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Symbolic determinant construction of perturbative expansions
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We present a symbolic algorithm for the fully analytic treatment of perturbative expansions of Hamiltonians
with general two-body interactions. The method merges well-known analytics with the recently developed
symbolic integration tool, algorithmic Matsubara integration, that allows for the evaluation of the imaginary
frequency/time integrals. By symbolically constructing Wick contractions at each order of the perturbative
expansion we order by order construct the fully analytic solution of the Green’s function and self-energy
expansions. A key component of this process is the assignment of momentum/frequency conserving labels for
each contraction that motivates us to present a fully symbolic Fourier transform procedure which accomplishes
this feat. These solutions can be applied to a broad class of quantum chemistry problems and are valid at arbitrary
temperatures and on both the real- and Matsubara-frequency axis. To demonstrate the utility of this approach,
we present results for simple molecular systems as well as model lattice Hamiltonians. We highlight the case of
molecular problems where our results at each order are numerically exact with no stochastic uncertainty.
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I. INTRODUCTION

Quantum many-body systems (QMBS) are generally dif-
ficult to treat due to the large number of degrees of freedom
associated with them. The number of electrons in condensed
matter systems puts limitations on what information can be
accessed from the full Hilbert space (HS). In practice, only a
small portion of the HS is accessible via the numerical tools.
One of the famous examples of those numerical methods is
the density functional theory (DFT), which is generally used
to study the structure and interactions of different physical
systems [1]; on the other hand, DFT fails in studying strong
correlation effects in various materials [2].

Perturbation theories are a fundamental tool in a physicist’s
arsenal for tackling interacting electron systems. In many
body perturbation theory (MBPT), physical observables are
expressed as an infinite series where each subsequent order is
represented by an exponentially large number of contractions
generated from Wick’s theorem. Each contraction requires
the evaluation of integrals over the set of all internal vari-
ables. There are several ways to treat MBPT numerically,
with the most popular perhaps being diagrammatic Monte
Carlo (DiagMC) algorithms [3–6]. Standard DiagMC meth-
ods suffer from the fermionic sign problem that results from
the large number of contractions (diagrams) with alternating
sign [3,4]. In recent years, determinant methods have been
introduced that can somewhat mitigate this issue [7–9]. The
connected determinant diagrammatic Monte Carlo (CDet)
method was introduced to treat perturbative expansions
and avoids the factorial scaling of diagrams at exponential
cost [10–12].
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Those methods always have stochastic uncertainties and
since they are based on the Matsubara formalism for finite
temperatures they require numerical forms of analytic con-
tinuation in order to produce dynamical properties in real
frequency or real time. More recently the advent of the algo-
rithmic Matsubara integration (AMI) [13,14] method allows
us to symbolically evaluate summations over Matsubara fre-
quencies and has been successfully applied to a number of
physical problems such as the 2D Hubbard model [15–18] as
well as the uniform electron gas [19,20]. AMI provides access
to real frequency calculations via textbook analytic continua-
tion, the replacement iωn → ω + i0+, which avoids ill-posed
numerical analytic continuation schemes [21]. It reduces the
sampling space of internal variables minimizing the effect of
the curse of dimensionality and reducing overall numerical
uncertainty.

In this work, we build on determinantal methods by
introducing a fully algorithmic approach which we call
the symbolic determinant method (symDET) which applies
MBPT to extremely general Hamiltonians relevant to quantum
chemistry and condensed matter physics. We start by gener-
ating all Wick contractions symbolically from a determinant
and then proceed to Fourier transform those contractions also
symbolically. We then perform the integrals over the internal
variables with the use of AMI for evaluating the Matsubara
summations. In the next section, we introduce the elements of
this algorithm in detail. We then provide several applications
in the following section and provide a summary.

II. MODEL AND METHODS

A. Two-body Hamiltonian

We discuss the evaluation of a very general two-body
Hamiltonian with two terms: a single-particle term, H0, and
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a generalized four-operator interaction term, HV . These are
given by

H =
∑

ab

habc†
acb︸ ︷︷ ︸

H0

+ 1

2

∑
abcd

Uabcd c†
ac†

ccd cb︸ ︷︷ ︸
HV

. (1)

Here a and b are arbitrary band indices—that might also
include momenta or spin degrees of freedom—and the c†

i and
ci represent standard creation and annihilation operators in
the state i, respectively, and the values of hab represent one-
electron integrals while Uabcd is the two-electron interaction
matrix. The presumption for finding solutions to the model
are that the single-particle term, H0, is known and diagonal
allowing us to perform an expansion in powers of the interac-
tion term.

