliubov quasiparticles, the ma-
trix elements become

〈M̃|b̃α
j c j |M̃〉 = −η̃ jη j〈M̃|( fl + ζ̃ j f †

l )( fm + ζ j f †
m)|M̃〉

= −η̃ jη j

∑
λ

(
X T

lλ + ζ̃ jY
T

lλ

)
(ζ jX

†
mλ + Y †

mλ). (34)

Therefore, the spin expectation values on the dangling sites
belonging to the two sublattices are

〈M̃|σ̃ α
j∈A|M̃〉 =

∑
λ

ZT
lλW †

mλ,

〈M̃|σ̃ α
j∈B|M̃〉 = −

∑
λ

W T
lλZ†

mλ,
(35)

and the contributions to the correlation functions are appro-
priate products of these expectation values. We note that this
zero-particle response only contributes to the elastic (ω = 0)
tunneling current in STM [18].

2. Two-particle contribution

In the two-particle contribution, we need to evaluate four-
fermion expectation values:

〈M̃|b̃α
j c ja

†
γ a†

δ |M̃〉 = −η̃ jη j
[(

X T
lδ + ζ̃ jY

T
lδ

)(
X T

mγ + ζ jY
T

mγ

) − (
X T

lγ + ζ̃ jY
T

lγ

)(
X T

mδ + ζ jY
T

mδ

)]
. (36)

By Fourier transformation, the dynamical spin correlation functions [see Eq. (33)] in the frequency domain become

Sαβ,(2)
j∈A,k∈A(ω) = 2

∑
γ ,δ

(
ZT

lδW
T

mγ

)
(Z†

l ′δW
†

m′γ − Z†
l ′γW †

m′δ )δ[ω − (εγ + εδ )],

Sαβ,(2)
j∈A,k∈B(ω) = 2

∑
γ ,δ

(
ZT

lδW
T

mγ

)
(W †

l ′δZ†
m′γ − W †

l ′γ Z†
m′δ )δ[ω − (εγ + εδ )],

Sαβ,(2)
j∈B,k∈A(ω) = 2

∑
γ ,δ

(
W T

lδ ZT
mγ

)
(Z†

l ′δW
†

m′γ − Z†
l ′γW †

m′δ )δ[ω − (εγ + εδ )],

Sαβ,(2)
j∈B,k∈B(ω) = 2

∑
γ ,δ

(
W T

lδ ZT
mγ

)
(W †

l ′δZ†
m′γ − W †

l ′γ Z†
m′δ )δ[ω − (εγ + εδ )]. (37)

The two-particle response provides the leading contribution to the inelastic tunneling current in STM [18].
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FIG. 6. Dynamical spin correlation functions around a vacancy in (a)–(h) the bound-flux sector and (i)–(p) the zero-flux sector. The
parameter κ = 0.2J is chosen for all subfigures to separate the in-gap modes from the bulk response. The strength of the Zeeman field h
is shown at the top of each column. The inset of each plot shows the flux sector for calculating the matrix elements in the onsite correlation
function Szz

ii (ω) that corresponds to the lattice position i denoted by a red dot.

C. Connected dynamical spin correlation function
and disorder average

Here we simplify the notations of the dynamical correla-
tion functions for later usage and to be consistent with the
companion paper [18]. First, we define the connected dynam-
ical spin correlation function as

Sαβ

c, jk (ω) =
∫ +∞

−∞

dt

2π
eiωt

× [〈
σα

j (t )σβ

k (0)
〉 − 〈

σα
j

〉〈
σ

β

k

〉]
. (38)

For the bulk spin components, the second term vanishes
due to 〈σα

j 〉 = 0 as discussed in Sec. II C. For the dan-
gling spin components, the second term simply cancels the
zero-particle contribution, which means that Sαβ

c, jk (ω) corre-
sponds to the two-particle contribution. Moreover, we restrict
our attention to the on-site correlation Sαα

c, j j (ω) because it is
more significant than the nearest-neighbor correlation. In the
STM setup, the response from the nearest-neighbor correla-
tion acquires an additional exponentially decaying prefactor
with the distance between the two sites and is thus neg-
ligible. Finally, we define the disorder-averaged correlation

functions

Sbulk (ω) = Sαα,(1)
j j (ω),

Sdangling(ω) = Sαα,(2)
j j (ω),

(39)

where the overline in Sbulk (ω) and Sdangling(ω) indicates av-
eraging over different disorder realizations as well as over
different vacancies in the same realization.

