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We show how distinct phases of matter can be generated by performing random single-qubit measurements
on a subsystem of toric code. Using a parton construction, such measurements map to random Gaussian tensor
networks, and in particular, random Pauli measurements map to a classical loop model in which watermelon
correlators precisely determine measurement-induced entanglement. Measuring all but a 1d boundary of qubits
realizes hybrid circuits involving unitary gates and projective measurements in 1+1 dimensions. We find that
varying the probabilities of different Pauli measurements can drive transitions in the unmeasured boundary be-
tween phases with different orders and entanglement scaling, corresponding to short- and long-loop phases in the
classical model. Furthermore, by utilizing single-site boundary unitaries conditioned on the bulk measurement
outcomes, we generate mixed-state ordered phases and transitions that can be experimentally diagnosed via linear
observables. This demonstrates how parton constructions provide a natural framework for measurement-based
quantum computing setups to produce and manipulate phases of matter.
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I. INTRODUCTION

Investigating the quantum phases of matter that can be
dynamically generated in a quantum processor using mea-
surement, classical feedback, and local unitaries has been a
fruitful area of research. There has been significant interest
in using such hybrid circuits to manipulate entanglement pat-
terns, starting with the observation of a measurement-induced
entanglement transition between volume law to area law as
the frequency of measurements is varied [1–9] (for a re-
view, see [10,11]). Even without any unitary gates, random
measurements of multisite operators can lead to not only
various entanglement patterns but also distinct long-range or-
ders, such as symmetry-protected topological order, spin-glass
order, and intrinsic topological order [12–15]. These orders
can undergo phase transitions by adjusting the probabilities of
competing measurements.

A different context in which measurements take center
stage is measurement-based quantum computation (MBQC)
[16]. The MBQC approach involves starting with an entangled
“resource state”, such as the 2d cluster state, and sequen-
tially performing single site measurements on the majority of
the qubits, where the measurement basis can depend on the
outcomes of previous measurements. This results in the re-
maining unmeasured qubits being directed towards a specific
entangled state that encodes the outcome of a deterministic
quantum computation. For example, measurements on a 2d
resource state effectively realize a computation on the 1d
boundary of the system, and the other dimension corresponds
to the “time” direction of the computation.

In this paper, we ask the question: Starting with an entan-
gled resource state, can MBQC-type protocols lead to robust
quantum phases of matter and transitions between them? We
explore this question for the toric code ground state, which
is an exactly solvable model of Z2 topological order in two

dimensions [17]. We find that by tuning the probabilities of
measuring single-site Pauli X,Y , or Z in the toric code bulk,
we can realize distinct phases in an unmeasured boundary.
These measurement-induced phases are characterized by the
presence or absence of spin-glass order parameters and their
entanglement scaling (area law vs logarithmic scaling). As is
the case for MBQC, the bulk measurements in the toric code
effectively realize dynamics for a one-dimensional boundary,
and in this case the effective dynamics are that of a hybrid
circuit involving both unitaries and measurements. Thanks
to the underlying entanglement of the toric code state, only
single-qubit measurements are required to effectively realize
nontrivial hybrid circuits involving two-qubit operations.

Liu et al. [18] performed a related study on the 2d clus-
ter state, an MBQC resource state, which enables universal
quantum computation, and discovered an entanglement tran-
sition from area to volume law in boundary qubits induced
by measuring the bulk qubits. In contrast, in our setup with
toric code, we find transitions in both entanglement (albeit
without volume law) and other order parameters. A recent
study [19] also considered an MBQC setup on the 2d cluster
state and found evidence of distinct area law entanglement
phases on the 1d boundary. One advantage of our setup is that
we can understand such transitions analytically by relating the
entanglement properties of the qubits to certain correlation
functions of a corresponding 2d classical loop model with
crossings. Such a model has short- and long-loop phases,
which exactly correspond to the area law and the logarithmic
scaling of entanglement in the 1d boundary. The summary of
these results is presented in Fig. 1. We also note that Ref. [20]
established a very different mapping between toric code error
correction in the presence of both incoherent and coherent
errors and (1 + 1)d free-fermion circuits.

As is the case with hybrid circuits without feedback (mea-
surement outcomes are not used to inform future operations),
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FIG. 1. (a) The bulk of a toric code ground state is measured
in random Pauli bases (denoted by different colors), which induces
correlations between the unmeasured 1d boundary qubits (in dashed
box). (b) Depending on the relative frequencies of different Pauli
measurements, the 1d boundary can have different entanglement
scaling (area law vs logarithmic scaling) and also different orders
(spin-glass vs paramagnetic). Such phases and transitions are ana-
lyzed by mapping to a 2d classical loop model.

the transition between quantum phases is only apparent in
quantities nonlinear in the ensemble of quantum trajectories.
In our examples, these nonlinear quantities can be spin-glass
order parameters or entanglement measures. However, the
spin-glass order can be converted into ferromagnetic order
(a linear observable) via feedback: We show that one layer of
single-qubit unitaries, conditioned on the bulk measurement
outcomes, can be applied to the boundary state to ensure that
the resulting density matrix averaged over trajectories has
long-range order that is observable. This constitutes a non-
trivial quantum channel on a 2d array producing a long-range
entangled mixed state in 1d; as in [21], it relies on measure-
ment and unitary feedback, although the resulting mixed state
is likely difficult to generate using only operations on the 1d
system.

This setup can be readily generalized from Pauli X,Y, Z
measurement to arbitrary single-site projective measurements.
We find that such measurements in 2 + 0d map in gen-
eral to Gaussian fermionic hybrid circuits in 1 + 1d. This
mapping allows us to import the results about entanglement
phases generated by such circuits (e.g., [22–24]) onto the
measurement-induced entanglement on the boundary state

of the toric code. Even in the general on-site measurement
setup, the phases with area law and logarithmic scaling of
entanglement persist, albeit with distinct phase boundaries
and transitions.

The structure of the paper is as follows: In Sec. II, we intro-
duce the measurement setup for toric code. We then map the
stabilizer configurations after measurements to the completely
packed loop model with crossing (CPLC) and summarize
relevant results in Sec. III. In Sec. IV, we relate specific order
parameters in the loop model to entanglement induced by
measurements between different regions. In Sec. V, we ex-
plain how the mapping leads to distinct entanglement patterns
in unmeasured boundary qubits and we demonstrate how the
setup can be mapped to a 1+1d hybrid circuit. In Sec. VI,
we show how the presence or absence of a certain spin glass
order distinguishes the two phases. Furthermore, we describe
a simple adaptive protocol that modifies the boundary state
and enables identification of the two phases based on linear-
order parameters of the state. In Sec. VII we analyze general
single-qubit measurements (beyond Pauli) on the toric code
and map the resulting states to Gaussian tensor networks and
Gaussian hybrid circuits. This section also contains a tensor
network representation of the toric code ground state via
parton construction, which may be of independent interest.
Finally, in Sec. VIII we conclude with a discussion of our
results, including relations to the underlying sign structure and
MBQC universality of the resource state.

