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Magic-angle helical trilayer graphene relaxes into commensurate moiré domains, whose topological and
well-isolated sets of narrow bands possess ideal characteristics for realizing robust correlated topological
phases, compared with other graphene-based moiré heterostructures. Combining strong-coupling analysis and
Hartree-Fock calculations, we investigate the ground states at integer fillings ν, and uncover a rich phase diagram
of correlated insulators tuned by an external displacement field D. For small D, the system realizes several
competing families of symmetry-broken generalized flavor ferromagnets, which exhibit various anomalous Hall
signatures and Chern numbers as high as |C| = 6. The interaction-induced dispersion renormalization is weak,
so that the band flatness and the validity of strong-coupling theory are maintained at all integer fillings. For
experimentally accessible displacement fields, the strong-coupling insulators at all ν undergo topological phase
transitions, which appear continuous or weakly first order. For larger D, we also find translation symmetry-
broken phases such as Kekulé spiral order. Our results demonstrate the robust capability of helical trilayer
graphene to host gate-tunable topological and symmetry-broken correlated phases, and lay the groundwork for
future theoretical studies on other aspects such as fractional topological states.
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I. INTRODUCTION

The coexistence of narrow bands, electronic topology, and
strong interactions provides a fertile ground for realizing fas-
cinating quantum phases of matter. A now-classic example
is realized by the fractional quantum Hall effect in two-
dimensional (2D) semiconductor quantum wells [1], where
the requisite conditions are generated by the Landau quanti-
zation induced by an external magnetic field. The presence of
flavor degrees of freedom, like spin, valley, layer, or orbital
components, further enriches the physics, even at integer fill-
ings, where spontaneous symmetry breaking introduces new
collective phenomena such as topological defects and addi-
tional quantized responses [2]. Various platforms have been
shown to experimentally realize such quantum Hall ferro-
magnetism (QHFM), such as quantum Hall bilayers [3] and
the zeroth Landau level of graphene [4]. These systems are
also typically associated with an enlarged manifold of nearly
degenerate orders.

Magic-angle twisted bilayer graphene (TBG) [5–8] has
attracted remarkable attention as the poster child of the family
of correlated moiré materials [9,10], and has accumulated an
ever-growing catalog of experimentally observed phenomena.
Theoretically, this system holds promise for possessing all
of the above ingredients without the need for an external
magnetic field. The spatially modulated interlayer tunnel-
ing is responsible for the small dispersion, the Dirac points
imbue the moiré bands with nontrivial topology, and the
graphene layers supply the valley, spin, and sublattice de-
grees of freedom. This notion of interactions dominating a

set of narrow topological bands in TBG is formalized in
the “strong-coupling” framework [11–13], which enables a
controlled analysis of various deviations from an idealized
solvable limit with completely flatbands and enhanced sym-
metries [14]. The result is a manifold of closely competing
symmetry-broken correlated insulating states, akin to gener-
alized QHFM. However, while predicted to arise at various
fillings in the strong-coupling limit, such topological states
are often overpowered by competing nontopological states in
TBG under realistic conditions. Part of the reason is due to the
large interaction-induced “Hartree” dispersion at finite density
[15–21], which originates from the real-space inhomogeneity
of the moiré wave functions. This drives the system away
from the strong-coupling regime, especially in the presence
of strain [22–30], with the consequence being that an applied
magnetic field or substrate alignment is often necessary to
stabilize such topological states [21,31–41].

Recently, correlated topological states have been proposed
to arise in helical trilayer graphene (HTG), a structure con-
sisting of three graphene layers with identical twist angles
θ between adjacent layers [42] (see also Refs. [43–51]).
In the absence of lattice relaxation, the pairs of adjacent
layers in HTG form two moiré lattices, which themselves
form a supermoiré lattice at very long length scales (amm �
250 nm near θ � 1.8◦). Theoretical analysis demonstrated
that lattice relaxation plays a key role and leads to the
formation of a commensurate single-moiré structure (with
moiré periodicity am � 8 nm) over large regions, made pos-
sible by the slight elastic deformation of the graphene layers
[42,48]. These commensurate regions come in two C2z-related
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(a)

(b)

FIG. 1. Summary of correlated insulating phases in h-HTG at
integer fillings ν as a function of displacement field D. (a) The super-
moiré structure of helical trilayer graphene (HTG) relaxes into large
moiré-periodic domains of h-HTG and h̄-HTG separated by gapless
domain walls (gray). h-HTG realizes a honeycomb lattice consist-
ing of AA stacking regions of the two pairs of adjacent layers. (b)
Schematic phase diagram of h-HTG. At small D, there are two com-
peting strong-coupling families of low-lying states, flavor balanced
(FB, blue) and flavor imbalanced (FI, red), defined in Sec. III. They
are characterized by a preference towards partial or full occupation
of flavors respectively. The possible Chern numbers |C| are shown,
with large bold entries corresponding to the primary ground states
predicted by our analysis. At a displacement field-tuned topological
transition (stars), the system enters the F̃B phase whose set of Chern
numbers differs from the zero-field case. At even higher fields, the
system further realizes various translation symmetry-breaking phases
(dotted lines).

versions, called h-HTG and h̄-HTG, which are tiled together
and separated by a triangular network of narrow gapless
domain walls (see Fig. 1). In the resulting structure of h-
HTG, the AA regions of the two moiré lattices come together
to form a moiré-scale honeycomb configuration. Hence-
forth, we focus on the physics of commensurate h-HTG,
though our results straightforwardly generalize to h̄-HTG
as well.

The most remarkable aspect of h-HTG lies in its elec-
tronic properties. The single particle electronic structure in
each spin and valley sector consists of a pair of flat topo-
logical bands with Chern numbers |C| = 1, 2 and near-ideal
quantum geometry. Because the relaxed structure breaks C2z

symmetry, the flatbands carry nonzero total valley Chern
number. Furthermore, the flatband manifold is isolated from
remote bands by a significant energy gap Erem. gap � 100 meV,
much larger than the interaction energy scale. These fea-
tures suggest that h-HTG is an ideal platform for exploring
interaction-dominated physics in topological bands, with po-
tential for realizing exotic topological states such as integer
and fractional Chern insulators at zero magnetic field. These
findings call for a detailed theoretical study of the interaction-
driven physics.

In this paper, we perform a comprehensive analysis of
the interacting phase diagram of h-HTG at integer fillings.
We employ self-consistent Hartree-Fock (HF) mean-field the-
ory and strong-coupling analysis, which reveals a rich phase
structure that is highly dependent on an externally applied
displacement field. For weak displacement fields, we uncover
a plethora of closely competing symmetry-broken topological
states with Chern numbers as high as |C| = 6 (see Fig. 1),
which are well captured within strong-coupling perturbation
theory. We find that, compared to other graphene-based moiré
systems, the Hartree corrections are weak owing to the rela-
tively homogeneous charge density of the central-band wave
functions. This maintains the stability of strong-coupling
correlated insulators at nonzero integer fillings, safeguards
against mixing with remote bands, and allows for relatively
flat quasiparticle bands even when accounting for interaction
renormalization.

For critical displacement fields well within experimental
capabilities, our calculations show that all integer filling fac-
tors can undergo continuous or weakly first-order topological
phase transitions to states with smaller or vanishing Chern
numbers (see schematic of Fig. 1). Interestingly, the states just
above the transition still preserve significant strong-coupling
character, in that they retain sizable flavor and/or sublattice
polarizations close to the zero-field case. This is possible
because the transition involves a band inversion that is local-
ized in momentum space. Hence, h-HTG potentially realizes
the universal theory of Dirac mass inversion in the strongly
interacting regime, away from weak-coupling one where it is
normally studied. Importantly, such physics is experimentally
accessible by tuning the displacement field.

For yet larger fields, we find translation-symmetry-
breaking (TSB) phases such as charge density waves (CDWs),
as well as a Kekulé spiral order [28–30] that has connections
to that recently imaged in TBG [26] and mirror-symmetric
trilayer graphene [52] (which differs from HTG in that it has
alternating twists between the layers).

Our results highlight HTG as a highly tunable system that
exhibits a panoply of orbital Chern insulators, symmetry-
breaking orders, and displacement field-tuned topological
transitions. The phenomena uncovered in this paper can
be studied experimentally through various probes. From a
theoretical standpoint, we argue that h-HTG presents a near-
ideal moiré platform for quantum-Hall-like strong-coupling
physics, including more exotic phases like fractional Chern
insulators [53–61], and is relatively free from the vari-
ous complications that are present in other related systems.
We also discuss various extensions such as noninteger fill-
ings, and the impact of the supermoiré structure of domains
in HTG.

