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The finite temperature version of the Vashishta-Singwi (VS) dielectric scheme for the paramagnetic warm
dense uniform electron fluid is revisited correcting for an earlier thermodynamic derivative error. The VS scheme
handles quantum mechanical effects at the level of the random phase approximation and treats correlations via
the density expansion of a generalized Singwi-Tosi-Land-Sjölander (STLS) closure that inserts a parameter
determined by enforcing the compressibility sum rule. Systematic comparison with quasiexact results, based on
quantum Monte Carlo simulations, reveals a structural superiority of the VS scheme towards strong coupling and
a thermodynamic superiority of the STLS scheme courtesy of a favorable cancellation of errors. Guidelines are
provided for the construction of dielectric schemes that are expected to be more accurate but computationally
costly.
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I. INTRODUCTION

Warm dense matter (WDM) constitutes an extreme yet
ubiquitous state that is characterized by high temperatures
(104–108 K), high pressures (1–104 GBar), and beyond-solid
densities (1022–1027 cm−3) [1–4]. WDM is naturally encoun-
tered in dense astrophysical objects (gas giant interiors, dwarf
stars, outer neutron star crusts) [5–9] and is routinely pro-
duced in the laboratory (via laser compression, ion beam
heating, Z pinches) [10–14]. Furthermore, the WDM regime
is traversed in the early stages of inertial confinement fusion
[15–17] and is also relevant for various technological applica-
tions [18–22]. In density-temperature phase diagrams, as the
temperature increases, isochoric lines traverse the condensed
matter region, afterwards the WDM regime, and finally the
plasma region [3,4,10]. This transitional phase diagram lo-
cation is reflected by the lack of small parameters [23]; the
importance of correlations does not allow the use of plasma ki-
netic theory, the presence of thermal excitations prohibits the
straightforward application of solid-state approaches, and the
relevance of quantum effects impedes the use of established
theories of classical liquids. Thus, the rigorous theoretical
treatment of WDM requires the entire arsenal of quantum
many-body theory [24–29]; a synthesis that has proven to be
notoriously difficult.

The main prerequisite for the understanding of WDM is
the accurate description of the properties of the warm dense
uniform electron fluid (UEF), a fundamental homogeneous
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model system that does not require explicit treatment of the
ionic component [30–32]. For instance, the parametrization
of the UEF exchange correlation free energy constitutes es-
sential input for thermal density functional theory (DFT)
[33–37], while the dynamic local field correction of the UEF
is formally equivalent to the exchange correlation kernel
of linear-response time-dependent DFT [38–40] and can be
utilized to include correlations into quantum hydrodynamic
models [41,42].

This has provided the impetus for a worldwide intense re-
search activity targeted at the warm dense UEF [31,32,43,44].
On the one hand, there have been numerous breakthroughs
in quantum Monte Carlo (QMC) simulations concerning the
invention of entirely new techniques or of novel variants
that alleviate the fermion sign problem at different WDM
regions [45–53]. In combination with progress regarding the
correction of finite-size errors [54–56] and the numerical
implementation or even full circumvention of analytic con-
tinuation [57–59], this led to a very accurate description of
the thermodynamic, static, dynamic, and nonlinear behav-
ior of the UEF in WDM conditions [60–67]. On the other
hand, there have been few developments in finite temperature
schemes of the dielectric formalism [68–85]; a sophisticated
and versatile approach [86–89] based on linear density re-
sponse theory [30]. In spite of the availability of numerous
quasiexact simulation results and associated parametrizations
that can be used for benchmarking, there currently exists no
microscopic theoretical approach that can reliably predict the
properties of the UEF at WDM conditions.

