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Dynamical spectral response of fractonic quantum matter
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Quantum many-body systems with fractonic excitations can realize fascinating phases of matter. Here, we
study the low-energy excitations of a constrained Bose-Hubbard model in one dimension, which conserves the
center of mass or, equivalently, the dipole moment in addition to the particle number. This model is known to
realize fractonic phases, including a dipole Mott insulator, a dipole Luttinger liquid, and a metastable dipole
supersolid. We use tensor network methods to compute spectral functions from the dynamical response of
the system and verify predictions from low-energy field theories of the corresponding ground-state phases.
We demonstrate the existence of gapped excitations compatible with strong coupling results in a dipole Mott
insulator, linear sound modes characteristic of a Luttinger liquid of dipoles, and soft quadratic modes at both
zero and finite momenta in a supersolid state with charge density wave order and phase coherence at noninteger
filling.

DOI: 10.1103/PhysRevB.109.125137

I. INTRODUCTION

Symmetries are ubiquitous in physics and constitute a
major guiding principle in our understanding of quantum
matter. Recently, systems with less conventional symmetries,
particularly the conservation of higher moments of a global
U (1) charge, attracted great interest. These fractonic models
[1–12] feature elementary excitations with constrained mo-
bility, while collective correlated processes of multiparticle
compounds can generate nontrivial dynamics. Inspired by an
intriguing duality between fracton models and elasticity the-
ory [13–18], these models are candidates to realize quantum
matter phases with rather unconventional properties, such as
dipole superfluids and fracton condensates [13,19–24]. Re-
cently, microscopic lattice models with dipole conservation
were studied numerically and the existence of fascinating
ground-state phases in accordance with their respective low-
energy effective theory could be identified [25–28]. This paves
a promising route towards the experimental realization of
such phases of matter, especially as systems with dipole con-
servation have been successfully implemented in cold atom
quantum simulators in the form of tilted Hubbard models
[29–32].

Dynamical probes in the form of spectral functions are
a natural way to study the collective excitations of exotic
phases. They reflect the dynamics of excitations above the
ground state, characterizing the content of the excitation
spectrum, and can be predicted from the respective low-
energy effective theories. Connecting these predictions to
microscopic models is, in general, a formidable task that
requires substantial numerical effort. However, in one di-
mension, tensor network methods provide efficient numerical
tools to study microscopic models. In this work, we compute
spectral functions of the one-dimensional dipole-conserving
Bose-Hubbard model, which hosts a rich ground-state phase

diagram. We compare our numerical results to the corre-
sponding low-energy effective field theories and provide a
comprehensive numerical exploration of the excitation spec-
trum in a microscopic fracton model.

The work is structured as follows. In Sec. II, we describe
the microscopic model and discuss the phases it realizes,
as well as their low-energy effective field theories. Spectral
functions are introduced in Sec. III, where we also present
the corresponding sum rules. Numerical methods used to
study the dynamical response are discussed in Sec. IV. Subse-
quently, we study the spectral function for dipole excitations
in Sec. V and the dynamical structure factor in Sec. VI. We
conclude in Sec. VII with a summary of our findings and
their implications on future experimental realizations. The
sum rules of the spectral function are evaluated explicitly in
the Appendixes.

II. MODEL AND GROUND-STATE PHASES

Building upon previous studies [25–27], we focus on a
constrained Bose-Hubbard model in one dimension

Ĥ = −t
∑

j

(b̂†
j b̂ j+1b̂ j+1b̂†

j+2 + H.c.)

+ U

2

∑
j

n̂ j (n̂ j − 1) − μ
∑

j

n̂ j, (1)

with a correlated hopping term of strength t , on-site in-
teraction U , and chemical potential μ. The kinetic term
can be interpreted as nearest-neighbor hopping of dipoles
(d̂†

j d̂ j+1 + H.c.), where we defined the dipole creation and

annihilation operators d̂†
j = b̂†

j b̂ j+1, and d̂ j = b̂†
j+1b̂ j , re-

spectively. This model conserves both particle number N̂ =∑
j n̂ j and the associated dipole moment, or center of mass,
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FIG. 1. Ground-state phases. (a) Illustration of the dynamics
generated by the dipole-conserving Bose-Hubbard model. Left:
Bosons can only hop in correlated moves, in which dipoles are
emitted or absorbed. Right: The kinetic term can be seen as hopping
of dipoles, i.e., boson-hole bound states. (b) Ground-state phases at
fixed chemical potential μ/U = const in a grand-canonical ensem-
ble. By tuning the dipole hopping t/U , three phases characterized
by the charge and the dipole gap can be realized: A dipole Mott
insulator (d-Mott), a dipole Luttinger liquid (d-LL), and a dipole
supersolid (d-Supersolid). Closing of the dipole gap accompanies the
BKT transition from the d-Mott to the d-LL. The dipole gap vanishes
at the first-order transition into the d-Supersolid, where the boson
density exhibits a jump. (c) Selected snapshots of the charge (solid
lines) and dipole density (symbols) in the respective phases extracted
by sampling Fock configurations from the ground-state MPS.

P̂ = ∑
j j n̂ j . As illustrated in Fig. 1(a), single bosons cannot

hop independently but must emit or absorb dipoles under
the dipole-conserving kinetic term, while dipoles show unre-
stricted mobility [1,2].

