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Topological Anderson insulating phases in the interacting Haldane model
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We analyze the influence of disorder and strong correlations on the topology of two-dimensional Chern
insulators. A mean-field calculation in the half-filled Haldane model with extended Hubbard interactions and
Anderson disorder shows that the disorder favors topology in the interacting case and extends the topological
phase to a larger region of the Hubbard parameters. In the absence of a staggered potential, we find a novel
disorder-driven topological phase with Chern number C = 1, with the coexistence of topology with long-range
spin and charge orders. More conventional topological Anderson insulating phases are also found in the presence
of a finite staggered potential.

DOI: 10.1103/PhysRevB.109.125145

I. INTRODUCTION

Topological phases of physical systems are one of the
pillars of modern condensed matter [1]. The topological fea-
tures of a material are established at the noninteracting level,
and the fate of topology in strongly correlated systems is a
relevant topic of current research in the field [2]. Disorder,
always present in real materials, also plays a vital role in
the phase diagram of correlated electrons. Although strong
disorder would be detrimental to topology, eventually leading
to trivial, Anderson localized phases in two-dimensional (2D)
systems [3], disorder-induced topological phases (Anderson
topological insulators) [4] are an exciting possibility proposed
recently. In this work, we explore the interplay of topology,
disorder, and interactions using the Haldane model at half
filling [5] as a paradigm of topological Chern insulators in
two dimensions. For that, we consider the extended Hubbard
model with on-site and nearest-neighbor (NN) U and V inter-
actions, respectively, subjected to Anderson disorder W and
explore the ensuing mean-field phase diagram.

The Haldane model was originally set as a lattice model
of spinless electrons on the honeycomb lattice with nearest-
neighbor (t) and complex next-nearest-neighbor (t2eiφ) hop-
ping energy scales, as schematically shown in Fig. 1(a).
At half filling, a sufficiently large staggered potential �

(|�/t2| > 3
√

3) leads to a topologically trivial phase, whereas
the value of t2/t (combined with its corresponding phase φ)
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promotes the topological regime, as shown by the solid line in
the phase diagram in Fig. 1(b). These phases are identified by
the value of the Chern number, which counts the number and
chirality of edge modes via the bulk-boundary correspondence
once open boundary conditions are considered. In particular,
with added disorder, these topological regions in the phase
diagram are deformed, as indicated by the colored regions in
Fig. 1(b), here for W = 4t [6]. In the presence of an added
spin degree of freedom, the corresponding topological phases
have a Chern number C = ±2.

It is well known [7] and will be further detailed later that
an on-site interaction U drives the system to a spin density
wave (SDW), while the NN interaction V promotes a charge
density wave (CDW) phase. Both are topologically trivial
insulators with a finite local order parameter emerging for
each order type. The phase diagram of the clean, interacting
model in the mean-field approximation is shown in Fig. 2(a)
(dashed lines). We primarily aim to generalize these results to
include quenched, uncorrelated disorder. An initial expecta-
tion is that a critical value of disorder strength will generally
drive the topological insulator to a trivial Anderson insulator.
Still, as we will see in what follows, the ensuing phases in
the presence of interactions can be manifestly richer than
that.

This paper is organized as follows: In Sec. II we introduce
the model and the methods we use to analyze its properties.
Our main findings are presented in Sec. III A. We put these
results in context by comparing them with previous works in
Sec. III B. In Sec. IV A, we provide details on the nature of
the new disorder-driven topological C = 1 phase and discuss
the effect of the disorder on the original phase boundaries of
the clean phase diagram. The disordered phases arising with
a finite staggered potential are reviewed in Sec. IV B. Open
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FIG. 1. (a) Schematic representation of the Haldane model on
the honeycomb lattice with annotated terms for the hopping between
nearest and next-nearest neighbors. (b) Phase diagram of the (non-
interacting) spinless Haldane model as a function of the staggered
potential and effective Haldane mass parametrized by the phase of
the NNN hoppings. Here, the solid lines give the clean case (W = 0)
result, whereas the colors map shows the topological regions in the
presence of finite disorder (W/t = 4). We have set t2 = 0.2t . The
linear lattice size used in (b) is L = 19, and the Chern numbers are
obtained by averaging over 100 disorder configurations. The Chern
number is doubled in the spinful system.

questions and possible future works are discussed in Sec. V.
Technical details on the model and calculations can be found
in Appendix A.