With this investigation, we aim to improve the theoret-
ical landscape by revisiting the finite temperature version
of the Vashishta-Singwi dielectric scheme [70], which sup-
plements the archetypal Singwi-Tosi-Land-Sjölander closure
[69] with a density expansion that contains an adjustable
parameter determined by the exact enforcement of the
compressibility sum rule. Our self-consistent formulation cor-
rects for a thermodynamic derivative error that was present
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in the earlier formulation of Sjostrom and Dufty [71]. An
efficient algorithm is devised that is implemented in a hybrid
C++/PYTHON code. The scheme is numerically solved for
thousands of paramagnetic UEF state points that span the
WDM regime. The predictions for thermodynamic (interac-
tion energy, exchange correlation free energy) and structural
properties (static structure factor, static density response func-
tion, pair correlation function, static local field correction)
are systematically compared with available quasiexact results
based on path integral Monte Carlo (PIMC) simulations. Fi-
nally, we hint at future possibilities for constructing more
accurate, albeit more complex, dielectric schemes.

II. THEORETICAL

The UEF is a spatially homogeneous quantum model sys-
tem consisting of electrons immersed in a rigid uniform ionic
background that is solely characterized by the neutralizing
charge density −ne, where n is the electron density [30–32].
It constitutes the quantum mechanical analog of the classi-
cal one-component plasma (OCP) [90–92], thus it is often
also referred to as the quantum OCP. The UEF thermo-
dynamic state points are specified by three dimensionless
parameters [30–32]: (i) the quantum coupling parameter rs =
d/aB with d the Wigner-Seitz radius d = (4πn/3)−1/3 and
aB = h̄2/(mee2) the Bohr radius; (ii) the quantum degeneracy
parameter � = T/EF with EF = [(6π2n↑)2/3/2](h̄2/me ) the
Fermi energy with respect to the Fermi wave vector of the
spin-up electrons k↑

F = (6π2n↑)1/3 and T the temperature in
energy units; (iii) the spin polarization parameter ξ = (n↑ −
n↓)/n for which 0 � ξ � 1 within the standard convention
n↑ � n↓. In this work, we exclusively study the paramagnetic
(or unpolarized) case of equal spin-up and -down electrons,
ξ = 0. It is noted that, in contrast to the UEF, OCP state points
are specified by a unique dimensionless parameter [90–92]:
the classical coupling parameter � = e2/(dT ) for which � =
2λ2rs/� with λ3 = (kFd )−3 = 4/(9π ).

Within the UEF phase diagram, the WDM regime can be
roughly demarcated by 0.1 � rs,� � 10 [31,32]. The lack of
small parameters, rs ∼ � ∼ 1, is indicative of the complex
interplay between quantum effects (exchange, diffraction),
bare Coulomb interactions, and thermal excitations, which
make the theoretical treatment of the warm dense UEF a
formidable task.

In the high-density degenerate limit rs → 0, the UEF ap-
proaches the noninteracting Fermi gas [30]. The ideal (or
Lindhard) density response of the free unpolarized electrons
is given by [30,31]

χ0(k, ω) = 2
∫

d3q

(2π )3

f0(q) − f0(q + k)

h̄ω + ε(q) − ε(q + k) + ı0
, (1)

with ε(q) = h̄2q2/(2me ) the electron kinetic energy and f0(q)
the Fermi-Dirac distribution function

f0(q) = 1

exp
(

h̄2q2

2meT − μ̄
)

+ 1
, (2)

with μ̄ = βμ the reduced chemical potential (μ is the
chemical potential and 1/β = T ) that is determined by the
normalization condition

∫
[d3q/(2π )3] f0(q) = n/2.

In the low-density classical limit � → 0, the UEF ap-
proaches the noninteracting classical gas [30]. The ideal (or
Vlasov) density response of the free electrons is then given by
[93,94]

χ0(k, ω) = −
∫

d3 p
1

ω − k · v + ı0

[
k · ∂ f0(p)

∂ p

]
, (3)

where f0(p) is the Maxwellian distribution in momentum
space that is normalized according to

∫
d3 p f0(p) = n.

A. Dielectric formalism

The self-consistent dielectric formalism constitutes one of
the most accurate and versatile microscopic frameworks for
the description of the thermodynamic and static properties
of interacting uniform quantum systems such as the UEF
[30–32,86–89]. It combines fundamental results of the density
version of linear response theory [30] with an approximate
closure stemming from perturbative quantum/classical kinetic
theories of nonideal gases [95,96] or from nonperturbative
integral equation theories/memory function approaches of
classical liquids [96,97].