II. SETUP

A. Toric code/plaquette model

The toric code is a lattice model of spin-1/2 degrees of
freedom on the edges of a square lattice [17], which consists
of commuting terms in its Hamiltonian called stabilizer oper-
ators. The toric code has two types of stabilizer operators: star
(s) and plaquette (p) operators,

HT = −
∑

s

∏
j∈s

Xj −
∑

p

∏
j∈p

Z j . (1)

A closely related model is Wen’s 2d plaquette model [25],
where the spin-1/2 degrees of freedom are located at the
vertices of a square lattice, and the Hamiltonian consists of
only one type of four-body stabilizer for every star s and
plaquette p, on the 45◦-rotated lattice [see Fig. 2(a)],

HW = −
∑
a∈p,s

Xa+ŷZa+x̂Xa−ŷZa−x̂. (2)

These two models can be transformed into each other using
a single layer of local Hadamard gates arranged on one (say,
B) of the two sublattices (A and B) of the square lattice in
the plaquette model. Sublattice A represents spins on vertical
edges, while sublattice B represents spins on horizontal edges
of toric code in Fig. 2(b). These gates interchange X ↔ Z on
the B sublattice, which interchange the plaquette model and
toric code, as depicted in Fig. 2(a). On a torus defined by
identifying the boundaries along x, y directions as marked in
Fig. 2(b), the toric code has four degenerate ground states,
labeled by ±1 eigenvalues of the logical operators O′

1, O′
2.

These logical operators can be obtained by applying the
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FIG. 2. (a) Toric code stabilizers can be converted to Wen pla-
quette stabilizers via staggered Hadamard gates. The Wen plaquette
admits a parton construction in which each qubit is split into four
Majorana fermions subject to a constraint (represented by circle in
right subfigure). (b) A ground state of the plaquette model can be
constructed by projecting a free-fermion state consisting of Majorana
dimers into the physical qubit Hilbert space.

previously mentioned Hadamard gates to Wen’s logical op-
erators O1 and O2, which consist of strings of Pauli-Z and
Pauli-X operators as depicted in Fig. 2(b).

Any eigenstate |G〉 of the toric code admits an exact free-
fermion parton construction [25,26] defined as follows. The
Hilbert space of each qubit on site i can be enlarged into that
of four Majorana fermions γi,s = {γi,1, γi,2, γi,3, γi,4} along
the edges connected to i, followed by a projection onto the
original qubit Hilbert space. Consider the free-fermion state
|ψ〉free such that iγi,sγ j,s′ = 1 when (i, s), ( j, s′) are on the
same edge. To return the qubit Hilbert space, we must project
the Majorana state to the +1 sector of the operator Dj =
γ j,1γ j,2γ j,3γ j,4,

|G〉 =
∏

j

(
1 + Dj

2

)
|ψ〉free . (3)

Note that the initial free-fermion state of the two Majorana
modes on neighboring vertices can be oriented in two different
ways, depending on whether we take the +1 eigenstate of
±iγi,sγ j,s′ . Different orientations [which are marked by s → s′
to indicate +iγsγs′ in Fig. 2(b)] determine the particular eigen-
state up to a global phase. In particular, the ground space of the
toric code on a torus is four dimensional; one representative
ground state is described in our convention by the orienta-
tion shown in Fig. 2(b), where the same orientation is taken
along all 45◦ lattice lines. Different logical sectors (choices
of O1, O2 = ±1) of the plaquette model ground space can
be represented by flipping all the orientations of the links i j

along the nontrivial loops. We will focus our attention on the
ground state defined by the orientation shown in Fig. 2(b),
which corresponds to O1, O2 = +1.

B. Measurement setup

First we consider the case of measuring a subset of qubits
M in the toric code in either Z , Y , or X bases, with respective
probabilities (1 − q)(1 − p), p, and q(1 − p), which we call
the (p, q) measurement protocol. Our objective is to ana-
lyze the entanglement structure and order in the remaining
(unmeasured) qubits Mc after the measurements on M are
performed. The target quantities of interest are averaged over
all realizations of both measurement configurations and their
outcomes. In a later section, we will generalize to the case of
measuring along any direction in the Bloch sphere.

Due to the equivalence between the toric code and plaque-
tte models via a Hadamard transformation on one sublattice,
the (p, q) scheme for toric code is equivalent to the (p, q)
scheme on A sublattice and (p, 1 − q) scheme on B sublattice
for the plaquette model.

In the plaquette model, Pauli operators on site j correspond
to Majorana fermion bilinear operators

Xj = iγ j,1γ j,2 = iγ j,4γ j,3,

Yj = iγ j,2γ j,3 = iγ j,4γ j,1,

Zj = iγ j,1γ j,3 = iγ j,2γ j,4,

(4)

where the right equalities follow from the physical Hilbert
space condition (Dj = 1).

C. Stabilizers and measurement

We first provide a brief overview of the Majorana stabilizer
formalism specialized to our setting. The set of stabilizer gen-
erators G is a set of products of Majorana fermions, which are
independent and mutually commute with each other. This set
generates the stabilizer group S . In a Hilbert space of dimen-
sion 2N , a set G with exactly N generators uniquely defines
the common eigenvector |ψ〉 of any operator generated by G,
such that s |ψ〉 = |ψ〉 ∀s ∈ S .

If we measure the state |ψ〉 with an operator P, which is
a product of Majorana fermions, the resulting state is still
a Majorana stabilizer state and can be updated efficiently
[27,28]. There are two cases to consider. If P commutes
with all the stabilizer generators g ∈ G, the measurement
will not have any effect on the state, and the measure-
ment outcome can be inferred from the sign of the operator
in S , i.e., whether ±P ∈ S . If P anticommutes with some
of the stabilizer generators, the measurement outcome ±1
with equal probability. We also have to modify the set of
generators G—first we select one of the anti-commuting
generators, denoted as g0, and multiply g0 with the re-
maining anticommuting generators. Next, we replace g0 in
G by either ±P depending on the measurement outcome,
so that the new stabilizer set becomes {±P} ∪ {g0gi| ∀i 
=
0, gi anticommutes with P} ∪ {gi| gi commutes with P}.

