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Variational Monte Carlo approach for the Hubbard model applied
to twisted bilayer WSe2 at half-filling
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We consider an effective Hubbard model with spin- and direction-dependent complex hoppings t , applied
to twisted homobilayer WSe2 using a variational Monte Carlo approach. The electronic correlations are taken
into account by applying the Gutzwiller on-site correlator as well as long-range Jastrow correlators subjected
to noninteracting part being of Pfaffian form. Our analysis shows the emergence of the Mott insulating state
at the critical value of Hubbard interaction Uc1 ≈ 6.5|t | ∼ 7|t | estimated by extrapolating the density-density
equal-time two-particle Green’s functions. The signatures of an intermediate insulating phase between Uc1

and Uc2 ≈ 9.5|t | ∼ 10|t | are also discussed. Furthermore, we report the formation of the 120◦ in-plane Néel
state indicated by the detailed analysis of the spin-spin correlation functions. As shown, switching between
antiferromagnetic phases characterized by opposite chirality could be experimentally realized by the change of
perpendicular electric field. In a proper range of electric fields, also a transition to the in-plane ferromagnetic
state appears.
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I. INTRODUCTION

The role of electronic correlations in a variety of con-
densed matter systems remains mysterious in many cases. In
particular, the mechanism leading to the emergence of uncon-
ventional superconductivity or the formation of the long-range
charge and spin-ordered states is not fully recognized [1].
In this view, two-dimensional moiré superlattices [2], in
which the Fermi level [3–6] as well as the electron-electron
interaction strength can be relatively easily tuned [5,6], are
considered as a promising platform for a better understanding
of correlation-driven phenomena.

The moiré structures are typically fabricated by twisting
two or more layers of a given material, which eventually leads
to the formation of narrow bands [7–9]. In such a situation, the
role of electronic interactions is believed to be enhanced [10].
An archetypic example of this scenario is realized in twisted
bilayer graphene (TBG), in which for certain twist angles
(the so-called magic angles) insulating (Mott) and uncon-
ventional superconducting states have been reported [3,4,11–
13]. However, experimentally realized moiré superlattices are
not limited to TBG, or more generally to twisted multilayers
of graphene [11–14]. As recently reported, the twisted ho-
mobilayers and heterobilayers [10] based on transition metal
dichalcogenides (TMD) also exhibit phenomenona driven by
electronic correlations together with signatures of the super-
conducting state [5,6,15]. In these systems, the appearance of
narrow bands is less sensitive to changes in the twist angle
between the layers [5,6,10] when compared to the graphene-
based structures. Moreover, for the heterobilayer case, this
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effect appears even in the absence of the twist angle due to
the mismatch of the lattice constants of the two monoatomic
layers. Another important feature of TMDs is the presence
of spin-valley locking [16–19]. For heterobilayers such as
WSe2/MoSe2 this effect can be considered as intrinistic and
based on the breaking of the inversion symmetry [10], while
in homobilayers it can be tuned by the perpendicular external
electric field (displacement field) [10,19].

As recently shown, the bilayer moiré TMDs can be
efficiently described by a Hubbard-type Hamiltonian on
a triangular lattice with spin-dependent complex hoppings
[10,20]. Such an approach incorporates both the valley-
dependent spin-splitting as well as the physics of strong
electronic correlations. Based on semiclassical arguments
applied to the Hubbard model mapped to the Heisenberg
Hamiltonian [10], it has been suggested that a 120◦ in-plane
Néel ordering should appear in the twisted WSe2 homobi-
layer. A more detailed analysis of the magnetically ordered
states has been carried out with the use of Hartree-Fock and
cluster dynamical mean-field theory by J. Zhang et al. [21,22].
Also, recently an extended Hubbard model supplemented
with an intersite Coulomb repulsion has been studied from
the point of view of charge and spin ordered states in the
WSe2/WS2 heterostructures [23,24].

It should be noted that the elaborated Hubbard model with
spin-dependent hopping phase can also be regarded as inter-
esting per se. As the Hubbard model, despite its simplicity,
is supposed to predict an astonishingly rich phase diagram
[25], there are also still open questions regarding its realiza-
tion in the triangular lattice. In particular, the formation of
the quantum spin liquid phase (QSL) [26–30] preceding the
antiferromagnetic insulator (AFI) with an increasing value of
U remains enigmatic. In this spirit, the reduction of degrees
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of freedom by imposing spin-valley locking in free-particle
terms of the Hamiltonian may help to shed light on this issue
from both the experimental and theoretical points of view.