125141-2



STRONG-COUPLING TOPOLOGICAL STATES AND PHASE … PHYSICAL REVIEW B 109, 125141 (2024)

FIG. 2. Noninteracting band structure at zero displacement field.
(a) Left: The moiré Brillouin zone (mBZ) is determined from the
Dirac momenta of the three layers, which relax slightly (arrows) to
form a locally commensurate structure. Right: Dispersion of the cen-
tral bands along a path in the mBZ shown in the inset. Color indicates
polarization in the Chern-sublattice basis 〈σ̃z〉, where σ̃z = +1(−1)
is sublattice A (B). (b), (c) Energy dispersion and Chern-sublattice
polarization of the K-valley conduction band in the mBZ. The color
scale in (c) is the same as in (a).

II. MODEL AND METHODS

A. Noninteracting continuum model

Our starting point for studying h-HTG is a generalization
of the Bistritzer-MacDonald (BM) continuum model for val-
ley K (τ = +) [42,62]:

HBM
K =

⎡
⎢⎣

−ivF σ · ∇ T (r − dt ) 0

T †(r − dt ) −ivF σ · ∇ T (r − db)

0 T †(r − db) −ivF σ · ∇

⎤
⎥⎦ (1)

where the matrix acts on layer space l = 1, 2, 3, σ = (σx, σy)
acts on the microscopic sublattice, and the graphene Dirac
velocity vF = 8.8×105 ms−1 [62]. The Hamiltonian for val-
ley K̄ (τ = −) can be found by time reversal. Combined
with spin s =↑,↓, there are four spin-valley flavors. Note
that Eq. (1) has been written in a layer-boosted frame such
that a Bloch function at momentum k satisfies ψk,l (r + ai ) =
ei(k−K l )·aiψk,l (r), where K l is the layer-dependent Dirac mo-
mentum, suitably deformed to allow for a commensurate
structure. K2 folds onto the moiré γ point, while K1 (K3)
folds onto κ (κ ′) [Fig. 2(a)]. ai is a basis moiré lattice vector
a1,2 = 4π

3kθ
(±

√
3

2 , 1
2 ), where kθ = 2KD sin θ

2 , with KD the Dirac
wave vector.

The interlayer tunneling takes the form

T (r) =
[
wAAt0(r) wABt−1(r)
wABt1(r) wAAt0(r)

]
,

tα (r) =
2∑

n=0

e
2π i
3 nαe−iqn·r, (2)

qn,x + iqn,y = −ikθe
2π i

3 n,

where K1,3 = ∓q0 + K2. Lattice relaxation [63,64] and renor-
malization [65] effects lead to a suppression of the chiral
ratio κ = wAA

wAB
< 1, whose precise value is difficult to pin

down. We fix wAB = 110 meV [62], but allow wAA to vary.
For most calculations, we set the chiral ratio to a physically
reasonable value κ � 0.7 [36,63–70]. The relative interlayer
moiré shift corresponding to the structure of h-HTG is given
by dt − db = δ = 1

3 (a2 − a1).
To model the effect of a displacement field D, which is

tunable in dual-gated samples, we add an interlayer potential
U to Eq. (1), such that layers l = 1, 2, 3 have energy shifts
+U, 0,−U . The relation between the two is U = dinterD/ε⊥,
where dinter = 3.3 Å is the interlayer distance and ε⊥ is the
perpendicular dielectric constant (up to electrostatic correc-
tions which must be taken into account self-consistently
[71]). The largest displacement fields attainable in experiment
around charge neutrality are D/ε0 ≈ 1 V/nm, which corre-
sponds to U ≈ 80 meV assuming ε⊥ � 4. We only consider
positive U since negative values are related by symmetry.

As shown in Figs. 2(a) and 2(b) for U = 0, the central
noninteracting BM bands (two per flavor) become narrow
with bandwidth W ≈ 20 meV near the magic angle θ ≈
1.8◦. Since the remote band gaps are large ≈100 meV, we
project the system into the central bands. The topology of
the bands is manifest in the Chern basis (also called the
sublattice basis), obtained by diagonalizing the microscopic
sublattice operator σz within this subspace [11–13,72]. We
introduce a Chern-sublattice label σ̃z = A, B according to
the predominant microscopic sublattice polarization. Unless
otherwise stated, the term “sublattice” refers directly to this
label rather than the microscopic sublattice polarization. The
Chern bands can be therefore indexed by (τ, s, σ̃ ), with Chern
numbers [42]

CK,s,A = 1, CK,s,B = −2,

CK̄,s,A = −1, CK̄,s,B = 2. (3)

The most dispersive parts of the BM bands, which lie along
the γ -m lines in the moiré Brillouin zone (mBZ), predom-
inantly arise from the B sublattice [Figs. 2(b) and 2(c)].
Meanwhile, the kinetic energy of Bloch states dominated by
the A sublattice remains small. Note that the microscopic
sublattice polarization of the A bands is less than that of the B
bands, which is allowed due to the lack of any symmetry that
interchanges the sublattice.

B. Band-projected interacting model

The continuum model is augmented with long-range dual-
gate screened Coulomb interactions V (q) = e2

2ε0εr q tanh qdsc,
where the relative permittivity εr = 8 captures the effect of the
hexagonal boron-nitride (hBN) dielectric and remote bands,
and the screening length dsc = 25 nm. A subtraction scheme
is required to prevent double-counting interactions, as they
already feed into model parameters such as the Fermi velocity
[11,21,28,73,74]. We will use the “average” scheme where
the electron density is measured with respect to a reference
density corresponding to half filling of each flatband at infinite
temperature [12,21]. We neglect terms such as intervalley
Coulomb and phonon-induced contributions which scatter
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electrons between the valleys and are suppressed [75]. The
full band-projected Hamiltonian is

H = 1

2A

∑
q∈R2

V (q)δρ̂qδρ̂−q +
∑

k∈mBZ

c†
kh(k)ck, (4)

where A = NMAM is the total area, c†
k is a moiré band creation

operator with spinor structure in flavor and band space, and
δρ̂q = ρ̂q − 4ρq is the density measured with respect to half
filling of all bands (there are eight bands in total, and we define
ρq to be the average band density). We note that while k varies
over the mBZ, and labels the states of various Bloch momenta,
the momentum q varies over the entire plane because density
fluctuations have a continuous profile and vary within a single
moiré unit cell.

The forms of the density operators are ρ̂q = ∑
k

c†
k�q(k)ck+q and ρq = 1

2 (ρA
q + ρB

q ), where ρσ̃
q =∑

G δq,G
∑

k �τ,σ̃ σ̃
G (k) is the translationally symmetric

background density in a periodic gauge ck = ck+G. The
density operators are written in terms of the form factor matrix
�τσ̃ σ̃ ′

q (k) = 〈uτ
kσ̃

|uτ
k+qσ̃ ′ 〉 which consists of the amplitudes for

the density operator to scatter Bloch states, |uτ
kσ̃

〉, at wave
vector k + q to k. Note that while the form factors depend
on τ , the densities do not due to time-reversal symmetry.
Since we are in the sublattice basis, h(k) is a matrix that is
block diagonal in valley and spin but has both diagonal and
off-diagonal matrix elements in sublattice σ̃ .

The interacting Hamiltonian H has a large set of sym-
metries [42]. On top of moiré translation and spinless
time-reversal symmetry (TRS) T̂ , which flips valleys and
applies complex conjugation, the system is invariant under
threefold rotations Ĉ3z as well as Ĉ2y, which flips the valley
and the top and bottom layers. Note that the action of Ĉ2z maps
δ → −δ and is therefore not a symmetry of H. As we have
ignored the small “Pauli” twists in the Dirac terms of Eq. (1)
and used the leading harmonic and two-center approximation
in the tunneling terms [64], there is a particle-hole-inversion
symmetry IC that also exchanges layers [42]. In fla-
vor space, H possesses a global U (2)K×U (2)K̄ symmetry,
which includes charge-U (1)c and valley-U (1)v conservation
as well as independent SU (2)s spin rotations within each
valley.

We will primarily be interested in Hartree-Fock, Slater-
determinant states because they arise in strong-coupling
perturbation theory and in Hartree-Fock numerics. Such states
are characterized by a projector

Pkτ sn;k′τ ′s′n′ = 〈ĉ†
kτ snĉ

k′τ ′s′n′ 〉, P = 1
2 (1 + Q), (5)

where n, n′ are band indices either in the BM band basis or the
Chern-sublattice basis (in which case we use σ̃ instead of n).
The filling is determined by TrP = (ν + 4)NM , with NM the
number of moiré unit cells. We will also find it convenient to
use the matrix Q, which squares to 1 since P is a projector.

In the chiral limit [14], κ = 0, and at the magic angle,
the system has an enhanced symmetry. To see this, we note
that at κ = 0 chiral symmetry enforces that the form factors
are diagonal in the sublattice basis and the dispersion h(k)
vanishes at the magic angle. The Hamiltonian is then just the

interaction term, which has U (2)×U (2)×U (2)×U (2) sym-
metry consisting of independent spin and charge rotations
within each sublattice and valley degree of freedom. This
limit will be the starting point of the strong-coupling theory
in Sec. III.