The stabilizer formalism offers a way to confirm that
the ground state |G〉 is the projected free-fermion state
|ψ〉free, stabilized by two-point Majorana fermion operators:
iγ j,sγi,s′ . The action of projection operators on the stabilizers
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FIG. 3. (a) The update process for measuring the Majorana bi-
linear iγ jγi for a free-fermion state, which is a tensor product of
Majorana dimers. The +1 refers to the measurement outcome, which
sets the arrow direction in the final state. If the measurement outcome
is −1 the final arrows need to be reversed (detailed analysis in part
Sec. II C). (b) Updated pairings from measuring X , Y , and Z Pauli
operators on each site of the plaquette model. The updated pairings
need to be tiled to form the global dimer state. We have neglected the
sign tracking of the dimer pairs, which depends on the measurement
outcomes.

exclusively modifies adjacent Majorana pairs by multiplying
them together to form string operators. By applying all the
projections, these string operators eventually become closed
loops, forming Majorana loop operators, which act as stabi-
lizers for the ground state in Wen’s model. Our goal is to
measure Pauli operators corresponding to different two-point
Majorana operators on every site. Since these are physical
qubit operators, they commute with the projection operator,
and hence we can first consider their effect on the free-fermion
state before applying the projection operator at the end.

We graphically track the free-fermion state updates by
connecting Majorana fermions with a line when they form a
stabilizer operator together. When iγ jγi is measured, there are
two possible outcomes: (a) If there is already a connection
between γi and γ j in the initial state, no further updates are
required, and (b) if these two Majorana fermions are con-
nected to other Majoranas (e.g., γi is connected to γk and γl

is connected to γ j), the update will connect γ j to γi, and the
other Majoranas will be connected accordingly (e.g., γl to γk),
as shown in Fig. 3(a).

The signs of stabilizers and measurement outcomes can be
tracked and updated by using arrows on Majorana pairings,
as illustrated in Fig. 3(a). However, the signs will not be im-
portant when computing entanglement quantities or spin-glass
order parameters, in the case of X,Y, Z , i.e., stabilizer, mea-
surements. In the next sections, we will suppress the arrow
notation for signs and return to the task of sign-tracking when

discussing the linear order parameter in Sec. VI and on-site
measurements in general directions in Sec. VII.

III. COMPLETELY PACKED LOOP MODEL

Measuring Pauli operators on each site generate different
patterns of pairings [Fig. 3(b)], and measuring all qubits tiles
these patterns and results in different configurations of loops
on a square lattice. On the two different sublattices of the
square lattice, the factors q and 1 − q must be swapped, to
reflect the staggered measurement scheme of the plaquette
model.

Consider a configuration of measurements or tilings,
with the Nx, Ny, Nz number of X,Y, Z measurements per-
formed. Such a configuration has probability WC = pNy [(1 −
p)q]Nx [(1 − p)(1 − q)]Nz , which leads to the partition function
Z = ∑

C WC . The model and partition function are known as
the completely packed loop model with crossings (CPLC),
whose properties have been extensively studied in Ref. [29].
We will now review its important properties relevant to the
questions addressed in this paper.

In Ref. [29] the authors found that the phase diagram
consists of a short-loop phase and a long-loop “Goldstone”
phase, which are separated by a phase transition (see Fig. 4).
This model can be described by the replica limit n → 1
of a Z2 lattice gauge theory coupled to O(n) matter field.
Its continuum description is a sigma model, which is mas-
sive in the short-loop regime and massless in the Goldstone
phase [29].

We focus on two order parameters, which distinguish
the phases. First, we consider the watermelon correlation
functions Gk (i, j), which denote the probability that k distinct
strands connect points i and j, where k is even for the CPLC
model. For instance, G4 is the probability that two nodes
are connected by four distinct strands. Using renormalization
group (RG) techniques on the sigma model Ref. [29] found
that in the Goldstone phase

Gk (i, j) ∼ C0

ln(di j/r0)k(k−1)
, (5)

where di j is the distance between i, j and C0, r0 are nonuni-
versal constants. In the short-loop phases on the other hand,
the watermelon correlators decay as Gk (i, j) ∼ e−di j/ξ , with
correlation length ξ .

Next, we consider the spanning number defined for a CPLC
model on a cylinder, with two circular open boundaries. The
spanning number counts the number of strands that connect
the upper and lower boundaries; Ref. [29] found that in the
Goldstone phase, the average spanning number scales with
system size L as

ns ≈ 1

2π

(
ln

L

L0
+ ln ln

L

L0

)
, (6)

whereas it asymptotes to 0 in the short-loop phase.
To explore the entanglement properties of the toric code af-

ter measurements and their connection to the phase transitions
in the loop model, we need to leave some qubits unmeasured
as measuring all qubits results in a trivial pure product state.
Three scenarios are considered (see schematic description in
Fig. 4):
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FIG. 4. The schematic phase diagram of the completely packed
loop model with crossings (CPLC) [29]. The diagram distinguishes
between different phases based on three order parameters, high-
lighted in the panel below. These order parameters correspond to
loop configurations that connect points marked by red dots. The
first order parameter (I) quantifies the probability of four distinct
strands connecting two red points on a torus, referred to as the
“watermelon correlation function.” The second order parameter (II)
measures the expected number of strands connecting the top and
bottom boundaries on a cylinder, known as the “spanning number.”
The third order parameter (III) measures the expected number of
strands connecting two partitions of the top boundary on a cylinder
with a fixed boundary condition at the bottom. All three quantities
govern measurement-induced entanglement in the toric code state.

(I) Measuring all but two qubits in the bulk. In Sec. IV A we
show that the entanglement induced between the two unmea-
sured qubits is directly related to the watermelon correlation
function.

(II) Measuring all but two boundaries. In Sec. IV B,
we observe that the induced entanglement between the two
boundaries of the cylinder is directly related to “span-
ning number” order parameter discussed in this section.
Accordingly, in the short-loop phase, the entanglement is
asymptotically zero, while in the Goldstone phase, it exhibits
logarithmic scaling with the system size.

(III) Measuring all but a single boundary. We show in
Sec. V that in this case the entanglement between contigu-
ous bipartitions of the unmeasured boundary exhibit a phase
transition between area law and logarithmic law, reflecting the
underlying loop model configurations.

FIG. 5. Three possible pairings of unmeasured qubits i, j after all
other qubits are measured. (Left) Stabilizer strands prior to physical
qubit Hilbert space projections. (Right) Stabilizers after projections,
in canonical form. Note, in writing the stabilizers as Pauli strings, we
have assumed that the sites i, j are in the same sublattice. Configu-
rations a and b [in (a) and (b) respectively] are exclusively supported
on i or j and do not contribute entanglement, while configuration c
[in (c)] contributes one bit of entanglement.

IV. MEASUREMENT-INDUCED ENTANGLEMENT
BETWEEN TWO DISTANT REGIONS

In this section, we establish a connection between the aver-
age measurement-induced entanglement (MIE) of two distant
unmeasured regions and various order parameters within the
CPLC model. The MIE has been related to the underlying sign
structure of the measured wavefunction in Ref. [30], and we
will comment more on this in the concluding discussion.

A. MIE between two unmeasured qubits

We first demonstrate that the measurement-induced entan-
glement (MIE) between two unmeasured qubits at sites i and
j is equivalent to the watermelon correlation G4(i, j).

