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Modeling the underlying pairing mechanism of charge carriers in strongly correlated electrons, starting from
a microscopic theory, is among the central challenges of condensed-matter physics. Hereby, the key task is
to understand what causes the appearance of superconductivity at comparatively high temperatures upon hole
doping an antiferromagnetic (AFM) Mott insulator. Recently, it has been proposed that at strong coupling and
low doping, the fundamental one- and two-hole meson-type constituents—magnetic polarons and bipolaronic
pairs—likely realize an emergent Feshbach resonance producing near-resonant dx2−y2 interactions between
charge carriers. Here, we provide detailed calculations of the proposed scenario by describing the open and closed
meson scattering channels in the t-t ′-J model using a truncated basis method. After integrating out the closed
channel constituted by bipolaronic pairs, we find dx2−y2 attractive interactions between open channel magnetic
polarons. The closed form of the derived interactions allows us analyze the resonant pairing interactions and we
find enhanced (suppressed) attraction for hole (electron) doping in our model. The formalism we introduce
provides a framework to analyze the implications of a possible Feshbach scenario, e.g., in the context of
BEC-BCS crossover, and establishes a foundation to test quantitative aspects of the proposed Feshbach pairing
mechanisms in doped antiferromagnets.
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I. INTRODUCTION

When the kinetic motion of constituents in a material
is constrained by dominant repulsive Coulomb interactions,
strongly correlated phases of electrons emerge, as observed
in heavy fermions [1], Moiré materials [2], or quantum
simulators [3], to name a few. Another prominent example
are underdoped cuprate compounds [4] with their numerous
competing phases at low temperature [5–8], including the
pseudogap phase, spin and charge order and superconductiv-
ity, which can be found in the phase diagram in the vicinity of
an antiferromagnetic (AFM) Mott insulator.

The AFM Mott insulator constitutes a natural starting point
to study the various phases that appear at low to intermediate
doping [5]. In this regime, the fundamental charge excitations
are not the bare or renormalized electrons but have magnetic
(or spin) polaron character [9], exhibiting strong correlations
between the spin and charge degrees of freedom. The mag-
netic polarons’ properties have been quantitatively studied in
great detail theoretically [10–15] and in numerical simulations
[16–23]. Additionally, ultracold atom quantum simulators
with their direct access to spatial correlations provide an
experimental platform to study the Fermi-Hubbard model,
including the properties of individual magnetic polarons
[3]. This has enabled a direct observation of characteristic
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spin-charge correlations in a single magnetic polaron [24],
and similar polaronic features were observed up to dopings
around 20% [25] indicating an extended regime governed by
magnetic polaron formation.

In parallel, a phenomenological theory of magnetic po-
larons was developed [26–28] which describes them as being
composed of two partons carrying spin and charge quantum
numbers, respectively, and which are confined into a mesonic
bound state. This meson picture suggests that the magnetic
polaron is not described by a dopant dressed with a featureless
cloud of magnons, but rather the quasiparticle acquires a rich
internal structure [27,29] due to a rigid, confining string ob-
ject [10–12,27,28,30] connecting the partons, i.e., the spinon
(s) and the chargon (c). We denote these mesons by their
parton content as spinon-chargon (sc). Indirect experimental
evidence for the meson nature of the charge carriers below
around 20% doping has been obtained through the observation
of string patterns [25] and by machine-learning analysis of
experimental data from cold atom quantum simulators [31].
These studies suggest that string formation itself plays an
important role in the breakdown of AFM order as doping
increases.

This meson picture is in stark contrast to earlier proposals
by Anderson [32]: he suggested that the electron (or hole)
dopants fractionalize into free, i.e., deconfined, spinons (s)
and chargons (c) in the finite doping regime. This idea led to
the development of emergent gauge theories with (de)confined
partons [33,34] and the resonating valence bond (RVB)
picture of unconventional superconductivity [5,32]. Today,

2469-9950/2024/109(12)/125135(22) 125135-1 ©2024 American Physical Society

https://orcid.org/0000-0002-6275-6204
https://orcid.org/0000-0002-6679-6211
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.125135&domain=pdf&date_stamp=2024-03-27
https://doi.org/10.1103/PhysRevB.109.125135


HOMEIER, BERMES, AND GRUSDT PHYSICAL REVIEW B 109, 125135 (2024)

the RVB picture of fractionalized partons remains debated
however [35].

Instead, for a sufficiently long-ranged AFM correlation
length ξAFM � a, where a is the lattice spacing, the picture of
confined partons discussed earlier is believed to resemble the
situation in cuprates and Fermi-Hubbard type models. Here,
the mesonlike spinon-chargon (sc) bound states have the same
quantum numbers as the electrons [36] supplemented by a
theoretically and numerically predicted rich internal structure
[11,12,26,37–41]. Additionally, recent density matrix renor-
malization group (DMRG) simulations [42] and analytical
studies [43] find light, long-lived two-hole resonances [44]
described by a bosonic chargon-chargon (cc) meson and with
similar internal structure. Solving for the parton bound state
exactly is challenging, however phenomenological models
have been put forward predicting a rich rovibrational string-
like excitation spectrum [12,27,28,30,38] of the fermionic
magnetic polaron and the bosonic bipolaron [37,42,43], see
Fig. 1(a).

Motivated by experimental evidence in cuprate
compounds—indicating the fermionic character of charge
carriers in the ground state [45–48]—one approach is to
formulate a low-doping and strong coupling model based on
a normal state constituted by weakly interacting magnetic
polarons; these describe the fermionic quasiparticles of
individual mobile holes doped into an AFM Mott insulator.
This approach is further justified by recent ARPES studies
[48,49] in the extremely low-doping regime of layered
cuprates indicating the existence of a Fermi surface around
the nodal points k = (±π/2,±π/2) [46], which is consistent
with the predicted hole pockets of magnetic polarons
[13–16,21,22]. Experiments in this compound suggest
that any small hole doping of the AFM Mott insulator gives
rise to a metallic state with onset of superconductivity at a
doping of around 4% seen by the opening of a pairing gap
[48].

An exceptional effort has been put forward to explain the
origin of the strong pairing in cuprates, starting from vari-
ous proposed parent states including the magnetic polarons;
hereby numerous studies have shown the importance of mag-
netic fluctuations for pairing [50–62]. However, the charge
carrier’s strong coupling nature, i.e., their emergence from
the underlying correlated background, prohibits to develop a
simple interacting theory at finite doping. In particular, devel-
oping a unifying description that includes the rich microscopic
structure of the emergent charge carriers, i.e., the string and its
fluctuations, has remained challenging. The goal of this article
is to formulate a low but finite doping description of these
charge carriers fully including their internal structure.

In an accompanying study [63], the scenario of an emer-
gent Feshbach resonance in underdoped cuprates is proposed.
It is argued that the (sc)’s, forming the normal state of a
doped AFM insulator, can recombine with a light, bipolaronic,
near-resonant (cc) channel leading to a scattering resonance.
Hereby, the scattering symmetry is dictated by the rotational
symmetry of the tightly bound (cc) state giving rise to attrac-
tive d-wave interactions; in principle off-resonant scattering
processes of a different symmetry can contribute weakly,
see Fig. 1(b). This provides a new perspective on the origin
of pairing between charge carriers, i.e., magnetic polarons,

(a)

(b)

FIG. 1. Mesons in doped antiferromagnets. Understanding the
properties of charge carriers in underdoped cuprates is essential to
build microscopic, strong coupling theories of the various observed
phases including the d-wave superconductor. Our starting point is
the very low doping regime, i.e., one or two dopants in a strongly
correlated AFM Mott insulator, which feature quasiparticles with
rich internal structure. (a) The confined nature of partons, i.e., the
spinon (s) and chargon (c), gives rise to mesonic (sc) and (cc) bound
states. The mesons carry quantum numbers associated with their
internal rovibration structure. (b) The Feshbach scattering scenario
proposed in Ref. [63] describes two fermionic (sc) mesons, which
scatter via recombination processes into the bosonic, tightly bound
(cc) state. The internal structure of the charge carriers leads to var-
ious scattering channels. If one channel approaches the scattering
threshold, however, the scattering length diverges and dominates the
low-energy physics. The Feshbach hypothesis of high-Tc supercon-
ductivity conjectures that cuprates remain on the BCS-side but are in
close proximity to a d-wave resonant (cc) state.

mediated by a closed (cc) scattering channel and based on
magnetic interactions [64]. In Ref. [63], the Feshbach hypoth-
esis of high-Tc superconductivity in cuprates is formulated,
which conjectures that cuprate superconductors are in the
vicinity of a dx2−y2 -wave scattering resonance, but on the
BCS side where the ground state is constituted by magnetic
polarons (sc).

In this paper, we collect further evidence for the Feshbach
scattering scenario. To this end, we develop a truncated basis
method to obtain the mesons by confining strings, and apply
it to describe a multichannel model of magnetic polarons
(sc)2 in the open channel and tightly bound (cc) states in the
closed channel, see Secs. II and III. In Sec. IV, we calculate
the matrix elements of the resonant interactions by perform-
ing a controlled approximation in the length of strings and
by considering open-closed channel recombination processes
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induced by spin-flip J⊥ and weak next-nearest-neighboring
(NNN) tunneling t ′ events. We compare our results in Sec. V
to a more quantitative and refined truncated basis method, that
cures the overcompletness of the strings states and allows us to
systematically include nonperturbative effects associated with
larger values of t ′.

As we show, after integrating out the near-resonant closed
channel, the mediated low-energy scattering interactions give
rise to dx2−y2 -wave BCS-type pairing between two magnetic
polarons with zero total momentum, see Sec. VI. We discuss
additional results and immediate consequences that follow
from the Feshbach pairing mechanism obtained in the semi-
analytical description of the meson bound states. In the limit
of weak NNN tunneling |t ′| � |t |, we predict stronger pairing
interactions in hole-doped than electron-doped compounds.
Further, our model allows us to obtain a set of BCS mean-field
equations predicting a dx2−y2 -wave pairing gap. Lastly, we
discuss experimental signatures and derive coupling matrix
elements for single-hole ARPES and coincidence ARPES
in Sec. VII. We conclude with a summary and outlook in
Sec. VIII.

II. MODEL

The starting point to describe one and two dopants (holes
or electrons) in the AFM Mott insulator is a 2D square lattice
t-t ′-J model, which is the low-energy description of the strong
coupling U � t Fermi-Hubbard model [65]. The Hamiltonian
of the model is given by

Ĥt-t ′-J = −t
∑
〈i,j〉,σ

P̂ (ĉ†
i,σ ĉj,σ + H.c.)P̂

− t ′ ∑
〈〈i,j〉〉,σ

P̂ (ĉ†
i,σ ĉj,σ + H.c.)P̂

+ Jz

∑
〈i,j〉

(
Ŝz

i Ŝz
j − 1

4
n̂in̂j

)

+ J⊥
2

∑
〈i,j〉

(Ŝ+
i Ŝ−

j + H.c.), (1)

where ĉj,σ describes the underlying electrons with spin σ =
↓,↑ at site j; the spin-1/2 operator Ŝj = 1

2 ĉ†
j,σ τ̂σσ ′ ĉj,σ ′ is con-

structed from Pauli matrices τ. Furthermore, the Gutzwiller
projector ensures that the particle number, n̂j = n̂j,↓ + n̂j,↑, is
constrained to n̂j � 1 for all sites j akin to strong Hubbard
repulsion in the parent model. The first two terms in Hamil-
tonian (1) describe NN and NNN tunneling with amplitude t
and t ′, respectively. The last two terms are the effective AFM
interaction with superexchange strength Jz = J⊥ = +4t2/U .
In the strong-coupling limit—typically t/J 
 3 is assumed in
cuprate materials—the undoped (n̂j = 1 for all j) ground state
|0〉 is AFM Néel ordered.