In our previous report, we analyzed the stability of
mixed singlet-triplet paired state in tWSe2 by applying the
Gutzwiller approach to the so-called t-J-U Hamiltonian [31].
Here, we turn to the study of Mott-insulating and magnet-
ically ordered states (antiferro- and ferromagnetic) within
the original Hubbard picture by using the Variational Monte
Carlo (VMC) method. We focus on the half-filled band case
and analyze the evolution of the ground state of the sys-
tem from weak to strong correlations. According to our
analysis, robust in-plane antiferromagnetic ordering appears
in a relatively wide range of Hubbard U . We also study
the influence of the complex phase of the hoppings, which
can be tuned experimentally by the displacement field, and
determines the magnitude of the valley-dependent spin split-
ting. Interestingly, our results explicitly show the possibility
of switching between the two antiferromagnetic states with
different chirality as well as between antiferro- and ferro-
magnetic alignments. In our study, we focus on Hamiltonian
parameters corresponding to the twist angle 5.08◦ and the
displacement field D = 0.45 V/nm. However, at the end of
our analysis, we also provide magnetic phase diagrams which
refer to the displacement field in the range 0 ∼ 0.9 V/nm.

The paper is organized as follows. First, we briefly describe
the employed model, providing also the sketch of the varia-
tional Monte Carlo (VMC) approach which has been utilized.
Next, we study the metal insulator transiton (MIT), based
on the equal-time one- and two-particle Green’s functions.
Finally, we investigate in detail the magnetic properties of
the system by means of analysis performed in both real and
momentum space.

II. MODEL AND METHOD

We consider the minimal model describing a moiré super-
lattice of WSe2 tTMD as derived by Haining and Das Sarma
[10] from the continuous approach, i.e.,

Ĥ =
∑
〈i j〉

∑
σ

|t |eiφi jσ â†
iσ â jσ + U

∑
i

n̂i↑n̂i↓, (1)

where â†
iσ (âiσ ) is the standard creation (anihilation) operator

of the electron at site i with spin σ = {1,−1}, while n̂iσ ≡
â†

iσ âiσ is the carrier occupation operator. The sum of 〈i j〉 in
the kinetic term denotes that only the nearest neighboring
(nn) sites on the triangular lattice are taken into account,
since the more distant sites are believed to be of significantly
lower amplitude and therefore play a marginal role. As the
hermicity of the Hamiltonian must be conserved, φi j = −φ ji.
The sketch of the phase of the carriers’ hoppings for different
spins and different directions is provided in Fig. 1 where
we set φi j = φ for the right-hand side nearest neighbor. It
should be noted that such structure of the complex hoppings
incorporates the valley-dependent spin-splitting induced by an
effective spin-orbit interaction. The value of φ can be tuned by
the displacement field across the bilayer, which is generated
by the top and bottom gates in the real experimental setup
[5,10]. The second term of our Hamiltonian represents the

FIG. 1. Schematic representation of hopping phases according to
spin and direction.

on-site Coulomb repulsion with the value of the Hubbard U
parameter depending mainly on the twist angle.

To take into account electron-electron correlation effects
resulting from significant magnitude of the Hubbard U in
Eq. (1), we employ the VMC [32,33] approach, which is based
on the variational formulation, i.e.,

EG � ET ≡ 〈�T |Ĥ|�T 〉
〈�T |�T 〉 , (2)

where EG is the unknown ground-state energy to be estimated
by the trial energy ET . The latter is given as the expected value
of the Hamiltonian calculated with respect to the variational
state |�T 〉, which is the subject of optimization. The trial,
parametrized state, |�T 〉 needs to be a priori proposed and
is taken as

|�T 〉 = P̂G({gi})P̂J (λi j )L̂Sz L̂Ne |�0〉, (3)

where P̂G({gi}) = e− ∑
i gi n̂i↑n̂i↓ is the Gutzwiller type local

(on-site) correlator projecting out the double occupied sites,
whereas P̂J ({λi j}) = e− ∑

i, j λi j n̂i n̂ j is the Jastrow correlator
accounting for the non-local (off-site) density-density corre-
lations. The operators L̂z

S and L̂e
N project the trial many body

state onto the Fock subspace in which the total spin compo-
nent in the z axis is set to zero, and the number of particles is
set to Ne, respectively. The noncorrelated part |�0〉 is given in
the so-called Pfaffian form [32–35],

L̂e
N |�0〉 =

[ ∑
i, jσ,σ ′

F σσ ′
i, j ĉ†

i,σ ĉ†
j,σ ′

]Ne/2

|0〉, (4)

thus it contains both ĉ†
i,σ ĉ†

j,σ (parallel-spins) and

ĉ†
i,σ ĉ†

j,σ̄ (antiparallel-spins) pairings.
Eventually, {gi}, {λi j} and {F σ σ̄

i, j } span the space of
variational parameters to be optimized. The Hamiltonian
given in Eq. (1) at large U/|t | can be mapped onto the
anisotropic Heisenberg model supplemented with the ef-
fective Dzyaloshinskii-Moriya term. By using semiclassical
arguments, it has been proposed in Ref. [10] that such a
Hamiltonian should lead to a series of φ-dependent in-plane
spin ordered states allowing for switching between 120◦ AF
and FM states. Since we intend to examine the original Hub-
bard model without the explicit inclusion of the exchange
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FIG. 2. Structure of variational parameters used for the formula-
tion of |�T 〉.