Recall that measuring a qubit specifies a given pairing for
the four Majoranas associated with the qubit. After all pairings
at all sites except for i, j are specified, we must implement the
projection operators Dk on every site, as in Eq. (3). Crucially,
any closed loop Majorana stabilizer commutes with the pro-
jection operator and is thus shared by both the free fermion
and the projected state in Eq. (3). However, if two qubits are
left unmeasured, then some Majorana stabilizers may be open
strands ending at the unmeasured sites. In this case the pro-
jection operator has a significant effect on the final stabilizers
and hence the entanglement between the unmeasured qubits.

To compute the measurement-induced entanglement, we
analyze the three ways (Fig. 5) in which Majorana stabilizer
strands terminate at the two vertices i, j. (Any closed loop not
coincident with i and j will not contribute any entanglement.)
Denote a stabilizer strand connecting Majoranas γi,s and γi′,s′

as (isi′s′ ). We suppress the sign information of the stabilizer in
this notation. The three classes of configurations are

(a) Each strand ends on Majoranas on the same vertex, i.e.,
we have two (isis′ ) and two ( js, js′ ) pairings.

(b) Two strands end on the same vertex and two strands end
on different vertices, i.e., there are one (isis′ ), two (is, js′ ), and
one ( js, js′ ) pairings.
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(c) All four strands terminate in different vertices, i.e., there
are four (is, js′ ) pairings.

Once we impose the local projection operators Di =
(i1i2i3i4), Dj = ( j1 j2 j3 j4), the stabilizer generators need
to be updated. Furthermore, to compute the entanglement
between the two unmeasured qubits, we choose a canoni-
cal gauge for the stabilizers [4,31] for a given bipartition,
stabilizer generators restricted to either subsystems are inde-
pendent. In this canonical form, the entanglement across a
bipartition is proportional to the number of stabilizers shared
between both parties.

We show examples of the stabilizer update into its canoni-
cal form in Fig. 5. In the right column in Fig. 5, we show the
stabilizer generators obtained from these patterns of strands,
set in their canonical form such that the stabilizer generators
restricted to either i or j are independent. As can be seen,
the number of such independent connecting stabilizers are
0,0, and 2 respectively, in the three types of Majorana pair-
ings a, b, and c. Thus, only configuration c contributes one
bit of entanglement, and the average measurement-induced
entanglement (MIE) generated between any two unmeasured
qubits on i and j is exactly given by the probability of four
distinct loops connecting i and j in the CPLC model, i.e.,
the watermelon correlation function defined in the previous
section,

〈SMIE(i, j)〉 = (
GCPLC

4 (i, j)
)

ln 2. (7)

Hence it follows from the results in Ref. [29] as quoted in
Eq. (5) that the averaged MIE is long-ranged in the Goldstone
phase and short ranged in the short-loop phase.

B. MIE between two unmeasured boundaries

Now we consider the toric code on a cylinder and explore
the effects of bulk measurements on the boundary chains of
qubits; in particular, we focus on the scenario where both
circular boundaries of the toric code are left unmeasured. For
the purposes of this section, the exact boundary conditions do
not matter, so we defer a discussion on the exact boundary
conditions and the exact mapping of this scenario to the loop
model to the next section. Here we just quote the final result
that under the Majorana loop mapping, the average entangle-
ment between these two boundaries can be directly mapped
to the “spanning number” in the loop model, as illustrated in
Fig. 4(II).

This can already be motivated from discussions in the
earlier subsection, where we showed that the entanglement
between the two remote regions of the toric code corresponds
to open strands connecting the regions in the CPLC model.
However, we must also transform the stabilizers to their
canonical forms in order to directly count their entanglement
contribution. In Sec. I B within the Supplemental Material
(SM) [32] we show that in this geometry, if there are n � 2
such strands connecting the top and bottom boundaries in the
loop model, we get n − 2 independent Majorana stabilizer
generators in their canonical form connecting the top and
bottom boundaries. The average n is just the spanning number
of the loop model, so we get the following correspondence:

〈SMIE〉 = (ns − 2) ln 2

2
. (8)

FIG. 6. Boundary conditions of the parton ground state of toric
code on cylinder. The rough and smooth boundary conditions on
two open edges of the cylinder are shown, along with the respective
truncated stabilizers on the boundaries. The x direction is taken to
have periodic boundary condition.

This correspondence holds true only for ns � 2, otherwise,
we have SMIE = 0. As noted in Eq. (6), the average spanning
number ns scales logarithmically with L in the Goldstone
phase and asymptotes to zero in the short-loop phase.

V. MEASUREMENT-INDUCED PHASE TRANSITION
IN THE BOUNDARY

In this section, we investigate the occurrence of
measurement-induced phase transitions in a 1d chain of qubits
on the boundary of a toric code state, where the remaining
qubits are measured in random local Pauli bases (as de-
picted in Fig. 1). Many of the findings in this section can be
generalized to different topologies (such as torus, cylinder,
or plane) and partitioning schemes of the unmeasured 1d
chain.

We begin by examining a toric code implemented on a
cylinder with two open circular boundaries. The boundary
stabilizers are truncated, resulting in two types of boundary
conditions: “rough” or “smooth”. The rough condition arises
when the plaquette stabilizers are truncated, while the smooth
condition occurs when the star stabilizers are truncated. In
Fig. 6, the truncated toric code represented in the parton
picture exhibits a simple form, where no distinction between
rough and smooth is evident. Consequently, it is unnecessary
to specify the type of boundary condition for the entanglement
analysis. Moreover, various boundary conditions for the sur-
face code can be created by measuring the toric code state on
a torus, followed by applying a single layer of local unitary
updates based on the measurement outcomes. For instance,
to achieve a surface code with smooth boundary conditions,
one should perform Pauli-X measurements along a horizontal
line on sub-lattice A. Conversely, a surface code with rough
boundary conditions can be formed by conducting Pauli-Z
measurements along a horizontal line on sublattice B. Apply-
ing both of these measurement patterns results in the surface
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FIG. 7. Pauli-X/Y/Z measurements on the bulk, with the boundary chain of qubits left unmeasured (left panel), correspond to a hybrid
circuit with measurement and unitary gates. The measurement model is equivalent to a staggered measurement protocol on the Wen plaquette
model. The plaquette model generates Majorana pairing patterns in that can be interpreted as world lines of Majorana fermions undergoing
a free-fermion hybrid circuit (middle panel). By Jordan-Wigner transformation, the same circuit can be identified with an Ising symmetric
measurement and unitary circuit on qubits (right panel).

code illustrated in Fig. 6, featuring both rough and smooth
boundary conditions. For concreteness, we will hereafter as-
sume the pair of rough and smooth boundary conditions for
the surface code.