III. OPEN AND CLOSED CHANNEL DESCRIPTIONS

In the following, we recap the geometric string formalism
in order to describe mobile single dopant (sc) and two dopant
(cc) impurities immersed into an AFM Mott insulator |0〉; we
closely follow Refs. [27,43]. We review the basic concepts

(a)

(b)

FIG. 2. Truncated basis of geometric strings. (a) We describe
the single dopant (magnetic polaron) in a parton framework giving
rise to a spinon-chargon bound state (sc). For t � J , the chargon
moves through a frozen spin background, i.e., the latter adapts on
much slower time scales, τs ∝ J−1

⊥ , then the former, τc ∝ t−1. The
chargon’s motion rearranges the spin background leaving a memory,
which we encode in the geometric string � (gray curly line). The
displacement of spins leads to parton confinement akin to a linear
string tension ∝ Jz. Analogously, the parton construction is applica-
ble to the two dopant problem, leading to a tightly bound, bipolaronic
chargon-chargon (cc) bound state connected by a string �cc (bottom).
(b) We map the string states on the sites of a Bethe lattice. Here, we
illustrate the hopping events of the chargon as in a (top). The rota-
tional symmetries of the Bethe lattice allow us to assign well-defined
rotational quantum numbers to the magnetic polaron for C4-invariant
momenta. We associate an angle λ(N ) between string elements of
length � = N and � = N + 1, where � is the length of the string.

and introduce the notation required for the calculation of the
Feshbach scattering length.

The geometric strings originate from the dopant’s displace-
ment of the AFM ordered spin background, see Fig. 2, and
was pointed out in early theoretical studies of the Hubbard
or t-J model by Brinkman and Rice [11], Trugman [12] and
Beran et al. [26], among others. The rigid stringlike object
naturally gives rise to a rich internal structure of the dopant’s
quasiparticle, explaining the long-lived vibrational excitations
revealed in numerical [26,30,39,40,66] and analytical studies
[10,13,23,27,28]. The string picture does not only provide a
phenomenological explanation of the spectral features, but it
can also be put in a stringent quantitative formalism, i.e., the
geometric string theory, based on a semianalytical truncated
basis approach. In this approach, a variational wave function
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for the (sc) and (cc) bound states in the string basis is ob-
tained. The truncated basis we introduce below is an exact
description for the (sc) and (cc) bound states in the t-Jz limit
(J⊥ = t ′ = 0). However, numerical simulations indicate that
the qualitative features of the string description remain valid
in the t-J model (Jz = J⊥, t ′ = 0) [16–24,28,29,39,41,42,66],
and experiments of the Fermi-Hubbard model in ultracold
atoms show direct [24] and indirect [25,31] signatures of
string correlations.

A. Spinon-chargon (sc) bound state: magnetic polarons

1. Individual magnetic polaron

In the following, we consider a (classical) Néel state |0〉
with long-range AFM order and a single mobile dopant, i.e.,
the magnetic polaron or (sc) bound state. The perfect Néel
background should be a justified approximation when the
correlation length ξ � a exceeds several lattice constants. To
describe the (sc) bound state, we construct a Krylov basis by
applying the hopping terms t in the Hamiltonian to the state
ĉj,σ̄ |0〉 leading to string states � discussed below. Thus the
truncated basis for the (sc) bound state is spanned by {|jσ ,�〉}
with spinon position jσ and string � that connects the spinon
to a spinless chargon, see Fig. 2(a).

Let us describe the physical origin of the string �. In the
strong-coupling limit, t � J , the time scales of the dopant’s
motion, τc ∝ t−1, and magnetic background, τs ∝ J−1

⊥ , de-
couple and we can treat the problem in Born-Oppenheimer
approximation, i.e., we choose a product state ansatz for
the (sc) bound state |ψsc〉 ≈ |ψs〉 ⊗ |ψc〉 by decomposing the
wave function into its spinon |ψs〉 and chargon |ψc〉 contribu-
tion, see, e.g., Ref. [27].

To this end, we consider a single hole ĉj,σ̄ (electron ĉ†
j,σ )

doped into a Néel background |0〉, creating a spinon at po-
sition jσ . The fast motion ∝ t of the chargon distorts the
magnetic order before the magnetic background can adapt on
its intrinsic time scale τs � τc. Thus, in the so-called frozen
spin approximation, we consider the motion of the chargon
through a static background of spins, where the chargon’s
motion rearranges the spins; this gives rise to states that we
label by |jσ ,�〉 (see Appendix).

We emphasize that the spinon and chargon position above
are not sufficient to describe the state but one needs to take
into account the chargon’s path, i.e., the string �, which
begins at the spinon position jσ and ends at the chargon’s
position, see Fig. 2(a). Even in a perfect Néel background the
string states {|jσ ,�〉} have an overcompleteness originating
from so-called Trugman loops [12], where some spin config-
urations can be described by multiple string states. The effect
of Trugman loops has been shown to be subdominant [27]
to capture the chargon wave function |ψc〉 but is important
to describe the fine features with precision of a fraction of
J in the magnetic polaron’s dispersion [67]. In Sec. V, we
will treat loop effects systematically in this model; for now we
follow Ref. [27] and assume {|jσ ,�〉} to form an orthonormal
basis set, for which |ψc〉 can be determined by solving a
single-particle problem on the Bethe lattice, as we describe
next.

In the orthonormal basis set, the string states can be
uniquely characterized by (i) their length �, which is the depth

(a)

(b)

FIG. 3. Crystal and magnetic lattice. (a) The long-range mag-
netic spin order breaks translational symmetry of the underlying
crystal lattice. The magnetic lattice has a two site unit cell with basis
vectors j↓ = ( jM

x , jM
y ). (b) We illustrate the corresponding Brillouin

zones of the crystal (CBZ) and magnetic (MBZ) Brillouin zone.
The scattering calculations are performed in the MBZ with momenta
kM = (kM

x , kM
y ).

on the Bethe lattice, and (ii) the angle λ(N ) between the N th
and (N + 1)th string element, see Fig. 2(b). This allows us to
relabel the string states

|jσ ,�〉 = |jσ , �, λ(0), λ(1), . . . 〉, (2)

where λ(0) = 0, π/2, π, 3π/2 and λ(N ) = −2π/3, 0, 2π/3
for N > 0. Note, however, that the translational invariance
as well as the C4 invariance of the square lattice model can
only be simultaneously exploited at C4-invariant momenta,
i.e., at momenta kM = (0, 0) and kM = (π/

√
2, π/

√
2) in the

magnetic Brillouin zone (MBZ).
The MBZ is defined as follows. Since the Néel AFM

breaks the sublattice symmetry, the spinon position jσ is
defined in the doubled, AFM unit cell. As a consequence,
momenta kM are formally defined in the MBZ with band index
σ =↓,↑, which is obtained by reducing the volume of the
crystal Brillouin zone (CBZ) by 1/2 and by rotating the CBZ
by π/4, see Fig. 3. To be precise, the unit vectors in the MBZ
are given by

eM
x = 1√

2
(ex + ey) eM

y = 1√
2

(−ex + ey) (3)

such that the momentum vectors in the first MBZ are given
by kM = kM

x eM
x + kM

y eM
y with kM

x , kM
y ∈ [− π√

2
, π√

2
]. The MBZ

momenta kM can always be obtained by folding momenta k
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from the CBZ into the MBZ; hence we only use the super-
script if needed.

Next, we evaluate the t-J Hamiltonian in the string ba-
sis, where the hopping term connects different string states,
the Ising term Jz corresponds to a confining potential ∝�,
and the flip-flop terms J⊥ give rise to spinon dispersion (see

Appendix). At C4-invariant momenta, the total momentum
k and rotational eigenvalues {m4, m(1)

3 , m(2)
3 , . . . } with m4 =

0, . . . , 3 (s-, p-, d- and f -wave) and m(N )
3 = 0, . . . , 2 form a

set of quantum numbers for the magnetic polaron, see Fig. 1,
and the wave function of the nth eigenstate can be written as
[27]

|k, σ, n, m4, {m3}〉 =
(

L2

2

)−1/2 ∑
jσ

e−ikjσ
∑

�

�−1∑
M=0

∑
λ(0)

· · ·
∑
λ(M )

e−i[λ(0)m4+
∑M

N=1 λ(N )m(N )
3 ]

× 1√
4

(
1√
3

)M

ψ (n)
sc

(
k, �, m4,

{
m(M )

3

})|jσ , �, {λ(M )}〉. (4)

The spinon’s spin quantum number σ defines the sublattice of
the magnetic polaron and L2 is the volume of the underlying
crystal lattice. Moreover, ψ (n)

sc (k, �, m4, {m(N )
3 }) ∈ R�0 are the

amplitudes of the normalized wave function, which depend on
the total momentum k and the internal degrees-of-freedom;
note that we have made a choice of gauge for the string states
{|jσ ,�〉} in order to obtain positive and real wave function
amplitudes (see Appendix). Away from the C4-invariant mo-
menta, the angular momentum is not a good quantum anymore
and the different sectors {m4, m(1)

3 , m(2)
3 , . . . } hybridize.

This variational approach agrees with full numerical cal-
culations [39–41], captures the scaling of the ground-state
energy ∝ t1/3J2/3, and explains the (gapped) excitation spec-
trum in terms of rovibrational string excitations [38,66]. The
magnetic polaron has minimal energy at the nodal points k =
(±π/2,±π/2) (CBZ), which are not C4-invariant momenta.
However, the wave function retains its s-wave character
[66,67]; thus to good approximation we can assume that the
ground state of the magnetic polaron has no internal excita-
tions and admits a set of rovibrational quantum numbers, i.e.,
n = m4 = m(N )

3 = 0. Therefore we assume the low-energy
physics of the doped Mott insulator to only contain magnetic
polarons in their internal ground state denoted by π̂

†
k,σ ; hence

we only consider a single open channel.
So far, we have solved for the chargon (string) wave

function |ψc〉, which describes a light chargon bound to an
infinitely heavy spinon. However, the spinon can become
dispersive via (i) Trugman loops and (ii) spin flip-flop pro-
cesses. Taking these processes into account, a dispersion
relation εsc(k) for the magnetic polaron can be calculated
accurately. For the case of hole doping, this gives rise to
the observed hole pockets centered around the nodal points
k = (±π/2,±π/2).

This dispersion relation εsc(k) can be obtained within our
truncated basis approach by taking into account Trugman
loops and spin flip-flop J⊥ processes [67]. Moreover, previous
studies have derived the dispersion using several methods,
including 1/S expansion [13,14,68] and semiclassical theories
[69], which find the following approximate expression:

εsc(k) = A[cos (2kx ) + cos (2ky)]

+ B[cos (kx + ky) + cos (kx − ky)]. (5)

Here, the parameters A and B are used as fit parameters;
from numerical studies of the single-hole problem using a
self-consistent Born approximation [68], we extract A = 0.31
and B = 0.44 for realistic cuprate material parameters, t/J =
10/3. This corresponds to elliptical hole pockets with mass
ratio 6 : 1 at low doping.