In the polarization potential approach [96], the density
response function χ (k, ω) is expressed very generally in terms
of the ideal (Lindhard) density response χ0(k, ω) and the
dynamic local field correction G(k, ω) (LFC) as

χ (k, ω) = χ0(k, ω)

1 − U (k)[1 − G(k, ω)]χ0(k, ω)
, (4)

where U (k) is the Fourier transformed pair interaction energy,
with U (k) = 4πe2/k2 for Coulomb interactions. In addi-
tion, for finite temperature systems, the combination of the
zero-frequency moment sum rule, the quantum fluctuation-
dissipation theorem and the analytic continuation of the causal
χ (k, ω) to the complex frequency plane yield a static structure
factor S(k) (SSF) relation that involves the infinite Matsubara
summation [68]

S(k) = − 1

nβ

∞∑
l=−∞

χ̃ (k, ıωl ), (5)

with χ̃ (k, z) the analytically continued density response func-
tion and ωl = 2π l/(β h̄) the bosonic Matsubara frequencies.
Finally, the dynamic LFC, which incorporates Pauli exchange,
quantum diffraction, and Coulomb correlation effects beyond
the mean-field description, is given by a complicated SSF
functional of the general form

G(k, ω) ≡ G[S](k, ω). (6)

The combination of Eqs. (4)–(6) leads to a nonlinear func-
tional equation of the type

S(k) = − 1

nβ

∞∑
l=−∞

χ̃0(k, ıωl )

1 − U (k)[1 − G[S](k, ıωl )]χ̃0(k, ıωl )
,

to be solved for the SSF [31,68].
Multiple dielectric schemes have been developed over the

last six decades that differ in the approximate treatment of the
exact (unknown) LFC functional. They can be broadly cat-
egorized in the following manner: (i) semiclassical schemes

125134-2



REVISITING THE VASHISHTA-SINGWI DIELECTRIC … PHYSICAL REVIEW B 109, 125134 (2024)

based on classical kinetic equations [68–71]; (ii) pure quan-
tum schemes based on quantum kinetic equations [72–75];
(iii) semiclassical schemes based on various integral equa-
tion theories [76–80]; (iv) quantized schemes also based on
integral equation theories [81]; (v) memory-function or vis-
coelastic schemes incorporating the elusive third frequency
moment sum rule [82–85]; (vi) semiempirical schemes based
on exact QMC results and incorporating known asymptotic
limits [62,63].

B. Vashishta-Singwi scheme: General formulation

Vashishta-Singwi (VS) theory is a semiclassical scheme of
the self-consistent dielectric formalism [70]. The treatment of
correlations is classical, since the s = 1 member of the clas-
sical Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hi-
erarchy of s-reduced distribution functions is truncated with
an equilibrium factorization ansatz. The treatment of quantum
mechanical effects is restricted to the random phase approxi-
mation level, since the resulting ideal Vlasov density response
is substituted with the ideal Lindhard density response. It
is noted that equilibrium closures to the classical BBGKY
hierarchy imply a static LFC (SLFC), thus the VS closure
leads to a SLFC.

The VS closure of the classical BBGKY hierar-
chy reads as f2(r, p, r′, p′, t ) = f (r, p, t ) f (r′, p′, t )g(r, r′, t )
where f2 is the two-particle distribution function, f is the
one-particle distribution function and g(r, r′, t ) = geq(|r −
r′|; n, T ) + α[δn(r, t ) + δn(r′, t )][∂geq(|r − r′|; n, T )/∂n] is a
nonequilibrium pair correlation function (PCF) with geq