term, we need to apply the properly constructed variational
ansatz |�T 〉. Reconstruction of 120◦ AF in-plane ordering
requires the provision of at least a three-sublattice structure
for the variational state. Also, since we subject the super-
cell of size L × L to the periodic boundary condition, the L
mod 3 = 0 requirement must be met to avoid possible spin
frustration in the x-y plane. All subsets of variational param-
eters exhibit the aforementioned three-sublattice structure as
shown in Fig. 2. However, intersite variational parameters,
e.g., λi j (which can be in general nonzero for all possible
pairs (i, j)), are not presumed to be equal for given |Rij|,
that is, they are allowed to be different with respect to the
direction of vector Ri j pointing from ith to jth lattice site.
Also, while λi j = λ ji and F σσ

i j = F σσ
ji the antiparallel spin-

spin parameters may differ with respect to the transpose of
spatial indices. Finally, the three-sublattice structure is the
only symmetry requirement provided ad hoc in |�T 〉, and we
do not impose any other spatial restrictions. Thus remaining
degrees of freedom are relaxed and other symmetries of the
Hamiltonian can be broken in the resulting ground-state solu-
tion. The right-hand side of Eq. (2) is optimized by applying
the stochastic reconfiguration method [32], where both F σσ

i j

and F σ σ̄
i j are allowed to be complex numbers. In all VMC

calculations, we used the MVMC software provided by Misawa
et al. [33].

III. RESULTS

In this section, we first analyze the emergence of the Mott
phase, i.e., the transition between metallic and correlation-
driven gapped states. Subsequently, we focus on the spin-
ordered phases. Unless stated otherwise, we take t = −6.95 ±
5.03i (meV), which is the value reported by Wang et al. [5],
corresponding to the twist angle � = 5.08◦ and the displace-
ment field 0.45 (V/nm). These parameters are estimated to
reproduce an abrupt increase in resistivity measured for a
tWSe2 homobilayer at half-filling [5]. Note also that arg(t ) ≈
±4π/5, thus it should reconstruct the in-plane 120◦ AF order
as predicted by Pan et al. [10]. In the last part of this section,
we study the influence of phase φ on the magnetic properties
of the system in the strongly correlated regime. All presented
observables have been computed using the set of ten probes,

FIG. 3. Ground-state energy EG obtained for the wide range of
U/|t | by means of the VMC approach (symbols and dotted line)
and unrestricted Hartree-Fock (dashed black line). The two vertical
dashed regions indicate values of U for which an anomalous behavior
of the energy curve appears. This becomes more evident in the plot
of ∂EG/∂U provided in the inset. The estimated statistical error of
energy per lattice site is ∼10−4 meV thus is much smaller the symbol
size.

each consisting of 107 Monte Carlo sampling steps within the
optimized wave functions. Since the relative statistical error is
estimated to be less than 1% in each case, we do not provide
error bars in the figures. Therefore observed uncertaini-
ties originate from the statistical nature of the optimization
algorithm.

A. Mott phase formation

First, we analyze the dependence of the total energy of
the system per site for the supercell comprising the L × L =
12 × 12 lattice sites at half-filling, i.e., Ne = L2. As can be
seen from the plot presented in Fig. 3, the mean-field treat-
ment (unrestricted Hartree-Fock in our case) does not provide
any evidence of anomalous energy behavior as a function of
U . On the contrary, the application of the VMC approach
leads to a discontinuity in ∂EG/∂U at Uc1 ≈ 6.5|t | and Uc2 ≈
9.5|t |, with the latter being less pronounced. Such behavior,
cannot yet be understood as a clear evidence of the Mott
transition, therefore, we have analyzed the average value of
doubly occupied sites defined as

〈d̂2〉 ≡ 1

L2

∑
i

〈n̂i↑n̂i↓〉. (5)

In Fig. 4, we show that in the vicinity of previously identified
Uc1 ≈ 6.5|t | the value of 〈d̂〉 abruptly decreases indicating the
phase transition to the Mott insulating phase [27,36]. Similar
behavior is also present near Uc2, however, in this case, the
effect is much less pronounced and is hardly distinguishable
from the uncertainties inherent in the VMC approach.