Instead of the local particle density n j , we may choose to
describe the system via a local density of dipoles nd, j , defined

through [26,33,34]

n̂d, j =
j∑

l=0

(n̂l − n), (2)

where n = 〈N̂〉 /L is the average particle density. When cumu-
lative charge fluctuations around their average satisfy an area
law, the local dipole density is guaranteed to be bounded in
the thermodynamic limit, rendering this mapping a powerful
tool to understand the low-energy properties of the system
[26]. For ground states of local Hamiltonians, a sufficient
(but not necessary) condition for such area law fluctuations
is the presence of a finite charge gap. In this case, the low-
energy features of the system can be understood in terms
of effective dipole degrees of freedom. We emphasize that
the dipole operators d̂†

j introduced above are not, in general,
canonical creation operators of the dipole density in Eq. (2),
i.e., n̂d, j �= d̂†

j d̂ j . Instead, they entail effective interactions due

to their nontrivial commutation relations [d̂ j , d̂†
j′ ] �= δ j, j′ .

The microscopic model Eq. (1) realizes different exotic
low-energy phases as depicted in Fig. 1(b) [26,27]. At in-
teger filling and small dipole hopping, the ground state is
a gapped dipole Mott insulator with both finite charge and
dipole gap. Increasing the dipole hopping eventually leads
to a Berezinskii-Kosterlitz-Thouless (BKT) transition into a
dipole Luttinger liquid, accompanied by a closing dipole gap,
while the charge gap remains finite. At large dipole hopping,
the dipole Luttinger liquid exhibits an instability towards bo-
son bunching due to the quartic scaling in bosonic operators
of both the hopping and the interaction term. Away from
integer filling, another intermediate phase arises. This can
be illustrated in a grand canonical setting, where we fix the
chemical potential and tune the dipole hopping; see Fig. 1(b).
There, a first-order transition into a compressible phase with
a vanishing charge gap occurs, associated with a jump in the
particle density. This phase is accompanied by coexisting off-
diagonal long-range dipole order (ODLRO) and, for rational
filling, charge density wave (CDW) order. Thus it represents a
“dipole supersolid.” In the thermodynamic limit, this phase is
expected to acquire a finite charge gap due to lattice perturba-
tions. However, on numerical accessible scales, this instability
cannot be observed, demonstrating a remarkable robustness
of this supersolid [26,27]. For irrational fillings, the system
retains ODLRO but the state cannot be commensurate with
the underlying lattice. Hence the state does not exhibit CDW
order but is described by the Lifshitz theory. When tuning
the chemical potential in a grand canonical ensemble, thus a
devil’s staircase with incommensurate Lifshitz and commen-
surate metastable supersolid phases is realized in the dipolar
Bose-Hubbard model.

A theoretical description of these low-energy phases is
obtained with bosonization techniques [25,26,35], where a
counting field φ(x) is introduced to express the charge density
n(x) as

n(x) =
[

n − 1

π
∇φ(x)

] ∑
m∈Z

e2im(πnx−φ(x)). (3)

We further introduce the canonically conjugate phase
field θ (x), satisfying [∂xφ(x), θ (x′)] = −iπδ(x − x′).
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Analogously, we may bosonize the dipole degrees of freedom
via the fields φd (x) and θd (x). At low energies, dipoles and
charges are intimately connected through the continuum
version of Eq. (2), ∂xnd (x) = n(x), thus linking the counting
fields φ(x) = ∂xφd (x) according to Eq. (3). Integration
by parts of the commutation relation directly reveals the

conjugate phase field [∂xφ(x), θ (x′)] P.I.= [∂xφd (x),−θd (x′)],
and we obtain the relations

φ(x) = ∂xφd (x),

∂xθ (x) = −θd (x). (4)

We may then formulate the field theory either in charge or
dipole variables.

In the presence of a finite charge gap at integer filling, it is
convenient to work with dipoles as the low energy degrees of
freedom, described by a sine-Gordon model

HSG = 1

2π

∫
dx

{
ud

Kd
(∂xφd )2 + ud Kd (∂xθd )2 + gcos (2φd )

}
,

(5)

with Luttinger parameter Kd and velocity ud . At small t/U ,
the system realizes a Mott insulating phase for the dipoles.
For Kd < 2, the lattice contribution cos(2φd ) is relevant and
pins the counting field φd , which gaps out the dipole degree of
freedom and leads to exponentially decaying correlations. The
system undergoes a BKT transition at Kd = 2 (corresponding
to some filling-dependent critical t∗/U ), where the cosine
becomes irrelevant, and the dipole gap closes. The low-energy
effective theory is a Luttinger liquid of dipoles

HLL = 1

2π

∫
dx

{
ud

Kd
[∂xφd (x)]2 + ud Kd [∂xθd (x)]2

}
, (6)

with algebraic correlations and dynamical exponent z = 1.
These two phases can also directly be discerned from snap-
shots of the charge density. Figure 1(c) depicts selected
snapshots of the charge density and the corresponding dipole
density in the form of single pictorial dipoles with positive or
negative charges. Fluctuations directly reveal qualitative fea-
tures of the respective phase. In the dipole Mott insulator, only
few deviations from the homogeneous state are visible and oc-
cur predominantly in dipole antidipole pairs. By contrast, for
the dipole Luttinger liquid, dipole excitations become gapless,
which is directly reflected in fluctuations comprised of single
dipole excitations.