B. Perturbative expansion of Green’s function

We define the noninteracting Green’s function

gba(τ ) = −〈cb(τ )c†
a(0)〉 = [(−∂τ + μ)1 − h]−1

ba , (2)

here written in imaginary time, τ . Later we will perform
the Fourier transform to represent the Green’s function for
Matsubara frequency, iνn. In general, hab may not be diagonal
which results in a nondiagonal Green’s function. Without loss
of generality we simplify the problem by presuming that H0

can be represented in a diagonal basis and that the interaction
Uabcd is known in that diagonal basis. Thus we can rewrite the
diagonal Green’s function on the Matsubara axis as

gab(iνn) = δab

iνn − hab
, (3)

where δab is the Kronecker delta. In this representation the
poles of the Green’s function can be symbolically determined
and this is necessary when implementing the AMI method
[13]. If hab is not diagonal, then g is not diagonal and the pole
structure of the Green’s function becomes obfuscated by the
matrix inversion process.

With the target of generating the order-by-order expansion
of HV we start by following the standard construction of the
mth order correction to the imaginary time Green’s function
as

G(m)
ba (τ ) = (−1)m

m!

〈
T

[
m∏

�=1

∫ β

0
dτ�HV (τ�)

]
cb(τ )c†

a(0)

〉
0c

,

(4)

where T is the time ordering operator and β = T −1 is the
inverse temperature in units of the Boltzmann constant kB.
In Eq. (4) the expectation value is with respect to the un-
perturbed Hamiltonian and should include only connected
diagram topologies. We see that at order m we must compute
the expectation value of a sequence of 4m creation and an-
nihilation operators attached to times τm, in addition to the
external operators cb(τ ) and c†

a(0).
This expectation value can be evaluated using Wick’s theo-

rem, replacing the expectation value with a sum of all possible
contractions of creation and annihilation operators. This is
typically accomplished in matrix form with rows and columns

represented by annihilation and creation operators, respec-
tively. One can then generate all possible contractions—while
also keeping correct track of the fermionic sign arising from
commuting fermionic operators—by just taking the determi-
nant of said matrix [10,12].

For this we define G(m) to be a (2m + 1) × (2m + 1)
matrix in which the rows (columns) correspond to the 2m
annihilation (creation) operators plus an additional entry in
each for the external vertices. We introduce column and row
indices α, β such that

{aα} := {a1, c1, a2, c2, . . . , am, cm, aout },
{bβ} := {b1, d1, b2, d2, . . . , bm, dm, bin}, (5)

and define the matrix elements [11]

G(m)
βα := −〈cbβ

(τβ )c†
aα

(τα )〉0 = gbβ aα
(τβ − τα + 0−) = gαβ.

(6)

The full matrix can then be written

G(m) :=

⎡
⎢⎢⎢⎢⎣

g11 g12 · · · g1n g1a

g21 g22 · · · g2n g2a
...

...
. . .

...
...

gn1 gn2 · · · gnn gna

gb1 gb2 · · · gbn gba

⎤
⎥⎥⎥⎥⎦, (7)

where n = 2m.
This construction has been presented numerous times and

forms the basis for determinant Monte Carlo methods applied
to many-body systems [10–12,22]. In the standard prescrip-
tion, the G matrix is populated in the real space and imaginary
time. The determinant procedure is typically evaluated nu-
merically by inserting numerical values for the imaginary
time Green’s function and sampling over all continuous times
τm. The one caveat to doing this is that the terms generated
represent both connected and disconnected Feynman graphs.
Removing the disconnected components can be accomplished
with the recent method described by Rossi et al. [10]. How-
ever, in our work, contractions corresponding to disconnected
diagrams will be removed via our symbolic Fourier transfor-
mation, a process that does the two tasks at once as detailed
later.

Wick’s theorem implies that the expectation value in
Eq. (4) can be written in the form of a determinant of G(m).
However, doing so is difficult in general because the expecta-
tion value in Eq. (4) should allow only connected topologies
in the Wick contractions. For now we rewrite Eq. (4) as

G(m)
ba (τ ) = (−1)m

2mm!

⎡
⎣p=m∏

p=1

∑
apbpcpdp

Uapbpcpdp

⎤
⎦

×
[

m∏
�=1

∫ β

0
dτ�

]
det(G(m) )c, (8)

where the c subscript on the determinant implies that we
include only the connected terms in the determinant. Such
a “connected-determinant” function does not in general exist
for an arbitrary matrix and this issue has driven the develop-
ment of numerical schemes [10]. In what follows we devise
a symbolic approach to evaluating Eq. (8) which allows us to
quickly identify and remove disconnected Wick contractions.
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C. Algorithmic Matsubara integration

The method of algorithmic Matsubara integration, intro-
duced in Ref. [13], was presented as a general procedure for
the analytic evaluation of the temporal integrals of arbitrary
Feynman diagram expansions. In essence, AMI is a straight-
forward application of residue theorem that stores the minimal
information required to construct the analytic solution for an
arbitrarily complex integrand comprised of a product of bare
Green’s functions. The Matsubara integrals are not concep-
tually challenging to perform and are the topic of numerous
textbook exercises. The difficulty in performing those contour
integrals lies only in that the number of poles and number
of resulting analytic terms grows exponentially with diagram
order.