In the low-doping regime, the hole pocketlike Fermi
surface [13,14] has been observed in ARPES studies of hole-
doped cuprate compounds [48,49] consistent with quantum
oscillation measurements [45]. As argued in Ref. [63], we
assume that at finite but low doping, magnetic polarons can
be treated as free fermions forming a Fermi liquid, described
by the Hamiltonian

Ĥopen =
∑
k,σ

[εsc(k) − μ]π̂†
k,σ π̂k,σ . (6)

Upon increasing the chemical potential μ the two hole pockets
are filled up. Thus the free fermion description of the magnetic
polarons resembles the normal state of the open channel in the
Feshbach hypothesis [63].

B. Interacting magnetic polarons: open channel

For the Feshbach scattering scenario we need to formally
define the scattering channels composed of two magnetic po-
larons (sc)2 (open channel) and the tightly bound bosonic (cc)
mesons (closed channels). The low-energy scattering in the
open channel is described by two magnetic polarons π̂

†
k,σ in

their internal ground state, see Eq. (6). Our main goal is to cal-
culate their scattering length, characterizing their interaction,
in the vicinity of a meson Feshbach resonance [63]. As we
discuss later, we only consider low-energy, intra-pocket scat-
tering of two fermions located on the same Fermi surface, i.e.,
with opposite momenta k↑ = −k↓, total momentum Q = 0
and well-defined C4-angular momentum. Nevertheless, our
formalism—in principle—allows us to describe inter-pocket
scattering leading to (sc)2 pairs with nonzero total momentum
Q �= 0.

We consider an arbitrary open-channel state with two mag-
netic polarons, one on each sublattice:

|k↑,↑; k↓,↓〉 = π̂
†
k↑,↑π̂

†
k↓,↓|0〉 ∈ Hopen, (7)
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where Hopen is the open channel Hilbert space. Using the expression in Eq. (4) and assuming no internal rovibrational excitations,
the pair wave function reads

|k↑,↑; k↓,↓〉 = 2

L2

⎡
⎢⎢⎣∑

j↑

e−ik↑(j↑+r)
∑
�↑

�↑−1∑
M↑=0

∑
λ

(0)
↑

· · ·
∑
λ

(M↑ )

↑

1√
4

1√
3M↑

ψsc(k↑, �↑)|j↑, �↑, {λ(N )
↑ }〉

⎤
⎥⎥⎦

⊗

⎡
⎢⎢⎣∑

j↓

e−ik↓j↓
∑
�↓

�↓−1∑
M↓=0

∑
λ

(0)
↓

· · ·
∑
λ

(M↓ )

↓

1√
4

1√
3M↓

ψsc(k↓, �↓)|j↓, �↓, {λ(N )
↓ }〉

⎤
⎥⎥⎦, (8)

where we have omitted the rovibrational quantum num-
bers of the amplitudes ψsc(kσ , �σ ) ≡ ψ (n=0)

sc (kσ , �σ , m4 =
0, m(N )

3 = 0). The two spinons, j↑ and j↓, reside on different
sublattices that are dislocated by a displacement vector r =
(a, 0) with lattice spacing a; in the following we set a = 1.
In our gauge choice, we assume that the ↓-spinons reside
on lattice sites j and the ↑-spinons are displaced by r, see
Fig. 3(a) (right).

Since we want to describe the low-energy properties of the
charge carriers, i.e., magnetic polarons, the relevant scattering
predominantly happens at the Fermi surface between a pair
of (sc)’s with total (quasi)momentum Q modGM = 0, where
the total (quasi)momentum is only defined up to reciprocal
lattice vectors GM = (±π/

√
2,±π/

√
2) in the MBZ. We

expect that the pairs of magnetic polarons we consider in the
scattering problem will form Cooper pairs after integrating
out the closed channel. Therefore we restrict our following
calculations to scattering, or Cooper pairs, in the spin singlet
channel.

Now, we define the zero-momentum singlet pairing field
operator, which we expand in angular momentum eigenfunc-
tions

�̂†
m4

(Q = 0) = 1√
2

∑
k

fm4 (k)(π̂†
−k,↑π̂

†
k,↓ − π̂

†
−k,↓π̂

†
k,↑) (9)

with the relative momentum k, which creates two magnetic
polarons in the open channel from vacuum. The function
fm4 (k) is an eigenfunction of the C4-rotation operator, i.e., it
transforms as fm4 (k) → e−im4π/2 fm4 (k) under π/2 rotations;
otherwise the exact functional form of fm4 (k) is arbitrary.
We note that the angular momentum m4 refers to the orbital
angular momentum of the pair, not to the magnetic polaron’s
internal degrees of freedom. By using the fermionic anticom-
mutation relations of the magnetic polarons π̂

†
k,σ , we find

�̂†
m4

(Q = 0) = 1√
2

∑
k

(1 + e−im4π ) fm4 (k)π̂†
−k,↑π̂

†
k,↓, (10)

which is only nonzero for even parity s-wave (m4 = 0) and
d-wave (m4 = 2) open channel states. In summary, the low-
energy scattering of spin singlet and zero momentum pairs
restricts the open channel states to have s-wave or d-wave
spatial angular momentum.

C. Chargon-chargon (cc) bound state: closed channel

Next, we discuss the properties, and evidence for, tightly
bound bosonic mesons formed by chargon-chargon (cc)
bound states. These are the constituents of the closed channel
in the Feshbach model proposed in Ref. [63]. We closely
follow the derivation in Ref. [43].

As for the (sc) bound states, the light chargons displace
the frozen spin background due to their fast motion ∝ t , see
Fig. 2(a) (bottom). However, one chargon can retrace the path
of the other giving rise to bound states. Because the chargons
are indistinguishable, spinless fermions, the particle statistics
plays a crucial role.1

Again, we apply the frozen spin approximation, i.e., we
consider two holes or doublons created on opposite sublattices
in a Néel ordered state, and consider their correlated motion
through the background. In particular, we first assume two
distinguishable chargons labeled A and B and perform an
antisymmetrization procedure afterwards.

In contrast to the (sc) bound states, where the spinon was
considered heavy and thus frozen, now both constituents A
and B are mobile. Hence, we perform a Lee-Low-Pines trans-
formation [70] into the comoving frame of chargon A, which
yields a model of a single chargon at one end of a string, in
an effective string potential and with an effective tunneling
amplitude that depends on the total momentum Q.

Analogously to the (sc) case, we can introduce a set of
orthonormal basis states |xc, �cc〉 with the position xc of char-
gon A and the string �cc connecting the two chargons. Again,
these states are defined on a Bethe lattice, see Fig. 2(b), but
with chargon A in the center. Thus we can likewise use basis
states with fixed string length � and angles {λ(N )} as above,

|xc, �cc〉 = |xc, �, {λ(N )}〉 (11)

and perform the Fourier transformation to obtain momentum
states

|Q, �, {λ(N )}〉 = 1√
L2

∑
xc

e−iQxc |xc, �, {λ(N )}〉. (12)

1Alternatively, one may treat chargons as bosons, but in this case
the fermionic statistics of the underlying spins in the Hubbard or
t-J model lead to an additional statistical phase associated with the
geometric string of displaced spins connecting the two chargons.
This ultimately leads to an equivalent description [43]. The chargon-
chargon bound state is of bosonic nature.
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Note that the momentum Q is now defined in the CBZ be-
cause, at the level of our approximations so far, the chargons
are not restricted to a sublattice. Further, at C4-invariant mo-
menta, we can define rotational eigenstates

∣∣Q, �, m4,
{
m(N )

3

}〉
=

�−1∑
M=0

1√
4

1√
3M

e−i[λ(0)m4+
∑M

N=1 λ(N )m(N )
3 ]|Q, �, {λ(N )}〉.

(13)

To accommodate for the particle statistics, the states in
Eq. (13) have to be (anti)symmetrized. The resulting anti-
symmetric states then span the closed channel Hilbert space
Hclosed.

At the two C4-invariant momenta, Q = 0 and Q = π, the
chargon-chargon bound states have well-defined rotational
quantum numbers with p- and f -wave (Q = 0) as well as s-
and d-wave (Q = π) symmetry in the fermionic sector.

The translational and C4-rotational invariance of the un-
derlying model, Eq. (1), allow us to derive selection rules for
the matrix elements, which couple between open and closed
channel states. As discussed above, we only consider cou-
plings to states with Q modGM = 0; thus the channels have
well-defined angular momentum quantum numbers. Since the
open channel has even parity, Eq. (10), we conclude that only
even parity channels contribute to the scattering of magnetic
polarons; hence nonzero matrix elements arise only between
s-wave (d-wave) open channel and s-wave (d-wave) closed
channel states at Q modGM = π modGM = 0.

A Feshbach resonance describes the scattering within an
open channel in the presence of a near-resonant closed chan-
nel that can be virtually occupied. In addition to the coupling
matrix elements, the bare energy difference �Em4 between the
(uncoupled) channels determines the strength ∝1/�Em4 of the
scattering length. Here, we distinguish the two possible cou-
plings to closed channels with s-wave (m4 = 0) and d-wave
(m4 = 2) symmetry; hence we further reduce the multichannel
description using selection rules. Numerical simulations of
the t-J model [42,44] have calculated the angular-momentum
resolved two-hole spectra at Q modGM = 0. At the relevant
momenta, they clearly indicate a large energy difference be-
tween the s-wave, �Em4=0 = O(t ), and d-wave, �Em4=2 =
O(J ), channels; hence only the d-wave (cc) state gives rise

to near-resonant scattering. Therefore we conclude that the
effective scattering length is dominated by the d-wave chan-
nel, which allows us to consider an effective two-channel
model in the following [63]. Likewise, we recognize that other
scenarios are possible such as triplet pairing or intervalley
scattering, which could be described analogously within our
formalism.

Now, we define the basis states |Q = π, �, m4 = 2〉 to be
the fermionic states in the relevant two-channel model. This
allows us to express the closed-channel wave function of the
tightly bound (cc) state without vibrational excitations,

|Q = π〉 = b̂†
m4=2(Q = π)|0〉

= 1√
L2

∑
xc

e−iQxc
∑

�

φcc(Q = π, �)|Q = π, �, m4 = 2〉.

(14)
Here, we have defined the bosonic creation operator for the
(cc) state b̂†

m4=2(Q) with angular momentum m4 = 2 and total
momentum Q = π. Further, we can expand the wave function
in the angular basis of string states, Eq. (13),

|Q = π〉 = 1√
L2

∑
xc

e−iQxc
∑

�

�−1∑
M=0

∑
λ(0)

· · ·
∑
λ(M )

e−iλ(0)m4

× φcc(Q = π, �)P̂f |xc, �, {λ(N )}〉, (15)

where P̂f projects onto the fermionic states.
In the next section, we will describe the coupling between

the open and closed channels. To this end, we need to describe
the open and closed channel on an equal footing. In the geo-
metric string picture, the (cc) bound state does not distinguish
between the sublattices and therefore, in this formulation,
the momenta can be defined in the CBZ; in contrast to the
magnetic polarons, which have a well-defined sublattice/spin
quantum number. Therefore we fold the momentum from the
larger CBZ into the smaller MBZ, see Fig. 3(b), by introduc-
ing a band index α = 0, 1, such that

b̂†
m4=2,α (Q) =

√
2

L2

∑
j↓

e−i(j↓+αr)Qb̂†
m4=2,α (j↓), (16)

where j↓ now labels the two site unit cells and α is a band
index describing the position within the unit cell. In particular,
we can consider the (cc) creation operator in the larger CBZ
and relate it to the MBZ by considering

b̂†
m4=2(Q) = 1√

L2

∑
j↓

e−ij↓Q[b̂†
m4=2,0(j↓) + e−irQb̂†

m4=2,1(j↓)
]

=

⎧⎪⎨
⎪⎩

1√
2

[
b̂†

m4=2,0(Q) + b̂†
m4=2,1(Q)

]
for Q ∈ MBZ

1√
2

[
b̂†

m4=2,0(Q modGM) + eirGM
b̂†

m4=2,1(Q modGM)
]

for Q /∈ MBZ
. (17)

Therefore we find that the momentum Q = 0 (Q = π) cor-
responds to triplet (singlet) combinations in the band index
sector; hence the band index equips the (cc) bound state
with a pseudospin. This ultimately allows us to couple an

open channel pair, see Eq. (10), with s- and d-wave an-
gular momentum to a closed channel state despite their
constituents being spinful (open channel) and spinless (closed
channel).
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FIG. 4. Recombination processes: sc + sc → cc. The open and closed channel are coupled via processes that annihilate and create pairwise
spinons. (a) Spin-flip processes couple magnetic polarons at Manhattan distance ||�rn||M = ||j↑ − (j↓ + r)||M = 3. In the comoving frame of
one spinon, the other spinon has to be located on sites indicated by the yellow box. The spin flip-flop J⊥ annihilates the magnetic polarons
and creates a chargon-chargon pair with string length � = �↓ + �↑ + 3 (besides one special case with � = �↓ + �↑ − 1). For the shortest string
length approximation (SSLA), we consider �↓ = �↑ = 0. (b) Similarly, next-nearest neighbor tunneling t ′ couples the open and closed channel.