V. RESULTS AND DISCUSSION

A. Hybridization and dynamical spin correlation functions

Here we describe the general connection between the dy-
namical spin correlation functions (see Fig. 6) and the simple
hybridization picture in Sec. III B. For the bulk correlation
functions, the relevant matrix element is 〈M̃ ′|c j (a′

λ)†|M̃ ′〉,
which is calculated in the excited flux sector containing two
flux excitations with respect to the bound-flux or zero-flux
sector [see Figs. 5(b) and 5(d)]. Hence, there is a finite re-
sponse at the frequencies �2 f + ε′

λ, where �2 f is the two-flux
excitation gap and ε′

λ are the fermion excitation energies.
However, since a finite response also requires that the fermion
excitation (a′

λ)† is compensated by a c j operator, the peaks
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corresponding to the b̃0 and b̃h modes at small h may not be
discernible in the bulk correlation functions.

In contrast, for the dangling correlation functions, the rele-
vant matrix element is 〈b̃α

j c ja†
γ a†

δ〉 ≡ 〈M̃|b̃α
j c ja†

γ a†
δ |M̃〉, which

is calculated in the ground-state flux sector:

Sαα,(2)
j j (ω) =

∑
γ ,δ

∣∣〈b̃α
j c ja

†
γ a†

δ

〉∣∣2
δ[ω − (εγ + εδ )]. (40)

Therefore, we expect a finite response at all frequencies that
correspond to sums of two distinct fermion excitation ener-
gies, εγ + εδ . Note that sums of two identical energies, 2εγ ,
would correspond to a†

γ = a†
δ and are thus prohibited by the

Pauli exclusion principle. Also, a finite response requires that
one of the excitations (a†

γ or a†
δ ) has finite c fermion character

and the other one has finite b̃ fermion character.
As we discussed above, in the bound-flux sector, there are

three excitation modes on each vacancy: b̃0 mode, b̃h mode,
and p- f mode. Therefore, if the vacancies are well separated,
we expect a finite response at three distinct frequencies:

ω1 =
√

3γbh2,

ω2 = f (J, κ ) + 3
(
γ 2

p + γ 2
f

)
2 f (J, κ )

h2,

ω3 = f (J, κ ) +
[√

3γb + 3
(
γ 2

p + γ 2
f

)
2 f (J, κ )

]
h2. (41)

Note that, at very small h, both b̃0 and b̃h modes have almost
entirely b̃ fermion character and cannot compensate c j in
the matrix element. Therefore, the peak at frequency ω1 is
significantly weaker in intensity than the other two peaks. As h
increases, however, the b̃h mode starts to hybridize more with
c fermions, and thus the ω1 peak gets stronger. Importantly,
this peak appears at almost zero frequency and serves as direct
evidence for the dangling b̃ fermions as well as the Majorana
zero mode emerging from among them.

Another route to enhance the peak at frequency ω1 is
by introducing more vacancies to the system. With a higher
density of vacancies and a shorter intervacancy distance, the
dangling b̃0 and b̃h modes can acquire stronger c character and
contribute more to the relevant matrix elements.

The presence of the true zero-energy mode (i.e., b̃0 mode)
in the bound-flux sector engenders prominent features in the
dangling correlation function of Eq. (40). If a†

γ is the creation
operator for the b̃0 mode (εγ = 0) and has O(1) overlap with
a given b̃α

j operator, the identity (b̃α
j )2 = 1 gives

Sαα,(2)
j j (ω) ∼

∑
δ

|〈M̃|c ja
†
δ |M̃〉|2δ(ω − εδ ). (42)

Thus, the dangling correlation function is largely proportional
to the local density of states of the c fermions, and it can
directly capture the van Hove singularity at E = 2J under
weak fields. This behavior is distinct from the bulk correlation
function because the latter involves a change in the flux sector
and hence the response does not resemble the fermionic den-
sity of states [26]. The possibility of observing this van Hove
singularity and the quasi-zero-frequency peak in the inelastic
STM response is reported in the companion paper [18].