Using the existing AMI library [14] the result of AMI
is stored in three nested arrays: signs/prefactors S, complex
poles P, and Green’s functions R. From these three objects,
whose storage is quite minimal, one can then construct the an-
alytic expression symbolically through elementary algebraic
operations [13].

The beauty of such an approach is that the result is analytic
in external variables, allowing for true analytic continuation of
iνn → ν + i0+, and is also an explicit function of temperature,
T . Further, for a given graph topology the AMI procedure
need only be performed once and is valid for any choice
of dispersion in any dimensionality and can be applied to
model systems for a wide variety of Feynman diagrammatic
expansions [17,18,20,23,24]. For the present work, we use
AMI as a method for evaluating Matsubara integrands and the
determinant construction replaces the usual Feynman diagram
representation.

D. Symbolic determinant method—symDET

In this work we deviate from the standard determinan-
tal scheme mentioned in Sec. II B. Here we will outline a
procedure to generate the perturbative expansion in terms
of bare propagators such that the integrands of Eq. (4)
are in a form suitable for AMI [13]. AMI operates in the
energy(momentum)/frequency basis and cannot be applied to
imaginary or real-time Green’s functions—though there exist
nonalgorithmic variants designed in the same spirit that may
perhaps overcome this barrier [25]. Each term in Eq. (4) is
represented as a function of a set of imaginary times. To
translate these to a form amenable to AMI we require tools to
(1) perform the symbolic Wick’s contractions for each term in
Eq. (4), (2) identify and remove disconnected topologies, and
(3) perform the nested sequence of Fourier transform from
τ → iνn symbolically.

We provide the solution to each issue in the following
subsections.

1. Symbolic Wick’s contractions

When creating a symbolic representation of the matrix
form of Eq. (7) each element with row and column indices
α and β is just a function of those indices. We can therefore
generate a symbolic representation by replacing the entries
with their row and column indices, Gαβ → (α, β ).

If we can take a determinant of this matrix and store each
term separately, we will have generated the expressions that
represent the n! connected and disconnected diagrams. While
the evaluation of numerical determinants can be accomplished
in O(n3) time, an advantage of modern determinantal meth-
ods [10,26,27] here is that we want to proceed symbolically;
there is no obvious route to such fast evaluations. Instead,
we take the most pedantic approach and simply store the
explicit parameters of each term in the determinant. While this
factorial scaling sounds problematic the tradeoff is an analytic
expression that is exact to machine precision. This is in lieu of
stochastic methods that, while they can evaluate determinants
quickly, must perform temporal integrals via Monte Carlo
sampling, a process that for high accuracy requires typically
106 → 108 samples. We expect that for low orders we will
arrive at a precise numerical result with fewer operations
despite this factorial scaling.

To proceed we use the Leibniz formula for an n × n matrix,
A, with elements ai, j :

det(A) =
∑
p∈Pn

(
sgn(p)

n∏
i=1

ai,pi

)
. (9)

In this expression, p = (p1, p2, . . . , pn) is a permutation of
the set {1, 2, . . . , n} and Pn is the set of all such permutations.
sgn(p) is the signature of p defined as +1 whenever the
reordering requires an even number of interchanges and −1
when an odd number is required. Finding the permutations of
p and the associated signs is a straightforward computational
problem. To do this symbolically we generate a permutation
p and then store the indices of ai,pi = (i, pi ) for each i. Each
term in Eq. (9) is then completely defined by a vector of such
pairs and a single +1/−1 sign prefactor.

This represents a major departure from typical determinan-
tal QMC methods [28,29] where such a matrix is filled with
numerical values. In our case we have yet to assign values
to the entries and instead we want to store the information
required to later symbolically construct the expression.

2. Two in one: Symbolic Fourier transform (SFT)

Motivated by the AMI algorithm [13], we proceed to work
in the frequency domain; hence the need to do the Fourier
transform of Eq. (4). We should recall that for Feynman dia-
grams the set of possible diagram topologies is independent of
coordinate and temporal labeling of each vertex. However, in
the contractions of Eq. (7) each topology may appear multiple
times—as is famously the case for a single-band problem
where the m! denominator is precisely canceled by m! dupli-
cates of each topology. Since we have each contraction, we are
free to represent each as a graph in momentum and Matsubara
frequency space. However, in doing so one would need to
develop an internally consistent labeling of each graph—a
process that is fundamentally nonlocal in diagram topology
and also is not unique.