Note that throughout Sec. III, we considered a classical
Néel background, i.e., J⊥ = 0, to derive the open and closed
channel states. However the two channels still exist in the
presence of spin fluctuations J⊥ and only microscopic details
are affected [13,26,28,42]. Further, cold atom experiments in
the Fermi-Hubbard model have shown signatures of strings
[24,25,31] indicating that the geometric picture is valid be-
yond the t-J model and at finite temperature. While in the
following we will assume a perfect product Néel state |0〉, we
emphasize that strong local AFM correlations with coherence
length of ξAFM/a � 10 should lead to qualitatively similar
result.

IV. MESON SCATTERING INTERACTION

In the proposed Feshbach scenario [63], it is suggested that
a magnetic polaron pair (sc)2 and a (cc) meson can spatially
overlap leading to a coupling of the two channels. Here, we
explicitly calculate the coupling matrix elements (or form
factors) originating from the microscopic Hamiltonian (1) by
applying the open and closed channel string description intro-
duced in Secs. III B and III C. The possible coupling processes
between the two channels are associated with (1) spin-flip pro-
cesses (J⊥) and (2) NNN tunneling (t ′), as illustrated in Fig. 4
and defined by the open-closed channel coupling Hamiltonian

Ĥoc = ĤJ⊥ + Ĥt ′

ĤJ⊥ = J⊥
2

∑
〈i,j〉

(Ŝ+
i Ŝ−

j + H.c.)

Ĥt ′ = −t ′ ∑
〈〈i,j〉〉

∑
σ

(ĉ†
i,σ ĉj,σ + H.c.),

(18)

projected to our truncated two-channel basis. The resulting
scattering interaction Vk,k′ describing the Feshbach resonance

is then given by

Vk,k′ = 1

L2

∑
m4

M∗
m4

(k′)Mm4 (k)

�Em4

(19)

with the form factors/matrix elements Mm4 (k). In the fol-
lowing, we focus on the relevant d-wave scattering channel
(m4 = 2), i.e., we want to evaluate

M2(k) = J⊥MJ⊥
2 (k) + t ′Mt ′

2 (k), (20a)
κ√
L2

Mκ
2 (k) = 〈0|b̂m4=2(Q = π)Ĥκ π̂

†
−k,↑π̂

†
k,↓|0〉, (20b)

where κ = J⊥, t ′ and k′ (k) is the in-coming (out-going)
momentum. From Eq. (20), we find that it is sufficient to
calculate the matrix elements for spin-flip and NNN tunneling
processes individually.

A. Spin-flip processes

First, we focus on the spin-flip recombination processes,
i.e., we calculate the form factor J⊥√

L2
MJ⊥

2 (k). To evaluate
Eq. (20b), we expand the states in real space according to
Eqs. (8) and (15). In real space, it is straightforward to deter-
mine how the spin flip-flop interactions J⊥ couple between the
open and closed channel states, see Fig. 4(a). To be precise,
they annihilate opposite spinons at sites j↓ and j↑ that are
Manhattan distance ||�rn||M = ||(j↑ + r) − j↓||M = 3 apart.
The recombination processes thus couple magnetic polarons
of length �↓ and �↑ to (cc) states of length � = �↓ + �↑ + ��

with �� = −1, 3.
For realistic parameters t/J ≈ 2, 3, the magnetic polaron

(sc) string length is peaked around �σ = 0 and the (cc) string
length distribution has its maximum at � = 3, see Table I.
Therefore the largest contribution to the form factors (20b)
occurs for the peaked string lengths, which justifies a short
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TABLE I. String length amplitudes. The wave function amplitudes for the spinon-chargon ψsc are extracted from Ref. [28] for t/J = 3.
The wave function amplitudes for the chargon-chargon φcc are extracted from Ref. [43] for t/J = 3. The renormalization factor for the latter
includes the normalization after projection onto fermionic states at Q = π. The string length distribution can be obtained from psc(k, �) =
N �

sc|ψsc(k, �)|2, where N �
sc are the number of string states of length �, and further around the dispersion minimum the momentum dependency

is negligible psc(k, �) ≈ psc(�). The string length distribution for the (cc) case is obtained analogously.

� = 0 � = 1 � = 2 � = 3 � = 4 � = 5

ψsc(k, �)
√

0.25
√

0.38/4
√

0.22/(4 · 3)
√

0.09/(4 · 32)
√

0.05/(4 · 33)
√

0.01/(4 · 34)

pk,sc(�) 0.25 0.38 0.22 0.09 0.05 0.01

φcc(Q = π, �) –
√

0.09/4
√

0.26/8
√

0.32/20
√

0.22/48
√

0.09/148

pQ=π,cc(�) – 0.09 0.26 0.32 0.22 0.09

string length approximation (SSLA). The latter includes only
�↑ = �↓ = 0 and � = 3. Later, we will systematically include

longer strings based on numerical calculations of the matrix
elements. In SSLA, the matrix elements can be written as

J⊥√
L2

MJ⊥
2 (k) = 2

L3

∑
xc,j↓,j↑

ei[Qxc−k(j↑+r)+kj↓]
∑
λ(0)

∑
λ(1)

∑
λ(2)

eiλ(0)m4φ∗
cc(Q, � = 3)ψsc(k, �↓ = 0)ψsc(−k, �↑ = 0)

× 〈xc, � = 3, {λ(N )}|P̂f ĤJ⊥ (|j↓, �↓ = 0〉 ⊗ |j↑, �↑ = 0〉). (21)

In real space, the coupling elements are given by

〈xc, � = 3, {λ(N )}|P̂f ĤJ⊥ (|j↓, �↓ = 0〉 ⊗ |j↑, �↑ = 0〉) = J⊥δxc,j↓

∑
�rn

δ�rn,j↑+r−j↓

∑
{λ(N )}

δ
λ(N ),λ

(N )
f

, (22)

where the last term ensures that only fermionic string states λ
(N )
f contribute and �rn denotes all real space configurations that can

annihilate spinons, see Fig. 4(a). The nonzero matrix elements can be read off from the open and closed channel wave functions
illustrated in Fig. 5.

Therefore the expression becomes

J⊥√
L2

MJ⊥
2 (k) = 2J⊥

L3

∑
j↓

eij↓Qφ∗
cc(Q, � = 3)ψsc(k, �↓ = 0)ψsc(−k, �↑ = 0)

∑
�rn

e−ik�rn
∑
λ(0)

′∑
λ(1)

′∑
λ(2)

′eiλ(0)m4

︸ ︷︷ ︸
≡χ J⊥ (k)

.
(23)

The restricted sum runs over the fermionic string states with
strings starting at j↓ and ending at j↓ + �rn. To simplify the
expression, we use the following identity:

∑
j↓

e−iQj↓ = L2

2
δ[Q modGM], (24)

which gives the expression for the form factors.
We further define the functions

�(Q, k) = φ∗
cc(Q, � = 3)ψsc(k, �↓ = 0)ψsc(−k, �↑ = 0),

(25)

χ J⊥ (k) =
∑
�rn

e−ik�rn
∑
λ(0)

′∑
λ(1)

′∑
λ(2)

′ei2λ(0)
, (26)

where we have set m4 = 2 for the d-wave channel. In the
vicinity of the dispersion minimum, k = (±π/2,±π/2) +
δk with |δk| � π , the wave function amplitudes are assumed
to be k-independent for s-wave magnetic polarons; in Sec. V,
we account for the full momentum dependence.

Instead, the function χ J⊥ (k) is highly k-dependent and
determines the structure of the form factor Eq. (20). In par-
ticular, in SSLA we can evaluate the form factors for spin-flip
recombination processes analytically. We carefully treat the
momentum kM and real space vectors �rn in the MBZ, see
Fig. 3 and Eq. (3). In Fig. 5, we show the corresponding
phase factors χ J⊥ (k) for momenta in the MBZ. We sum up
the matrix element, and obtain

χ J⊥ (kM ) = 2

[
cos

(
kM

x − 3kM
y√

2

)
+ cos

(
3kM

x − 3kM
y√

2

)

+ cos

(
3kM

x − kM
y√

2

)
− cos

(
3kM

x + 3kM
y√

2

)

− cos

(
3kM

x + kM
y√

2

)
− cos

(
kM

x + 3kM
y√

2

)]
,

(27)

which has dx2−y2 nodal structure in the CBZ (or equivalently
dxy nodal structure in the π/4-rotated MBZ).

It is important to confirm the validity of the SSLA by
systematically including longer strings. We automatize the

125135-9



HOMEIER, BERMES, AND GRUSDT PHYSICAL REVIEW B 109, 125135 (2024)

(a)

(b)

FIG. 5. Shortest string length approximation (SSLA)—Spin flip. (a) We show the contributions to the wave function of the open channel,
where the two chargons are Manhattan distance ||�rn||M = 3 apart and the string length is �↑ = �↓ = 0. These states couple to the closed
channel with substantial overlap to the (cc) wave function illustrated in (b), where the string length is � = 3. The overlaps have to be weighted
by momentum-dependent phase factors [here with momenta kM

x , kM
y measured in the π/4-rotated MBZ basis, see Eq. (3)] and symmetry

properties of the d-wave closed channel have to be taken into account. The shown contributions constitute all twelve terms in the SSLA.

formalism described above and perform exact numerical
calculations in the string picture. Each string length realiza-
tion now has to be weighted by wave function amplitudes
φcc(Q = π, �) and ψsc(k, �σ ), which we extract from previous
studies, see Refs. [28,43] and Table I.

We calculate the matrix element and plot MJ⊥
2 (k), see

Eq. (20b), for different maximal (cc) string length cut-offs
�max up to �max = 5. Then, we compare the calculation of
�max = 5 with short strings as shown in Fig. 6(a). Note that

for �max = 5, the string lengths of the magnetic polarons are
bounded to max(�↓, �↑) = 2, which has the advantage that
we do not have to consider Trugman loops or crossings of
strings.