C. Hartree-Fock calculations

For the HF calculations, we only include fillings ν � 0
since the physics at negative fillings is related by particle-hole
symmetry given our assumptions on HBM. The only other con-
ditions we impose on Eq. (5) are spin collinearity s = s′, and
restricted TSB. For the latter, the system is allowed to expand
its unit cell to double or triple the periods along the moiré
axes. To ensure convergence in phase diagrams, each param-
eter involves >300 initial seeds of different types, and we
use the optimal damping algorithm to accelerate convergence
[76]. For all plots of the HF band structures, the energies are
measured with respect to the Fermi level.

III. STRONG-COUPLING STATES AT INTEGER FILLINGS

In this section we report on a strong-coupling approach
[13] to h-HTG, where the noninteracting dispersion and chiral
symmetry breaking are taken as perturbations. Detailed cal-
culations are provided in Appendix A of Ref. [77]; here we
summarize the structure of the results, the physical intuition
behind them, and their implications.

Strong-coupling states, or generalized quantum Hall ferro-
magnets, Pauli block the density mediated scattering between
Bloch states so that the only contribution of the interaction
term comes from the overall charging energy associated with
reciprocal lattice wave vectors G. Let us briefly review this
argument. Consider states |�0〉 that fully fill some combina-
tion of sublattice and valley polarized bands, characterized
by Hartree-Fock projectors P = 1

2 (1 + Q) that are diagonal
in sublattice and valley and k independent; here Q is an
8×8 matrix with eigenvalues ±1 that correspond to filled and
empty bands respectively. We do not enforce that the state
is diagonal in spin, as the entire sphere of spin directions is
degenerate for each sublattice and valley under the enhanced
symmetry. Then, the density operator at wave vector q �= G
cannot scatter within a flavor due to Pauli blocking, and cannot
scatter between flavors because the form factor is diagonal in
this basis. We therefore conclude that |�0〉 is annihilated by
ρq �=G. The strong-coupling states are eigenvectors of the den-
sity operator at reciprocal lattice wave vector G, and therefore
eigenvectors of the interaction Hamiltonian. The associated
eigenvalue of the interaction Hamiltonian can be interpreted
as a classical “Hartree” charging energy that measures how
well the charge density of the state |�0〉 cancels against the
background charge −4ρG.

The Hartree charging energy yields a splitting of the unper-
turbed strong-coupling states that depends on both the filling
relative to charge neutrality, ν = 1

2 tr Q, and the sublattice
polarization νz = 1

2 tr Qσz. Explicitly, we have

EH

NM
= ν2�00 + 2ννz�0z + ν2

z �zz, (6)
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where

�00 = 1

2AM

∑
G

VGρGρ−G,

�0z = 1

2AM

∑
G

VGρGρz
−G,

�zz = 1

2AM

∑
G

VGρz
Gρz

−G. (7)

Here ρz
G = ∑

k �τ z
G (k) = 1

2 (ρA
G − ρB

G) is the difference in den-
sity between sublattices, which does not depend on valley
τ due to time-reversal symmetry, and �τ z

G (k) = 1
2 [�τA

G (k) −
�τB

G (k)]. At charge neutrality, states with ν = νz = 0 are exact
zero modes of the interaction Hamiltonian, since here the
background density is perfectly canceled. Note that in practice
�0z ≈ 0.02 meV and �zz ≈ 0.003 meV such that the splitting
between states with different νz is small.

The appearance of sublattice polarization in the strong-
coupling Hartree energetics is in contrast to TBG, where the
charging energy only depends on filling due to an approxi-
mate particle-hole symmetry that relates the density of the
two sublattices at the same position r. Furthermore, strong-
coupling intervalley-coherent (IVC) states are competitive in
TBG [11,12]: both valleys of TBG have bands with C = ±1,
and each Chern sector has an approximate U (4) symmetry
that rotates not only spin but also valley, thereby relating
valley polarized and IVC states [11,78,79]. There can be no
such symmetry in h-HTG; in fact, all four Chern numbers of
the sublattice-valley bands are distinct such that off-diagonal
orders must have vortices in the mBZ, equal in number to
the difference in Chern number, where the order parameter
vanishes [39].

The strong-coupling states are further split upon including
both the chiral symmetry-breaking, sublattice off-diagonal,
part of the form factor, �o

q(k) = 1
2 [� − σ̃z�

o
q(k)σ̃z], which is

nonzero for κ > 0, as well as the dispersion h(k). The chi-
ral symmetry breaking form factor leads to exchange energy
penalties for states that do not completely fill a spin-valley
flavor. Indeed, within a single spin and valley, if only the A
sublattice is filled, say, then the form factor can scatter A elec-
trons to sublattice B and back, leading to an exchange penalty.
This effect, which contributes to first order in perturbation
theory, favors the spin and valley flavors to be fully filled or
fully empty such that this exchange is Pauli blocked. Another
way to characterize this is “ferromagnetism between sublat-
tices” induced by exchange: (de)occupation of the A sublattice
within a flavor favors (de)occupation of the B sublattice within
the same flavor. In contrast, the dispersion h(k) has a part that
tunnels electrons between the two sublattices which vanishes
in first order in perturbation theory, but at second order favors
“antiferromagnetism between sublattices” through “superex-
change,” similar in spirit to the antiferromagnetic exchange
between spins induced by hopping in the Hubbard model. In
total, we obtain the splitting per moiré unit cell

Esplit

NM
= 1

4
(J − λ)tr (Qσx )2 = 1

2
(J − λ)tr QAQB, (8)

where QA,B are the 4×4 blocks of Q corresponding to the A
and B sublattice respectively, J ∼ h2

o/U is the superexchange

FIG. 3. Strong-coupling sublattice superexchange and exchange.
(a) An example of a strong-coupling state at ν = 0 in the flavor-
balanced (FB) family that maximally benefits from the dispersion-
induced superexchange J . (b) An example in the flavor-imbalanced
(FI) family that maximally benefits from the exchange λ that arises
due to a finite chiral ratio. Note that we do not explicitly label the
spin-valley flavors to reflect the “flavor permutation symmetry” for
Slater determinants [see the discussion around Eq. (9)].

scale induced by the off-diagonal dispersion, and λ ∼ |�o|2
is the exchange penalty associated with the off-diagonal
form factor. Figure 3 illustrates these mechanisms for ex-
ample states at charge neutrality. The derivation of Eq. (8)
is given in Appendix A of Ref. [77]. Note that the (su-
per)exchange scales J, λ � 1 meV are significantly larger than
the νz-splitting scales �0z,�zz, but smaller than the interaction
scale ≈30 meV.

A. Hierarchical labeling of strong-coupling phases

We outline a compact notation for describing strong-
coupling insulators at integer fillings ν, which is indispensable
given the multiple symmetries of H. A strong-coupling insu-
lator |ψ〉 is one that can be obtained via small deformations of
a reference state |φ〉 consisting of ν + 4 fully occupied Chern
bands. By “smooth deformations,” we mean that |ψ〉 and
|φ〉 share the same symmetries, have comparable Chern band
occupations 〈nτ sσ̃ 〉 (where nτ sσ̃ = ∑

k d†
kτ sσ̃ dkτ σ̃ ), and can be

connected without closing the gap. Hence the Chern number is
determined simply by summing the corresponding Cτ sσ̃ of the
filled Chern bands [Eq. (3)]. Based on the arguments of the
previous section, we expect that such strong-coupling states
are the ground state, at least sufficiently close to the chiral
limit at the magic angle.

Moving forward we will make the assumption that spin in
the z direction is conserved, i.e., [Q, Sz] = 0 such that Q is
diagonal in spin. While generic strong-coupling states need
not satisfy this, we argue in Appendix B of Ref. [77] that all
ground states are symmetry related to a state with conserved
Sz. We can then label strong-coupling ground states with the
sublattice filling for each Sz spin and valley. The projector is
then P = diag(Nτ s

σ̃ ), an 8×8 diagonal matrix with Nτ s
σ̃ = 0, 1

labeling whether the band is filled or empty. We will use α =
(τ, s) as a combined index for both spin and valley, so that
ν − 4 = ∑

ασ̃ Nτ s
σ̃ , and νz = ∑

ασ̃ σ̃Nτ s
σ̃ .

The separation of energy scales indicated by the strong-
coupling analysis suggests a natural hierarchical labeling
scheme of strong-coupling states, summarized by Fig. 4.
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FIG. 4. Hierarchy of strong-coupling states at ν = 0. The fig-
ure illustrates how the particular state |ψ〉 = |K ↑ A〉 ⊗ |K ↓ A〉 ⊗
|K̄ ↑ B〉 ⊗ |K̄ ↓ B〉 fits into the broader energetic hierarchy of strong-
coupling states. Starting from the bottom of the figure, |ψ〉 is part of
the [A2B2] class whose states share the same occupations modulo
relabeling of spin-valley labels (i.e., two flavors with an occupied A
band and two flavors with an occupied B band), and are degenerate
within mean-field theory for our Hamiltonian [Eq. (4)]. Different
classes are split depending on the sublattice polarization [Eq. (6)].
[A2B2] in turn is part of the flavor-balanced (FB) family at ν = 0
which has equal occupation {1, 1, 1, 1} of all flavors. FB and two
other families [split by the differing flavor occupations according to
Eq. (8)] together comprise the manifold of ν = 0 strong-coupling
states.