Instead we choose to mimic the analytic process and have
devised an analytic representation of the temporal Fourier
transform. The procedure, detailed in the Appendix, per-
forms the Fourier transform by first sorting the contraction
pairs (i, j) that represent imaginary time Green’s functions
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spanning between times τ� i
2 � and τ� j

2 �. The pairs are then
separated into three sublists A, B, and C based on criterion
discussed in the Appendix. Since the contraction pairs are
effectively source/target sets, the connectivity of the contrac-
tion can be determined directly as is done in graph theory,
identical to a depth first search, at minimal expense, which
scales linear with the perturbation order n. If at the end of
the process the number of pairs in A is n − 1, in B is 2, and
in C we have n pairs, then the contraction is a connected
diagram and if not it can be excluded. Hence a by-product of
performing the Fourier transform is a mechanism to exclude
disconnected diagrams and this can then be used to evaluate
Eq. (8). The symbolic Fourier transform of the time integrals
is done by simply converting those three lists to matrices as
described in the Appendix. The advantage of this is that one
obtains a unique set of internal labels that obey frequency and
momentum conservation at all vertices. At the end, we obtain
the frequency labeling matrix that serves as an input for the
AMI algorithm [13]

ωAMI =
(

β α

In 0

)
, (10)

where α and β are matrices with entries {0,±1} [see
Eq. (A6)], In is an n × n identity matrix, and 0 here represents
an n-dimensional zero vector.

E. Evaluation

The frequency domain version of Eq. (8) is of the form

G(n)
ba (iωex) = (−1)n

2nn!
gb(iωex)ga(iωex)

×
∑
c∈C

p=n∏
p=1

∑
apbpcpdp

Uapbpcpdp

∑
{i
n}

2n−1∏
j

gj
e j

(α j · ω),

(11)

where the first summation is over the internal (nonfrequency)
variables {ai, bi, ci, di}, the second summation is over the set
of internal Matsubara frequencies {i
n}, the last is over all
contractions belonging to the set C (those which are equiva-
lent to connected diagrams), and e j is the nonfrequency label
attached to the diagonal noninteracting propagator gj

e j (α j · ω).
Here α j is the jth row in Eq. (10), ω = (i
1, . . . , i
n, iωex)T ,
and

gj
e j

(α j · ω) = 1

α j · ω − εe j

(12)

is the Fourier transformed free propagator. In the case of
molecular problems, or generically discrete systems, one per-
forms the ei summations directly such that our algorithm gives
the exact value of the perturbative expansion. However, in
the case of lattice problems, we use stochastic sampling over
momenta and we obtain results with stochastic error bars. In
both cases, the Matsubara summations are evaluated exactly.

Evaluation of Eq. (11) involves a number of steps as fol-
lows.

(1) A contraction is selected from the determinant.
(2) A set of band indices, {ai, bi, ci, di}, are chosen.

FIG. 1. (a), (b) Real and imaginary parts of the self-energy for H2

in the STO-6g basis with external band indices aex = bex = 0. (c),
(d) Plots of the real and imaginary parts of �H2 for aex = bex = 1.
Here we took β = 50.0E−1

h .

(3) Energy conserving labels are generated for this
contraction/band index via symbolic Fourier transform.

(4) Symbolic expression for the sum over {i
n} is gener-
ated via AMI.

(5) Analytic expression is evaluated and its result is stored.

III. APPLICATIONS

A. Application to molecular chemistry—H2

Molecular hydrogen is the simplest system to consider as
a testbed for method development and here we start with the
simplest representation in the STO-6g basis which describes
the interaction between the two hydrogen atoms having only
1s orbitals. In particular, we will see later in Sec. III C that the
two state problem is the basic component of a single band with
spin ↑/↓ and therefore correct results for the STO-6g basis are
paramount in developing the method beyond simple problems.
We use the PYSCF package [30] to obtain the Hartree-Fock
solutions for the STO-6g basis in units of Eh from which we
compute the self-energy on the Matsubara axis illustrated in
Fig. 1. We have compared our results in detail to those in
Ref. [11] and find that our exact result is within stochastic
error bars of that work. Different from their result, our starting
eigenstates are asymmetic resulting in distinct values of �00

and �11, while the off-diagonal self-energy terms are zero in
this case. While we stop at fourth order, there is no conceptual
hurdle to evaluating higher orders or larger orbital basis sets.
However, the computational expense is factorial in order and
exponential in basis. Nevertheless, the procedure is easily
parallelizable.