In the case of the zero-flux sector, only two in-gap modes,
b̃h mode and b̃-p mode, exist on each vacancy. As a result, we
only expect a finite response at the frequency corresponding
to the sum of their respective energies:

ω =
√

3γph +
√

3γbh2. (43)

Since the b̃h and b̃-p modes have significant b̃ and c fermion
characters, respectively, this response is pronounced even for
small values of the Zeeman field h.

B. Effect of local flux environment

We first discuss the dynamical spin correlation functions
in a system with only one pair of vacancies. In Fig. 6, the
parameter κ is fixed at a relatively large value, κ = 0.2J , so
that the bulk Majorana gap �M ≈ 2J is well above the local-
ized vacancy-induced modes. Therefore, all sharp responses
at low energies are attributed to the hybridization among these
localized modes.

For Sdangling in the bound-flux sector, only one sharp peak
is observed for h = 0 at the frequency ω2 = ω3 = f (J, κ )
[see Fig. 6(a)], whereas the ω1 peak is absent due to the
vanishing four-fermion expectation value 〈b̃α

j c ja†
γ a†

δ〉. As h
increases, the quasi-zero-frequency peak at ω1 appears and, at
the same time, the peak at ω2,3 splits, as already clearly seen
in Fig. 6(c). These two effects happen simultaneously because
ω3 − ω2 = ω1 = √

3γbh2, i.e., both effects come from the
hybridization of b̃ and c fermions. In Fig. 6(d), we consider
the configuration where two vacancy plaquettes are in close
proximity. In this case, the peak at ω2,3 shows stronger split-
ting due to flux-flux interaction [37,38].

For Sbulk in the bound-flux sector, the creation of a flux
pair means that the response is identically zero at frequencies
below the two-flux excitation gap, ω < �2 f [26,27]. Note that
this gap for annihilating the flux at the vacancy plaquette and
creating another one at a neighboring hexagonal plaquette is
�2 f ≈ 0.48J . For h = 0, there is a single peak at the fre-
quency ω = �2 f [see Fig. 6(e)], which implies that this peak
originates from zero-energy modes: the p mode on the va-
cancy plaquette and the f ′ mode on the neighboring hexagonal
plaquette. For h = 0, these two zero modes both couple to
the dangling b̃ modes, leading to a splitting of the sharp peak
[see Figs. 6(f) and 6(g)]. Based on our simple model of in-gap
modes and the results from exact diagonalization of the whole
system [see Fig. 5(b)], the energies of both the b̃-p mode and
the b̃- f ′ mode have linear dependence in h, which means that
this peak splitting also scales linearly with h.

For Sdangling in the zero-flux sector, both the b̃ modes and
the p mode are zero-energy modes at h = 0 but with different
characters (b̃ fermion and c fermion, respectively), which
gives rise to a strong peak at ω = 0 [see Fig. 6(i)]. As h in-
creases, one b̃ mode hybridizes with the p mode and the other
two hybridize with each other through the bulk. Therefore, the
peak in Sdangling corresponds to the creation of a b̃h mode as
well as a b̃-p mode, and its frequency, ω = √

3γph + √
3γbh2,

has dominant linear dependence in h [see Figs. 6(i)–6(k)].
When the two vacancy plaquettes are in close proximity [see
Fig. 6(l)], the sharp peak splits into three peaks due to the
hybridization of the b̃-p modes on the nearby vacancies.
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FIG. 7. Disorder-averaged dynamical spin correlation functions at various vacancy concentrations. All results are averaged over 500
disorder realizations with system size L = 40 in (a)–(d) the bound-flux sector and (e)–(h) the zero-flux sector. The insets of (a) and
(c) emphasize the vacancy-concentration dependence of the quasi-zero-frequency peak.

For Sbulk in the zero-flux sector, there are two sharp peaks at
well-separated frequencies, as shown in Figs. 6(m)–6(o). The
lower-frequency peak corresponds to the b̃- f ′ mode whose en-
ergy is linearly proportional to h, while the higher-frequency
peak corresponds to the p- f mode whose energy is already fi-
nite at h = 0 [see Fig. 5(d)]. The frequencies of the two peaks
are single-fermion energies with an additional shift from the
two-flux gap, �2 f ≈ 0.23J . Note that the response from the
b̃h mode is almost invisible due to the vanishing two-fermion
expectation value 〈M̃ ′|c j (a′

λ)†|M̃ ′〉. Finally, we remark that
when the two vacancy plaquettes are adjacent [see Fig. 6(p)],
the hybridization of the two modes on the nearby vacancies
with predominantly p- f character leads to two slightly split
peaks appearing at the energy determined by f (J, κ ).