We find that already the SSLA gives qualitatively the cor-
rect behavior, while the quantitative results are only slightly
renormalized by including longer string lengths. We empha-
size the robustness of the proposed Feshbach mechanism [63]
with respect to the dx2−y2 nodal structure, which is caused by
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(a)

(b)

FIG. 6. Testing the shortest string length approximation (SSLA). We compute the matrix element relevant for the scattering processes
numerically and cut off at different maximal string length �max of the involved (cc) states for (a) spin-flip processes and (b) NNN tunneling.
We compare the �max = 5 calculations to calculations with shorter strings. We note that the relative difference between �max = 5 and �max = 3
is relatively small, which justifies the analytically tractable SSLA approximation.

the symmetry properties of the closed channel but not by the
details of the geometric string wave functions.

B. Next-nearest-neighbor tunnelings

Next, we perform the calculations for the NNN tunneling
terms t ′, Eq. (18), which we can include perturbatively in our
description. That is, for now, we do not assume that the prop-
erties of the (sc) and (cc) bound states are affected by NNN
tunneling but we only include the terms in small perturbation
in |t ′| < J⊥; in Sec. V, we will consider the case where the
open and closed channel are renormalized by t ′. In cuprate
materials, the NN and NNN tunneling ratio t/t ′ < 0 [71] is
negative, and throughout this study we apply a gauge that fixes
t > 0.

In the following, we evaluate the form factor Mt ′
2 (k). To

gain intuition about the processes contributing to NNN tun-
neling, we illustrate an example in Fig. 4(b). We find that
two (sc)’s with strings of length �↓ = 0 and �↑ (�↑ = 0 and
�↓) can combine to (cc) bound states of length � = �↑ + 1
(� = �↓ + 1). Again, we apply SSLA to calculate the contri-
butions to Mt ′

2 (k) for short strings, similar to the procedure

described in Sec. IV A, and we find

χ t ′
(kM ) = 2

[
cos

(
kM

x − 3kM
y√

2

)
+ cos

(
3kM

x − kM
y√

2

)

− cos

(
3kM

x + kM
y√

2

)
− cos

(
kM

x + 3kM
y√

2

)]
,

(28)

where χ t ′
(kM ) takes the role of χ J⊥ (kM ) as in Eq. (23). The

contributing processes are illustrated in Fig. 7.
To account for long strings, we numerically evaluate the di-

mensionless form factor Mt ′
2 (k), which we show in Fig. 6(b)

together with convergence plots for SSLA. From the above
considerations, we conclude that a (cc) bound state with string
length �max = 5, can only couple to magnetic polarons with
string length (�↓ = 0, �↑ � 4) and (�↓ � 4, �↑ = 0). Hence,
we again do not encounter Trugman loops or crossings of
magnetic polaron strings.

As for the previous case, we find robust a dx2−y2 nodal
structure, which is caused by the symmetry properties of
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(a)

(b)

FIG. 7. Shortest string length approximation (SSLA)—NNN
tunneling. (a) We show the contributions to the wave function of
the open channel relevant for NNN tunneling processes, that couple
to the closed channel state with � = 1 in (b). The overlaps have to
be weighted by momentum-dependent phase factors [here with mo-
menta kM

x , kM
y measured in the π/4-rotated MBZ basis, see Eq. (3)]

and symmetry properties of the d-wave closed channel have to be
taken into account. The shown contributions constitute all eight terms
in the SSLA.

the closed channel (cc) bound state. Further, we note that in
our geometric string calculations, the magnitude of the NNN
tunneling form factor is large compared to the coupling caused
by spin-flip recombinations as can be seen from the scale in
Fig. 6. Hence, we predict notable competition between the two
processes even in the perturbative regime |t ′| � J⊥, which we
discuss in the following. Importantly, including both spin-flip
processes as well as NNN tunneling terms in our model,
allows us to analyze the trend of the scattering for doublon
(i.e., electron) versus hole doping.

C. Competition between spin-flip and NNN tunneling processes

The microscopic Hamiltonian (1) is formulated in terms of
the fermionic operators ĉ†

j,σ describing the underlying elec-
trons in the Fermi-Hubbard model. However, the magnetic
polarons are described in a parton formulation, which re-
quires to introduce the following chargon ĥj and spinon ŝj,σ

operators:

ĉj,σ =
{

ĥ†
j ŝ†

j,σ for holes

ĥjŝj,σ for doublons
, (29)

where we distinguish between hole and doublon doping.
Therefore the underlying microscopic model becomes

Ĥt-t ′-J = ±t
∑
〈i,j〉

∑
σ

P̂ (ĥ†
i ĥjŝ

†
i,σ ŝj,σ + H.c.)P̂

± t ′ ∑
〈〈i,j〉〉

∑
σ

P̂ (ĥ†
i ĥjŝ

†
i,σ ŝj,σ + H.c.)P̂

+ J
∑
〈i,j〉

(
Ŝi · Ŝj − 1

4
n̂in̂j

)
, (30)

for the hole (+) and doublon (−) doped cases. In particu-
lar, we measure the doping δ relative to the half-filled case,
δ = 0, such that the sign is positive (negative) sgn[δ] = +1
(sgn[δ] = −1) for hole (doublon) doping. From the above
Hamiltonian, the parton bound state wave function can be
derived (for t ′ = 0), and we choose a gauge such that all
wave function amplitudes are real and have a sign structure
as follows:

sgn[ψsc(�)] = sgn[φcc(�)] = sgn[δ]�, (31)

see Appendix.
Next, we consider the doping dependence of the form

factors, in which the wave function amplitudes enter as prod-
ucts ψsc(�↓) × ψsc(�↑) × φ∗

cc(�), see Eq. (25). Since � = �↑ +
�↓ + �� with �� = −1, 3 (�� = 1) for J⊥ (t ′) processes, we
find

J⊥MJ⊥ (k) ∝
{

J⊥ · (+1)�� = J⊥ for δ > 0

J⊥ · (−1)�� = −J⊥ for δ < 0
, (32a)

t ′Mt ′
(k) ∝

{
t ′ · (+1)�� = t ′ for δ > 0

−t ′ · (−1)�� = t ′ for δ < 0
. (32b)

Therefore we conclude that in cuprate materials with t ′/t < 0
the individual form factors for spin-flip and NNN tunneling
recombination processes interfere with a positive (a negative)
sign, i.e., the overall form factor is given by (J⊥, t > 0)

Mtot
2 (k) =

{
+J⊥MJ⊥

2 (k) − |t ′|Mt ′
2 (k) for δ > 0

−J⊥MJ⊥
2 (k) − |t ′|Mt ′

2 (k) for δ < 0
. (33)

The form factors are strongly k-dependent and thus, to mean-
ingful compare the interference effects in the low-doping
regime, we need to consider the form factor in the vicinity
of the hole pocket’s Fermi surface, where Mt ′

2 and MJ⊥
2

have opposite signs, see Fig. 8. As an important result, we
find that scattering is enhanced (suppressed) for small hole
(doublon) doping. The form factor determines the strength of
the scattering between (sc) charge carriers after integrating out
the closed (cc) channel, see Eq. (19); hence we qualitatively
predict that hole doping leads to stronger pairing interactions
than doublon doping.

We use the results obtained in geometric string theory,
and evaluate the form factor Mtot

2 (k), for various |t ′/J⊥| in
the hole and doublon doped regime, see Figs. 8(a) and 8(b).
The hole pockets are strongly elliptical and thus we expect the
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(a) (b) (c)

FIG. 8. Combined J⊥ and t ′ scattering. We plot the form facts, Eq. (20), combining spin-flip and NNN tunneling recombination
processes, which enter quadratically in the scattering interaction. (a) For hole dopants in cuprate compounds, the form factors obtained for
spin-flip and NNN tunneling processes are subtracted leading to a constructive interference of the matrix elements around the nodal point
k = (±π/2,±π/2). Here we show the resulting scattering interaction for various parameters |t ′/J⊥|. (b) For doublon doping, the relative sign
between the form factors is equal. (c) We plot 1D cuts along the edge of the Brillouin zone [purple lines in (a) and (b)]. For low doping, the
form factors—and hence scattering amplitude—gets enhanced (reduced) for hole (doublon) doping. Here, we assume scattering on an elliptical
Fermi surface of magnetic polarons with ellipticity 5.89 [68].

scattering of magnetic polarons to occur along the kM
y axis. In

Fig. 8(c), we take a 1D cut along the direction in the MBZ and
we find that for small doping values, the scattering interaction
is strongly enhanced (suppressed) for hole (doublon) doping.
These findings have direct implications for cold atom quantum
simulators that can tune NNN tunneling t ′ and systematically
study hole and doublon doped systems [72].

D. Analytical expression of the form factors

The numerically obtained form factors MJ⊥
2 and Mt ′

2
give insight into the magnitude and nodal structure of the

effective interactions. In the next step, we fit the form fac-
tors the analytically obtained functions from SSLA, which
allows us to more carefully study the symmetry structure of
the pairing interaction, and further enables future (analytical)
studies of the effective model, e.g. a BCS mean-field analysis.
In the following, the fitted form factors are denoted by M̃J⊥

2

and M̃t ′
2 , respectively.

We use the results of the numerical calculations in-
cluding (cc) states with strings up to length �max = 5 and
fit with the momentum dependent functions �0(k) and
�1(k) defined below in Eqs. (36) and (37). Using this
parametrization, we find that the spin-flip form factor is given

125135-13



HOMEIER, BERMES, AND GRUSDT PHYSICAL REVIEW B 109, 125135 (2024)

by

M̃J⊥
2 (k) = αJ⊥�0(k) + βJ⊥�1(k) (34)

with (αJ⊥ , βJ⊥ ) = (8.7 × 10−2, 6.0 × 10−2). Analogously,
the NNN tunneling form factor becomes

M̃t ′
2 (k) = αt ′

�0(k) (35)

with αt ′ = 0.55. We measure the validity of the fit by evalu-
ating erra = ||M̃a − Ma||2/||Ma||2 in the 2-norm. We find
errJ⊥ = 3.9 × 10−3 and errt ′ = 4.7 × 10−2.

Now, we consider the properties of the functions �0(k) and
�1(k), which are defined as follows:

�0(k) =

dxy︷ ︸︸ ︷
sin

(
kM

x√
2

)
sin

(
kM

y√
2

)

×
{

− 2
√

2 + 4
√

2

[
cos2

(
kM

x√
2

)
+ cos2

(
kM

y√
2

)]}
︸ ︷︷ ︸

s0

,

(36)

�1(k) =

dxy︷ ︸︸ ︷
sin

(
kM

x√
2

)
sin

(
kM

y√
2

)

×
[

2 + 4 cos
(√

2kM
x

)][
2 + 4 cos

(√
2kM

y

)]
︸ ︷︷ ︸

s1

. (37)

The functions have dxy nodal structure in the π/4-rotated
MBZ basis eM

μ , which translates to a dx2−y2 nodal structure
in the natural basis eμ of the CBZ. Additionally, we conclude
that the form factors functions have dependencies on extended
s-wave channels s0 and s1. Further the functions �p(k) with
p = 1, 2 fulfill the following useful orthonormality relations:

1 = 1

2π2

∫
MBZ

�p(k)�p(k)d2k, (38a)

0 = 1

2π2

∫
MBZ

�p(k)� p̄(k)d2k. (38b)

V. REFINED TRUNCATED BASIS APPROACH

So far, we have applied a simple Bethe lattice description
of the meson bound states, see Fig. 2, and we have neglected
the momentum dependence of the wave function amplitudes.
While this had the advantage to obtain analytical expressions
for the form factor M2(k), Eq. (23), predicting quantitative
features requires more sophisticate methods. In the following,
we employ a refined truncated basis method, which system-
atically treats the overcompleteness of the basis states and
which allows us to fully take into account the momentum
dependencies of the open and closed channel. We find qual-
itatively excellent agreement with the previous calculations.
This demonstrates the robustness of the Feshbach scattering
description: the scattering symmetry properties are inherited
from the resonant (cc) channel which we capture correctly in
the simplified model.