The real advantage to our approach is the direct evalua-
tion of real frequency properties. By symbolically replacing
iωn → ω + i we can plot the self-energy in real frequencies
shown in Fig. 2 for a particular choice of  that can be made
arbitrarily small. Here we focus on a relevant frequency range
where there is an expected new peak that is created by a
sharp feature in Re�(ω) such that the interacting Green’s
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FIG. 2. (a), (b) Real and imaginary parts of �00, while (c) and
(d) are the components of the self-energy for the second band for H2

(in the STO-6g basis) on the real frequency axes in units of Eh. Here
we took the regulator  = 0.05.

function gains one or more additional poles. This is seen in
the spectral function as shown in Fig. 3. The dominant peaks
remain those of the noninteracting dispersion while additional
peaks—shown in the insets—appear at energies offset by the
peak difference �E = h11 − h00, which is expected based on
the second order expansion. At fourth order shown, there are
two additional poles instead of a single peak near ω = ±2.

As an example for a larger orbital basis set, we compute
the self-energy for H2 in the 10 orbital cc-pVDZ basis rep-
resentation as shown Fig. 4. This basis is five times larger
than its STO-6g counterpart, stressing our ability to study
larger molecules with symDET. We should stress that the
imaginary frequency and real frequency calculations for such
small systems can be done via exact diagonalization (ED) as
done in other works [11]; however, ED is restricted by systems

FIG. 3. Spectral function for H2 in the STO-6g basis truncated at
fourth order. Inset data is a zoom out of the extra peaks with lower
intensity. Here we took the regulator 0.05.

FIG. 4. Matsubara self-energy for hydrogen in the cc-pVDZ ba-
sis versus the Matsubara frequency with β = 50.0. (a) The real part
of the self-energy components (0,0) and (1,1) truncated at second
(nmax = 2) and third (nmax = 3) orders and (b) are the imaginary
counterparts.

size [31,32], something that is not a hurdle for many-body
perturbative methods.

In principle our method could also be used to obtain other
observables, for example, the binding energy for molecules
can be obtained by generating the poles of the full propagator,
which is straightforward via the AMI part of our code. An
interesting implication of these calculations is the possibility
of performing self-consistent perturbation theory beyond the
well-known second order Green’s function perturbation the-
ory (GF2) [28,33,34]. Since we can obtain results on the real
frequency axis one could in principle merge our scheme with
a spectral representation as done in [19] or with a Prony pole
approximation as in [35].

B. Hubbard-Dimer model

To demonstrate the versatility of our approach we study the
Hubbard dimer. The model consists of two sites each having a
spin 1/2 particle. The model we use is described below [36]:

H = H0 + HU + HH + HSB − μ
∑
i,σ

c†
iσ ciσ , (13)

where H0 = −t
∑

σ=↑,↓(c†
0σ c1σ + c0σ c†

1σ ) is the hoping
term for electrons between the two sites, HU =
U

∑
i ni↑ni↓ − U

2

∑
iσ niσ describes the on-site interaction,

HH = H
∑

i(ni↑ − ni↓) is the interaction due to an
applied magnetic field, and HSB = Ua(n0↑n0↓ − n1↑n1↓) +
μa(n0↑ + n0↓ − n1↑ − n1↓) + Ha(n0↑ − n0↓ − n1↑ + n1↓) is a
symmetry-breaking term. By diagonalizing the quadratic part
of the full Hamiltonian, we can rewrite the above Hamiltonian
in the usual form

H =
4∑

a=1

εa f †
a fa + 1

2

∑
abcd

Vabcd f †
a f †

c fd fb, (14)

where εa is the effective dispersion, f †
a ( fa) are the creation

(annihilation) fermionic operators, and Vabcd is the effec-
tive interaction, where both εa and Vabcd can be obtained
analytically for this four-band system. In this example, the
self-energy in this basis is not diagonal (rather a block diago-
nal). As an illustration, we plot the imaginary and real parts
of �00 and �01 up to fourth order for U = 2.5t , μ = 0.7,
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FIG. 5. (a), (b) Real and imaginary parts of the diagonal ele-
ments of the self-energy matrix for nmax = 2, 3 for the Hubbard
dimer model. Here we took t = 1.0, U = 2.5, μ = 0.70, H = 0.30,
Ua = 0.50, μa = 0.20, Ha = 0.030, and β = 2.0.

H = 0.30, Ua = 0.5, μa = 0.20, Ha = 0.030, and β = 2.0.
(See Fig. 5.)