II. MODEL AND METHODS

The Haldane model is described by the Hamiltonian [5]

H0 = −t
∑
〈i, j〉

c†
i c j − t2

∑
〈〈i, j〉〉

e−iφi j c†
i c j + �

∑
i

ηic
†
i ci, (1)

where ci = A, B are defined in the two triangular sublattices
that form the honeycomb lattice. The first term t represents
a standard real nearest-neighbor hopping that links the two

triangular sublattices. The t2 term represents a complex next-
nearest-neighbor (NNN) hopping t2e−iφi j acting within each
triangular sublattice with a phase φi j that has opposite signs
φi j = ±φ (governing the chirality) in the two sublattices. The
structure of the NNN hoppings is shown in Fig. 1(a). This term
breaks time-reversal symmetry and opens a nontrivial topo-
logical gap at the Dirac points proportional to the magnitude
of t2. We restrict the calculations to φ = π/2 since it maxi-
mizes the topological region in the noninteracting regime [see
the solid line in Fig. 1(b)] and take the value t2 = 0.2t . The
last term in Eq. (1) represents a staggered potential (ηi = ±1).
It breaks inversion symmetry and opens a trivial gap at the
Dirac points, as seen in Fig. 1(b). Spin doubles the degrees of
freedom, and the Chern number is C = ±2 in the topological
phases.

The interacting Hamiltonian we consider has the form

Hint = U
∑

i

ni,↑ni,↓ + V
∑

〈i, j〉,σ,σ ′
ni,σ n j,σ ′ , (2)

where ni,σ = c†
i,σ ci,σ is the number operator. The on-site in-

teraction term U penalizes double occupancy, thus favoring a
homogeneous charge distribution between the two sublattices.
In this sense, it goes against the staggered on-site potential �

and can favor topology to some extent. U also has the effect
of polarizing the spin, and over a critical value, it drives the
system to a spin density wave insulator. The NN repulsive
interaction V favors sublattice charge imbalance and, similar
to �, goes against topology.

A chemical potential (Anderson) disorder is implemented
by adding to the Hamiltonian the term Hdis = ∑

i∈A,B εic
†
i ci,

with a uniform distribution of random local energies, εi ∈
[−W/2,W/2]. This on-site term will contribute to the
mean-field decoupling of the Hubbard U . Unless otherwise
specified, the disorder averages were done using 50 disorder
configurations.

FIG. 2. (a) Phase diagram of the extended Haldane-Hubbard model on the half-filled honeycomb lattice as a function of the interactions U
and V with zero staggered potential. The dashed lines mark the different phases in the absence of disorder. Solid lines separate the phases when
Anderson disorder W = 4 is included. Four different phases are observed, including (I) a topologically trivial phase featuring charge order,
(II) a topological Chern insulator with total Chern number C = 2, (III) a topologically nontrivial region but with C = 1, and (IV) a region
exhibiting spin ordering that is topologically trivial. (b) Analysis of the effective staggered spin-dependent potential �σ

MF [see Eq. (4)] along
a line cut in (a) (see the horizontal dash-dotted line), with V = 1.65, which explains the spontaneous symmetry breaking of SU(2) that leads
to a C = 1 phase: the red-shaded region maps the topologically nontrivial region for this disorder strength in the noninteracting regime [see
Fig. 1(b)]. (c) The fraction of disorder realizations that result in a given Chern number C for a specific point in the C = 1 phase [star in (a)]
as a function of the disorder strength W ; the inset gives the corresponding average Chern number. The linear lattice size used in (b) and (c) is
L = 14.