The above analysis demonstrates how the dynamical cor-
relation functions can reflect the local flux environment and
detect the localized vacancy-induced modes. In systems with
a small density of vacancies, bulk (e.g., spin-susceptibility)
measurements would be dominated by the response from the
nondisordered regions, thus being insensitive to the localized
vacancy-induced modes [12]. However, real-space probes like
STM serve as a natural and informative tool for detecting
these fractionalized modes and their low-energy density of
states [18].

C. Effect of vacancy concentration

We now turn to the disorder-averaged correlation func-
tions, Sbulk (ω) and Sdangling(ω), computed from multiple
realizations for a finite concentration of vacancies. As in
Ref. [18], we will only consider the dynamical spin correlation
functions on the nearest-neighbor sites of the vacancies. These
quantities determine the derivative of the tunneling conduc-
tance in STM when the tip is placed on top of the vacancy site.

Figure 7 shows Sbulk (ω) and Sdangling(ω) as a function of
the vacancy concentration in both the bound-flux and the
zero-flux sectors, and for two different values of the three-
spin interaction: κ = 0.05 and 0.2. For the larger value of
κ , different vacancies are decoupled from each other as the

bulk correlation length is very small, and the results can
thus be easily interpreted by the simple model for isolated
vacancies discussed in Sec. III B. For the smaller value of
κ , however, the finite vacancy concentration is expected to
be more physically relevant because a large number of va-
cancies are closer to each other than the bulk correlation
length.

The most striking feature of a finite density of vacancies is
the behavior of the quasi-zero-frequency peak in the bound-
flux sector shown in Figs. 7(a) and 7(c). We can clearly see
from the inset of Fig. 7(a) that, at small κ , the frequency and
the intensity of this peak both increase as the vacancy concen-
tration grows. As discussed previously, this peak corresponds
to frequency ω1 = √

3γbh2, and its intensity is enhanced when
the b̃h mode acquires more c fermion character. Since a higher
density of vacancies shortens the intervacancy distance and
thus increases the hybridization, it leads to an intensification
of the quasi-zero-frequency peak. In contrast, at large κ , the
wave functions of the b̃h modes are less hybridized with the
bulk modes, and the dependence on vacancy concentration is
thus less discernible [see Fig. 7(c)]. Even though in practical
experimental probes Sdangling(ω) and Sbulk (ω) are measured
simultaneously, the low-frequency signal in Sbulk (ω) does
not hinder the visibility of the quasi-zero-frequency peak in
Sdangling(ω) because of the flux gap.

The disorder-averaged results represent the typical behav-
ior of random local configurations of vacancies, and thus more
information can be extracted in specific cases. For example, in
Fig. 7(h), the disorder-averaged Sbulk (ω) in the zero-flux sec-
tor shows two sharp peaks whose intensity decreases with the
vacancy concentration. These two sharp peaks have the same
origin as in Fig. 6(m), but they get broadened and less intense
as the vacancy concentration increases because of interactions
between localized modes on different vacancies. In addition,
there is another broad peak with a much smaller intensity that
appears between the two sharp peaks, whose origin can be un-
derstood in the same way as in Fig. 6(p). Its relatively smaller
intensity reflects that adjacent vacancy plaquettes only rarely
happen in the random local configurations. Once again, these
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FIG. 8. The (a) h dependence and (b) κ dependence of the dan-
gling spin correlation function in the bound-flux sector. The strength
of κ is fixed at 0.05J in (a) and the strength of h is fixed at 0.1J in
(b). The vacancy concentration is 2% for both plots. All results are
averaged over 500 disorder realizations with system size L = 40.

results demonstrate the capability of the single-site dynamical
spin correlation functions to probe the localized modes and
the flux structure, which can then be potentially measured by
an inelastic STM setup [18].

D. Effect of magnetic field

In the site-diluted Kitaev honeycomb model [see Eq. (1)],
we consider the Zeeman term applied only on the dangling
spins and the three-spin term applied only in the bulk, in order
to preserve the exact solvability of the model. Practically, both
terms come from the magnetic field, but in the presence of
vacancies the relationship between them is rather obscure and
depends on the microscopic details [39]. Nevertheless, to see
the quasi-zero-frequency peak, the simple guidance is that
both terms should be present and be much smaller than the
scale of J . In Fig. 8, we also show that these two terms have
opposite effects on the quasi-zero-frequency peak.