Next, we turn to the analysis of the correlation-induced
insulating state from the point of view of the momentum-
resolved electron occupancy. Here, we investigate the quantity
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FIG. 4. Double occupancy 〈d̂2〉 as a function of U . An abrupt
decrease of double occupancies is clearly visible in vicinity of Uc1,
whereas for Uc2, it is much less pronounced. As stated in main text,
the affection of data by statistical error is negligble since it is of order
of 10−5 for 〈d̂2〉.

defined as

〈n̂qσ 〉 ≡ 1

L2

∑
i j

exp (−iq · Ri j )〈â†
iσ â jσ 〉, (6)

where q is a vector in the momentum space. Clear disconti-
nuities in 〈n̂qσ 〉 are likely to appear when the Fermi surface
is crossed as we go along the trajectory inside the Brillouin
zone (see arrows in Fig. 5) for the case of non- or weakly cor-
related regimes. In contrast, when the quasiparticle spectrum
is largely renormalized by the strength of interactions, the dis-
continuity should become more and more suppressed, while
its height can be considered as weight-measuring quasiparti-
cle coherence (quasiparticles dressed in interactions) [37].

As shown in Fig. 6, the quantitative change in 〈n̂qσ 〉 ap-
pears with increasing amplitude of the Hubbard interaction.
Namely, for U ≈ 4|t |, the relatively clear discontuities can be
identified when the Fermi surface is crossed along the K-�
and �-K′ vectors for the up and down spins, respectively [see

FIG. 5. The Fermi surface (solid lines) for the spin-splitted bare
band (U = 0). The colors distinguish spin-up and spin-down sub-
bands. The red dashed arrows indicate the trajectory, containing the
high-symmetry points, along which the momentum resolved electron
occupation number has been calculated and is provided in Fig. 6.

FIG. 6. [(a)–(d)] Momentum resolved occupation number for
both spin directions σ , along the path defined in Fig. 5 for different
values of U . (e) Fourier transform of electron occupancy at the
high-symmetry point q = M.

Fig. 6(a)]. As U increases, the states above the Fermi level
(in a renormalized picture) become also occupied [Figs. 6(b)
and 6(c)] due to interactions, as expected. In particular, the
states related to the high-symmetry point M in the q space
are initially almost empty, but for the larger values of U they
start to participate in the occupation scheme renormalized by
electron-electron interactions.

To visualize this effect, we plot 〈n̂qσ 〉 for q = M (note
that for this high-symmetry point 〈n̂q↑〉 = 〈n̂q↓〉) as a function
of U , in Fig. 6(e). In addition to the gradually increasing
occupancy of the states above the Fermi level with increasing
U which is driven by dressing the quasiparticles with interac-
tions, we observe an abrupt jump in 〈n̂Mσ 〉 at Uc1, indicating
a critical behavior corresponding to the transition to the Mott
insulating state. Such a jump is not clear at Uc2.

For the sake of completeness, we have analyzed yet another
quantity which can indicate the transition to the Mott insulat-
ing state. Namely, the Fourier transform of the density-density
correlation function, i.e.,

N (q) ≡ 1

L2

〈∑
i, j

e−iq·(Ri−R j )n̂in̂ j

〉
, (7)
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FIG. 7. Values of q2/N (q) ≡ 	U (q) as a function of |q| ∈ �-K
for the selected values of U/|t |. The dashed lines refer to the poly-
nomial (fifth order) fits. The hollow symbols refer to the calculations
performed for the 24 × 6 supercell (see main text).

where n̂i = n̂i↑ + n̂i↓. As discussed in Refs. [38–40],
limq→0 q2/N (q) ∼ 
G, where 
G is the magnitude of the
gap driven by electron-electron interactions.

In Fig. 7, we present 	U (q) ≡ q2/N (q) for the selected
representative values of U . As shown in Fig. 7 for relatively
low values of U (weakly to moderately correlated), we ob-
serve decrease in 	 with |q| → 0 which indicates that the gap
is closed there. However, in the large U regime we observe
a significant change of 	U (q) behavior, which points to the
creation of the insulating state. Of course, since our supercell
is of finite size, the q = 0 limit cannot be reached because the
number of points in the q space equals the number of sites. In
our analysis, we consider the trajectory K → � that contains
six equidistant q points. To overcome the issue related to the
finite system, we perform fits of the fifth-degree polynomial
for 	U (q) (marked as dashed lines in Fig. 7). In this manner,
we can extract the behavior of 	U (q) in the vicinity of the �

point.
Note that performing the finite-size scaling is cumbersome

in this case. This originates from two requirements that must
be met simultaneously. First, we deal with periodic boundary
conditions and assume an ansatz, which is in the form of
three sublattices, therefore, each of the two directions L of
the supercell has to fulfill L mod 3 = 0. Also, Nel must be
an even number. Therefore, when the supercell dimension is
L × L, we are left with two tractable cases which are L = 6
and 12. The L = 12 case cannot be dealt with in a reasonable
computational time due to large space of variational param-
eters. However, we performed additional calculations for the
selected values of U/|t | for the system which dimensions are
24 × 6. This allows us to double the number of available
q points in one of the directions in the momentum space
and reach an additional q, which norm is smaller than any
other q calculated previously for the 12 × 12 case. The values
obtained for the 24 × 6 case have been a posteriori confronted
with the fitted curves (the big hollow symbols in Fig. 7). We
find that these points agree very well with the extrapolated
lines. The minor differences that are visible do not change

FIG. 8. The estimate of limq→0 q2/N (q) as a function of inter-
action magnitude U . This quantity is proportional to the magnitude
of the correlation-induced gap [38].

the main result according to which Uc1 is located in the
6.5|t | ∼ 7|t | range.