The previously discussed low-energy phases are realized
at integer filling and preserve the translation invariance of
the Hamiltonian. At noninteger filling, numerical evidence
suggests a phase consistent with the phenomenology of a su-
persolid of dipoles at rational fillings [26,27]. The low energy
physics of this phase is captured by a quantum Lifshitz model
for gapless charge degrees of freedom given by

HLif = 1

2π

∫
dx

[ v

K
(∂xφ)2 + vK

(
∂2

x θ
)2

]
. (7)

Notably, the lowest order kinetic contribution to Eq. (7) com-
patible with dipole conservation is (∂2

x θ )2, invariant under
θ (x) → θ (x) + a + bx. This term originates from the long
wavelength limit of dipole hopping, d̂†

j d̂ j+1 ∼ e−i∂2
x θ (x), and

induces a dynamical exponent z = 2. The supersolid nature
of Eq. (7) arises from a coexistence of ODLRO in the d̂
operators and CDW order, as discussed in more detail in
Sec. V. In Fig. 1(c), snapshots of the charge density exhibit
regions where the periodic order (here, at filling n = 5/2)
is visible and superimposed with strong dipole fluctuations.
Strictly speaking, the supersolid order can only be realized
at rational fillings, whereas the Lifshitz model Eq. (7) should
only describe the true ground-state physics at irrational fill-
ings. At rational filling, it is expected to be eventually unstable
towards a finite charge gap due to lattice effects in the ther-
modynamic limit [26,27]. However, we note that the Lifshitz
model appears to robustly capture the numerical simulations
of Eq. (1) [26,27] at rational fillings as well.

III. SPECTRAL FUNCTIONS AND SUM RULES

We study the excitation spectrum of our microscopic model
Eq. (1) by numerical evaluation of dynamical spectral func-
tions. We introduce the dipole spectral function A(ω, k) =
− 1

π
ImGr(ω, k), obtained from the retarded Green’s function

Gr(t, k) = −i�(t )〈[d̂k (t ), d̂†
k (0)]〉 for the dipole operators, as

A(ω, k) = Re
∫

dt eiωt 〈[d̂k (t ), d̂†
k ]〉. (8)

Under spatial inversion, dipole creation operators map
to dipole annihilation operators and vice versa, implying
particle-hole symmetry for dipole excitations. For this reason,
it is sufficient to only calculate either the particle or the hole
spectrum in Eq. (8). Additionally, we compute the dynamical
structure factor

S(ω, k) =
∫

dt eiωt 〈n̂k (t )n̂−k〉, (9)

describing the dynamical excitation spectrum of the den-
sity operator. In practice, the dynamical correlations entering
Eqs. (8) and (9) are obtained by Fourier transformation of
space-time correlations to momentum space,

〈d̂k (t )d̂†
k 〉 = 1

L

∑
j, j′

e−ik( j− j′ )〈d̂ j (t )d̂†
j′ 〉,

〈n̂k (t )n̂−k〉 = 1

L

∑
j, j′

e−ik( j− j′ )〈n̂ j (t )n̂ j′ 〉, (10)

where expectation values are computed with respect to the
ground-state wave function.

The excitation spectrum can be characterized by its fre-
quency moments, which we may evaluate analytically. The
first moment of the dynamical structure factor is known as the
f -sum rule ∫

dω

2π
ωS(ω, k) = f (k). (11)

For nonconstrained dynamics in the continuum, the f -sum
rule for the density-density response is given by f (k) =
nk2/2m, where n is the density and m the mass [36]. Here,
we present the results for our dipole-conserving lattice sys-
tems for the dipole and density operators. This can be
done by calculating the corresponding commutators with the
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Hamiltonian. For the density operator, we obtain the f -sum
rule ∫

dω

2π
ω S(ω, k) = −8 sin4(k/2) 〈T̂ 〉, (12)

where 〈T̂ 〉 = −2t
∑

j〈d̂†
j d̂ j+1 + H.c〉 is the expectation value

of the kinetic energy. Remarkably, we find the asymptotic
momentum dependence f (k) ∼ k4, while for a regular, uncon-
strained hopping term, we would have f (k) ∼ k2. Repeating
this analysis for the dipole spectral function, we obtain∫

dω

2π
ω A(ω, k) = C0 − C1 cos(k) + C3 cos3(k), (13)

where the coefficients Cn contain various correlation func-
tions evaluated with respect to the ground state. For explicit
expressions, we refer to Appendix A. For small momenta,
the f -sum rule saturates as f (k) ∼ const + k2, analogous to
single-site boson operators in the conventional Bose-Hubbard
model [37]. Equation (13) is similar to this case, but the
additional cos3(k) term appears as a result of the noncanonical
nature of the dipole operators.