The h dependence of Sdangling with fixed κ = 0.05J is
shown in Fig. 8(a). At h = 0, the quasi-zero-frequency peak
is absent due to the lack of hybridization between c fermions
and b̃ fermions. As h increases, this peak is not only moved to
higher frequencies but is also significantly broadened, which
also indicates stronger hybridization at larger h. We also note
that the small κ used in Fig. 8(a) makes the second peak
overlap with the bulk continuum due to strong hybridization
with the bulk c fermions. This peak, originating from ω2 and
ω3 in Eq. (41), simply merges into the continuum at larger h.

In contrast, the κ dependence of Sdangling with h = 0.1J ,
shown in Fig. 8(b), clearly demonstrates that a larger κ (i.e.,
larger gap) corresponds to smaller hybridization, which means
that the quasi-zero-frequency peak moves to lower frequen-
cies and becomes sharper as κ is increased. The second peak,
which appears at the edge of the continuum, shifts to higher
frequencies with increasing κ because �M ≈ 6

√
3κ . How-

ever, for κ = 0.06J , we already see that the true edge of the
continuum moves faster and starts to separate from the second
peak. For large enough κ , this peak is completely isolated
from the bulk continuum, as shown in Fig. 7(c).

To summarize, we show that the quasi-zero-frequency peak
reveals very distinct dependence on h and κ , because the
hybridization involving dangling fermions is enhanced by the
former and impeded by the latter. In the experiments, both the
h and the κ terms originate from the applied magnetic field,
and thus the field dependence of this peak measured in STM
can also help us to elucidate the relationship between the two
effective terms in the Hamiltonian.

VI. CONCLUSION

We study the dynamical spin correlation functions of the
site-diluted Kitaev honeycomb model with the three-spin in-
teraction κ in the bulk and the Zeeman field h coupled to
dangling spins next to vacancies. In the clean model, the three-
spin interactions, which imitate the leading-order effect of
the magnetic field, open a gap in the Majorana spectrum and
engender nontrivial band topology. If two flux excitations are
created and then well separated from each other, a localized
Majorana mode is attached to each π flux and behaves as
a Majorana bound state inside the bulk gap [2,37]. In the
presence of vacancies, other types of in-gap modes can be
induced around the vacancy positions. For example, the three
dangling b̃-Majorana fermions, which originate from the frac-
tionalization of dangling spins near the vacancies, can couple
to the c-Majorana fermions through the Zeeman field. If the
total number of localized Majorana modes around a given
vacancy is odd, and these localized modes are well separated
from the bulk modes due to the gap, one of these Majorana
modes has to form a complex fermion with a Majorana mode
on a different vacancy, and this mode is thus a protected
zero-energy Majorana mode. This odd-number scenario oc-
curs in the bound-flux sector, which is the ground-state flux
configuration of the site-diluted Kitaev model. Therefore, in
the presence of vacancies, protected zero modes can exist in
the ground-state flux sector instead of excited flux sectors.

A natural question is then: how can we detect these zero
modes induced by vacancies? We attempted to answer this
question in the companion paper [18], where we have shown
that the derivative of the tunneling conductance in inelastic
STM is proportional to the dynamical spin correlation func-
tion around the tip position and can thus serve as vacancy
spectroscopy. In this paper, we show that, next to a vacancy,
the dynamical response can be well explained by our simple
model of the in-gap modes. We also demonstrate that the local
dynamical response is profoundly affected by the local flux
environment, the vacancy concentration, and the magnetic
field through the hybridization between the localized modes.
Most importantly, the presence of the protected zero-energy
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mode makes the dangling spin correlation function resemble
the local Majorana density of states and also gives rise to
a quasi-zero-frequency peak. This peak can be potentially
detected by STM because it is located in the no-intensity re-
gion of the bulk response. Considering the growing interest in
disordered quantum spin liquids and their candidate materials
with imperfections, our approach based on the local dynam-
ical response around defects may be generalized to a wider
class of spin-liquid systems for detecting defect-induced lo-
calized excitations and spin fractionalization.
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