In this section, we show that the boundary state after bulk
measurements is precisely the state generated by a hybrid
circuit in 1 + 1d composed of measurements and unitaries.
While this identification is general, for the particular case of
the toric code, the corresponding hybrid circuit is a 1 + 1d
Ising symmetric circuit [12,33]. Our mapping is motivated
by MBQC, whereby a circuit can be effectively realized
by single-site measurements on a resource state. However,
the toric code is not a universal resource state [34]; thus,
single-site measurement on the toric code cannot represent all
circuits.

A. Measured toric code as a 1 + 1d hybrid circuit

Starting from the parton representation of the toric code,
measuring each qubit modifies the pairings of four neigh-
boring Majoranas, as described in Sec. II. These pairings
can be interpreted as world lines of two Majoranas undergo-
ing circuit operations. In particular, the corresponding circuit
consists of the following gates acting on two neighboring
Majorana fermions: swap gate, identity gate, and fermion
parity measurement, as illustrated in the bottom of Fig. 7.
Thus, starting from an N × N toric code state on a cylinder,
the bulk measurements realize a depth N free fermion cir-
cuit on 2N Majorana fermions (Fig. 7 middle panel). Note
that for a fixed configuration of measurement bases, differ-
ent measurement outcomes correspond to hybrid circuits in
1 + 1d differing only in the signs of the Majorana stabilizers.
However, as noted earlier, the observables we are interested
in—entanglement and spin-glass order—are not sensitive to
these signs and only depend on the worldline connectivity.

Thus, for these observables, the hybrid circuits for a given
measurement bases configuration are equivalent, regardless of
the outcomes.

After all the projections onto the physical qubit Hilbert
space are imposed, the Majorana hybrid circuit maps via
Jordan-Wigner transformation to a depth N hybrid circuit of
local unitaries and local measurements on a one-dimensional
system of N qubits. This mapping is shown explicitly in Fig. 7.
We note that this mapping is somewhat subtle, as the par-
ton construction and Jordan-Wigner transformation are two
different mappings from one qubit to respectively four and
two Majorana fermions. Briefly, the reason why the claimed
mapping works is because at the top boundary, the top two
of the four Majoranas per parton decomposition are always
paired in a nearest-neighbor dimer state (Fig. 7, left), so the
physical qubit state is solely determined by the bottom two
Majoranas per site via the standard Jordan-Wigner mapping
(see Sec. II within the SM [32] for details).

The Majorana fermion parity measurements realize the
measurements of either the neighboring ZkZk+1 or on-site Xk

measurement in the qubit circuit, depending on which sublat-
tice the measurements are performed,

M1 = iγ̃k,2γ̃k+1,1 = ZkZk+1,

M2 = iγ̃k,1γ̃k,2 = Xk . (9)

Similarly, the Majorana swap gate implements either a two-
qubit unitary U1 or on-site unitary U2,

U1 : YkIk+1 ↔ XkZk+1,

U2 : Zk ↔ Yk. (10)

These circuit operations preserve an Ising Z2 symmetry
∏

i Xi.
The origin of this Ising symmetry of the hybrid circuit is the
fact that the

∏
i Xi string operator, supported on the rough

boundary, takes definite value for the initial surface code
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TABLE I. Circuit mapping of the (p, q) measurement model on
the toric code (TC). For completeness, the corresponding staggered
measurement protocol for the Wen plaquette (WP) model is men-
tioned in the parentheses.

Sublattice Measurement
(timesteps) TC (WP) Probability Qubit Circuit

B (odd) Y (Y ) p U1

X (Z) (1 − p)q Identity
Z (X ) (1 − p)(1 − q) M1

A (even) Y (Y ) p U2

X (X ) (1 − p)q M2

Z (Z) (1 − p)(1 − q) Identity

state, and any bulk measurement away from the boundary
commutes with this boundary operator.

The qubit circuit corresponding to the (p, q) measurement
protocol on the toric code (TC) state can be explicitly defined
as follows (see also Table I):

(1) In odd times, perform one of the following operations
on each pair of neighboring qubits: two-qubit unitary U1 (TC
measurement along Y ) with probability p, identity operation
with probability (1 − p)q (TC measurement along X ), and M1

measurement with probability (1 − p)(1 − q) (TC measure-
ment along Z).

(2) In even times, perform one of the following operations
on each qubit: on-site unitary U2 with probability p(TC mea-
surement along Y ), on-site measurement M2 with probability
(1 − p)q (TC measurement along X ), identity operation and
with probability (1 − p)(1 − q) (TC measurement along Z).

B. Bipartite entanglement in the unmeasured boundary

By identifying the bulk Majorana pairings with the clas-
sical loop model as in Sec. III, we can establish a direct
mapping between the entanglement across a bipartition of the
boundary state and a specific quantity depicted schematically
in Fig. 4(III) within the loop model. This quantity, which
counts the number of strands connecting two parts of the
boundary chain, diagnoses the long-range correlations in the
Goldstone phase of the loop model.

We also show in Sec. I A within the SM [32] that for the
one boundary setup, there is a one-to-one correspondence
between the Majorana strands and the canonical stabilizer
generators after implementing projections. Specifically, a
configuration with n open strands connecting the two parts
of the boundary corresponds to a quantum state with n
canonical stabilizer generators connecting the two parts,
thereby contributing n ln 2

2 units of entanglement. The bipartite
entanglement between two parts of the boundary thus acts
as an order parameter for the phase transition in the loop
configurations of the CPLC model.

In the Goldstone phase of CPLC, Ref. [33] found that the
entanglement between a contiguous subregion A of the qubit
chain has a logarithmic scaling with a correction. Therefore,
the entanglement of a contiguous subregion A of the unmea-
sured boundary chain of the toric code also satisfies the same

entanglement scaling in the Goldstone phase,

〈SA〉 ≈ ln(2)

2

(
# ln |A| + 1

4π
(ln |A|)2

)
, (11)

while it obeys an area law in the short-loop phase.

VI. LONG-RANGE ORDER IN THE BOUNDARY STATE

A. Spin-glass order parameter

As we showed in the previous section, the bulk measure-
ments performed on the toric code can be mapped to the
Ising-symmetric hybrid circuits studied by Sang et al. [12,33].
Given only ZZ measurements, the steady state is a “random
GHZ” state characterized by a random spin configuration
superposed with the flipped configuration. This is also known
as a spin-glass state, and the spin-glass order is captured by
the Edwards-Anderson order parameter,

O = 1

L

L∑
i, j

〈ψ |ZiZ j |ψ〉2. (12)

For spin-glass order, O ∼ L, whereas for paramagnetic order,
O ∼ O(1).

Reference [12] studied the phase diagram of hybrid
circuits involving ZZ and X measurements and random Ising-
symmetric Clifford unitaries, and a stable spin-glass phase
was found. The toric code measurements map to a subset of
symmetric Clifford unitaries—namely, the free-fermion oper-
ations defined above—and for this restricted class we provide
a fermionic perspective on the spin-glass order parameter and
the extent of the spin-glass phase.