In Fig. 8, we show 	U (q = 0) ∝ 
G as a function of U ,
obtained by computing the aforementioned (fitted) polyno-
mials at q = 0. The result is consistent with the analysis of
total energy, double occupancies 〈d̂2〉, and 〈n̂Mσ 〉. Namely, at
U ≈ Uc1, we observe an abrupt jump in 1/	U (q = 0) point-
ing to the opening of the gap. The uncertainties observed
for the higher values of U (�12|t |) discriminate the realiable
inspection in the vicinity of Uc2. Thus, from this perspective,
it remains enigmatic if the intermediate phase between Uc1

and Uc2 emerges or if the observed anomalies in ∂EG/∂U and
〈d̂2〉 in Uc2 are just numerical artifacts. Nevertheless, since the
existence of spin-liquid phase for U lying between Uc1 ≈ 8|t |
and Uc2 ≈ 10|t | has been reported for the isotropic triangular
Hubbard model treated by unbiased methods (see Ref. [25]
and the references therein), it is tempting to identify even
weak signatures of the presence of an intermediate (possibly
spin-liquid) phase in our variational picture. Thus we inten-
tionally also paid some attention to this aspect.

B. Spin order

In this section, we analyze in detail the magnetic prop-
erties of our system. It should be noted that the interplay
between the spin-orbit coupling, encapsulated in the nonin-
teracting part of Hamiltonian (1), and the strong Coulomb
repulsion may alter the resulting magnetic properties. Namely,
at U � |t |, the original Hubbard model can be transformed to
the anisotropic, φ-dependent Heisenberg model supplied with
the Dzyaloshinskii-Moriya term [10,41] that for certain values
of φ, projects out-of-plane AF order onto the 120◦ Néel state
in the x-y plane. Therefore here we study how to tune the
magnetic properties of the system by changing φ.

We start our analysis in the real space picture considering
spin-spin correlation functions defined as

Si, j ≡ 〈Ŝi · Ŝ j〉 =
{x,y,z}∑

τ

〈
Ŝτ

i Ŝτ
j

〉
, (8)
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FIG. 9. Real space spin-spin correlation functions SA, j for differ-
ent values of the interaction amplitude U . (a) Sketch of the path along
which the correlation functions have been collected; for example, in
the A-B segment, index j refers to the lattice sites moving along the
RBA vector. [(b)–(d)] Spatial dependence of the spin-spin correlation
functions for representative values of U .

where Ŝτ
i are spin operators given in the second quantization

language associated with direction τ ∈ {x, y, z} for electron
residing at ith site. In Fig. 9, we present Si j correlation func-
tions by setting the index i = A [see Fig. 9(a)] and vary j.
The correlation functions SA, j exhibit a clearly visible -/-/+
pattern that repeats along the vectors RBA and RBC . The ab-
solute magnitudes of the negative values are about two times
smaller than those of positive ones. For section C-A, we ob-
tain only positive values with amplitude that do not show a
clear decay with increasing distance between the lattice sites.
These observations are consistent with the appearance of a
120◦ AF spin order even below Uc1. Furthermore, a separate
analysis of 〈Ŝz

AŜz
j〉 has revealed its fast spatial decay and its

absolute magnitude of about one order of magnitude smaller
than 〈Ŝx

AŜx
j + Ŝy

AŜy
j〉 for j �= A. Therefore we conclude that AF

develops in the x-y plane. The absolute value of spin-spin
correlations increases with U , however, for the entire range
of onsite interactions considered, we report very weak or even
no spatial decay beyond the next nearest neighbor.

To provide more direct evidence of the in-plane 120◦ AF
in the real-space picture, we have carried out semiclassical
reasoning based on the mean values of correlation functions
obtained for the spin ladder operators (see Appendix for
details). First, one may observe that when 〈Ŝx

i Ŝx
j + Ŝy

i Ŝy
j〉 �

〈Ŝz
i Ŝz

j〉 (which holds in our case), the following is fulfilled,

〈Ŝ+
i Ŝ−

j 〉 ≈ 〈Ŝi · Ŝ j − i(Ŝi × Ŝ j ) · z〉, (9)

since within the above assumption 〈Ŝi · Ŝ j〉 ≈ 〈Ŝx
i Ŝx

j + Ŝy
i Ŝy

j〉.
Therefore, if we treat spins classically, the Eq. (9) takes the
form

〈Ŝ+
i Ŝ−

j 〉 ≈ |�Si||�S j | cos(ζi, j ) − i|�Si||�S j | sin(ζi, j ), (10)

where |�Si| (|�S j |) refers to the magnitude (length) of the classi-
cal spin and ζi, j is the expectation value of the angle between
the two spins. In this manner, one can extract the angle be-
tween the spins by knowing the complex values of 〈Ŝ+

i Ŝ−
j 〉.