When using the geometric string formalism to describe
magnetic polarons (sc), we have so far assumed that the string
states {|jσ ,�〉} form an orthonormal basis. As mentioned in
Sec. III A, this is not entirely true since every two trajectories
differing by only by a Trugman loop are equivalent and give
identical spin configurations (up to global translations) so that
the string states form an overcomplete basis set. The same
holds true for the string states of the (cc) {|xc, �cc〉}, where
similar loop effects lead to identical configurations. In addi-
tion, the definition of these strings on a Bethe lattice neglects
that some trajectories lead to unphysical double occupancies
of the chargons and thus overestimates the size of the Hilbert
space.

In this section, we will follow [67] and use a more
quantitative, refined truncated basis method avoiding the over-
completeness as well as unphysical states, and rigorously
including loop effects. To describe the (sc) meson, we start
again from a single hole ĉj,σ̄ (or electron ĉ†

j,σ ) doped into a
perfect Néel background |0〉 and perform a Lee-Low-Pines
transformation [70] into the co-moving frame of the char-
gon. This transformation leads to a block-diagonal form in
the chargon-momentum basis so that we can compute the
wave functions for any momentum k state. Similar to before,
we then consider the chargon motion through a static spin
background and construct a truncated basis by applying the
NN hopping term Ĥt along sets of bonds consisting of up
to �max segments. In contrast to the above, we now do not
label the states by the string � but by the spin configura-
tion and thus include every physical configuration only once.
Since the Ising term Jz gives a confining potential proportional
to the number of frustrated bonds, the truncated basis presents
a controlled expansion of the Hilbert space relevant for low-
energy physics.

In order to describe the (cc) meson, we employ a similar
expansion scheme but start from two holes or two doublons
doped into a Néel background at neighboring sites. Here we
assume the dopants to be distinguishable at first and again
perform a Lee-Low-Pines transformation into the co-moving
frame of the first dopant. As before, we now apply the hopping
terms for either of the dopants up to �max and build a basis
of all distinct and physical configurations. Next, we antisym-
metrize the states to account for the fermionic statistics of the
indistinguishable chargons.

Having constructed the truncated bases for open channel
states Hopen and closed channel states Hclosed, we can com-
pute all the matrix elements of the Hamiltonian which do
not leave the subspace spanned by the truncated bases. This
includes transverse spin fluctuations J⊥ and NNN hopping
t ′ which do not break up the geometric strings. Note that
we still only include a subset of all J⊥ and t ′ processes in
the system, but we include all the processes which strongly
affect the (sc) and (cc) wave function. The truncated basis
description allows us to go beyond the simple Bethe lattice
description and to capture nonperturbative t ′ and J⊥ processes;
in particular we include the modifications of the open chan-
nel states in the presence of nonzero J⊥, t ′. This leads to
a significant momentum dependence of the wave function
and mixing of the rotational eigensectors away from the C4-
invariant momenta. Nevertheless, the dominant contributions
to the (sc) wave function near the nodal point still have s-wave
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(a)

(b)

FIG. 9. Scattering form factors obtained from the refined trun-
cated basis method. The form factors, Eq. (20), include the full
momentum dependence of the (sc) and (cc) wave functions. (a) We
plot the form factors Mκ

2 for κ = J⊥ (left) and κ = t ′ (right) without
including nonperturbative t ′ corrections of the meson wave functions.
(b) We include the NNN tunneling t ′ in the derivation of the (sc) and
(cc) wave functions using the parameters t/J = 3 and t ′/t = −0.2.

symmetry and at the considered momenta Q modGM = 0, the
(cc) ground state retains its well-defined d-wave rotational
quantum number.

In order to correctly describe the open (sc)2 and closed
(cc) scattering channels, we have to again take care of the
overcompleteness of our parton description. In fact every spin
and hole (spin and doublon) configuration contributing to the
(cc) bound state could be written as two individual magnetic
polarons (sc)2. Therefore we adapt the convention, that every
spin configuration where the flipped spins form a string con-
necting the chargons contributes to the (cc) but not to the (sc)2

state.
With this convention we obtain the scattering form fac-

tors Mκ
2 (k) [Eq. (20)] shown in Fig. 9. Here, we truncate

the (sc) and (cc) Hilbert spaces at string lengths of �max =
8 and �cc

max = 10 to determine the meson wave functions.
To compute the overlaps Mκ

2 , we used all (sc) states with
a string length � < 5. The form factors qualitatively agree
with the Bethe lattice calculations shown in Fig. 6 but have
slightly larger values. This is due to the fact, that the truncated
basis method includes more possibilities for two individual
polarons (sc)2 to recombine into a bound (cc) pair (cc). Fur-
thermore, in the truncated basis method we find that the nodal
ring in the form factor of the spin-flip recombination processes
J⊥ moves away from the hole pockets and towards the center
of the Brillouin zone.

We compare our calculations by (i) not including the J⊥
and t ′ terms in the meson’s wave functions, see Fig. 9(a), and
(ii) fully including the t/J⊥ = 3 and t ′/t = −0.2 dependen-
cies of the open and closed channels, see Fig. 9(b), using
typical parameters of hole doped cuprate superconductors

FIG. 10. Combined J⊥ and t ′ scattering obtained from the refined
truncated basis method. We plot the total scattering form factor for
hole dopants and realisitc parameters in cuprates, i.e., t ′/t = −0.2
and t/J = 3.

[71]. We find that the nonperturbative corrections of the me-
son wave function leads to very minor differences justifying
the perturbative treatment of t ′-processes. Note that includ-
ing the J⊥ processes is crucial to obtain the hole pockets of
the magnetic polarons; a comparison between the geometric
string model to numerical DMRG studies of the t-J model is
discussed in Ref. [28].

In Fig. 10, we show the combined scattering form factor
Mtot

2 = MJ⊥
2 − | t ′

J⊥
|Mt ′

2 for hole dopants, see Eq. (33), in-
cluding NNN tunneling t ′ nonperturbatively. In the vicinity
of the hole pocket’s Fermi surface, the NNN tunneling and
spin-flip processes interfere constructively leading to sizable
scattering form factors.

VI. EFFECTIVE HAMILTONIAN

So far, we have derived scattering interactions Vk,k′ ∝
M∗(k)M(k′) of two magnetic polarons in terms of the form
factors and for zero-momentum pairs. Next, we want to take
another significant step by promoting our two-body problem
to a many-body theory. Our effective theory leads us to an
effective model to describe d-wave superconductivity in the
low-doping and strong-coupling regime arising from a Fermi
sea of magnetic polarons.

The effective model derived below is valid in a regime,
when (i) the antiferromagnetic background has sufficiently
long-ranged correlations, ξAFM � a, and (ii) the density of
magnetic polarons, i.e., charge carriers, is low, and (iii) the
system can be described by low-energy scattering, i.e., at low
temperatures kBT � J⊥, t ′. The requirement (ii) ensures that
the internal structure of the mesonlike bound state does not
have to be adjusted due to substantial overlaps of the (sc) or
(cc) wave functions; for the former this is expected to play a
role at doping δ � 20% [25,73].

The coupling matrix elements (or form factors) between
the open and closed channel, see Sec. IV, allow us to integrate
out the closed channel and derive an effective Hamiltonian for
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the magnetic polarons with pairwise scattering in momentum
space given by [63]

Ĥeff = Ĥopen + Ĥint, (39)

Ĥint =
∑
k,k′

Vk,k′ π̂
†
−k,↑π̂

†
k,↓π̂−k′,↑π̂k′,↓ (40)

with the open channel Hamiltonian describing weakly inter-
acting magnetic polarons, see Eq. (6). For low doping, the
Fermi surface forms two hole pockets around the dispersion
minima (±π/2,±π/2). Further, the effective interaction ma-
trix elements Vk,k′ , Eq. (20), arise from the emergent d-wave
Feshbach resonance between sc2 and (cc) mesons with total
momentum Q = 0.

The above derived analytical expressions of the form fac-
tors allow us to give a closed form of the attractive two particle
scattering interaction,

Vk,k′ = 1

V [g0(t ′)�0(k′) + g1�1(k′)][g0(t ′)�0(k) + g1�1(k)],

(41)

where V = L2/2 is the volume of the magnetic lattice. Further,
we have defined the coupling constants

g0(t ′) :=
√

J2
⊥

2�E

(
αJ⊥ + t ′

J⊥
αt ′
)

, (42)

g1 :=
√

J2
⊥

2�E
βJ⊥ , (43)

where �E denotes the bare energy splitting between the open
and closed channels, see Sec. III C. This energy splitting
strongly determines the couplings strength between the two
channels. While we introduce �E as a free tuning parameters
in the meson scattering model, microscopic couplings such as
extended Hubbard interactions eventually determine the prox-
imity to the Feshbach resonance of a given model [63,74,75]
and may allow to tune the effective interaction strength be-
tween charge carriers in solids or cold atom experiments.

In the following, we normalize the factors of the scattering
interactions,

�(k) = N−1/2[g0(t ′)�0(k′) + g1�1(k′)] (44)

such that (2π2)−1/2
∫

MBZ �2(k)d2k = 1. Using Eqs. (38), this
gives N = g2

0(t ′) + g2
1. This yields the final expression for the

scattering interaction

Vk,k′ = g

V �(k)�(k′), (45a)

g := g2
0(t ′) + g2

1, (45b)

such that we arrive at a BCS Hamiltonian with highly
anisotropic pairing interactions, which can lead to an insta-
bility of the Fermi surface of magnetic polarons, i.e., around
the small, elliptical hole pockets at the nodal point.

A. BCS mean-field analysis

We treat the Hamiltonian (39) using a standard BCS mean-
field ansatz in order to analyze the symmetries of the BCS

pairing gap �(k). We define the d-wave BCS mean-field order
parameter

�(k) = 1

V
∑

k′
�(k)�(k′)〈π̂−k′,↑π̂k′,↓〉, (46)

which is the gap equation that has to be fulfilled self-
consistently in accordance with the BCS mean-field Hamil-
tonian,

ĤMF =
∑

k

[εsc(k) − μ]π̂†
k,σ π̂k,σ

+ g
∑

k

�(k)[π̂†
−k,↑π̂

†
k,↓ + H.c.]. (47)

From an ansatz for the pairing gap, �(k) = ��(k), it imme-
diately follows that the pairing gap has the same symmetry
and nodal structure as the form factors shown in Fig. 8, i.e.,
�(k) ∝ Mtot

2 .
The magnitude of the gap and hence the mean-field tran-

sition temperature has to be determined self-consistently and
strongly depends on (i) the interaction strength g ∝ �E−1

2 as
well as (ii) the Fermi energy EF . In particular, in the low-
doping regime these two energy scales are competing, which
may lead to a non-mean-field character of the phase transition
as the temperature is lowered going beyond the scope of this
study. We conclude that in the proposed Feshbach scenario
[63] a d-wave superconductor can be established and is the
leading order instability of a magnetic polaron metallic state
recently observed in Ref. [48]. However, the details of the
BCS state, e.g., the magnitude of the pairing gap, strongly
depends on the bare energy splitting between the open chan-
nel and closed d-wave channel �E−1

2 , which requires future
numerical and experimental studies, such as spectroscopy of
the (cc) meson.