The central object in the spin-glass order parameter is ZiZ j ,
which for a stabilizer state can take three values (±1 or 0). It
maps via Jordan-Wigner transformation to

ZiZ j = iγi,2

⎛
⎝k= j−1∏

k=i+1

iγk,1γk,2

⎞
⎠γ j,1. (13)

This string of Majoranas is nonzero if and only if all
Majoranas within the interval (i, j) are paired amongst them-
selves. (If any Majorana within the interval is paired with one
outside, that dimer will anticommute with the above string and
render its expectation value zero.)

In the short-loop phase, configurations are composed of
loops with a characteristic size ξ , which is independent of L.
Hence, the probability that all Majoranas within an interval
(i, j) are paired up is independent of |i − j| for |i − j| � ξ .
For q < 1/2, this probability is a nonzero O(1) number inde-
pendent of |i − j|, and thus the spin-glass order parameter is
extensive in the q < 1/2 short-loop phase.

B. Linear-order parameter from adaptive circuits

Due to the equal probabilities of ZiZ j having opposite
signs ±1, its average value is zero, making it necessary to
use nonlinear order parameters such as the Edwards-Anderson
order parameter defined in Eq. (12). However, in experimen-
tal setups, measuring nonlinear order parameters is generally
challenging and requires postselection of the measurement
outcomes. In practice it is more feasible to access expectation
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values of operators like Tr(ρO) which are linear in the density
matrix ρ, the ensemble of all measurement trajectories.

Here we detail an efficient protocol for converting the
(nonlinear) spin-glass order into a linear-order parameter. Our
protocol employs an adaptive strategy that applies a layer
of local unitaries on the boundary conditioned on the bulk
measurement outcomes. The main objective of this adaptive
unitary layer is to transform all the ± values of ZiZ j stabi-
lizer generators into positive values, thus eliminating the issue
of sign cancellation and converting the spin-glass order into
long-range ferromagnetic order, which is linear in the state
and can be accessed experimentally. The protocol consists of
two main parts: (1) identify ZiZ j stabilizers and determine
their signs, and (2) obtain single-site unitaries that can correct
the negative signs to positive signs.

Note that one approach for identifying and correcting the
sign of ZiZ j operators in the stabilizer group is to simulate
the entire evolution classically using the stabilizer formalism,
with the knowledge of all the O(L2) bulk measurement out-
comes. However, we propose a simpler algorithm that only
requires access to the directions and outcomes of measure-
ments within a correlation length O(ξ ) from the boundary, i.e.,
O(Lξ ) measurements.

The algorithm is as follows:
A. ZiZ j generator graph construction: We construct a

graph whose vertices are the boundary qubit sites i and which
has an edge i j if ±ZiZ j is in the stabilizer group. By knowing
the positions of X,Y, Z measurements, we can obtain the
corresponding configuration of Majorana strands. If for any
i < j, γi,2 is paired up with γ j,1, we draw an edge i j in the
graph. As per Eq. (13), this pairing implies a ZiZ j stabilizer if
and only if all the Majorana fermions in the interval (i, j) are
paired up internally. This can be checked for all the Majorana
fermions in (i, j) from the loop configuration. If indeed there
are strands that exit the interval (i, j), then we erase the
edge i j in the graph as this does not correspond to a ZiZ j

stabilizer. For the special case p = 0 without loop crossings,
this second step is not necessary, as all the Majorana strands
must be nested in this case. Note that the graph is a tree as the
Majorana strands are all independent generators.

We then obtain the sign of the ZiZ j stabilizers by tracking
the sign of the arrows along the strand γi,2γ j,1 and all the
intermediate strands γk,1γk′,2 for k, k′ ∈ (i, j). This requires
us to keep track of only O(Lξ ) measurement outcomes, where
ξ is the correlation length corresponding to the loop size in the
underlying CPLC model. If ZiZ j = −1, we color the edge i j.

B. Correcting the sign: From the previous step, we have
a colored graph. Flipping a spin k (acting with the unitary Xk)
changes the signs of all adjacent edges to the node k. We can
correct any negative sign on an edge by flipping all nodes on
one side of the edge [see Fig. 8(c)]. Repeating this process for
each edge allows us to flip the sign of every edge individually.
To correct all the edges with a minimal number of operations,
a search algorithm within the tree can be performed, which
has a polynomial complexity with respect to the system size.

Given access to the measurement protocol and outcomes,
this algorithm (with complexity polynomial in system size)
can be executed by a classical computer to determine the nec-
essary adaptive unitary protocol, resulting in all trajectories
having non-negative ZiZ j correlations. The resulting ensemble

FIG. 8. (a) To convert any (nonlinear) spin-glass long-range or-
der of the boundary state into (linear) ferromagnetic long-range
order, a layer of on-site unitaries conditioned on bulk measurement
outcomes can be applied to the boundary. (b) The classical pro-
cessing for the adaptive protocol involves using the distribution of
Majorana strands to construct a graph in which an edge between
nodes (qubits) i, j represents existence of a ZiZ j stabilizer. The edges
are colored depending on whether the sign of the stabilizer is ±1,
which can be computed from the measurement outcomes along the
strands. (c) The negative signs in the tree graph can be flipped by
applying Xk on all nodes on one side of the negative edge (e.g., those
encircled).

of trajectories ρ has long-range ferromagnetic order 〈ZiZ j〉ρ in
the original spin-glass phase.

VII. GENERAL ON-SITE MEASUREMENTS

We now consider the effect of measurements along an
arbitrary direction nxX + nyY + nzZ on the toric code. These
map to statistical models that go beyond the scope of the
previously discussed CPLC model (Sec. III). In the following,
we will demonstrate the representation of the measured toric
code using Gaussian tensor networks (GTN) and the real-
ization of Gaussian hybrid circuits within the virtual space.
Furthermore, we will establish a connection with well-studied
Gaussian hybrid circuits to showcase the robustness of the
boundary MIE phase diagram obtained from the CPLC model
in the general measurement case.

A. Tensor network representation of parton construction

The parton representation of the toric code state can be
reinterpreted as a two-dimensional tensor network composed
of local tensors |T 〉. These tensors consist of a single physical
leg representing a qubit and four virtual legs representing
the parton Majorana fermions. To construct a tensor network,
contractions between spins or contractions between Majorana
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FIG. 9. (a) The parton representation of the toric code state can
be interpreted as a local tensor with one “physical” qubit leg and four
“virtual” Majorana legs, along with an orientation for contraction of
the virtual indices. In this case, the orientation corresponding to a
toric code ground state is specified. (b) Measuring the parton state,
or equivalently, contracting the physical index with a state vector in
a general direction, leads to a Gaussian state on the four “virtual”
Majorana degrees of freedom. This Gaussian state can be mapped to
a Gaussian operation on two Majorana fermions, and can be directly
identified with a nonunitary operator.

fermions are allowed. A contraction between spins involves
projecting the two legs onto a maximally entangled state, and
a contraction between Majorana fermions sharing an edge
involves projecting the two Majorana fermions onto the eigen-
state of the iγiγ j operator with eigenvalue +1. The latter
assumes an orientation for each virtual bond which must be
specified.