FIG. 10. The value of ζi, j along the path defined in Fig. 9(a).
Spatial dependence of spin correlation function Si, j divided by the
corresponding value of ζi, j collected for the sites included in the loop
defined by vectors RBA, RCB, and RAC (b).

Namely,

ζi j ≈ −arg〈Ŝ+
i Ŝ−

j 〉. (11)

In Fig. 10(a), we present ζi, j obtained for the path defined
in Fig. 9(a). It clearly illustrates that the pattern −/ − /+
refers to the angles +120◦/ − 120◦/0◦ confirming the pres-
ence of the 120◦ AF order. This behavior has been observed
for the entire range of U under consideration. Moreover, the
inspection of SA, j/ cos (ζA, j ) presented in Fig. 10(b) shows
that, disregarding discrepancies originating from numerical
issues and statistical nature of the VMC method, correlations
between spins are of similar amplitude when one removes the
factor originating from their relative directions.

We complete our considerations in the real space by pre-
senting the mean value of the total spin squared per site,
S2 = 1

L2

∑〈Ŝ2
i 〉. Although we have not observed significant

signatures of criticality at Uc1 and Uc2 in the above analysis,
they are present by analyzing S2 as a function of U , which
is shown in Fig. 11. Namely, at both Uc1 and Uc2 an abrupt
change in the magnitude of squared spin appears. However, at
Uc1 it is manifested more clearly than at Uc2 (see the insets in
Fig. 11). Apart from the two critical values of U , S2 increases
smoothly approaching the value of S2 = 3/4, indicating an
improvement in spin localization for U � |t | as expected.

In the following, we carry out the analysis of spin ordering
in the momentum space. Here, we investigate the Fourier
transform of the correlation functions defined in Eq. (8).
Namely,

S (q) = 1

L2

∑
i, j

eiq·Ri j Si, j . (12)
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FIG. 11. The expectation value of total spin squared per site as a
function of U . The insets present the zoom of S2 in the vicinity of the
critical values of U .

In Figs. 12(a)–12(d), we present the smoothed maps of
S (q) for selected values of U . The peaks located exactly at K
and K′—as also shown in Fig. 12(e)—reflect the appearance
of the AF ordering that is consistent with the real space pic-
ture. The amplitudes of the peaks increase with U . In Fig. 13,
we present S (K) = S (K′) as a function of U . Again, the
anomalous behavior of S (K) in the vicinity of Uc1 and a less
pronounced discontinuity at Uc2 are both present.

Finally, we discuss the spin properties of the system in a
strongly correlated state, i.e., for U ≈ 16|t |, as a function of
the complex phase of the hoppings, φ. As stated above, in the
experimental situation, φ can be relatively easily tuned by the
electric displacement field perpendicular to the twisted bilayer
that originates from the top and bottom gates [5,10]. Therefore
it is tempting to see how magnetically ordered states can be
affected by changes in φ.

As stated in Ref. [10] the Hubbard model considered here,
in the limit U � |t |, leads to an effective anisotropic Heisen-
berg model supplemented with the Dzyaloshinskii-Moriya
term which in turn, based on semiclassical arguments, is be-
lieved to result in the magnetic phase diagram sketched in
Fig. 14. As one can see, the series of AF and FM phases is
expected to appear in 
φ = π/3 segments. Note that two de-
generate phases denoted as AF± are predicted to exist within
an approximate achievable experimental range of φ which is
(−2π/3, 2π/3). These two states are distinguishable in the
given frame of reference by considering the clockwise rotation
(AF+) or anticlock(AF−)wise rotation of spins.

In our analysis, we focus on φ ∈ (π/2, 7π/6) and in-
vestigate separately the in-plane and out-of-plane spin-spin
correlation functions in the momentum space,

Sx−y(q) ≡ 1

L2

∑
i, j

∑
τ∈{x,y}

eiq·Rij
〈
Ŝτ

i Ŝτ
j

〉
(13)

and

Sz(q) ≡ 1

L2

∑
i, j

eiq·Rij
〈
Ŝz

i Ŝz
j

〉
, (14)

respectively. We focus mainly on the case for which U/|t | ≈
16|t | since in WSe2 homobilayer system interactions are

FIG. 12. The maps presenting amplitudes of S(q) for the four
representative values of U [(a)–(d)]. The increase in intensity of the
red color indicates a higher value, and the color scale is the same
for all the plots. Note, the we applied interpolation based smoothing
for the presentation purposes. Peaks (red circles) are located exactly
at qpeak ∈ {K, K′}. In (d), we present S(q) for the U/|t | shown in
(a)–(d) along path defined in Fig. 5, the peaks located at K(K′) are
clearly visible.