IV. NUMERICAL APPROACH

We use tensor network techniques to numerically compute
the dynamical correlation function under controlled approxi-
mations. The well-established density matrix renormalization
group (DMRG) algorithm [38] provides an efficient way to
variationally approximate the ground-state wave function in
matrix product state (MPS) representation. We truncate the
local bosonic Hilbert space to a maximum occupation of
nmax = 8, which is high enough to ensure converged results.
Our model exhibits particularly strong boundary effects for
finite systems with open boundary conditions. Hence we uti-
lize the infinite system size version of DMRG (iDMRG) [39]
to eliminate the influence of the boundaries. Furthermore,
our algorithms implement U (1) particle density and dipole
conservation. While constructing symmetric tensor networks,
invariant under U (1) transformations, is well understood
[40,41], we want to highlight how dipole conservation is real-
ized. Generally, one introduces quantum numbers, or charges,
e.g., qN for the particle density, on the legs of the tensors in a
tensor network and demands that each tensor transforms such
that the charges fulfill Kirchhoff’s law. In this sense, the dipole
moment is just an additional leg charge, qP, that we must keep
track of. The key aspect here lies in the fact that translations
do not commute with the dipole operator; hence translating
the MPS does not act trivially on the charges. In particular,
we have to enforce the additional rule(

q[n]
N , q[n]

P

) → (
q[n]

N , q[n]
P + rq[n]

N

)
(14)

when translating the MPS by r sites, where n labels the tensor
inside one unit cell. We note that dipole conservation severely
restricts the connectivity of the variational space and iDMGR
might become nonergodic and stuck in local minima [42]. To
mitigate this issue, it is important to use a form of subspace
expansion or density matrix mixing [43,44] to enlarge the
reachable manifold for variational optimization.

After obtaining the ground states with iDMRG, we com-
pute the dynamical correlation function by applying the

corresponding local operator, time evolving the perturbed
state, and eventually obtaining the correlation function by
computing the overlap. In the case of a translation invariant
system, only a single time evolution is necessary for obtaining
the spectral function. By contrast, when translation invari-
ance is spontaneously broken, the time evolution has to be
carried out on every sublattice. We use the time-dependent
variational principle (TDVP) for MPS [45,46] to compute the
time evolution. In the original one-site formulation, TDVP
cannot change the virtual bonds and adjusting the charge
sectors of the MPS tensors is not possible. Hence we first
use the two-site variant of TDVP. Subsequently, when the
state becomes sufficiently uniform, we switch to the one-site
variant due to the better scaling with the local Hilbert space
dimension (which is significant in our case of bosons). As
noted before, we want to avoid boundary effects using infinite
MPS. For time evolution, we employ a hybrid scheme known
as segment boundary conditions or window MPS, which de-
scribes an infinite chain effectively by a finite MPS [47,48].
This is achieved by describing the dynamics inside a finite
window embedded in an infinite MPS by treating the left
and right parts as half-infinite ground-state MPS. Standard
TDVP then realizes the time evolution but with nontrivial
boundary environments, which describe the effective coupling
to the half-infinite chains. These are obtained by computing
the dominant left and right eigenvectors of the generalized
transfer matrix.

The spectral function is subsequently computed by Fourier
transformation in space and time. Due to time translation
invariance, the negative time data can be obtained from the
positive time data via complex conjugation. The energy reso-
lution δE ∼ 1/τmax is limited by the maximal evolution time
accessible within the MPS approximation τmax, which in turn
is restricted by the entanglement growth and controlled by the
maximal bond dimension χmax. To avoid Gibbs ringing, we
use artificial broadening by multiplying the correlator in the
[−τmax, τmax] interval with a Gaussian windowing function
∼e−t2/2σ 2

(with σ � τmax/2), after applying linear prediction
to extrapolate the data to longer times [49,50].

The MPS formalism in the thermodynamic limit of-
fers powerful tools to study elementary excitations. Isolated
branches in the spectrum can be interpreted as quasiparti-
cle excitations of the system and can be directly targeted
by a variational ansatz [51]. In the spirit of generalizing
the single-mode approximation, this ansatz describes quasi-
particle excitations as a plane-wave superposition of local
perturbations of the ground state

|Ψp〉 =
∑

n

einp

[
. . . AL AL B AR AR . . .

jn−1 jn−1 jn jn+1 j+2

]
,

(15)

where AL (AR) are the translation invariant ground-state
MPS’s left (right) isometric tensors and B represents the per-
turbation tensor to be optimized. Such states live in the tangent
space of the ground-state MPS and appropriate gauge fixing
allows for a parametrization for which overlaps can be com-
puted efficiently [52]. We have assumed a translation invariant
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FIG. 2. Dipole spectral function. Characteristic excitations in (a) the dipole Mott insulator at n = 2 and t/U = 0.05, (b) the dipole Luttinger
liquid at n = 2 and t/U = 0.115, and (c) the dipole supersolid at n = 5/2 and t/U = 0.05. Top row: Dipole spectral functions are compared
to the MPS quasiparticle excitation ansatz (QP). For the dipole Mott insulator, additionally, the strong coupling (SC) result is shown, while
for the Luttinger liquid, the Luttinger dispersion ω = ud |k| and the dispersion of the massive quantum Lifshitz (MQL) model is illustrated.
Bottom row: The f -sum rule, calculated from the numerically obtained spectrum (red) and the analytic prediction (black dashed). We also
show the spectral weight of the lowest-lying quasiparticle excitation (QP), which is appreciable only in the gapped dipole Mott insulator phase,
indicating that, in general, complex low-energy excitations can be formed in the dipole conserving Bose-Hubbard model that do not necessarily
contribute to the pertinent spectral functions.