We now describe the tensor network representation of the
projected parton states of the toric code. First, we introduce

the projection tensor that maps four Majorana fermions to one
spin,

P = |G1〉 |↑〉 + |G2〉 |↓〉√
2

. (14)

Here |G1〉 and |G2〉 are two fermionic stabilizer states of the
four Majoranas, where |G1〉 is stabilized by iγ1γ3, iγ2γ4 and
|G2〉 = iγ1γ2 |G1〉. The orientation for bonds between tensors
is specified in Fig. 9(a), and corresponds to the orientation of
Majorana pairs described in Sec. II.

B. Measured toric code as a Gaussian tensor network

Measuring a qubit in the �n axis and obtaining outcome ±1
corresponds to contracting the physical leg of a tensor with
the qubit state |ψ±�n〉, the eigenstate of operator �n · �σ = nxX +
nyY + nzZ with eigenvalue ±1. After contraction, the result-
ing projection tensor takes the form of a Gaussian fermionic
tensor on the remaining Majorana legs,

|F�n〉 = |G1〉 〈ψ�n| |↑〉 + |G2〉 〈ψ�n| |↓〉√
2

= eiφ cos θ
2 |G1〉 + sin θ

2 |G2〉√
2

. (15)

Here, θ and φ represent the spherical coordinates of the unit
vector �n = (nx, ny, nz ) = (sin θ cos φ, sin θ sin φ, cos θ ). The
fermionic operators F 1 and F 2 which stabilize |F�n〉 (meaning
that F 1,2 |F�n〉 = |F�n〉) are

F 1 = iγ1γ3 cos θ + iγ1γ2 sin θ cos φ + iγ1γ4 sin θ sin φ,

F 2 = iγ2γ4 cos θ + iγ4γ3 sin θ cos φ + iγ3γ2 sin θ sin φ.

The independence, commutation, and unit-square properties
of the fermionic operators F 1 and F 2 can be straightforwardly
demonstrated. These two fermionic operators uniquely define
|F�n〉 as a Gaussian state/tensor which in fact is the most
general form for four Majorana fermions. The covariance
matrix of the state (which is defined as 
i j = 〈 i

2 [γi, γ j]〉) in
the (γ1, γ2, γ3, γ4) basis is


 = 1

2

⎡
⎢⎢⎣

0 sin θ cos φ cos θ sin θ sin φ

− sin θ cos φ 0 − sin θ sin φ cos θ

− cos θ sin θ sin φ 0 − sin θ cos φ

− sin θ sin φ − cos θ sin θ cos φ 0

⎤
⎥⎥⎦.

In summary, each qubit measurement in the �n direction re-
sults in a Gaussian tensor supported on virtual legs. In the
setup where all but a top boundary of qubits are measured,
all degrees of freedom except the top boundary of qubits
are contracted (Fig. 10). We show in the SM [32] that the
Jordan-Wigner transformation of this boundary qubit state
precisely yields the Gaussian tensor network state in which the
boundary qubit projections and top row of Majorana contrac-
tions are removed (Fig. 10, right). Consequently, performing
measurements in the bulk of the toric code and employing
a Jordan-Wigner transformation at the boundary results in a
remaining state described by a Gaussian tensor network.

In the measured toric code, each quantum trajectory can
be represented by �ni, where �ni indicates both the type and
the outcome of the measurement when measuring the qubit
at site i. In this notation, the type of measurement is encoded
in the axis of �n, denoted as e�n, while the measurement result
is encoded in the direction of �n along the axis. The probability
of each trajectory arises from two sources. Firstly, there is the
classical probability set by the protocol, denoted as w(e�n),
representing the probability of selecting measurement axis
e�n. If the measurements bases are chosen independently from
site to site, the probability of a given set of measurement
bases is w({e�ni}) = ∏

i w(e�ni ). Secondly, the Born rule for
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FIG. 10. Bulk measurements of general on-site operators on the
toric code ground state can be mapped to a Gaussian circuit on a
chain of the virtual Majorana degrees of freedom. The qubit state
supported on the top boundary on the left-hand side maps under
Jordan-Wigner transformation to the Gaussian state supported on the
top boundary on the right-hand side (see Sec. III within the SM [32]
for derivation).

the measurement outcome determines the probability P(�n) of
the sign associated with �n based on the measurement. The
Born probability P({�ni}) of each trajectory {�ni} is the norm
of the wave function represented by the tensor network. The
combined probability for a particular quantum trajectory is
thus w({e�ni})P({�ni}).

This notation can be used to represent the (p, q) mea-
surement protocol for Z , Y , or X measurements discussed in
previous sections. Due to axis based definition of w and the
fact that e�n = e−�n, the probability distribution trivially satis-
fies w(e�n) = w(e−�n). Therefore, the weights associated with
these measurements are w(eZ ) = w(e−Z ) = (1 − q)(1 − p),
w(eY ) = w(e−Y ) = p, w(eX ) = w(e−X ) = q(1 − p). Based
on the stabilizer formalism, the Born probability for each
plus and minus sign is equal to P(�σ ) = 1

2 . Consequently,∑
�σ w(e�σ )P(�σ ) = 1. Also note that the classical probability

satisfies:
∑

e�σ
w(e�σ ) = w(eX ) + w(eY ) + w(eZ ) = 1.

C. Measured toric code as a Gaussian hybrid circuit

The Gaussian tensors in the virtual space can be understood
as Gaussian operations that perform nonunitary transforma-
tions between the lower and upper legs of the virtual space,
as illustrated in Fig. 9(b). Building upon this observation,
we establish a correspondence between a specific class of
nonunitary Gaussian circuits in 1+1d and the random Gaus-
sian tensor networks in 2d discussed in the previous section.