125145-2



TOPOLOGICAL ANDERSON INSULATING PHASES IN THE … PHYSICAL REVIEW B 109, 125145 (2024)

A mean-field decoupling of Eq. (2) gives

HMF
int =U

∑
i,σ

[〈ni,−σ 〉c†
i,σ ci,σ − 〈c†

i,−σ ci,σ 〉c†
i,σ ci,−σ ]

+ V

[ ∑
〈i, j〉,σ,σ ′

〈n j,σ ′ 〉c†
i,σ ci,σ

−
∑

〈i, j〉,σ,σ ′
〈c†

j,σ ′ci,σ 〉c†
i,σ c j,σ ′

]
, (3)

where the fields 〈c†
i,σ c j,σ ′ 〉 are obtained self-consistently (see

Appendix A). Finally, the total calculated Hamiltonian reads
H = H0 + HMF

int + Hdis.
From the total calculated Hamiltonian H we define the

effective staggered spin-dependent potential �σ
MF,

�σ
MF = 1

N

∑
i∈A

|ξi,σ − ξ ji,σ |
2

, (4)

where ji ∈ B is the NN of site i, which belongs to the same
unit cell, and ξi,σ is a diagonal element of H in the real-space
tight-binding basis c†

i |0〉 = |i, σ 〉,

〈i, σ |H |i, σ 〉 ≡ ξi,σ = U 〈ni,−σ 〉 + V
∑
�δ,σ ′

〈ni+�δ,σ ′ 〉 + εi. (5)

After disorder averaging, �σ
MF turns out to be an important

quantity for understanding the obtained results, as will be
discussed in Sec. IV.

III. MAIN FINDINGS AND ANTECEDENTS

A. Main results

Figure 2 summarizes our main results. In particular,
Fig. 2(a) shows the phase diagram of the disordered, spin-
ful Haldane model as a function of the extended Hubbard
interactions U and V in units of the NN hopping parame-
ter t . The Haldane parameters are chosen in the topological
region of Fig. 1(b) with zero staggered potential � = 0 and
φ = π/2. The dashed lines mark the different phases in the
absence of disorder for better comparison: the standard Chern
insulator with Chern number C = 2 and the C = 0 SDW and
CDW phases. Solid lines separate the phases when Anderson
disorder W = 4 (in units of t) is included. The disorder is
seen to enlarge the topological C = 2 region and to generate a
novel C = 1 phase near the boundary of the three phases. This
phase has long-range spin and charge orders. Figures 2(b) and
2(c) present an interpretation of this C = 1, which will be put
forward in Sec. IV.

Finally, we highlight that the experimental realization of
the Haldane model [8,9] and the ability to realize strongly cor-
related Hubbard models using cold-atom systems [10,11] give
real prospects for emulating the spinful, extended Haldane-
Hubbard model [12,13]. With the ability to include disorder
[14,15], the door is open to direct confirmation of the results
of this work.

B. Antecedents

The effect of disorder and/or Hubbard interactions on the
Haldane model has a long history related to the nontopological
honeycomb lattice. The phase diagram in Fig. 2 substituting
the Chern insulator phase with a semimetal has been revis-
ited over and over since the pioneering works in [16–19]. In
this section we will discuss only the previous works that are
closely related to our results.

(1) A C = 1 phase in the clean, spinful Haldane model
with only on-site Hubbard U was found in [20–26] as an
interplay of finite staggered potential � and U . No C = 1
was found in mean-field calculations with � = 0. The new
phase is spin polarized and was termed a “topological spin
density wave.” An intuitive physical picture of this phase will
be described in the next section. An important open question
around this phase is whether or not it is an artifact of the
used approximations, like the mean-field approximation, since
it was not found in the dynamical cluster approximation in
Ref. [27]. The C = 1 phase was recently reestablished with an
exact diagonalization calculation in [26]. Its stability against
long-range Coulomb interaction was examined in [25] using a
diagrammatic Monte Carlo method.

(2) Topological transitions in the extended Haldane-
Hubbard model (U , V ) with zero staggered potential and no
disorder (� = 0, W = 0) were studied in [7]. No C = 1 phase
was found there, except for a particular cluster used in the
exact diagonalization attributed to finite-size effects. A variety
of techniques led the authors to conclude that topological and
locally ordered phases do not coexist in the model.