FIG. 13. Momentum-resolved spin-spin correlation function at
q = K, i.e., peak value of S(K). The insets show values in the
vicinity of Uc1 and Uc2.
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FIG. 14. The sketch of magnetic phase diagram provided in
Ref. [10] which can be deduced from the analysis of the effective
anisotropic Heisenberg model supplied with the Dzyaloshinskii-
Moriya term. The plus(minus) sign in superscript of AF indicates
clock(anticlock)wise rotation of spin in the given frame of reference.
In the upper part of the diagram, we mark the range φ ∈ (π/2, 7π/6)
which we have examined. Red arrows indicate the range of φ that has
been scanned experimentally in Ref. [5] by applying the displace-
ment field in the range (0, 0.9) V/nm.

supposed to dominate the kinetic component of energy. Our
results show peaks in the mentioned correlation functions only
at q = K(K′) or q = � depending on phase φ. In Fig. 15, we
present Sx−y(�) and Sx−y(K)/| cos(2π/3)|, as a function of
φ. It is clearly visible that the system is in FM state when
φ < 2π/3 since the peaks in this range are located at � and
the amplitude of Sx−y(K) is residual. The in-plane character
of FM ordering is confirmed by the observation that Sz(�)
remains nearly zero in the whole range of the considered φ, as
shown in Fig. 16. For φ > 2π/3, the AF state is stable since
Sx−y(�) ≈ 0 and the magnitude of Sx−y(K) is the same as
Sx−y(�) for φ < 2π/3. The values of Sz(K) are an order of
magnitude smaller than Sx−y(�) φ < 2π/3 or Sx−y(K) for
φ > 2π/3.

Interestingly, at φ = 2π/3 we find that Sz(K) ≈
Sx−y(K)/2, which indicates an out-of-plane AF phase
between the in-plane FM and AF stability regions. Therefore
it seems that at φ = 2π/3 the system behaves similarly to

FIG. 15. The peak values of Sx−y(q) functions (see main text)
for the selected range of phase φ. A solid vertical black lines indicate
φ = 2π/3 and φ = π .

FIG. 16. Fourier transform of the z-component of spin-spin cor-
relation functions at q ∈ {�, K} for the considered range of phase φ.
Vertical solid black line indicates φ = 2π/3 and φ = π .

the case when φ = π , since then the Hubbard model at
U � |t | maps to the isotropic Heisenberg model (without the
Dzyaloshinksii-Moriya term) for which 120◦ out-of-plane AF
emerges [42]. The formation of this state explicitly for the
standard (with real valued, spin-independent hopping terms)
Hubbard model on the triangular lattice has been recently
reported by, e.g., Chen et al. [29]. Finally, at φ = π we
also find a substantial contribution to the AF order coming
from the z direction since the magnitude of Sz(K) is even
greater than for φ = 2π/3 (for Sx−y(K) the opposite holds).
Therefore, at φ = π we find spin-order signatures that can
be considered as those emerging from the standard Hubbard
model on a triangular lattice at half-filling. A further increase
in φ results in the formation of an antiferromagnetic state
characterized by opposite chirality compared to that referring
to 2π/3 < φ < π - in agreement with the predictions
presented in Ref. [10].

For the sake of completeness, we have carried out
calculations for the case of relatively weak interactions corre-
sponding to U ≈ 4.7|t | (see Fig. 15). In this case, the tendency
towards the formation of 120◦ AF is still present in the ranges
of φ that refer to the vicinity of φ ≈ 5/6π (AF−) and φ ≈
7/6π (AF+). However, such state is suppressed for φ closer
to the borders of the corresponding ranges. Moreover, close
to φ = π/2 we still observe ferromagnetic spin correlations.
In addition, we have found that for U ≈ 4.7|t | the Sz(K) and
Sz(�) are almost zero and do not reveal any meaningful signal
in the whole range of considered φ. Eventually, one may con-
clude that for the lower values of U , the magnetic properties
of the system may depend substantially on φ. However, for the
considered system the estimated U value falls into the range
of moderate-to-strong correlations [5]. Therefore U = 16|t |
situation should be considered as realistic.