The most significant splitting is due to the sublattice
exchange-superexchange term [Eq. (8)], which separates
states into “families” separated by energies of order ≈1 meV.
For J < λ, the term tr QAQB = ∑

α (Nα
A − 1

2 )(Nα
B − 1

2 ) in
Eq. (8) favors as many double and empty occupations, Nα

A =
Nα

B , as possible, while for J > λ it is best for flavors to be as
singly occupied as possible (see Fig. 3). This term dictates the
overall distribution among the flavors, agnostic to the details
of the specific spin/valley/sublattice bands being filled. We
therefore label each family by the flavor occupation numbers
{Nf0 , Nf1 , Nf2 , Nf3}, where Nfi ∈ 0, 1, 2 are listed in descend-
ing order. Different families are distinguished based on the
number of fully filled, singly occupied, and empty flavors.

As discussed above, the family that doubly occupies as
many flavors as possible is favored for λ > J; we will call
this family “maximally flavor imbalanced” (FI). Meanwhile,
the family that has as few doubly occupied flavors as possible
is called “maximally flavor balanced” (FB), and is favored
for J > λ. For ν = 0, the FI and FB family correspond to

the {2, 2, 0, 0} and {1, 1, 1, 1} labels (illustrated in Fig. 3).
Note that ν = 3 only has one family, {2, 2, 2, 1}, which we
arbitrarily designate as FB. The description in terms of flavor
occupations is also useful beyond the strong-coupling regime,
and can be applied to TSB phases and noninteger fillings.

The states within a given family are further separated into
distinct “classes” based on their overall sublattice polarization
νz [Eq. (6)], which are separated by smaller energies of or-
der ≈0.1 meV. A descriptive labeling of a particular class is
achieved by the notation [DND ANA BNB ], where NA (NB) counts
the flavors where only the A (B) band is filled, and ND counts
the fully filled flavors where both A and B are occupied. These
integers satisfy NA + NB + 2ND = ν + 4. We consider some
examples: For ν = 3, the class [D3A0B1] (or, [D3B] for short)
refers to any state where all bands are filled except for one
of the A bands: (K ↑ A), (K ↓ A), (K̄ ↑ A), or (K̄ ↓ A). At
charge neutrality ν = 0, the class [A2B2] means two flavors
have only the A band occupied, and the other two flavors
have only the B band occupied. Note that the valley degree
of freedom allows for multiple possible Chern numbers—the
class [A2B2] includes states with C = −6, 0, 6.

The states within a class are exactly degenerate within our
strong-coupling analysis and self-consistent HF theory. This
can be understood due to the presence of a “flavor permu-
tation symmetry” that exists for Slater determinant states of
h-HTG that are Sz and valley conserving. For instance, the
strong-coupling energetics outlined in the previous paragraph
are invariant under permutations of the α = (τ, s) index. This
is a consequence of the fact that the Fock energy decomposes
into a sum over contributions from each flavor:

EF [P] =
∑

α

EFα[Pα], (9)

where EFα for different α are symmetry related, while the
Hartree energy depends only on the total density (see Ap-
pendix C of Ref. [77]). This flavor permutation symmetry can
result in very physically distinct states having equivalent HF
energies. For example, consider a quantum spin Hall insulator
at ν = +2, consisting of filling all Chern-sublattice bands
except for (K ↑ A) and (K̄ ↓ A). By exchanging the flavors
(K̄,↓) ↔ (K,↓), through TRS applied on spin ↓, we arrive at
a valley polarized |C| = 2 Chern insulator.

The application of time reversal to only one spin species
only makes sense at mean-field level as a result of the decou-
pling Eq. (9); this “Hartree-Fock symmetry” does not make
sense either as a unitary or antiunitary symmetry on the full
Hilbert space, and the degeneracy between the CI and QSH
is expected to be lifted by quantum fluctuations outside of
mean-field theory. From the strong-coupling perspective, they
could be split in sufficiently high-order perturbation theory in
the dispersion h(k) �= 0; in the leading-order calculation of J
described in the previous subsection, the perturbed state is still
a Slater determinant (see Appendix A of Ref. [77]). We note
that while some of the flavor permutation induced degenera-
cies can be lifted by including terms like the intervalley-Hund
term, which reduces SU (2)K×SU (2)K̄ → SU (2)s, the degen-
eracy between the QSH and CI only depends on time reversal
and requires going beyond mean-field theory. There is another
mechanism that is expected to favor the QSH when consider-
ing the three-dimensional nature of real space, which is that
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FIG. 5. Phase diagrams for non-negative integer fillings ν at zero displacement field. wAA denotes same-sublattice interlayer tunneling (wAB

is fixed at 110 meV). FB and FI, which stand for maximally flavor-balanced and maximally flavor-imbalanced respectively, represent different
families of nearly degenerate strong-coupling phases that are distinguished by the patterns of flavor occupations (see Table I). Bracketed labels
[DND ANA BNB ] with gray background denote the precise strong-coupling class with minimal energy. ND, NA, NB refer to the number of flavors
that are fully filled, have only the A band filled, or have only the B band filled, respectively. Top: Phase diagrams derived from strong-coupling
analysis. Black solid lines separate regions that favor the FB (FI) family due to J > λ (J < λ) [see Eq. (8)]. For ν > 0, gray dashed lines
separate regions that favor polarization into the A (B) sublattice due to �0z < 0 (�0z > 0) [see Eq. (6)]. Bottom: Numerical self-consistent
Hartree-Fock (HF) phase diagrams. Color plot shows the HF band gap Egap. White solid lines indicate dominant boundaries, shaded gray areas
denote absence of a charge gap, and dotted yellow lines indicate a weak-coupling excitonic instability. Dashed white lines indicate transitions
between strong-coupling classes within the same family. System size is 12×12, and relative permittivity εr = 8.

the CI generally has a finite orbital magnetization and hence
a magnetic field energy cost. Although these magnetic fields
vanish in an infinite 2D system, recall that h-HTG appears
only as a finite domain of the full HTG supermoiré structure,
and so such effects may be non-negligible. We leave a detailed
analysis of such effects for future work.

The possible combinations of sublattice polarizations and
flavor permutations lead to a multitude of states with varying
topological numbers and associated quantized charge, spin,
and valley Hall responses. The total Chern number C of any
strong-coupling state can be straightforwardly obtained using
Eq. (3), since the total Chern number of all remote bands
vanishes (the two valleys cancel each other due to TRS). How-
ever, the valley Chern number Cv is more subtle as the remote
bands have a nontrivial contribution, which is explained in
detail in Appendix D of Ref. [77].

B. Strong-coupling phase diagram

In the top row of Fig. 5, we show the strong-coupling pre-
diction for the phase diagrams as a function of wAA and θ . The
main phase boundaries (solid lines) reflect the competition
between the different families FB and FI, which is controlled
by the relative values of J and λ [Eq. (8)]. Within each fam-
ily, there are also secondary phase boundaries (dashed lines)
separating distinct classes, based on the sublattice polarization
νz if some flavors are partially occupied [Eq. (6)]. At charge

neutrality ν = 0, we always have νz = 0 since �zz is positive.
At finite integer fillings, the favored sublattice is set by the
sign of �0z (since, for our range of parameters, �zz is usually
very small); while �0z is positive (favoring the B sublattice)
for much of the phase diagram considered, we find it becomes
negative at small twist angles and large wAA. These findings
are in excellent agreement with the self-consistent HF calcu-
lations discussed in the next section.

IV. HARTREE-FOCK PHASE DIAGRAM
AT INTEGER FILLINGS

The bottom row of Fig. 5 shows the integer HF phase
diagrams as a function of wAA and twist angle θ . Almost all re-
gions show a nonzero HF gap Egap, indicating the presence of
correlated insulators for the chosen parameters. As expected
from the narrow BM dispersion and strong interactions, the
insulators are all strong-coupling phases (see Sec. III A), as
confirmed by the substantial polarization in flavor and Chern-
sublattice space. The positions of the phase boundaries (white
solid and dashed lines) are remarkably similar across all fill-
ings. For ν = 0, 1, 2, the phase diagrams are dominated by
two different strong-coupling classes, whose sublattice-flavor
occupations are indicated with a gray background. One of
them is the ground state for a window of twist angles near
the magic angle θ = 1.8◦, while the other emerges for slight
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FIG. 6. Energetic competition between strong-coupling phases
at zero displacement field. Self-consistent HF energies of different
strong-coupling classes. They are labeled according to the configura-
tion of occupied sublattice bands, e.g., DB3 indicates one fully filled
flavor and three additional filled B bands in singly occupied flavors.
Phases that appear in Fig. 5 are denoted with solid lines. States with
the same number of fully occupied flavors belong to the same family
(see Table I) and are nearly degenerate. For ν = 0, we have omitted
classes which are related by particle-hole symmetry to the ones
shown (e.g., EDA2 = EDB2 ). Note that no energies in the figures are
degenerate with each other, though the splittings at ν = 0 are almost
invisible on this scale. System size is 12×12, wAA = 70 meV.

detuning away from this. For ν = 1, 2, 3, another strong-
coupling class appears in the top-left corner.