C. Single-band Hubbard model

The simplest starting point for considering a lattice Hamil-
tonian is the single-band Hubbard model of spin-1/2 fermions
on a square lattice. The model is typically written in real-space
notation as

H =
∑
〈i j〉σ

ti jc
†
iσ c jσ + U

∑
i

ni↑ni↓, (15)

where ti j is the hopping amplitude, c(†)
iσ is the annihilation (cre-

ation) operator at site i, σ ∈ {↑,↓} is the spin, U is the on-site
Hubbard interaction, niσ = c†

iσ ciσ is the number operator, μ

is the chemical potential, and 〈i j〉 restricts the sum to nearest
neighbors. For a 2D square lattice we take ti j = −t , resulting
in the free particle energy

ε(k) = −2t[cos(kx ) + cos(ky)] − μ. (16)

Mapping this problem to Eq. (1) leads to an effective
problem of two degenerate bands with states ↑= (k, σ =↑)
and ↓= (k, σ =↓) and the band indices are then summed
over up and down bases. This leads to a diagonal and spin
independent hab = εkδab and an interaction term independent
of momentum with entries U↑↑↓↓ = U↓↓↑↑ = U and all other
U elements zero.

Due to the additional k indices, after processing with AMI
each mth order Wick contraction contains an m-dimensional
integral over internal momentum vectors which requires ap-
proximate numerical integration methods to evaluate. We
proceed stochastically and therefore the results are no longer
fully analytic. Otherwise, the procedure is unchanged from the
two-band case of H2 in the STO-6g basis which highlights the
importance of that problem as a benchmark. As an illustration,
we have calculated the self-energy for the 2D square lattice
on the Matsubara axis shown in Fig. 6 for doped cases μ 
= 0.
Moreover, the exact same expressions can be used to generate
the matching real-frequency results which we show in Fig. 7.

IV. CONCLUSIONS

In this work we have developed an algorithm that can
handle single and multiband problems for general two-body

FIG. 6. (a) Real part of the (spin up) self-energy of the two
dimensional Hubbard model for t = 1.0, U = 3.0, β = 8.33, �k =
(0, π ), and at different values of μ as indicated, and (b) are the
imaginary counterparts.

interaction models at equilibrium. The steps to our determi-
nant method are (1) generating contractions by evaluating
the proper determinant, (2) performing the symbolic Fourier
transform, (3) using the AMI to evaluate the Matsubara sum-
mations exactly, and (4) sum or sample any remaining internal
degrees of freedom.

We have applied our algorithm to a variety of problems
from molecular chemistry to lattice models up to fourth order
perturbation theory. The method is therefore flexible and can
solve different models in both real and imaginary frequency
domains allowing it to be of great importance for both quan-
tum chemistry and lattice system applications. The bottleneck
in computation of lattice systems remains the numerical inte-
gration over remaining spatial degrees of freedom. When the
numerical regulator  is small this becomes difficult due to
the sharp nature of the integrands. The use of renormalized
perturbation theory might help alleviate these difficulties [18].
Finally, our algorithm, equivalent to a single shot GFn [28],
exceeds what is currently available. Although we limited our-
selves to fourth order calculations, higher order corrections
can be achieved, since the algorithm is valid at any arbitrary
perturbation order and system size. Of particular interest is
molecular problems where we are able to evaluate each per-
turbative order exactly to machine precision. In these cases,
regardless of the computational expense of higher orders,
since the result is exact, it need only ever be computed once.

FIG. 7. (a), (b) Real and imaginary parts of the self-energy (trun-
cated at third order) versus the real frequency for the 2D Hubbard
model evaluated for the parameter’s choice: U = 3t = 3.0, β =
8.33, and �k = (0, π ) with different values of μ as indicated. We took
a Monte Carlo sample of size 1 × 108 and the regulator  = 0.2.
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APPENDIX: STEPS OF SYMBOLIC FOURIER
TRANSFORMATION

1. Sorting Wick’s contractions

An important step to perform the symbolic Fourier
transformation is to sort the given Wick contraction that
corresponds to a connected diagram as follows. First, let
us represent the given contraction as C = [ �P, s], where �P =
(p1, p2, . . . , p2n+1) is a vector of pairs representing each
fermion line with p j = (τ j

0 , τ
j

1 ) and s is the sign of the con-
traction. In the language of graph theory, �P contains the edges
of the graph. To check if the diagram is connected or not, one
can use the depth first search (DFS), which requires �P as an
input. If C is connected, then we introduce three vectors of
pairs �A, �B, and �C, where we store the pairs from �P into these
three vectors based on the following convention. The pairs
representing connection with external vertices are stored in
�B and the pairs which represent loops, i.e., tadpole/clamshell
structures, are stored in �C.