MPS with a single-site unit cell, but the generalization to
larger unit cells is straightforward.

The quasiparticle ansatz describes the lowest possible state
at a given momentum within the variational manifold for a
given bond dimension. For gapped systems, this usually is the
mode of interest. By contrast, for gapless systems, the ansatz
may predict complex many-body excitations and the spectral
weight has to be evaluated to assess the weight of these ex-
citations in the targeted spectral function. For a given local
operator Ô, the spectral weight captured by the quasiparticle
ansatz Eq. (15) is computed by evaluating overlaps with the
ground-state wave function

Zp =
∣∣∣∣∣〈ψ0| 1

L

L−1∑
n=0

e−ipnÔn|
p〉
∣∣∣∣∣
2

. (16)

V. DIPOLE SPECTRAL FUNCTION

At low energies, dipoles constitute the relevant degrees of
freedom and the competition between their kinetic and the
interaction energy determines the properties of the system.
Therefore, we study the dynamical response of the system
to perturbations that couple to the dipole operator d̂†

j . Spatial
inversion symmetry implies particle-hole symmetry for dipole
excitations, as d̂†

j → d̂− j−1, and it is thus sufficient to study
the particle excitation spectra. We numerically compute the
spectral function for the three phases introduced above. In
the dipole Mott and dipole Luttinger liquid phase, we fix
the filling to be integer n = 2 and choose values for t/U
below and above the critical t∗/U = 0.113 [26]. Figures 2(a)
and 2(b) show the resulting spectral functions. For the dipole
supersolid phase, we fix a rational filling n = 5/2 and choose
an intermediate dipole hopping t/U ; see Fig. 2(c).

A. Dipole Mott insulator

The low-energy physics of the dipole Mott insulator is
described by the sine-Gordon model in Eq. (5). Being the most
relevant term, the cosine can be expanded around its minimum
cos(2φd ) ∼ φ2

d , which leads to gapped quadratic excitations

ω(k) =
√

(ud k)2 + �2
d = �d + (ud k)2/2�d + O(k4), (17)

with �d = 4πgKd ud . This is in accordance with the micro-
scopic model, where, in the strong coupling limit t/U → 0,
dipole excitations on top of the Mott insulator behave es-
sentially as free particles and we find to lowest order the
asymptotic dispersion

lim
t/U→0

ω(k) = U − n(n + 1) 2t cos(k). (18)

This agrees with the result for the conventional Bose-Hubbard
model in the Mott phase [53], up to different prefactors result-
ing from the additional Bose factors of the correlated hopping
term.

The spectral function, Fig. 2(a), exhibits a finite gap at
k = 0. It has a well-defined excitation branch at low momenta,
which becomes broader at large momenta and eventually en-
ters a multiparticle continuum. The dispersion obtained from
the strong-coupling limit qualitatively captures the numerical
results. Due to the gapped nature of the system, the quasipar-
ticle ansatz shows good agreement with the spectral function,
particularly at low momenta, where it exhausts the f -sum rule.
In contrast, at large momenta, the reduced contribution of the
lowest excited state indicates the existence of an excitation
continuum.

As the dipole hopping increases, deviations from the strong
coupling limit become substantial; see Appendix B. The dis-
persion tends to be increasingly linear near the k = 0 point.
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Moreover, the dispersion obtained from the MPS quasiparticle
ansatz lies below the frequencies with maximum weight in the
spectral function. Here, more complex states are variationally
found by the quasiparticle ansatz, which do not possess any
relevant spectral weight.

B. Dipole Luttinger liquid

The dipole Luttinger liquid Eq. (6) features gapless linear
low-energy excitations

ω(k) = ud |k|. (19)

Numerically, we directly obtain the velocity ud from the
ground-state wave function via ud = Kd/κdπ , in which
the Luttinger parameter is extracted from the algebraically
decaying correlations 〈d̂†

r d̂0 〉 ∼ r−1/2Kd and the dipole com-
pressibility from the finite size scaling of the dipole gap
�d (L) = κ−1

d /L.
The spectral function exhibits gapless excitations at k = 0,

Fig. 2(b), where most spectral weight is concentrated. At
small momenta, the linear mode Eq. (19) with the Luttinger
velocity ud agrees well with the excitation branch seen in
the dynamical data. We emphasize that the linear dispersion
is found in a relatively small momentum region. At larger
momenta, it bends upwards before it enters a multiparticle
continuum. Remarkably, a sharp quadratic mode with sig-
nificant spectral weight exists outside the linear region. The
quasiparticle ansatz does, in fact, correctly capture the linear
dispersion at small momenta; however, at larger momenta, it
fails. Generally, this is not surprising, as the variational states
captured by the ansatz Eq. (15) are not guaranteed to work
well for gapless systems and there may well be a continuum
of complex excitations with low spectral weight. This can be
read off from the quasiparticle ansatz, as even in the k → 0
limit, the full spectral sum rule is by far not exhausted.