For each parameter, our HF calculations produce a par-
ticular strong-coupling class [DND ANA BNB ] with the lowest
energy. However, Fig. 6 shows that the energies of multiple
strong-coupling classes can be closely competitive. Recall that
even within a class, there are multiple distinct patterns of
symmetry-breaking and Chern numbers. At each filling, the
classes group into families depending on the number of fully
occupied flavors ND, which determines the energetics under
exchange λ and superexchange J , as described by Eq. (8). The
family with the maximum possible ND = � ν+4

2 � is denoted FI
(maximally flavor imbalanced), and is favored near the magic
angle where the noninteracting bandwidth is smallest such
that exchange outweighs superexchange λ > J . In contrast,
the family with the minimum possible ND, denoted FB (maxi-
mally flavor balanced), is favored for larger bandwidths where
superexchange between sublattices outweighs exchange. For
ν = 0, there is also an intermediate family with ND = 1,
which we do not name since it does not appear as the ground
state in Fig. 5. The possibilities are summarized in Table I.
These families are separated by energies �1 meV except near
the phase boundaries. The dependence of the FB vs FI com-
petition on chiral ratio and twist angle matches closely with
the perturbative strong-coupling analysis. However, consistent

TABLE I. Families of strong-coupling states. At a fixed filling,
each family includes different classes distinguished by the sublattice
occupations (see main text). {flavor occ.} lists the flavor occupations
in descending order. The FB (FI) family minimizes (maximizes) the
number of fully filled flavors. C denotes the possible Chern numbers,
with large bold entries corresponding to the dominant ground-state
HF phases obtained in Fig. 5.

Family ν {flavor occ.} |C|
FB 0 {1, 1, 1, 1} 0, 6, 3

1 {2, 1, 1, 1} 1, 2, 4, 5
2 {2, 2, 1, 1} 0, 2, 1, 3, 4
3 {2, 2, 2, 1} 1, 2

FI 0 {2, 2, 0, 0} 0, 2
1 {2, 2, 1, 0} 0, 2, 1, 3
2 {2, 2, 2, 0} 1
0 {2, 1, 1, 0} 0, 1, 2, 4

with the strong-coupling analysis of Eq. (6), the splittings
within each family from distinct νz are significantly smaller,
especially at ν = 0 where the differences are � 0.05 meV.
These sensitive near degeneracies can easily be affected by
details of the modeling, as well as extrinsic effects such as
sublattice coupling to the hBN substrate. Therefore, while
our prediction of the lowest-energy strong-coupling family
is robust and in excellent agreement with strong-coupling
perturbation theory in Sec. III, the particular strong-coupling
class and state that ultimately emerge may be sensitively detail
dependent. To reflect this, the phase diagrams of Fig. 5 also
label the relevant strong-coupling family. At ν = +3, there is
only a single option for the family since we must have ND = 3.
In Table I, we also list the possible Chern numbers, with the
bold entries corresponding to the lowest-energy representa-
tives over major parts of the phase diagrams.

The emergence of symmetry-broken Chern insulators
should give rise to several characteristic features in experi-
mental observables. In devices consisting of a single h-HTG
region spanning the electrical contacts, these states sponta-
neously break TRS and will exhibit a quantized anomalous
Hall response. More likely, however, experimental detection
of such signatures in transport will be complicated by the
supermoiré structure of HTG which consists of h-HTG do-
mains and their Ĉ2z-related h̄-HTG counterparts [42]; we defer
a detailed discussion to Sec. VI. The Chern insulators can also
be uncovered by applying a perpendicular magnetic field and
studying the ν-B plane, where such states appear as sloped
lines according to the Streda formula. This method allows
for the identification of multiple competing states which are
rooted at the same integer filling but have different Chern
numbers C (Table I), and is also accessible to probes such as
scanning tunneling microscopy (STM) [26,34,52,80–84] and
scanning electron transmission (SET) [38,85,86] which can
map out the local moiré-scale physics.

In many magic-angle graphene systems, the real-space
charge inhomogeneity of a filled central band within the moiré
cell leads to substantial interaction-induced renormalization,
especially at finite fillings. For instance, the total charge
density of the flatbands in TBG is strongly concentrated at AA-
stacking regions, though the Bloch wave functions at different
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(a) (b)

FIG. 7. Strong-coupling phases at ν = +2. (a) Top shows the
occupations in the sublattice-polarized basis for a low-Chern C = 0
representative of D2B2 phase (FB family). Bottom shows the HF
band structures in each spin sector, with colored dots indicating the
Chern basis polarization. The opposite spin bands are also shown
with thin dotted lines. (b) Same as (a) but for a C = −1 representative
of the D3 phase (FI family). Shaded oval indicates an incipient
intervalley excitonic instability. System size is 18×18.

mBZ momenta have different spatial localization properties.
In particular, the Bloch function at γ is more diffusely spread
around the AA regions compared to other momenta. Hence,
at positive fillings, the Hartree-renormalized dispersion ex-
periences a pronounced dip at γ , substantially increasing
the bandwidth from its noninteracting value [15–21]. This
complicates the identification of the correct starting point
for theoretical treatments of various phenomena. In h-HTG,
the presence of two shifted moiré patterns (Fig. 1) means
that the flatband charge density is distributed across two AA
peaks, rather than concentrated around a single point as is
the case in TBG. As a result, the Hartree-induced warping of
the bands should be less severe. This expectation is borne out
in Fig. 7, which plots the self-consistent HF band structure
for the [D2B2] and [D3] phases at ν = +2. The bands are
color coded by the Chern basis polarization, which reveals
the strong-coupling nature of the states. By comparing with
the dispersion and sublattice polarization of the noninteracting
bands (Fig. 2), it is clear that the bands are not significantly
deformed, in contrast to other moiré systems. For instance,
the pronounced dispersion of the B bands along the γ -m lines
is preserved.

This “band rigidity” is also conducive towards the stabi-
lization of insulators at nonzero fillings. In TBG, the Hartree
corrections progressively degrade the mean-field exchange
gap at large fillings, such that the strong-coupling candidates
at |ν| = 3 have a vanishing/small gap which is sensitive to
details of the modeling, and may give way to other candidate
states [12,28,87–89]. On the other hand, the HF gap in h-HTG
remains similar across all integer fillings (Fig. 5), suggesting
that the insulating character will be more robust against quan-
tum fluctuations and other deleterious effects like disorder.

Note that the FB family has a larger insulating gap than the
FI family for |ν| > 0, since all of the dispersive B bands are
either above or below the Fermi level.

To see the interaction renormalization more explicitly,
we plot the Hartree and Fock components of the mean-
field Hamiltonian corresponding to the fully filled ν = +4
symmetry-preserving state in Fig. 8(a). The potentials are
shown for the diagonal entries in the Chern-sublattice basis,
and we normalize EHartree by 1/4 to estimate the contribu-
tion from a single filled band. As in TBG, the direct and
exchange terms tend to cancel each other somewhat. How-
ever, the Hartree part is significantly suppressed compared
to TBG. Figure 8(b) illustrates the HF band structure for a
strong-coupling insulator at ν = +3 where the nearest remote
bands have also been included self-consistently. Note that the
energy axis has not been zeroed to the chemical potential,
and we have subtracted off a classical charging energy arising
from V (0). Even though the system is far from neutrality and
develops an appreciable exchange splitting, there remains a
sizable gap to the remote bands, whose position and shape
are qualitatively unchanged. There is negligible remote band
mixing, as the central bands retain �99.5% fidelity. This is
enabled by the large initial remote gap in the noninteracting
dispersion, and the absence of strong momentum-dependent
Hartree corrections. Therefore, unlike in many other strongly
interacting moiré systems, we anticipate the approximation
of restricting to the central bands for interacting calculations
to remain quantitatively correct all the way to |ν| = 4. The
suppression of Hartree should also lead to a smaller overall
positive offset to the filling-dependent inverse electronic com-
pressibility dμ/dn.

It has been proposed that the combination of ideal quan-
tum geometry and suppressed interaction renormalization in
h-HTG is potentially conducive towards realizing fractional
Chern insulators, especially at fractional fillings beyond |ν| =
3 [42]. Figure 9(a) shows that for most of the phase diagram
at ν = +3, the lowest-energy strong-coupling phase is [D3B],
which has a single narrow conduction band in the less dis-
persive A sublattice with |C| = 1. In Fig. 9(b), we chart the
conduction bandwidth Wcond, demonstrating that it remains
small Wcond � 15 meV over most of the phase diagram. Fur-
thermore, the fact that the conduction band is nearly wholly
composed of one sublattice band suggests that it retains its
favorable quantum geometry.