(3) Interestingly, a C = 1 phase was also found in the topo-
logical square lattice (C = 2 in the noninteracting limit) [23]
with U and V interactions and a sublattice potential � = 2.
A mean-field calculation showed a C = 1 phase called the
(interaction-driven) antiferromagnetic Chern insulator by the
authors. As in previous works, this phase is not present when
� = 0.

(4) The interplay of NN interaction V , disorder, and topol-
ogy in the spinless Haldane-Hubbard model was addressed in
[28]. A topological Anderson insulator found in the noninter-
acting system with a finite staggered potential was shown to
be stable to the presence of sufficiently small interactions.

The study of the effect of disorder in the spinful extended
Haldane-Hubbard model is clearly missing. Also missing
from previous results is a C = 1 phase with � = 0.

IV. CHARACTERIZING THE NEW ANDERSON
TOPOLOGICAL INSULATORS

A. Phase diagram in the � = 0 case

The phase diagram of the � = 0 case is shown in Fig. 2(a).
The most interesting finding there is the C = 1 phase arising
from the interplay of U , V , and W . It is a topological Anderson
insulator phase that is highly disordered and shows a nonzero
spin polarization and charge inhomogeneities (electron-hole
puddles) with a nonzero mean value of the SDW and CDW
order parameters. The spin and charge order parameters are
defined in Eq. (A2). Their evolution as a function of the lattice
size is shown in Fig. 3 (N is the number of unit cells). The
circles are calculated points with the standard deviation of
the mean shown as the error bars by the vertical lines (see
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FIG. 3. (a) Spin and (b) charge order parameters in the C = 1
phase and (c) fraction of disorder configurations which yield C = 1
as a function of the inverse of lattice size 1/N , with N = L2 being
the number of unit cells. The charge order parameter has been fitted
to |OCDW| = m(1/N ) + b. The error bars are the standard error of the
mean (see Appendix A).

Appendix A). As inferred from Fig. 3(a), it is clear that the
spin order parameter will remain finite in the thermodynamic
limit. The CDW order parameter shows more oscillations, but
as is evident from the fit in Fig. 3(b) (see the caption), it
does not extrapolate to zero. To illustrate the robustness of the
C = 1 phase as the system size increases, we show in Fig. 3(c)
the fraction of C = 1 disorder configurations as a function
of 1/N , where N is the number of unit cells. This result
strongly indicates that the C = 1 phase is not a finite-size
effect. A typical configuration of the charge inhomogeneity in
the C = 1 phase is shown in Fig. 4 for U = 5.5, V = 1.73, and
W = 3.89. This phase is at odds with the analysis in Ref. [7],
which found no coexistence of topological and long-range-
ordered phases in the clean model.

The C = 1 phase described previously in the spinful Hal-
dane model [20–23,26,27,29,30] was due to the interplay of
a staggered potential and the local Hubbard U interaction
without NN interaction V in the clean topological lattice. The
C = 1 phase was found in a narrow region between the two
topologically trivial insulators induced by high values of the
staggered potential (trivial insulator) and local U interaction
(Mott-Hubbard insulator). The exotic phase was dubbed a
topological spin density wave and is the same type as the one
described here.

An intuitive understanding of the C = 1 phase works as
follows: It is easy to see that, at the mean-field level, the
CDW order parameter works like a staggered potential in the
Haldane model, while the SDW order parameter works like
a spin-dependent staggered potential, with opposite signs for
the two spin polarizations. The presence of both SDW and
CDW order parameters will act as a trivial gap for one spin
polarization and reinforces the topological gap in the other.
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FIG. 4. Typical charge density imbalance in the C = 1 phase for
a given disorder configuration. Each circle represents the difference
between the electron densities of the two sublattices for a given unit
cell (nA − nB), where n
 = ∑

σ=↑,↓〈ni∈
,σ 〉. The linear lattice size
used is L = 17.