These Gaussian circuits are characterized by a set of op-
erators {K�n} and a probability distribution w̃(�n) associated
with the operations. The operators K�n act on the neighboring
Majorana modes γi and γi+1 within the virtual space, resulting
in nonunitary Gaussian circuits [22,23]. More explicitly, these
operators can be expressed as

K�n = (
1 − n2

x

)1/4
e−iα(�n)γiγi+1 , (16)

where α(�n) is defined by

e−2Re[α(�n)] =
(

1 + nx

1 − nx

)1/2

; ei2Im[α(�n)] = iny + nz(
n2

y + n2
z

)1/2 . (17)

It is worth noting that when nx is zero, the operations are
unitary. However, when nx is ±1, the operations correspond
to fermion parity measurements. For general �n with nx 
= 0,
the nonunitary operation K�n is a weak measurement of the

fermion parity. The spacetime geometry of the monitored
Gaussian circuit acting on a Majorana chain is depicted in the
right-hand side of Fig. 10, and each operation is randomly
chosen from the set of operations K�n. The probability of
each trajectory is determined by two sources: the classical
distribution w̃(�ni ) and the Born probability 〈ψ | K†

�ni
K�ni |ψ〉,

where |ψ〉 is the normalized wave function of the 1d fermion
chain before the action of the operator K�ni , and the updated

wave function after the action is given by
K�ni |ψ〉

||K�ni |ψ〉|| . Note

that the classical probability should satisfy w̃((nx, ny, nz )) =
w̃((−nx, ny, nz )) to not force any bias on the measurement
outcomes.

The first step in establishing the correspondence is to relate
the operator representation of the tensor |F�n〉 in the tensor
network to the set of operators in the Gaussian circuit. By
performing explicit contractions of the tensor network, it can
be shown that the operator representation of the tensor |F�n〉
is K�n√

2
. This implies that the final state of the hybrid circuit

and the tensor network, given the same set of directions, are
equal up to a normalization factor. However, this normaliza-
tion factor is only relevant for the probability of the trajectory.
This mapping establishes a direct correspondence between the
measurement directions and outcomes (labeled by �n) and a
family of operators in the circuit representation parameterized
by �n (Fig. 10).

The second step is to establish a connection between w̃(�n)
and w(e�n) such that identical space-time configurations in
both setups have the same probability. The probability of a
specific trajectory in the tensor network can be expressed
as P{�ni} = ∏

i w(e�ni )||
∏

i
K�ni√

2
|ψ0〉 ||2, |ψ0〉 being the initial

state/lower boundary of the toric code. By recursively defin-
ing |ψt 〉 = K�nt |ψt−1〉

||K�nt |ψt−1〉|| the probability can be written as P{�ni} =∏
t

w(e�ni )
2 ||K�nt |ψt−1〉 ||2, which establishes the correspondence

with the trajectory probability in the circuit representation.
The w(e�n) ensemble of measurements on toric code is thus

the same as the w̃(�n) = w(e�n )
2 ensemble of nonunitary circuits

on Majorana fermions, where the Gaussian operations K�n are
sampled with protocol probability w̃(�n) [with the restriction
w̃(�n) = w̃(−�n)]. This establishes the mapping between the
measurement protocol on toric code and a specific class of
nonunitary Gaussian circuits on the virtual space. However, it
is important to note that the integration domains for w̃(�n) and
w(e�n) are different. While w(e�n) is defined over a hemisphere
due to its axis-based definition, w̃(�n) is defined over the entire
sphere.

D. Phase diagram of boundary MIE after general
on-site measurement

Following the circuit mapping that connects different mea-
surement protocols on toric code with Gaussian fermionic
circuits, we can readily use results of the entanglement phase
diagram of nonunitary Gaussian circuits to infer the phase
diagram of the MIE in the boundary state after measuring the
bulk of the toric code state on a cylinder, along any general
directions. The corresponding circuit problem has been exten-
sively studied both numerically and analytically recently, e.g.,
see [22–24]. Corresponding to any Gaussian circuit ensemble
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that satisfies the condition w̃(�n) = w̃(−�n), we can find the
bulk measurement protocol on the toric code that realizes that
Gaussian circuit, via Eq. (17).

These studies have found the entanglement phase diagram
to consist of regions of area law and critical logarithmic
scaling separated by phase transitions, and we infer that the
boundary MIE phase diagram also behaves similarly. This
demonstrates that the MIE phase diagram we obtained by
mapping the result of specific measurement protocol (along
X,Y, or Z directions) to the CPLC model, is qualitatively ro-
bust to modifications of the measurement protocol to general
on-site measurements. However, the specific phase boundaries
and the nature of the phase transition between the area law and
critical phases vary between different ensembles, as discussed
in [23].

VIII. DISCUSSION

We explored the use of the measurement-based quantum
computing (MBQC) setup for generating and manipulating
quantum phases of matter. Specifically, we focused on the
toric code, a topologically ordered state, and mapped the ef-
fects of random Pauli measurements to a classical loop model,
allowing for an analytical understanding for measurement-
induced entanglement. Additionally, we mapped general
on-site measurements to Gaussian tensor networks and hybrid
circuits.

We found that the entanglement pattern imprinted on the
unmeasured qubits following measurement of the bulk of the
toric code ground state undergoes a phase transition that re-
flects the transition in the corresponding classical loop model.
When a boundary chain of qubits is left unmeasured, the
boundary state can have either area law or logarithmic scaling
of entanglement entropy, depending on the relative X,Y, Z
Pauli measurement frequencies. Additionally, we found that
these states can also be distinguished by a spin-glass order
parameter. This allowed us to devise an adaptive protocol
conditioned on the measurement results, which can steer the
boundary state into a ferromagnetically ordered state, and this
can be efficiently probed in experiments.

Because of the relative simplicity of bulk single-site mea-
surements and the fact that toric code states have already been
realized in quantum hardware [35,36], the setup described
in this paper are experimentally relevant. Our MBQC-based
setup provides a way to simulate d + 1-spacetime dimen-
sional hybrid circuits by one layer of local measurements on

a d + 1 dimensional entangled resource states. In quantum
devices with limited coherence times, this setup may provide
a promising practical route towards simulating such hybrid
circuits.

Our paper illustrates how parton constructions can be
leveraged in MBQC schemes, and it is worth exploring gen-
eralizations especially in higher-dimensional resource states.
For example, fracton orders admit Majorana parton descrip-
tions [37,38], and one can consider the effect of measurements
on such states. Another noteworthy example is the Levin-Wen
3D plaquette model [39], which serves as a natural general-
ization of the projection of a free-parton state prepared on the
edges. One can analyze the effect of measurements by a very
similar mapping to a loop model in three dimensions. Further-
more, considering higher dimensional unmeasured manifolds
might lead to more complex entanglement structures.

It is also interesting to investigate the relation between
measurement-induced entanglement (MIE) in random bases
to other aspects of wavefunction complexity. For example,
MIE after measurements in a fixed basis can diagnose the sign
structure in that particular basis [30], and randomizing the
measurement bases may partially probe the robustness of the
sign structure to local unitary transformations (“intrinsic sign
structure”). There may also be connections between the uni-
versality of the resource state in MBQC and the entanglement
pattern induced by measurement. For example, a similar bulk
measurement protocol on cluster states, which are universal
MBQC resources, leads to a phase transition between area-
and volume-law states [18]. This can be contrasted with the
toric code case (which is not a resource for universal MBQC)
in this paper, where any subregion of the boundary state has
at most logarithmic scaling of entanglement entropy.
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