We caution that the energetically preferred flavor and sub-
lattice polarization at integer fillings may not necessarily
reflect the situation at finite doping. For instance, while the
mean-field ground state at ν = 3 is [D3B] (we use the terms
“state” and “class” interchangeably here), Fig. 6 shows that
the [D3A] state differs in energy by less than 1 meV per moiré
cell. Simple considerations of the contrasting dispersion of A
and B bands suggest that beyond some finite electron doping
the system may experience a first-order transition where the
Chern-sublattice polarization switches sign. This is because
electron doping a [D3A] state involves adding carriers to the
unoccupied B band, which contains more significant energy
troughs compared to the A band [Fig. 2(a)]. Hence doped
electrons are less costly if the parent insulator is [D3A] rather
than [D3B]. It is possible then that at some critical filling
3 + δc, this discrepancy is enough to overcome the initial
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(a) (b)

FIG. 8. Hartree-Fock potentials and remote bands. (a) Hartree (divided by 4) and Fock potentials corresponding to the fully filled state at
ν = +4. We show the diagonal component in the Chern-sublattice basis and for valley K . (b) Black lines show HF band structure for a state
in the ν = +3 [D3B] strong-coupling class [see Fig. 9(a) for schematic] when including the lowest remote bands self-consistently. Energies
are not measured relative to the chemical potential. Dotted gray lines show the noninteracting BM bands. System size is 18×18, θ = 1.80◦,
wAA = 75 meV, and εr = 8 for interacting calculations.

energy difference of the parent insulators. The precise value
of δc, if this mechanism does indeed occur, is sensitive to
details such as the initial energy splitting between [D3A] and
[D3B] and the correlation energy of the partially filled band.
Similar considerations apply between other integer fillings,
and may factor into potential “reset” and cascade physics
[80,90]. In TBG, such effects are often explained with flavor
transitions, but here the additional possibility of first-order
sublattice transitions complicates the picture.

Finally, we discuss the impact of tuning the interaction
strength. In Fig. 10, we plot the phase diagram at even in-
teger fillings as a function of εr and θ . Consistent with the
FI family favoring a narrower bandwidth (since dispersion
increases J), the twist angle window where FI has the lowest
energy shrinks in favor of the FB family when weakening
interactions (increasing εr). We also note that when the band
gap is sufficiently small, the strong-coupling phases can be
susceptible to a weak-coupling excitonic instability, indicated

(a) (b)

(deg)

FIG. 9. Strong-coupling Chern insulator at ν = +3. (a) Top
shows the occupations in the sublattice-polarized basis for the C =
1 state in the D3B class. Bottom shows the HF band structures
in the partially occupied spin sector, with colored dots indicating
the Chern-sublattice polarization. The opposite spin bands are also
shown with thin dotted lines. System size is 18×18. (b) HF conduc-
tion bandwidth Wcond as a function of wAA and θ . System parameters
identical to those of Fig. 5.

by yellow dotted lines in Figs. 5 and 10. The relevant exciton
is composed of electrons and holes at the B band extrema—an
example is highlighted in Fig. 7(b). Depending on the flavor
nature of the exciton, this can occur in the intervalley channel
and break U (1)v , possibly with a finite (incommensurate)
moiré wave vector. However, the change in Chern basis occu-
pations is minor, and the resulting state retains most properties
of the nonexcitonic parent phase. Hence, such effects will
be difficult to detect experimentally. For sufficiently weak
interactions at nonzero ν, the strong-coupling phases can be
replaced by gapped TSB phases such as a commensurate
Kekulé spiral (KSκ ) or CDW, which will be elaborated on
later in the context of finite displacement fields (Sec. V).
Sizable regions of the phase diagram can also become gap-
less, especially for smaller twist angles where the interaction
is relatively weaker for fixed εr due to the increased moiré
length.

V. FINITE DISPLACEMENT FIELD

Figure 11 illustrates the evolution of the noninteracting
band structure as a function of the interlayer potential U .
The overall bandwidth widens as U increases, but the most

(deg) (deg)

FIG. 10. Effect of tuning interaction strength at zero displace-
ment field. Color plot shows the Hartree-Fock band gap Egap.
Labeling is the same as Fig. 5. System size is 12×12 and wAA =
75 meV. CDW, charge density wave; KSκ , Kekulé spiral.
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(a) (b)

FIG. 11. Noninteracting band structure at finite displacement
field. (a) Top shows dispersion of the central bands with interlayer
potential U = 10 meV. Only valley K is shown. Color indicates
Chern-sublattice polarization 〈σ̃z〉. Bottom shows energy dispersion
of the conduction band in the mBZ. (b) Same as (a) except with
U = 50 meV.

significant changes occur at the mBZ corners. At zero dis-
placement field, the bands are nearly degenerate at E = 0
around the moiré minivalleys [Fig. 2(a)], but split into sub-
lattice polarized bands for finite U . While the A sublattice
remains close to E = 0, the B sublattice shifts significantly
in energy with opposite signs at κ and κ ′. This is because the
B bands carry a significant momentum-dependent layer dipole
moment. The color plots in Fig. 11 show that the previously
isolated high-energy lobes in the mBZ merge into a single
“fidget-spinner” feature centered around κ (κ ′) in valley K (K̄)
for large U .

The HF phase diagrams as a function of interlayer po-
tential and twist angle are presented in Fig. 12, which show
mostly gapped states. At U = 0, we recover the strong-
coupling phases discussed in Sec. IV. As demonstrated in
Fig. 13, the delicate competition between strong-coupling
classes in the same family persists as U is ramped up. As the

TABLE II. Properties of phases at finite displacement field. The
phases listed here appear in the finite displacement field phase dia-
grams of Fig. 12. F̃B represents the family that is obtained from the
strong-coupling family FB via a displacement field-tuned topological
transition. {flavor occ.} lists the flavor occupations in descending
order. The Kekulé spiral (KSκ ) and charge density wave (CDW) can
have fractional occupations due to intervalley coherence or transla-
tion symmetry breaking. C denotes the possible Chern numbers, with
large bold entries corresponding to the dominant ground-state HF
phases obtained in Fig. 12.

Phase/family ν {flavor occ.} |C|
F̃B 0 {1, 1, 1, 1} 0, 2, 1

1 {2, 1, 1, 1} 0, 1, 2
2 {2, 2, 1, 1} 0, 1, 2
3 {2, 2, 2, 1} 0, 1

KSκ 1 {1.5, 1.5, 1, 1} 0
2 {1.5, 1.5, 1.5, 1.5} 0
3 {2, 2, 1.5, 1.5} 0

CDW 2 {1.5, 1.5, 1.5, 1.5} 0
3 {2, 2, 1.5, 1.5} 0, 2

interlayer potential broadens the bandwidth, it generally
favors strong-coupling families with fewer fully occupied fla-
vors, i.e., the FB family. This is consistent with the narrowing
of the FI region in Fig. 12 as U increases. Beyond a threshold
value of U , which is comparable across the filling factors, the
phase diagram contains phases which cannot be understood
as simple strong-coupling insulators. The flavor occupations
and Chern numbers of these new phases are summarized in
Table II.

For most values of θ , the first non-strong-coupling phase
that is encountered as U increases is the F̃B family. The
HF solution in this region shares the same symmetries
and similar Chern basis occupations as the neighboring FB
phase at smaller U . When entering the transition from the
FB phase (which is restricted to θ � 1.8◦ for ν �= 3), the
gap is greatly suppressed, implying a continuous or weakly
first-order transition (which is the case within our HF calcu-
lations). However, the F̃B family possesses a distinct set of
possible Chern numbers, which can be seen by comparing
Tables I and II.

(deg) (deg) (deg) (deg)

FIG. 12. Phase diagrams for non-negative integer fillings ν at finite displacement field. Color plot shows the Hartree-Fock band gap Egap.
White lines indicate approximate phase boundaries, shaded gray areas denote absence of a charge gap, and dotted yellow lines indicate a
weak-coupling excitonic instability. For the translation-invariant phases, we also describe the dominant flavor-sublattice occupations of the
lowest-energy HF solution, as in Fig. 5. Properties of the phases at finite displacement field are listed in Table II. System size is 12×12, εr = 8,
and wAA = 75 meV. CDW, charge density wave; KSκ , Kekulé spiral.
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FIG. 13. Energetic competition between strong-coupling phases
at finite displacement field. Self-consistent HF energies of different
strong-coupling classes. Labeling is the same as Fig. 6. System size
is 12×12, θ = 1.8◦, and wAA = 70 meV.