Let us return to the well-defined quadratic mode observed
in the spectrum. A natural candidate to explain this behavior is
the quantum Lifhsitz model and one might ask whether the dy-
namics away from the small momentum limit is determined by
emergent Lifshitz-like physics on the relevant time and length
scales. We, therefore, consider a quantum Lifshitz model but
with an additional mass term

H =
∫

dx

{
v

2π

[
1

K
(∂xφ)2 + K

(
∂2

x θ
)2

]
+ gφ2

}
. (20)

The Hamiltonian is expressed in charge degrees of freedom.
This mass term results from the lowest-order contribution of
the lattice correction cos(2φ) present at integer filling, which
is always relevant and ensures a finite charge gap. This model
features gapless excitations with the dispersion

ω(k) = v|k|
√

k2 + 2πgK/v. (21)

For small momenta k � √
2πgK/v, the dispersion becomes

linear ω(k) ∼ |k|. In this limit, we can map the theory to
dipole degrees of freedom via Eq. (4) and effectively obtain
a Luttinger liquid with ud = √

2πgKv and Kd = √
Kv/2πg.

Thus the Luttinger liquid of dipoles is still the true low-energy
theory under a renormalization group treatment, with disper-
sion ω(k) = ud |k|. However, for sufficiently large momenta
k � √

2πgK/v, when the charge gap becomes negligible, we

effectively obtain a quantum Lifshitz model with quadratic
dispersion ω(k) = vk2, compatible with the features observed
in the numerical spectrum. At scales on which the system
does not feel the presence of the small charge gap �c ∼ g

Kv
,

it can thus realize Lifshitz physics. However, the charge gap
becomes relevant at late times and large length scales and the
system flows to the Luttinger liquid fixed point, prohibiting a
quadratic dispersion at small momenta. As shown in Fig. 2(b),
the massive quantum Lifshitz theory captures the observed
excitations well using a single fitting parameter K/v, which
is a nonuniversal function of the dipole hopping t/U .

Compared to a conventional superfluid, in which collec-
tive excitations become free particles at high momenta with
a quadratic dispersion, the excitations of the Lifshitz theory
are diffusively spreading collective density modes with strong
oscillations in real space and time. The effective Lifshitz de-
scription is further supported by the observation of such oscil-
lations in the dipole density profiles following the relaxation
dynamics of additional dipoles on top of the ground state [54].

C. Dipole supersolid

At rational filling, a phase compatible with the phe-
nomenology of a supersolid arises. To illustrate this finding,
let us fix the filling to be n0 = p/q, with p and q coprime
integers. Reiterating the arguments of Ref. [55], the resulting
ground state of a translation invariant Hamiltonian with both
charge and dipole conservation is necessarily at least q-fold
degenerate: Let T̂ be the translation operator, shifting by one
lattice site, and Û = ei2π/L

∑
j jn̂ be the unitary transforma-

tion generated by the dipole operator P̂ = ∑
j jn̂. The key

point is as follows: Although both Û and T̂ commute with
Ĥ , [Û , Ĥ ] = [T̂ , Ĥ ] = 0, they do not commute among them-
selves [Û , T̂ ] �= 0. From the definition of Û , it follows that
T̂ −1Û T̂ = ei2π p/qÛ and hence commuting Û and T̂ results in
an additional phase factor Û T̂ = ei2π p/qÛ T̂ . As [Û , Ĥ ] = 0,
we can choose the eigenstates of the Hamiltonian to be si-
multaneous eigenstates of Û and label them by the eigenvalue
with respect to Û as |eiφ〉. Moreover, because [T̂ , Ĥ ] = 0, the
translated state T̂ |eiφ〉 is also an eigenstate with the same en-
ergy, but its eigenvalue associated with Û is altered Û T̂ |eiφ〉 =
ei2π p/qeiφ T̂ |eiφ〉. Accordingly, translated eigenstates T̂ m|eiφ〉
are orthogonal for m < q and only after q translations do we
arrive at the original eigenvalue Û T̂ q|eiφ〉 = eiφ T̂ q|eiφ〉. As
a result, our system has at least q degenerate ground states,
which are connected by translations.

The low-energy theory is given by the quantum Lifshitz
model presented in Eq. (7). This theory features a modulated
charge density with wave number 2π p/q for each of the
ground states

〈n(x)〉 = n0 + n0

∑
m>0

cos(2πx m p/q) e−m2K/α, (22)

where 1/α is the momentum cutoff necessary for UV regu-
larization. Note that contributions from higher harmonics are
strongly suppressed. The charge-density-wave order is cap-
tured by a finite order parameter

Oq = 1

L

∑
j

ei2π j p/q〈n̂ j〉 �= 0. (23)
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FIG. 3. Dynamical structure factor. Top row: Dynamical structure factor in (a) the dipole Mott, (b) the dipole Luttinger liquid, and (c) the
dipole supersolid, for the same parameters as in Fig. 2. We compare the spectrum of the dipole Luttinger liquid with the Luttinger dispersion
ω = ud |k| and the massive quantum Lifshitz (MQL) theory. Bottom row: f -sum rule of the dynamical structure factor. The insets highlight the
∼k4 scaling of the f -sum rule at small momenta found in all three phases due to the conservation of the dipole moment.