As a consequence, with increasing U , the bands for one spin
polarization will become trivial, while for the other they will
still be topologically nontrivial. Since the Chern number is the
sum of the two spin contributions, there will be a region in the
parameter space where C = 1. This explanation of the C = 1
phase is sketched in Fig. 5. The left graph shows the bands of
the Haldane model with zero staggered potential around the
Dirac points K and K ′. The bands are degenerated in spin and
have an inverted gap. The CDW induced by a NN interaction
V splits the degeneracy of the valleys as shown in the middle
panel. The SDW due to an on-site interaction U lifts the spin
degeneracy and moves the spin-polarized bands as indicated
in the right panel. For a critical value of the parameters, the
inverted gap closes in one of the spin-polarized bands that
becomes topologically trivial, giving rise to the C = 1 phase.
This explanation holds exactly for the C = 1 phase observed
with V = 0 and finite staggered potential �. A finite � ex-
plicitly breaks sublattice symmetry and leads to a finite charge
imbalance equivalent to CDW.

In comparison with previous works in the literature one is
tempted to think that the role played by � there is taken by

FIG. 5. Evolution of the Haldane bands around the K and K ′

points of the Brillouin zone under the effect of the interactions U
and V . �H is the topological gap of the Haldane model.
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V in our case. However, the analysis of the clean extended
Haldane-Hubbard model does not show the C = 1 phase [7].
In the clean limit, the simultaneous presence of CDW and
SDW is energetically unfavorable. It is disorder that, allowing
the coexistence of topological and long-range orders, permits
the CDW order parameter to work as a trivial mass. This
view is corroborated by Fig. 2(b), where we plot the effective
staggered spin-dependent potential �σ

MF given by Eq. (4) for
fixed V and W and varying U along the horizontal dash-dotted
line indicated in the phase diagram in Fig. 2(a). In the clean
limit, this quantity plays the role of the effective gap for
the spin-resolved bands shown in Fig. 5. The first horizontal
line in Fig. 2(b) at 3

√
3t2 marks the topological transition in

the clean, noninteracting Haldane model. In the presence of
disorder, the topological region is wider [see Fig. 1(b) at φ =
π/2], as signaled by the red-shaded region in Fig. 2(b). The
two horizontal dashed red lines locate, within the uncertainty
due to disorder averaging, the topological transition for the
disordered Haldane model. It is seen that, for small U , �σ

MF
is spin degenerate and has values above the topological transi-
tion. This agrees with the trivial CDW phase (region I) in the
phase diagram in Fig. 2(a). Increasing U leads to a decrease
in �σ

MF, which, for some critical interaction, falls below the
topological transition line. This is compatible with the topo-
logical C = 2 phase (region II) in the phase diagram. With a
further increase in U , the spin degeneracy of �σ

MF is lifted,
and the effective staggered potentials start to increase with U .
At some point, one of the effective spin-dependent staggered
potentials rises above the topological transition line, while the
other is still below it. The system should then have C = 1,
which is fully compatible with region III in the phase diagram.
Astonishingly, the phase boundaries in Fig. 2(b) are almost
in quantitative agreement with the true phase diagram in
Fig. 2(a). This clearly indicates that, indeed, V plays the role
of � in the present case, as long as disorder is high enough.

The key role played by disorder is illustrated in Fig. 2(c),
where the fraction of disorder configurations for the three
possible Chern values, C = 0, 1, 2, is shown for a specific
point in the phase diagram [blue star in Fig. 2(a)] as a function
of the disorder strength W . There is an optimal disorder for the
C = 1 fraction to dominate and the average Chern number to
approach C = 1 (see the inset). In the thermodynamic limit, it
is expected that a finite region with C = 1 will develop around
the optimal value of disorder. As expected, for higher disorder
the system is in a trivial phase. However, a trivial phase also
shows up at small disorder, when only one of the ordered
phases is established. We conjecture that the rather inhomo-
geneous CDW induced by disorder in the C = 1 phase, as
exemplified in Fig. 4, may be the missing ingredient to stabi-
lize the coexistence of the SDW and CDW absent in the clean
limit. Nevertheless, the fact that the C = 1 phase appears only
for high values of disorder indicates that it is a nonperturbative
phase and that explanations based on perturbations around the
clean limit have to be taken with caution.