Figure 14(a) reveals that this arises from a topological
phase transition at the mBZ corners, using a state in the
[D3B] class at ν = +3 as an example. In this calculation,
the empty conduction band is primarily composed of the
(K̄,↓, A) Chern band. As U increases, the energy of the B
sublattice in the valence band for the K̄,↓ flavor sector rapidly
increases and closes the gap at κ ′. Across the topological
transition, the bands get inverted so that the conduction band
becomes topologically trivial, but the bands largely retain their
original flavor and sublattice polarized character elsewhere
in momentum space. Figure 14(b) demonstrates that the gap
at the band closing point is sharply suppressed for the other
fillings as well, with the threshold field decreasing slightly
with density. The possible Chern numbers of the F̃B family in
Table II are obtained by using a new effective set of sublattice
Chern numbers CK,s,A = 0,CK,s,B = −1,CK̄,s,A = 0,CK̄,s,B = 1
[see Eq. (3)]. Figure 14(c) shows that the gap minimum is
reduced for smaller twist angles. Hence, the system realizes a
set of displacement field-tuned topological transitions, which
we emphasize occur in the strongly interacting regime where
there is still significant generalized flavor-sublattice ferromag-
netism. We comment that the asymmetry and discontinuity of
the HF gap about the transition point are similar to those seen
in studies of the inverted charge transfer mechanism relevant
for transition metal dichalcogenide heterobilayers [91], which
also realizes a topological band inversion in the strongly inter-
acting regime.

As in the low-U regime, there is a close energetic compe-
tition in the F̃B phase between classes which share the same
flavor occupation numbers but differ in the sublattice polar-
izations. For larger U , these states can also become unstable
to a weak-coupling excitonic instability.

Experimentally, the topological transitions would mani-
fest as a dip in the resistive peak or incompressibility as a
function of displacement field. Furthermore, since the phases
below/above the transition have generically different Chern
numbers, another signature would be a change in the anoma-
lous Hall effect at the transition, as well as differing slopes of
various features in the ν-B plane.

For all nonzero integer fillings, the system enters the
Kekulé spiral (KSκ ) phase for sufficiently large interlayer
potentials. This state shares some commonalities with the

(a)

(b) (c)

FIG. 14. Displacement field tuned topological transition.
(a) First three plots show the HF band structures for the D3B phase
at ν = +3 [see Fig. 9(a) for a schematic] for increasing interlayer
potential U . For sufficiently large U , the system undergoes a
topological transition in valley K̄ to a phase where the conduction
band no longer has a nonzero Chern number C. Colored dots indicate
the Chern-sublattice polarization. Only the bands in the partially
occupied spin sector are shown. System size is 18×18, θ = 1.7◦,
and wAA = 75 meV. (b) Gap vs U for different fillings ν at θ = 1.7◦.
(c) Gap vs U for different twist angles at ν = +3.

incommensurate Kekulé spiral (IKS) order which has been
theoretically proposed [28–30] and experimentally observed
in TBG [26] and mirror-symmetric trilayer graphene [52]. The
KSκ state preserves TRS T̂ but breaks moiré translation sym-
metry T̂ai and valley U (1)v . The flavor occupations (Table II)
and lack of significant polarization in the Chern-sublattice
further distinguish this state from the strong-coupling phases
or their descendants obtained via excitonic instabilities or
topological transitions. However, the KSκ state preserves a
twisted translation symmetry T̂ ′

ai
= T̂ai e

−i q·ai
2 τz which includes

a valley rotation. This property derives from the structure of
the density matrix in the intervalley channel, where PkK ;k′K̄ is
forced to be zero unless k′ = k + q. The stabilization of this
phase is traced to the momentum dependence of the disper-
sion for large U . By “boosting” the K̄ valley by the Kekulé
spiral wave vector q [Fig. 15(b)], the low- and high-energy
features in the two valleys can be superposed according to
the “lobe” principle described in Ref. [28]. As shown in
Fig. 15, the shape of the noninteracting bands is imprinted on
the resulting valley polarization of the HF bands. In contrast
to the Ĉ2z-symmetric IKS which was originally proposed in
the context of Ĉ3z-breaking heterostrain, the wave vector of
the KSκ appears to be pinned to one of the Ĉ3z-symmetric
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(a) (b)

FIG. 15. Kekulé spiral (KSκ ) phase at finite displacement field.
(a) Valley polarization 〈τz〉 for the HF conduction band at ν = +2
in one spin sector [the system is SUS (2) symmetric]. The mo-
mentum is measured using the original mBZ coordinates in valley
K (τz = +1). (b) Noninteracting dispersion of the BM conduction
bands in both valleys. Dashed contour in valley K̄ roughly indi-
cates the high-energy lobe there. The same contour is shown in K ,
but shifted by −q, where q is the Kekulé spiral wave vector. In
the KSκ phase, any intervalley coherence hybridizes a momentum
k in K with k + q in K̄ . The κ subscript indicates that q lies at
one of the C3-symmetric momenta κ or κ ′. System size is 18×18,
θ = 1.8◦,wAA = 75 meV,U = 50 meV.

corners of the mBZ, and the lobes have a sizable sublattice
polarization. The preservation of Ĉ3z symmetry, the lack of
Ĉ2z, and the emergence at finite D suggest that the KSκ is
more closely connected to the “commensurate Kekulé spiral
order” recently uncovered in HF studies of mirror-symmetric
trilayer graphene in Ref. [92]. The KSκ state is difficult to ex-
perimentally discriminate from the C = 0 members of the F̃B
phase. The most direct test would be observation of significant
correlation-induced Kekulé distortion on the graphene scale
using STM [26,52], since none of the other candidate phases
have an appreciable amount of intervalley coherence.

Finally at larger angles, there is a small sliver of the phase
diagram which consists of a CDW on the moiré scale that
breaks TRS even in the absence of valley polarization. The
TSB occurs predominantly in the B sublattice which takes
advantage of the dispersive momentum features by folding
the bands. This quadruples the unit-cell area because the pe-
riodicity along both moiré axes is doubled. At ν = +2, the
sublattice basis occupations are consistent with starting from
an [A4] state and occupying half a B band in each flavor.

VI. DISCUSSION

At low displacement fields, as well as intermediate fields
(the F̃B phase), our findings paint a picture of a multi-
tude of closely competing (near)-strong-coupling states with
contrasting flavor and sublattice polarizations, and varying
electronic topology. A key question is how this manifold
is ultimately split, which is relevant for resolving the low-
temperature physics. Different strong-coupling classes within
the same family (see Fig. 4 for a schematic of labeling of

strong-coupling states) have similar energies within 1 meV
per moiré cell as illustrated in Fig. 6 and anticipated from
strong-coupling theory (Sec. III). While the HF calculations
and strong-coupling analysis show a consistent preference
towards maximizing the occupation of the B bands for ν � 0,
the splittings are small enough that they could be reversed by
effects not captured in our modeling like residual coupling to
the hBN substrate. Within a given strong-coupling class, the
remaining choice of the state pertains to the flavor degrees
of freedom. As an example, consider the [D2B2] class of
the FB family at ν = +2—a particular state can be chosen
by specifying the valley and spin quantum numbers of the
two unoccupied A bands. Some degeneracies are expected to
remain exact, such as the global SU (2)S spin symmetry or
spinless time reversal T̂ , unless they are deliberately broken
with, e.g., an external magnetic field. Others are only exact
because certain terms have been neglected from the Hamil-
tonian in our paper. These include various Hund couplings
which are not invariant under independent spin rotations in the
two valleys. If we assign one empty A band to each valley, then
their spins will align (antialign) if the correction is ferromag-
netic (antiferromagnetic). The sign of the Hund term involves
opposite contributions from optical phonons and intervalley
Coulomb scattering, and is difficult to pin down theoretically
[75], though there is experimental evidence that this is antifer-
romagnetic in TBG [93].

As discussed in detail in Sec. III, there is another type
of degeneracy which is unique to the mean-field nature of
Hartree-Fock, and corresponds to acting with the spinless
time-reversal operation only for one spin projection. For the
[D2B2] class at ν = +2, a scenario where this applies is where
the empty A bands have flavors (K,↑) and (K̄,↓), vs (K,↑)
and (K,↓). Crucially, these two choices have |C| = 0 and 2
respectively, but are degenerate in our calculations since the
HF Hamiltonian is quadratic. Furthermore, this degeneracy
is also not split to lowest order in the strong-coupling per-
turbation theory of Sec. III. However, “time reversal in one
spin projection” cannot be an exact symmetry since it is nei-
ther unitary nor antiunitary. Therefore, quantum fluctuations
which introduce deviations from a single Slater determinant
will split this degeneracy. These “Hartree-Fock symmetries”
also occur to a limited extent in other moiré systems like
TBG [28,94], so an interesting future direction is to system-
atically investigate how the corresponding degeneracies are
lifted.

The small energy differences between different classes
and families of strong-coupling states can be traced to the
perturbative proximity to the chiral-flat strong-coupling limit,
where all generalized ferromagnets are split only by a small
amount corresponding to the sublattice polarization [Eq. (6)].
In TBG, this close competition is sidestepped in many devices
by the presence of heterostrain [22–25], which allows the IKS
to undercut the strong-coupling manifold [26,28–30,52]. It
would be useful to investigate the effect that strain has on
the band structure [95,96] and phase diagram of h-HTG. We
anticipate that it is less susceptible to strain-induced IKS or-
der, since the larger twist angle enhances the interaction scale,
and the homogeneous charge density reduces the tendency
to form significant momentum-dependent features in the in-
teracting band structure. Owing to the supermoiré structure,
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strain could also influence or be absorbed into the relaxation
of domains in a nontrivial fashion [42]. We note though that
the related KSκ state appears to emerge for moderate dis-
placement fields already in the absence of strain (Fig. 12)—it
would be interesting to check whether this persists with more
sophisticated numerical techniques like density matrix renor-
malization group (DMRG) [30,97].