In addition, these ground states feature ODLRO in the dipole
correlations 〈d̂†

r d̂0 〉 r→∞−−−→ const and a finite superfluid stiff-
ness [26]. They possess quadratic low-energy excitations

ω(k) = vk2. (24)

Due to the spontaneous breaking of translation symmetry, we
expect q of such soft modes located at momenta k = 2πmp/q
mod 2π with m ∈ [0, q) and m integer. These modes could, in
principle, be thought of as softening of roton modes; however,
due to the absence of a continuous phase transition into the
dipole supersolid, there is no reason to expect precursors of
them in any of the other phases.

The dipole spectral function at half-integer filling n = 5/2
and dipole hopping t/U = 0.05 exhibits the signatures of the
dipole supersolid, Fig. 2(c). The spectrum has a vanishing ex-
citation gap at both k = 0 and k = π , as expected for n = p/q
with q = 2. As the quantum Lifshitz theory predicts, these ex-
citations are dispersing quadratically ω(k) ∼ k2. CDW order
leads to the additional soft mode at k = π , albeit with a very
small spectral weight. The quasiparticle ansatz consistently
fails to capture the observed spectrum and the associated
spectral weight has a vanishing contribution to the f -sum rule.
We note that, in the limit k → 0, the quasiparticle dispersion
becomes compatible with a quadratic mode.

VI. DYNAMICAL STRUCTURE FACTOR

In addition to the dipole spectral function, we compute the
dynamical structure factor defined in Eq. (9) for the different
phases; see Fig. 3. For all three phases, the spectral weight
of the dynamical structure factor quickly vanishes for small
momenta. This is simply a result of dipole conservation. As
a consequence, charge transport is forbidden, leading to a
vanishing dc conductivity. This is also reflected in the f -sum
rule, which decays as ∼k4 for small momenta, indicated in the
insets where both the numerical data and analytic predictions
are found to match precisely.

A comparison of the structure factor and the dipole spec-
tral function yields further insights. Most remarkably, for the
dipole Luttinger liquid and the dipole supersolid, the low-
energy excitation branches of both spectral functions coincide.
This is in agreement with the analytical expectation from both
the Luttinger liquid and Lifshitz low energy field theories. As
those are quadratic theories, they predict unique gapless low
energy modes that couple to both the dipole spectral function
and the dynamical structure factor, albeit with different spec-
tral weights.

By contrast, in the dipole Mott insulator, qualitative differ-
ences become visible. At strong coupling, the dipole spectral
function creates mobile excitations on top of the dipole Mott
insulator that follows the lattice dispersion, Eq. (18). By
contrast, the dynamical structure factor probes collective den-
sity excitations that capture the fluctuations of the ground
state. The dynamical structure factor, therefore, shows a weak
gapped response at strong coupling.

VII. CONCLUSIONS AND OUTLOOK

In this work, we have numerically computed the excita-
tion spectrum of the dipole-conserving Bose-Hubbard model.
We compare the numerical results to predictions from low-
energy effective field theories for the realized ground-state
phases. We found sharply defined quasiparticle excitations
in the dipole Mott insulator, in line with a strong coupling
expansion. In the dipole Luttinger liquid phase, a linear gap-
less mode dominates at small momenta, as predicted by the
low-energy theory. However, the mode bends to a quadratic
dispersion for larger momenta. This can be understood from
an effective quantum Lifshitz model with a charge gap and the
coupling between charge and dipole degrees of freedom. This
intriguing finding suggests that, while the low-energy theory
is an effective Luttinger liquid, Lifshitz physics is realized
below a certain time and length scale, determined by the
charge gap being small compared to the energy scale. This
opens possibilities for finding unconventional signatures in
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dynamical probes on finite time scales accessible on experi-
mental platforms. An interesting direction to further explore is
how this observation influences far from equilibrium probes,
such as the dynamics after a quench, i.e., by controllably
adding particles or dipoles [54]. Furthermore, we found a
quadratic mode in the dipole supersolid phases, again com-
patible with the quantum Lifshitz theory. At fractional filling
n = p/q, q soft modes emerge at finite momenta due to the
spontaneous breaking of translation symmetry, further endors-
ing the supersolid phenomenology. Accessing the stability of
these dynamical features with respect to symmetry breaking
perturbations, by including a small single-particle hopping
term, constitutes another possible direction for future work.

Our finding may assist the experimental observation of
fractonic quantum matter. Cold atom quantum simulators have
demonstrated the realization of dipole-conserving models via
linear potentials. Dynamical probes could offer a promising
route to observe exotic phases, such as the dipole Luttinger
liquid in one dimension, dipole condensation in higher di-
mensions, or even the additional soft modes in the symmetry
broken phase at fractional filling. Our results provide a guid-
ing principle for distinguishing these phases dynamically and
corroborate the dynamics of dipoles and bosons in the ground
states of fractonic models.