The next step is to reduce the number of pairs in �A to n − 1,
which is adopted from the basic graph theory fact that a given
connected graph with n vertices has n − 1 edges connecting
all the vertices together (plus the extra edges). This can be
done recursively using the DFS by removing one pair at a time
from �A and applying the DFS to check if the remaining pairs
keep all the vertices connected or not. If the removal of a given
pair does not affect the connectedness, then the pair should
be added to �C; otherwise, it should be put back into �A and
then move to the next pair in �A and do the same steps until
the number of pairs is n − 1. At this moment, the numbers of
pairs in �C is n, with the total number of pairs in all the three
vectors 2n + 1 as expected. The contraction C will have the
form

C = [ �A, �B, �C, s]. (A1)

2. Array representation of the noninteracting Green’s function

Let us assume that the fermionic line connecting two ver-
tices τi and τ j in an nth order Feynman diagram is represented
by a Green’s function of the form g(η; τi − τ j ), where η is a
set of quantum labels attached to the corresponding Green’s
function. We introduce the following useful array representa-
tion of g(η; τi − τ j ):

g(η; τi − τ j ) := [Vj (1 − δi j ), η], (A2)

where Vj ∈ Rn is an n-dimensional vector defined in the
following way.

(i) If the fermionic line is connecting two different internal
vertices, then Vj has +1 at the ith row, −1 at the jth row, and
zeros elsewhere.

(ii) Vj is the n-dimensional zero vector if τi = τ j . This is
guaranteed by δi j in the equation above.

(iii) The two external fermionic lines are represented with
an n-dimensional vector with only one nonzero entry ±1.
Basically, when τ j is external time and τi is internal time, then
Vj has entry of +1 at the ith row and zeros elsewhere. On the
other hand, if τi is the external time and τ j is an internal time,
then Vj is an entry −1 at the ith row and zeros elsewhere.

Following this notation, we can represent a Wick contrac-
tion (A1) as

C = [M, s], (A3)

where M = (A|B|C) is an n × 2n + 1 matrix obtained by
mapping the pairs in { �A, �B, �C} into column vectors using the
convention explained above. Basically, the n − 1 pairs in �A
form an n × n − 1 matrix A, the 2 pairs in �B form an n × 2
matrix B, and the n pairs in �C form an n × n matrix C. In
the next section, we will use this result to obtain the Fourier
transformation of the contraction C.

3. Symbolic Fourier transform

Let us assume that the fermionic lines whose vectors
stored in A have the dependent Matsubara frequencies
{ω1, ω2, . . . , ωn−1}, the ones stored in B have the external
frequency ωex, and the vectors stored in C have the inde-
pendent Matsubara frequencies {
1,
2, . . . , 
n}. Defining
�
 = (ω1, ω2, . . . , ωn−1, ωex, ωex,
1,
2, . . . , 
n)t , then one
can show that the equation that connects all the frequencies
together is

M �
 = �0. (A4)

The above equation is thought of as the set of delta functions
which act to enforce conservation laws at each vertex so long
as Eq. (A4) is satisfied. Our task is to represent the depen-
dent frequencies in terms of the other frequencies, which is
obtained using the above equation, giving⎛

⎜⎜⎜⎜⎝
ω1

ω2

ω3
...

ωn−1

⎞
⎟⎟⎟⎟⎠ = αωex + β

⎛
⎜⎜⎝


1


2
...


n

⎞
⎟⎟⎠, (A5)

where

α = −J−1AT B

(
1
1

)
, β = −J−1AT C, (A6)

with J = AT A being an n − 1 × n − 1 matrix. The above
Eq. (A5) gives a unique representation of the frequency labels
which satisfy the conservation laws at all internal vertices.
Using this notation, a Green’s function with a dependent fre-
quency ω j , i.e., g(η; ω j ), will be represented as

gk (ηk; ω j ) = 1

iβ j · �
ind + iα jωex − εηk

, (A7)
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where β j is the jth row in β, α j is the jth entry in α, and
�
ind = (
1,
2, . . . , 
n)t . Consequently, we introduce the
Fourier transformation of the Wick contraction (A1) as

F[C] := [gA, gB, gC, s], (A8)

where

gA = [g1(η1; ω1), g2(η2; ω2), . . . , gn−1(ηn−1; ωn−1)], (A9)

gB = [gn(ηn; ωex), g2(ηn+1; ωex)], (A10)

and

gC = [gn+2(ηn+2; 
1), . . . , g2n+1(η2n+1; 
n)], (A11)

where the Fourier transformed Green’s functions in {gB, gC}
take the following simple form:

g�(η�; ω) = 1

iω − εη�

. (A12)

Theorem 1. Let M be an n × 2n + 1 matrix representing
one particular contraction belonging to specific topology T
with M satisfying (A4); then the frequency matrix ωAMI (10)
is unique for all contractions belonging to the same T .