Before we discuss direct spectroscopic signatures of
the tightly bound (cc) state in Sec. VII, we empha-
size that the Bogoliubov quasiparticle dispersion, E (k) =√

[εsc(k) − μ]2 + �2(k), is an indirect probe of our scenario
accessible in single particle spectroscopy, e.g., ARPES. The
Bogoliubov dispersion is linked to the form factors derived
in Sec. IV, for which we find characteristic features such
as an nodal ringlike structure, see Fig. 8. More directly, the
momentum dependence of the superconducting pairing gap
�(k) ∝ �(k) ∝ M(k) can be analyzed as we discuss next.

VII. ARPES SIGNATURES

An established experimental technique to probe the elec-
tronic structure of materials is ARPES [76]. The (sc)2

Feshbach scattering channels described in this article rely on
the existence of the tightly bound bosonic (cc) pair [63]. The
properties of the (sc) mesons, or magnetic polaron, are di-
rectly accessible in conventional ARPES experiments, where
a one-photon-in-one-electron-out process is considered. This
process corresponds to the creation of a single-hole excitation
in the material and thus strongly couples to the individual (sc)
channel.

Probing the (cc) bound state, however, is much more chal-
lenging because it involves two correlated holes. In ARPES,
the (cc) bound state can be probed by (i) a process, in
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(a) (b) (c)

FIG. 11. Single-hole ARPES. a In single-hole ARPES, a rare but possible process describes the removal of an electron close an existing
(sc) meson. The matrix elements are calculated by expanding in string length states; we include strings up to length �σ � 1, as shown for two
examples. We show the spectral signal b in the nodal direction, i.e., kn at the Fermi surface of the hole pocket and on the diagonal of the CBZ,
and c at the antinodal point kan = (0, π ). (Top) The two-body processes, involving the removal of a (sc) and the addition of a (cc) meson,
requires to convolve the (sc) dispersion εsc at the hole pocket around p = (±π/2, ±π/2) (dotted region) with the shifted (cc) dispersion εcc

at k(a)n + p (red region). The gradient of the (cc) dispersion in the red regions, together with the matrix elements R(k, p) determines the
width of the spectral signal. (Bottom) We plot the spectral signal for J = 130 meV, T = 1.3 K, �E2 = 20 meV, and various hole dopings
δ = 5%, 10%, and 15%. The large peaks corresponds to the quasiparticle peak of the (sc) mesons. We find a weak and broad feature below
the Fermi surface associated with the (cc) bound state and with an energy onset at �E2 (note the logarithmic scale, however).

which an additional single-hole couples to an already existing
(sc) meson and forms a (cc) meson, and by (ii) correlated
two-photon-in-two-electron-out processes (cARPES). In the
following, we calculate the matrix elements for both processes
and we find that the process described in (i) only couples very
weakly to the (cc) channel.

A. Single-hole ARPES

In the low but finite doping regime, we describe the
fermionic charge carriers as magnetic polarons with dis-
persion relation εsc(k) in a Fermi sea, see Eq. (5). In a
photoemission process, a hole with momentum k and energy
ω can be created. If this additional hole is in the vicinity of an
already existing spinon (s) with momentum p, which is bound
to a chargon (c), they can recombine into a (cc) bound state
with momentum k + p and energy εcc(k + p) while leaving
behind a holelike (sc) excitation. The (cc) dispersion for the
d-wave channel in the t-J model cannot be calculated in the
simple geometric string picture but has been extracted from
DMRG calculations [42],

εcc(p) = −J (cos(px ) + cos(py) − 2] + �E2, (48)

showing the relatively light mass ∝ 1/J of the bipolaronic
state.

The corresponding ARPES signal is determined by a
convolution of the matrix elements with the Fermi sea of
magnetic polarons given by

Asc+cc(k, ω) =
∫

d2p
(2π )2

nF
T (εsc(p) − μ)R(k, p)

× δ(ω + εsc(p) − μ − εcc(k + p)). (49)

Here, nF
T (ε) is the Fermi-Dirac distribution at temperature T

and we assume sufficiently low temperature such that the ther-
mal occupation of the (cc) channel can be neglected; further
R(k, p) are coupling matrix elements, see Fig. 11(a). Note
that the single-hole APRES process gives rise to a two-particle
continuum and therefore a broad spectral feature.

The matrix elements R(k, p) are evaluated by expanding
the (cc) and (sc) wave functions in the string length basis
analogously to the calculation of the scattering form factor in
Sec. IV. Moreover, we approximate the meson wave function
to be momentum independent and assume the ground state
wave functions in the respective channel. Since the meson
wave functions only extend across a few lattice sites, we only
consider (sc) strings up to length �σ = 1, which couple to (cc)
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contributions of length � = 1, 2. Using our approximation, we find

R(k, p) =
√

2ψsc(k, �σ = 0)φcc(p, � = 1)[cos(kx ) − cos(ky) − cos(px ) + cos(py)]

+
√

2ψsc(k, �σ = 1)φcc(p, � = 1)[cos(kx + px ) − cos(ky + py)]

+
√

2ψsc(k, �σ = 1)φcc(p, � = 2)[cos(kx + ky + px ) − cos(kx + ky + py)

+ cos(kx − ky + px ) − cos(−kx + ky + px ) − 2 cos(px ) + 2 cos(py)] (50)

with momenta defined in the CBZ. Moreover, the matrix ele-
ment (50) only contains contributions from s-wave (sc) states
and d-wave (cc) states, despite small mixing with p-wave (sc)
state at the nodal point. Nevertheless, we expect the approx-
imation to be valid in the very low doping regime, as we
confirmed using the systematic truncated basis approach from
Sec. V. For finite doping, the (sc) and (cc) wave functions
will be adapted even further due to interactions and reduced
AFM correlations; we neglect such effects to R(k, p) in the
following.

We use the matrix element (50) to calculate the spectral
weight in different regions k of the Brillouin zone. In par-
ticular, the two-body origin of the spectral feature leads to
a contribution of the (cc) state at k + p, where p are the
occupied momenta of (sc)’s in the hole pocket, see Figs. 11(b)
and 11(c) (top). The confined meson bound states are assumed
to exist in the low-doping regime, where sufficient AFM cor-
relation are present. Since the density of (sc) mesons is low in
this regime and the matrix elements are small, we predict only
very weak spectroscopic signatures with a maximum peak
height of about 10−3 relative to the quasiparticle peak of the
(sc)’s.

In Figs. 11(b) and 11(c) (bottom), we analyze the ARPES
signal for typical cuprate parameters, various hole dopings δ

and for two common momenta in the Brillouin zone, i.e., at
the Fermi surface in the nodal direction kn and at the antin-
odal point kan. We assume a bare open-closed channel energy
difference of �E2 = 20 meV. Along the nodal direction, see
Fig. 11(b), we find a pronounced peak with a full width at
half maximum (FWHM) around 15 meV. While the onset of
the signal, at �E2 below EF , is a fit parameter the FWHM
only depends on the value of J without further fit parameters.
Along the antinodal direction, see Fig. 11(c), we find a much
broader hump followed by a dip between 15 to 25 meV. The
onset of this feature, defined by the dip, remains at an energy
scale �E2 
 20 meV as observed in nodal direction.

In underdoped cuprates other, more pronounced peak-dip-
hump features have previously been observed [77], dimming
the prospect of detecting the weak signal we find in Fig. 11.

B. Coincidence ARPES

Alternatively, it was proposed in Refs. [42,63] to use cor-
related two-hole spectroscopy, which is highly sensitive to the
existence of the (cc) channel, and can be realized by cARPES
[78–80]. We consider processes with two in-coming photons
with momentum K and two out-going photoelectrons with
momentum K ± k, and we discuss the matrix elements C(k)
for the shortest string length � = 1. For the specific momenta
we consider, the process has no momentum transfer to the

sample and allows us to probe the (cc) channel at Q = 0,π.
The cARPES matrix elements for short strings is calculated to
be

C(k) ∝ |ψsc(k, �σ = 0)|2φcc(Q, �cc = 1)[cos(kx ) ± cos(ky)]

(51)

for momenta in the CBZ and the s-wave (+) and d-wave
(−) channel. Therefore we find a sizable lower bound for
matrix elements of the (cc) channel in cARPES with distinct
symmetry features such as a nodal structure of the d-wave pair
inherited from its m4 eigenvalue.

VIII. SUMMARY AND OUTLOOK

We have theoretically developed a scattering theory for
low-energy spinon-chargon (sc) and chargon-chargon (cc)
meson excitations of doped AFMs. The various internal ex-
citations of the individual charge carriers give rise to a
multichannel description—one channel for each set of quan-
tum numbers—and Feshbach resonances if a pair of (sc)2

recombines into an excited (cc) state. In Ref. [63], it has been
suggested that in cuprate superconductors a resonant d-wave
bipolaronic state could lead to strong attractive pairing; in
this work, we have analyzed the d-wave scattering channel
in greater detail and provided ab-inito calculations based on
a truncated basis method of confined strings in a Néel back-
ground. Our method allows us to discuss further implications
of the Feshbach scenario, such as comparing hole and doublon
doping, or calculating ARPES matrix element relevant for ex-
perimental tests of the multichannel perspective. Our findings
enable future studies of a potential BEC-BCS crossover in
this model, non-Fermi liquid behavior or a quantitative BCS
mean-field and Eliashberg analysis of the proposed model,
in order to quantitatively study the phase diagram of lightly
doped quantum magnets. These studies may be extended by
including triplet scattering channels and finite momentum
Cooper pairs using our developed formalism.

The Feshbach perspective, leading to mediated strong
interactions in many-body systems, has recently gained atten-
tion in 2D heterostructures [81–83] and strongly correlated
electrons [74,84–88]. Whether the Feshbach hypothesis is re-
alized in cuprate superconductors relies on the existence of the
(cc) channel. As we calculate explicitly, coincidence ARPES
spectroscopy offers the possibility to detect the closed channel
(cc) states.

Moreover, indirect probes or probes in related systems
could be used to search for related scenarios in doped quan-
tum magnets. These include pump-probe experiments [63],
spectroscopy in antiferromagnetic bosonic t-J models [89], or
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real-space correlation measurements in ultracold atoms [3].
The latter platforms are highly tunable, clean systems, which
e.g. enables to systematically include t ′ terms [72].
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APPENDIX

The string construction is based on a mapping from the
t-J Hilbert space onto the string Hilbert space H = Hopen ⊕
Hclosed. In this procedure, the matrix elements of the Hamil-
tonian have to be determined in a consistent way in order to
correctly take care of the fermionic statistics of the underly-
ing constituents. In the following, we consider hole doping
and use a Schwinger bosons representation of the underlying
electrons, i.e., ĉj,σ = ŝj,σ ĥ†

j , with the local number constraint∑
σ ŝ†

j,σ ŝj,σ + ĥ†
j ĥj. Further, we will use the Hamiltonian as

defined in the main text in Eq. (30).
Spinon-chargon states. In order to choose the string wave

function amplitudes ψsc positive and real, we define the string
states as

|jσ ,� = 0〉 = ĉj,σ̄ |0〉 = ŝj,σ̄ ĥ†
j |0〉 (A1a)

|jσ ,�′ = � + r〉 = (−1)|�
′|∑

σ

ĉjσ +�′,σ ĉ†
jσ +�,σ

|jσ ,�〉 = (−1)|�
′|ĥ†

jσ +�′ f�′ (ŝ)|0〉, (A1b)

where |�| is the length of string �, and r = ±ex,±ey is a unit step along the crystal lattice. In the last step, we have defined the
operator f�′ (ŝ)|0〉 that displaces the bosonic spinon background according to the string �. Now, we evaluate the hopping term
Ĥt between connected string states |jσ ,�1〉 and |jσ ,�2〉 with |�2| − |�1| = 1

〈jσ ,�2|Ĥt |jσ ,�1〉 = +t · (−1)|�1|+|�2|〈0|ĥjσ +�2 ĥ†
jσ +�2

[ f�2 (ŝ)]† f�1 (ŝ)ĥjσ +�1 ĥ†
jσ +�1

|0〉 = −t . (A2)

Therefore the (sc) wave function amplitudes ψsc(|�|) are positive and real for all |�| in this convention. Note that we have
neglected loop effects, which could lead to additional braiding of fermions.