Numerical data and simulation codes are available on Zen-
odo upon reasonable request [56].
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APPENDIX A: SPECTRAL SUM RULES

The moments of a spectral function of the form

S(ω) =
∫

dt eiωt 〈Â(t )B̂(0)〉 (A1)

can be computed exactly by calculating commutators of the
corresponding operators with the Hamiltonian. For arbitrary
integer power n, it holds that∫

dω

2π
ωn S(ω) = 〈[Â, Ĥ ]nB̂〉, (A2)

with the nested commutator [Â, B̂]n = [[Â, B̂]n−1, B̂] and
[Â, B̂]n=1 = [Â, B̂]. This follows directly from the Heisenberg
equation of motion for Â(t ). In the following, we focus on the
first moment n = 1, known as the f -sum rule.

For the dynamical structure factor, we exploit inversion
symmetry to recast this identity to the double commutator
form ∫

dω

2π
ω S(ω, k) = 1

2
〈[[n̂k, Ĥ ], n̂−k]〉, (A3)

which can be evaluated exactly for the microscopic model. As
pointed out before, the dipole operators do not fulfill canonical
commutation relations, but we rather have

[d̂ j , d̂†
l ] = δ j,l (n̂ j+1 − n̂ j ),

[d̂ j , d̂l ] = δ j,l+1d̂ (2)
j−1 − δ j+1,l d̂

(2)
j ,

[d̂†
j , d̂†

l ] = δ j+1,l d̂
(2)†
j − δ j,l+1d̂ (2)†

j−1 ,

(A4)

with the generalized dipole operator d̂†(n)
j = b̂†

j+nb̂ j . Addition-
ally, it is useful to note the commutation relations with the
density operator

[d̂ j , n̂l ] = (δ j,l − δ j+1,l )d̂ j ,

[d̂†
j , n̂l ] = (δ j+1,l − δ j,l )d̂

†
j . (A5)

The commutator with the density operator evaluates to

[n̂ j, Ĥ ] = −t (d̂†
j d̂ j+1 − 2d̂†

j−1d̂ j + d̂†
j−2d̂ j−1 − H.c.). (A6)

Note that the interactions commute with the number operator
and do not contribute to the first moment. We obtain for the
double commutator

〈[n̂k, Ĥ ], n̂−k]〉 = 32t sin4(k/2)
1

L

∑
j

〈d̂†
j d̂ j+1〉 (A7)

and accordingly the f -sum rule given in Eq. (12).
For the dipole spectral function, we have∫

dω

2π
ω A(ω, k) = 〈[[d̂k , Ĥ ], d̂†

k ]〉. (A8)

Due to the particle-hole symmetry of dipoles resulting from
inversion symmetry, both particle and hole spectra contribute
equally to the sum rule and hence the sum rule is fulfilled
individually for them. In the main text, we only show particle
spectra and, therefore, include a factor of 1/2 on the right side
of Eq. (A8). The commutator of the dipole operator with the
kinetic term gives

[d̂ j , Ĥt ] = −t
{

(n̂ j+1 − n̂ j )(d̂ j+1 − d̂ j−1)

+ (d̂†
j−2 + d̂†

j )d̂ (2)
j−1 − (d̂†

j+2 + d̂†
j )d̂ (2)

j

}
, (A9)

and with the interaction term (which, in contrast to the density
operator, does not vanish)

[d̂ j , ĤU ] = U (n̂ j − n̂ j+1 + 1/2)d̂ j . (A10)

Hence, in total, we obtain the sum rule

1
2 〈[[d̂k , Ĥ ], d̂†

k ]〉 = C0 − C1 cos(k) + C3 cos3(k), (A11)

where the coefficients Cn contain various correlation functions
evaluated on the ground state. For small momenta, the f -
sum rule saturates as f (k) ∼ const + k2, analogous to what
is found in the standard Bose-Hubbard model for the bosonic
creation and annihilation operators. The coefficients are
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FIG. 4. Dipole spectral function in the Mott insulating phase. At integer filling n = 2, the dipole hopping increases from left to right
towards the BKT transition at t/U = 0.013. (a) t/U = 0.050, (b) t/U = 0.075, and (c) t/U = 0.100. Additionally, we show the lowest-lying
excited states obtained from the MPS quasiparticle ansatz (QP).

given by

C0 =
∑

j

{
4t〈d̂†

j d̂ j+1〉 + U (〈d̂†
j d̂ j 〉 − 〈n̂ j n̂ j〉 + 〈n̂ j n̂ j+1〉)

}
,

C1 =
∑

j

{
U 〈d̂†

j d̂ j+1〉 + t
(
2〈d̂†

j d̂ j 〉 + 2〈d̂†
j d̂ j+2〉 + 2〈n̂ j n̂ j+1〉 − 〈n̂ j n̂ j+2〉 − 〈n̂ j n̂ j〉

+ 3
〈
d̂ (2)†

j d̂ (2)
j+2

〉 + 2
〈
d̂ (2)†

j d̂ (2)
j+1

〉 − 〈
d̂ (2)†

j d̂ (2)
j

〉)}
,

C3 =
∑

j

4t
〈
d̂ (2)†

j d̂ (2)
j+2

〉
. (A12)

We numerically compute all the contributing correla-
tion functions from the MPS ground-state wave func-
tion when showing these results in the main text.

APPENDIX B: ADDITIONAL DATA

Figure 4 presents supplementary data for the dipole spec-
tral function in the Mott insulator for several dipole hopping
strengths t/U .
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