We restrict our numerical calculations to non-negative in-
teger fillings due to the exact particle-hole symmetry we
impose on the model. However, it is known that in other sys-
tems for which particle-hole symmetry is commonly assumed
theoretically, the experimental data show pronounced particle-
hole asymmetry in fundamental observables like the positions
of the dominant correlated insulators and superconducting
domes (see for instance Ref. [98]). We anticipate that similar
considerations will apply to our system, and that refinements
to the theoretical modeling that aim to cure this deficiency,
e.g., by adding terms to the continuum model [64,67,99–101],
could be applied to h-HTG.

While we have focused on the integer phase diagrams,
our results influence the physics at noninteger fillings. At
low dopings away from integer ν, the Fermi surfaces are
likely controlled by the interacting band structure of the parent
insulator. Information on the number of Fermi surfaces and
their sizes is invaluable since it can be extracted via mea-
surements of the Landau fans and their degeneracies (though
quantum oscillations may be hard to detect if the effective
masses are too large). Consider for instance electron doping
the particular ν = +2 [D3] state shown in Fig. 7(b) at zero
displacement field. The electrons initially form three Ĉ3z-
related Fermi surfaces, and are predominantly of B character.
Note that these conclusions may be altered in the presence of
extrinsic Ĉ3z-breaking strain, or nematicity induced by polar-
izing in momentum space [102]. For other states, as discussed
in Sec. IV for electron doping the ν = +3 [D3B] insulator,
the system may additionally undergo a finite-filling sublattice
transition where some of the carriers abruptly switch from
one sublattice to the other. This would truncate the Landau
fans emanating from the parent integer, and lead to filling-
dependent modulations in the spectral function in STM or
scanning tunneling spectroscopy [80] or the electronic com-
pressibility in SET [90] measurements. Pinning down the
precise pattern of flavor/sublattice transitions and their corre-
sponding signatures would require the HF computations to be
extended to all noninteger fillings. Given that the B bands have
larger dispersive features, we expect that a common driving
force behind the sublattice transitions is a minimization of the
kinetic energy of the B quasiparticles.

At fractional noninteger fillings, the system can form corre-
lated insulators beyond simple flavor-symmetry-broken Fermi
liquids. Accessible within HF are TSB phases obtained by
folding the mBZ and inducing a moiré charge density wave.
(Note that a modified Lieb-Schulz-Mattis theorem forbids
a pure flavor spiral order from being gapped at noninteger
filling [28].) As the B bands have significant momentum-
dependent features, we expect the TSB order parameter to be
concentrated here, as for the integer CDW phase in Fig. 12.
Preliminary calculations show that this is indeed the case,
and find various TSB insulators at various third and half
fillings. We defer a detailed exploration of such phases to

future work. As proposed in Ref. [42], another class of candi-
date states is fractional Chern insulators at, say, ν = 3 + 1

3 or
3 + 2

3 . This scenario is motivated by the narrow quasiparticle
dispersion, energetic isolation, and ideal quantum geome-
try [13,21,53,60,103–110] of the partially occupied A band
(Fig. 9), and would need to be checked by DMRG [21] or ex-
act diagonalization [111–113]. The modeling is simplified by
the substantial suppression of interaction renormalization. In-
teresting correlated states have also been proposed for higher
|C| = 2 bands [35,103,107,114–126], which could be relevant
if the energetics at fractional fillings prefer that B bands are
partially filled instead.

We expect that real samples of HTG will form a supermoiré
pattern that locally relaxes into domains of h-HTG and its
Ĉ2z-related partner h̄-HTG [42], as illustrated in Fig. 1. The
structure, as a whole, therefore has Ĉ2z symmetry on the su-
permoiré scale, despite the symmetry being absent within the
h-HTG structure. The Chern numbers of the sublattice basis in
h̄-HTG are obtained by taking A ↔ B and K ↔ K̄ in Eq. (3).
Since the central bands in the two domains carry opposite
valley Hall numbers, the domain walls induce a network of
gapless topological edge modes that cross the remote band
gap at |ν| = 4, which can be traced via local imaging. The
shape of this network is triangular in the pristine limit, but
may deform due to factors such as twist angle disorder and
strain. For other integer fillings, the correlated insulators in
the h-HTG and h̄-HTG will have experimental signatures in
the form of resistance peaks, as well as signatures of the
displacement-field tuned topological transition.

Furthermore, there is additional physics arising from the
choice of correlated state in two adjacent domains [127,128].
Degeneracies within each domain can be split by the con-
figuration in neighboring domains. As a concrete example,
we consider the strong-coupling [D3B] class in h-HTG and
the equivalent [D3A] class in h̄-HTG at ν = +3, which have
C = ±1. Ignoring spin for simplicity, there is a freedom in
assigning valleys to the unoccupied band in each domain
[see schematic in Fig. 9(a)]. For equal (opposite) valleys, the
domains have opposite (equal) Chern numbers, leading to co-
propagating (counterpropagating) edge modes at the interface,
and realizing Chern (valley) domain walls. While a detailed
analysis of domain wall energetics is an important topic for
future work, we argue that Chern domain walls should be
favored at zero magnetic field. Relaxation calculations show
that the aperiodic interface channels are only a few moiré
lengths wide [42], suggesting that mutual exchange physics
of the two domains, which is not possible between opposite
valleys, is important. Furthermore, intervalley coherence is
suppressed due to the mismatch of Chern numbers in the
two valleys [39], which discourages spatial texturing of the
valley wall. Hence, we anticipate that Chern domains will
be energetically favored, thus resulting in a “Chern mosaic”
[128] of h-HTG and h̄-HTG domains carrying opposite Chern
numbers. This possibility can be numerically tested with
similar techniques as Ref. [127] and visualized using a su-
perconducting quantum intereference device on tip [128,129].
A sufficiently strong perpendicular magnetic field may coun-
teract this and induce valley domain walls, since it couples to
the orbital magnetization of the domains.
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Another important question is the consequence of such
Chern domain physics in transport. Even when the h-HTG
and h̄-HTG domains individually realize Chern insulators,
thus breaking T , it is possible that Ĉ2zT is restored at the
supermoiré scale, as is the case for the above Chern mosaic.
We remark that this supermoiré scale Ĉ2zT symmetric Chern
mosaic is unique to HTG, and is absent in hBN-aligned TBG
[128,130]. The presence of Ĉ2zT forbids a nonzero net Hall
conductivity in the thermodynamic limit. However, this van-
ishing Hall conductivity relies on the precise cancellation of
currents in h-HTG and h̄-HTG domains, which are potentially
several hundred nanometers wide and spatially separated. Be-
cause of this, extrinsic effects in real mesoscopic devices, such
as various forms of strain or twist angle disorder (which can
vary greatly on the micrometer scale), the precise placement
of contacts with respect to the domains, or boundary effects on
the domain sizes and shapes, likely mean that the supermoiré
scale Ĉ2zT symmetry is not relevant to electronic transport
properties at experimentally relevant scales. Hence, we expect
a remnant (nonquantized) anomalous Hall effect to be experi-
mentally measurable even in the Chern mosaic state, reflecting
the broken T symmetry. Experimental determination of the
Chern numbers can be achieved using the Streda formula
in a finite magnetic field. Local techniques leveraging STM
[26,34,52,80–84] and SET [38,85,86] are able to resolve this
information within each domain.

If all domains have the same Chern number, the possibility
of detecting a quantized Hall effect using a global transport
measurement turns on the details of the edge modes. Assum-
ing U (1) spin and valley symmetries, there are no protected
gapless edge modes only if the domains share the same Chern
numbers within each flavor. As discussed in Appendix D
of Ref. [77], the determination of the valley Chern number

needs to be performed carefully, and we find that the only
strong-coupling states that do not necessarily host protected
edge modes between h-HTG and h̄-HTG domains are the ones
at charge neutrality.

In conclusion, we have presented a comprehensive analysis
of the interacting physics at integer fillings of HTG using
complementary methods of strong-coupling theory and HF.
Our analysis reveals h-HTG as an ideal platform for realizing
strong-coupling physics, with interactions dominating over
bandwidth at all integer fillings. We uncover a rich hierarchy
of correlated insulating states, many of which are topologi-
cal, and predict topological phase transitions as a function
of displacement field. We discuss in detail the experimental
ramifications of our findings, which can be readily tested
with existing experimental techniques. Our paper paints a rich
picture of moiré-scale interaction-driven topology intertwined
with the supermoiré scale topological domains, paving the
way for future studies of interacting physics in HTG.
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