Our results manifest the importance of disorder in the
boundary regions close to phase transitions. We analyzed the
effect of the various parameters (U , V , W ) on the boundaries
between the C = 2 phase and the CDW and SDW in Fig. 2(a)
for the � = 0 case. We see that Anderson topological insulat-
ing phases with C = 2 can emerge beyond the phase transition
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FIG. 6. Phase diagram (a) as a function of U and V for fixed W
and (b) as a function of U and W for fixed V for a finite � = 1.2.
The color map represents the value of the average Chern number.
These plots were obtained for a system with linear size L = 10 and
averaged over 100 disorder configurations. The hopping parameters
are the same as the ones used in previous results.

lines of the clean model, as shown in Fig. 2(a), in regions
which were previously (for W = 0) topologically trivial. Over
a critical (interaction dependent) value of disorder, topology
disappears, and only trivial insulators remain. Full phase di-
agrams for different sets of the parameters (U , V , W ) can be
found in Appendix B.

B. Disorder in the finite-� phase diagram.

As mentioned before, an SU(2) broken C = 1 phase was
previously found in the clean Haldane-Hubbard model as a
result of a competition of the SDW insulator driven by U
and the trivial insulator driven by the staggered potential �

[20–23,26,27,29,30]. We analyzed the influence of disorder
and the interaction V on that competition for a fixed value of
� = 1.2. In Fig. 6(a) we show the (U,V ) phase diagram for
W = 5. It can be seen that a C = 1 phase appears [white pixel
in Fig. 6(a)] at much lower values of U and V . The phase
diagram in the (U,W ) plane is shown in Fig. 6(b) for V = 0.
For small values of U , where the clean limit shows trivial
behavior, we see a reentrant topological Anderson insulator
phase with C = 2 as disorder increases. In this context it is
worth noting the result discussed in [22], where it was seen
that an explicit breakdown of SU(2) from having different
hopping amplitudes in the two sublattices led to the C = 1
phase even at U = 0.

It is worth noting that plateau transitions C = 2 → 1 → 0
are possible with increasing disorder at finite � and interac-
tions. Plateau transitions C = ±2 → ±1 → 0 with increasing
disorder are conjectured to be ruled out in quantum Hall
systems [31] and other Chern insulators derived from Dirac
Hamiltonians [32]. In those systems, starting with |C| � 2,
a plateaus transition �C = ±1 is never observed with in-
creasing disorder due to ensemble averaging over disorder
realizations. Our results for finite disorder in the presence of
interactions show that such a transition is possible, in particu-
lar if a finite trivial mass is also present.

V. OPEN QUESTIONS AND FUTURE

As mentioned in Sec. III B, an important open question is
to make sure that the C = 1 phase is not an artifact of the
mean-field approximation [27] or a finite-size effect [7]. Ex-
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FIG. 7. Phase diagrams as a function of V and W for different choices of U obtained for a system with linear size L = 10 and averaged
over 50 disorder configurations. The hopping parameters are the same as the ones used in the results presented in the main text.

ploring this region of the parameters with alternative methods
like those in [26] would be very enlightening.

Topological phase transitions between C = 1 and C = 0 or
C = 2 were found to be of third order in the clean system
[20,33]. Disorder makes the analysis of the nature of the phase
transitions a hard problem that was left aside in this work,
but studying the nature of the phase transition between the
C = 1 and surrounding phases is worth tackling in the future.
This is the problem of the phase transition between a standard
insulator and a topological Anderson insulator [34], which
is also related to the issue of localization in quantum Hall
systems [32,35–37]. Another interesting issue to explore is the
structure of the topological edge states in the new phase and
their evolution with increasing disorder.
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APPENDIX A: MEAN-FIELD CALCULATIONS