Proof. We know that there are 2nn! contractions per topol-
ogy T at nth order. The factor 2n coming from inverting the
interaction line at each vertex essentially keeps M invariant.
The factorial part coming from relabelling the vertices is
equivalent to re-arranging the rows in M. Let P be an n × n
orthogonal matrix that permutes the rows in M bringing it
to a new matrix M̃ := (Ã|B̃|C̃) = PM. This is equivalent to
setting Ã = PA, B̃ = PB, and C̃ = PC. Clearly, J̃ = ÃT Ã = J ,
ÃT B̃ = AT B, and ÃT C̃ = AT C. Thus α̃ = α and β̃ = β.

The frequency labels can be not unique for a given diagram
due to the several possible options of our choice of A and
equivalently C. In graph theory language, this has to do with
the existence of several directed trees that are consisting of
n − 1 edges connecting the n vertices. Regardless of this start-
ing choice, the above theorem implies that all of the sibling
diagrams in the same topology will always have the same
frequency labels once the labels are fixed for one diagram [the
AMI input matrix Eq. (10)].

[1] R. G. Parr and W. Yang, Density Functional Theory of
Atoms and Molecules (Oxford University Press, Oxford,
1989).

[2] A. J. Cohen, P. Mori-Sánchez, and W. Yang, Chem. Rev. 112,
289 (2012).

[3] N. V. Prokof’ev and B. V. Svistunov, Phys. Rev. B 77, 125101
(2008).

[4] K. Van Houcke, F. Werner, E. Kozik, N. Prokof’ev, B.
Svistunov, M. J. H. Ku, A. T. Sommer, L. W. Cheuk,
A. Schirotzek, and M. W. Zwierlein, Nat. Phys. 8, 366
(2012).

[5] K. Chen and K. Haule, Nat. Commun. 10, 3725 (2019).
[6] E. Kozik, K. V. Houcke, E. Gull, L. Pollet, N. Prokof’ev,

B. Svistunov, and M. Troyer, Europhys. Lett. 90, 10004
(2010).

[7] A. N. Rubtsov, V. V. Savkin, and A. I. Lichtenstein, Phys. Rev.
B 72, 035122 (2005).

[8] E. Burovski, N. Prokof’ev, B. Svistunov, and M. Troyer, Phys.
Rev. Lett. 96, 160402 (2006).

[9] E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M.
Troyer, and P. Werner, Rev. Mod. Phys. 83, 349 (2011).

[10] R. Rossi, Phys. Rev. Lett. 119, 045701 (2017).
[11] J. Li, M. Wallerberger, and E. Gull, Phys. Rev. Res. 2, 033211

(2020).
[12] F. Šimkovic IV and M. Ferrero, Phys. Rev. B 105, 125104

(2022).
[13] A. Taheridehkordi, S. H. Curnoe, and J. P. F. LeBlanc, Phys.

Rev. B 99, 035120 (2019).
[14] H. Elazab, B. McNiven, and J. LeBlanc, Comput. Phys.

Commun. 280, 108469 (2022).
[15] B. D. E. McNiven, G. T. Andrews, and J. P. F. LeBlanc, Phys.

Rev. B 104, 125114 (2021).
[16] B. D. E. McNiven, H. Terletska, G. T. Andrews, and J. P. F.

LeBlanc, Phys. Rev. B 106, 035145 (2022).

[17] A. Taheridehkordi, S. H. Curnoe, and J. P. F. LeBlanc, Phys.
Rev. B 102, 045115 (2020).

[18] M. D. Burke, M. Grandadam, and J. P. F. LeBlanc, Phys. Rev.
B 107, 115151 (2023).

[19] I. S. Tupitsyn, A. M. Tsvelik, R. M. Konik, and N. V. Prokof’ev,
Phys. Rev. Lett. 127, 026403 (2021).

[20] J. P. F. LeBlanc, K. Chen, K. Haule, N. V. Prokof’ev, and I. S.
Tupitsyn, Phys. Rev. Lett. 129, 246401 (2022).

[21] R. Levy, J. P. F. LeBlanc, and E. Gull, Comput. Phys. Commun.
215, 149 (2017).

[22] F. Šimkovic IV, J. P. F. LeBlanc, A. J. Kim, Y. Deng, N. V.
Prokof’ev, B. V. Svistunov, and E. Kozik, Phys. Rev. Lett. 124,
017003 (2020).

[23] A. Taheridehkordi, S. H. Curnoe, and J. P. F. LeBlanc, Phys.
Rev. B 101, 125109 (2020).

[24] R. Farid, M. Grandadam, and J. P. F. LeBlanc, Phys. Rev. B 107,
195138 (2023).
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