IV. SUMMARY AND CONCLUSIONS

We have analyzed the Hubbard model on the trian-
gular lattice which is believed to describe fundamental
electronic features of WSe2 twisted homobilayer at half-
filling. Our comprehensive analysis based on the VMC
approach reveals the emergence of the Mott insulating state
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at Uc1 ≈ 6.5|t | ∼ 7|t | as can be extracted from several indi-
cators considered here which involve correlation functions
resolved both in real and momentum spaces. Since free parti-
cle terms effectively generate valley-dependent spin-splitting,
the model considered here can be regarded as a Hubbard-type
Hamiltonian with reduced degrees of freedom [10].

The critical U for the Mott gap opening obtained here is
smaller than the one determined earlier (U ≈ 8|t |) for the
case of standard Hubbard model on a triangular lattice with
real hopping parameters (see e.g. [25,30] and the references
therein). Furthermore, we observe some anomalies at Uc2 ≈
9.5|t | ∼ 10|t | by inspecting both the density-density and spin-
spin correlation functions. However, the tendency towards
formation of the long-ranged 120◦ AF order is present even
below Uc1 and is enhanced with increasing U . Therefore we
do not find signatures which would allow us to clearly distin-
guish the phases Uc1 � U � Uc2 and U � Uc2 in addition to
pointing out the anomalies themselves.

It can be speculated that the robustness of AF (lack of
evidence for the long-range spatial decay) even below Uc1

originates from the valley dependent spin-splitting which
drives the system towards AF correlations. However, for the
standard Hubbard model (without the spin-splitting feature),
peaks in spin structure factor S (q) have also been reported in
the metallic regime but with clearly visible spatial decay in the
spin-spin correlation functions [27]. Also, incorporation of the
AF order into the x − y plane (in-plane AF) which appears in
the insulating state can be regarded as a clear differentiation
between the standard Hubbard model and the one considered
here.

Finally, it should be noted that according to previous re-
ports the complex phase of the hoppings which introduce
the valley-dependent spin-splitting can be tuned with the use
of the displacment field. Therefore we have analyzed if the
modification of phase φ may result in switching between the
AF and the FM states as proposed in Ref. [10] based on a
semiclassical reasoning concerning the anisotropic Heisen-
berg model with a Dzyaloshinskii-Moriya term. We have
confirmed that the decrease of φ below 2π/3 switches the
system from in-plane AF order to the in-plane ferromagnetic
order. It is also worth mentioning that at φ = 2π/3 system
exhibits a property similar to that typical for the Hubbard
model without a spin-splitted band, namely, AF order with
non-zero component related to z direction. The possibility
of switching between magnetic states (AF → FM) by using
the electric field could be interesting in the view of possible
applications in modern electronics. To make it achievable, the

regime of displacement fields corresponding to the considered
range of φ would have to be experimentally reached.

The data behind all the figures are available in the open
repository [43].
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APPENDIX: APPROACH FOR RETRIEVING IN-PLANE
ANGLE ζi, j FROM SPIN LADDER OPERATORS

CORRELATION FUNCTION

The expectation value of angle between spins, ζi, j , treated
as classical vectors can be extracted in our approach in the
following manner. It should be noted that for the obtained
in-plane AF state the zth component of the spin-spin corre-
lations is negligible when compared to those related x and y
directions. Thus

〈Ŝi · Ŝ j〉 ≈ 〈
Ŝx

i Ŝx
j + Ŝy

i Ŝy
j

〉
= 〈

1
2 (Ŝ+

i Ŝ−
j + Ŝ−

i Ŝ+
j )

〉 = �〈Ŝ+
i Ŝ−

j 〉, (A1)

since Ŝ+
i Ŝ−

j = (Ŝ−
i Ŝ+

j )
†
. On the other hand, we have

〈Ŝ+
i Ŝ−

j 〉 = 〈(
Ŝx

i + iŜy
i

)(
Ŝx

j − iŜy
j

)〉
= 〈

Ŝx
i Ŝx

j + Ŝy
i Ŝy

j − iŜx
i Ŝy

j + iŜy
i Ŝx

j

〉
≈ 〈

Ŝi · Ŝ j − i(Ŝi × Ŝ j ) · z
〉
. (A2)

Note that

〈Ŝ+
i Ŝ−

j 〉 = 〈Ŝ−
i Ŝ+

j 〉∗, (A3)

hence both 〈Ŝi · Ŝ j〉 and 〈(Ŝi × Ŝ j ) · z〉 is real. Therefore we
may attribute the classical inner and cross products between
classical spins �Si and �S j to the former and latter averages,
respectively,

〈Ŝ+
i Ŝ−

j 〉 ≡ |�Si||�S j | cos ζi, j − i|�Si||�S j | sin(ζi, j )

= |�Si||�S j |e−iζi, j . (A4)

Finally, by extracting the value of 〈Ŝ+
i Ŝ−

j 〉 from our VMC
calculation scheme, we can calculate the angle ζi, j in the
following manner:

ζi, j = −arg〈Ŝ+
i Ŝ−

j 〉. (A5)
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