In the main text, we described the general methodology
to extract the phase diagram of the model. Here, we intro-
duce further technical details. In particular, the procedure to
compute the mean-field parameters 〈c†

i,σ c j,σ ′ 〉 is as follows:
We initialize the parameters (or, in other words, we choose
an initial condition for the system); we then diagonalize the
Hamiltonian and obtain its eigenvectors and energy spectrum
and recalculate the mean-field parameters,

〈c†
i,σ c j,σ ′ 〉 =

∑
E<EF

[
ψσ

i (E )
]∗

ψσ ′
j (E ), (A1)

with EF being the Fermi energy and ψσ
i (E ) being the wave

function amplitudes. Finally, we define a convergence thresh-
old ε and repeat the previous steps until |〈c†

i,σ c j,σ ′ 〉I+1 −
〈c†

i,σ c j,σ ′ 〉I | < ε, with I being the iteration number.
Since a mean-field method can be biased (i.e., the mean-

field parameters reached after convergence can be heavily
dependent on the choice of initial conditions), we employ a
set of initial conditions, apply this procedure to each of them,
and choose the solution that yields the lowest ground-state
energy for this system (which can be calculated as the sum
of the energies of the occupied eigenstates). The simple test
of convergence we presented can, in some cases, prove to
be very slow to reach convergence. There are many ways of
circumventing this issue; we chose to, after each iteration,
define the new mean-field parameters as the average of the
previous two iterations.
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FIG. 8. Phase diagrams as a function of U and W for varying choices of V obtained for a system with linear size L = 10 and averaged over
50 disorder configurations. The hopping parameters are the same as the ones used in the results presented in the main text.

The topology of each phase is determined by the Chern
number, which can be readily computed following Fukui’s
method [38], modified to work with disordered systems [39],
where translational invariance is broken.

The mean-field order parameters are obtained self-
consistently for a fixed disorder configuration. Due to the
finite size of the simulated clusters, we repeat the proce-
dure for Ndis ∼ 50–100 disorder realizations. For the C =
1 phase, we compute the Chern number for each disor-
der configuration. A perfectly quantized C = 1 is obtained
for over 60% of the disorder configurations in cluster
sizes N = 10–23, reaching 70% for the largest sizes [see
Fig. 3(c)].

To characterize the onset and nature of various local orders,
we define order parameters for charge density waves and spin
density waves as

OCDW = 1

N

∑
σ

(∑
i∈A

〈ni,σ 〉 −
∑
i∈B

〈ni,σ 〉
)

,

OSDW = 1

4N

(∑
i∈A

(〈ni,↑〉 − 〈ni,↓〉) −
∑
i∈B

(〈ni,↑〉 − 〈ni,↓〉)

)
,

(A2)
where N is the number of unit cells. Since we are interested
only in whether there is a net charge/spin imbalance, the sign
of the structure factors is irrelevant, and we focus only on the
absolute value of the order parameters. These quantities are
calculated for each disorder configuration and subsequently

averaged over all disorder configurations, as done with the
Chern number. The standard error associated with the disorder
averages (depicted, for example, as vertical bars on the data
points in Fig. 3) is calculated via the standard error of the
mean of Ndis disorder realizations.

APPENDIX B: OTHER SETS OF PARAMETERS

Throughout Sec. IV, we focused on the regions of the
parameter space that corresponded to the generation of the
C = 1 phase with long-range ordering. In this Appendix we
present a more systematic study of the parameter space for
the proposed model.

The phase diagrams shown in Fig. 7 for fixed U show
that, as U is increased (below a certain value), the topolog-
ical region is enlarged, corroborating the idea that the on-site
interaction term can favor topology to some extent. If U is
further increased (to values of between 5 and 6), the rich
competition between the interaction and disorder terms leads
to the emergence of the previously discussed C = 1 phase.
As expected, for stronger values of the interactions, the only
phases that survive are trivial insulators (CDW and SDW for
very large V and U , respectively). For large disorder strengths,
the long-range ordering breaks down, and only a trivial Ander-
son insulator phase survives. Similar conclusions are reached
when analyzing the phase diagram (U,V ) for fixed NN inter-
action V (see Fig. 8), with the addition that an increase in V
typically leads to a shrinking of the C = 2 topological region.
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