Chargon-chargon states. Similarly, we define the (cc) basis states as

|xc, � = r〉 = ĉxc,σ ĉxc+�,σ̄ |0〉 = ŝxc,σ ŝxc+�,σ̄ ĥ†
xc

ĥ†
xc+�|0〉 (A3a)

|xc, �
′ = � + r〉 = (−1)|�

′|+1
∑

σ

ĉxc+�′,σ ĉ†
xc+�,σ |xc, �〉 = (−1)|�

′|+1ĥ†
xc

ĥ†
xc+�′ f�′ (ŝ)|0〉. (A3b)

In a tunneling process, the string length changes by |�2| − |�1| = 1 leading to amplitudes,

〈xc, �2|Ĥt |xc, �1〉 = +t · (−1)|�1|+|�2|+2〈0|ĥxc+�2 ĥxc ĥ
†
xc+�2

[ f�2 (ŝ)]† f�1 (ŝ)ĥxc+�1 ĥ†
xc

ĥ†
xc,�1

|0〉 = −t, (A4a)

〈xc + r, �2|Ĥt |xc, �1〉 = +t · (−1)|�1|+|�2|+2〈0|ĥxc+�2 ĥxc+rĥ†
xc+r[ f�2 (ŝ)]† f�1 (ŝ)ĥxc ĥ

†
xc

ĥ†
xc,�1

|0〉 = −t . (A4b)

In this gauge choice, the (cc) wave-function amplitudes φcc are real and positive.
Open-closed channel coupling. Next, we consider states in the Hilbert space H = Hopen ⊕ Hclosed and determine the

coupling matrix elements between an (sc)2 and (cc) state according to the above definitions. Let us consider string states that are
connected via processes such as in Fig. 4. For the spin-flip processes, we find

〈xc, �cc|ĤJ⊥ (|j↓, �↓〉 ⊗ |j↑, �↑〉) = J⊥
2

· (−1)|�↑|+|�↓|+|�cc|+1〈0|ĥxc+�cc ĥxc G�cc,�↓,�↑ (ŝ)ĥ†
j↓+�↓ ĥ†

j↑+�↑ |0〉 = J⊥
2

, (A5)

where the function G�cc,�↓,�↑ (ŝ) exchanges the spinons such that a (cc) string �cc is formed from the (sc) strings �σ . Further,
we have used that |�cc| = |�↑| + |�↓| + δJ⊥ with δJ⊥ = −1, 3. The case δJ⊥ = 3 corresponds to spin-flip terms as shown in
Fig. 4; the case δJ⊥ = −1 corresponds to a process where (sc)’s of length |�1| = 2 and |�2| = 0 recombine into a (cc) with
string |�cc| = 1.

Last, we need to evaluate the matrix elements for NNN tunneling processes t ′, which moves a chargon from site j to site
j + r′. To this end, we consider the matrix element with string states such as in Fig. 4,

〈xc, �cc|Ĥt ′ (|j↓, �↓〉 ⊗ |j↑, �↑〉) = +t ′ · (−1)|�↑|+|�↓|+|�cc|+1〈0|ĥxc+�cc ĥxc ĥ
†
jσ +�σ +r′G�cc,�↓,�↑ (ŝ)ĥjσ +�σ

ĥ†
j↓+�↓ ĥ†

j↑+�↑ |0〉 = +t ′.
(A6)

Here, we used that only string states with |�σ | = 0 and |�σ̄ | � 0 can be coupled to a (cc) string with length |�cc| = |�σ | +
|�σ̄ | + 1. Therefore the above considerations resemble the results for hole doping in Eq. (32). The doublon doping case is
obtained analogously.
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behavior in the underdoped cuprate supercondcutors, J. Phys.
Chem. Solids 59, 1764 (1998).

[58] C. J. Halboth and W. Metzner, d-Wave Superconductivity
and Pomeranchuk Instability in the Two-Dimensional Hubbard
Model, Phys. Rev. Lett. 85, 5162 (2000).

[59] A. Abanov, A. V. Chubukov, and J. Schmalian, Quantum-
critical theory of the spin-fermion model and its application to
cuprates: Normal state analysis, Adv. Phys. 52, 119 (2003).

[60] C. Brügger, F. Kämpfer, M. Moser, M. Pepe, and U.-J. Wiese,
Two-hole bound states from a systematic low-energy effective
field theory for magnons and holes in an antiferromagnet, Phys.
Rev. B 74, 224432 (2006).

[61] W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, and K.
Schönhammer, Functional renormalization group approach to
correlated fermion systems, Rev. Mod. Phys. 84, 299 (2012).

[62] D. Vilardi, C. Taranto, and W. Metzner, Antiferromagnetic
and d-wave pairing correlations in the strongly interacting
two-dimensional Hubbard model from the functional renormal-
ization group, Phys. Rev. B 99, 104501 (2019).

[63] L. Homeier, H. Lange, E. Demler, A. Bohrdt, and F. Grusdt,
Feshbach hypothesis of high-Tc superconductivity in cuprates,
arXiv:2312.02982.

[64] S. M. O’Mahony, W. Ren, W. Chen, Y. X. Chong, X. Liu,
H. Eisaki, S. Uchida, M. H. Hamidian, and J. C. S. Davis,
On the electron pairing mechanism of copper-oxide high tem-
perature superconductivity, Proc. Natl. Acad. Sci. USA 119
(2022).

[65] A. Auerbach, Interacting Electrons and Quantum Magnetism
(Springer, New York, 1994).

[66] A. Bohrdt, E. Demler, and F. Grusdt, Rotational resonances and
regge-like trajectories in lightly doped antiferromagnets, Phys.
Rev. Lett. 127, 197004 (2021).

[67] P. Bermes, A. Bohrdt, and F. Grusdt, Magnetic polarons be-
yond linear spin-wave theory: Mesons dressed by magnons,
arXiv:2402.00130.

[68] G. Martinez and P. Horsch, Spin polarons in the t-J model,
Phys. Rev. B 44, 317 (1991).

[69] B. I. Shraiman and E. D. Siggia, Mobile vacancies in a
quantum heisenberg antiferromagnet, Phys. Rev. Lett. 61, 467
(1988).

[70] T. D. Lee, F. E. Low, and D. Pines, The motion of slow electrons
in a polar crystal, Phys. Rev. 90, 297 (1953).

[71] B. Ponsioen, S. S. Chung, and P. Corboz, Period 4 stripe in the
extended two-dimensional Hubbard model, Phys. Rev. B 100,
195141 (2019).

[72] M. Xu, L. H. Kendrick, A. Kale, Y. Gang, G. Ji, R. T. Scalettar,
M. Lebrat, and M. Greiner, Frustration- and doping-induced
magnetism in a Ferm-Hubbard simulator, Nature (London) 620,
971 (2023).

[73] J. Koepsell, D. Bourgund, P. Sompet, S. Hirthe, A. Bohrdt,
Y. Wang, F. Grusdt, E. Demler, G. Salomon, C. Gross,
and I. Bloch, Microscopic evolution of doped Mott insula-
tors from polaronic metal to Fermi liquid, Science 374, 82
(2021).

[74] H. Lange, L. Homeier, E. Demler, U. Schollwöck, A. Bohrdt,
and F. Grusdt, Pairing dome from an emergent Feshbach reso-
nance in a strongly repulsive bilayer model, arXiv:2309.13040.

[75] H. Lange, L. Homeier, E. Demler, U. Schollwöck, F.
Grusdt, and A. Bohrdt, Feshbach resonance in a strongly

125135-21

https://doi.org/10.1103/PhysRevB.102.035139
https://doi.org/10.1038/s41467-023-43453-2
https://doi.org/10.21468/SciPostPhys.14.5.090
https://doi.org/10.1103/PhysRevB.49.12318
https://doi.org/10.1038/nature05872
https://doi.org/10.1126/science.1103627
https://doi.org/10.1038/s41535-023-00550-1
https://doi.org/10.1038/s41467-023-39457-7
https://doi.org/10.1126/science.aay7311
https://doi.org/10.1103/PhysRevB.34.6554
https://doi.org/10.1103/PhysRevB.34.8190
https://doi.org/10.1103/PhysRevLett.60.944
https://doi.org/10.1103/PhysRevB.37.9904
https://doi.org/10.1103/PhysRevB.42.167
https://doi.org/10.1103/PhysRevLett.67.3448
https://doi.org/10.1016/0370-1573(94)00086-I
https://doi.org/10.1016/S0022-3697(98)00104-8
https://doi.org/10.1103/PhysRevLett.85.5162
https://doi.org/10.1080/0001873021000057123
https://doi.org/10.1103/PhysRevB.74.224432
https://doi.org/10.1103/RevModPhys.84.299
https://doi.org/10.1103/PhysRevB.99.104501
https://arxiv.org/abs/2312.02982
https://doi.org/10.1073/pnas.2207449119
https://doi.org/10.1103/physrevlett.127.197004
https://arxiv.org/abs/2402.00130
https://doi.org/10.1103/PhysRevB.44.317
https://doi.org/10.1103/PhysRevLett.61.467
https://doi.org/10.1103/PhysRev.90.297
https://doi.org/10.1103/PhysRevB.100.195141
https://doi.org/10.1038/s41586-023-06280-5
https://doi.org/10.1126/science.abe7165
https://arxiv.org/abs/2309.13040


HOMEIER, BERMES, AND GRUSDT PHYSICAL REVIEW B 109, 125135 (2024)

repulsive ladder of mixed dimensionality: A possible scenario
for bilayer nickelate superconductors, Phys. Rev. B 109, 045127
(2024).

[76] J. A. Sobota, Y. He, and Z.-X. Shen, Angle-resolved photoemis-
sion studies of quantum materials, Rev. Mod. Phys. 93, 025006
(2021).

[77] X. J. Zhou, Z. Hussain, and Z.-X. Shen, High resolution
angle-resolved photoemission study of high temperature
superconductors: charge-ordering, bilayer splitting and
electron–phonon coupling, J. Electron Spectrosc. Relat.
Phenom. 126, 145 (2002).

[78] J. Berakdar, Emission of correlated electron pairs following
single-photon absorption by solids and surfaces, Phys. Rev. B
58, 9808 (1998).

[79] F. Mahmood, T. Devereaux, P. Abbamonte, and D. K. Morr,
Distinguishing finite-momentum superconducting pairing states
with two-electron photoemission spectroscopy, Phys. Rev. B
105, 064515 (2022).

[80] Y. Su and C. Zhang, Coincidence angle-resolved photoemission
spectroscopy: Proposal for detection of two-particle correla-
tions, Phys. Rev. B 101, 205110 (2020).

[81] M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M. Kroner,
E. Demler, and A. Imamoglu, Fermi polaron-polaritons in
charge-tunable atomically thin semiconductors, Nat. Phys. 13,
255 (2017).

[82] I. Schwartz, Y. Shimazaki, C. Kuhlenkamp, K. Watanabe, T.
Taniguchi, M. Kroner, and A. Imamoğlu, Electrically tun-
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