the equilibrium PCF within the assumptions of a ho-
mogeneous and isotropic system. The VS closure stems
from the long-time long-range classical limit g(r, r′, t ) =
geq(|r − r′|; n, T ) + δn[∂geq(|r − r′|; n, T )/∂n] in absence of
temperature perturbations, which is first extended to ar-
bitrary spatial scales via g(r, r′, t ) = geq(|r − r′|; n, T ) +
(1/2)[δn(r, t ) + δn(r′, t )][∂geq(|r − r′|; n, T )/∂n] and is then
generalized to the quantum case by the ad hoc insertion
of the parameter α ≡ α(n, T ) [70,98]. This parameter is
state-point-dependent and is often referred to as the self-
consistency parameter, since it is determined by requiring that
the compressibility sum rule (CSR) [30–32,89] is satisfied
exactly. It is emphasized that the choice of α = 0 directly
leads to the archetypal Singwi-Tosi-Land-Sjölander (STLS)
closure that reads as f2(r, p, r′, p′, t ) = f (r, p, t ) f (r′, p′, t )
geq(|r − r′|; n, T ) [69].

After substitution of the VS closure to the first
member of the classical BBGKY hierarchy and use of
geq(|r − r′|) = 1 + h(|r − r′|) with h(·) the total correlation
function, the VS kinetic equation reads as

{
∂

∂t
+ v · ∂

∂r
− ∂

∂r
Uext (r, t ) · ∂

∂ p

}
f (r, p, t )

= ∂

∂r

{∫
U (r − r′)n(r′, t )d3r′

}
· ∂ f (r, p, t )

∂ p
+ ∂

∂r

{∫
U (r − r′)h(|r − r′|)n(r′, t )d3r′

}
· ∂ f (r, p, t )

∂ p

+ ∂

∂r

{
α

∫
U (r − r′)δn(r′, t )

∂h(|r − r′|)
∂n

n(r′, t )d3r′
}

· ∂ f (r, p, t )

∂ p

+ ∂

∂r

{
α

∫
U (r − r′)δn(r, t )

∂h(|r − r′|)
∂n

n(r′, t )d3r′
}

· ∂ f (r, p, t )

∂ p
,

with Uext (r, t ) the external potential energy and U (r − r′) the pair interaction potential energy. At the right-hand side (RHS),
the first bracketed term represents the mean-field contribution, the second bracketed term represents the STLS polarization field
contribution, and the last two bracketed terms correspond to the VS polarization field corrections. Application of an external
potential energy perturbation to the system (initially in equilibrium), linearization with respect to the small perturbation strength,
use of spatiotemporal Fourier transforms, consideration of the adiabatic switching of the perturbation, and substitution for the
SSF via S(k) = 1 + nH (k) lead to

δ f p
k,ω

=
[
− k

ω − k · v + ı0
· ∂ f0(p)

∂ p

]{
δU ext

k,ω + U (k)

{
1 −

[
1 + αn

∂

∂n

][
−1

n

∫
k · k′

k2

U (k′)
U (k)

[S(|k − k′|) − 1]
d3k′

(2π )3

]
δnk,ω

}}
.

Integration over the momenta to obtain the density perturbation δnk,ω = ∫
δ f p

k,ω
d3 p, solution of the resulting linear equa-

tion with respect to the density perturbation δnk,ω, identification of the ideal Vlasov density response χ0(k, ω) = − ∫
k ·

[∂ f0(p)/∂ p]/[ω − k · v + ı0]d3 p, and use of the functional derivative definition of the linear density response function
χ (k, ω) = δnk,ω/δU ext

k,ω yield the VS density response function

χ (k, ω) = χ0(k, ω)

1 − U (k)
{

1 − [
1 + αn ∂

∂n

][− 1
n

∫
k·k′
k2

U (k′ )
U (k) [S(|k − k′|) − 1] d3k′

(2π )3

]}
χ0(k, ω)

.

After term-by-term comparison with the general
form of the density response function, Eq. (4), and

substitution for the Fourier transformed Coulomb interaction
U (k) = 4πe2/k2, it is evident that the VS SLFC is
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given by

GVS(k) =
[

1 + αn
∂

∂n

]
×

[
−1

n

∫
k · k′

k′2 [S(|k − k′|) − 1]
d3k′

(2π )3

]
.

The second bracketed factor can be identified to be equal
to the STLS SLFC. Thus, the VS SLFC can be compactly
rewritten as

GVS(k) =
(

1 + αn
∂

∂n

)
GSTLS(k), (7)

GSTLS(k) = −1

n

∫
k · k′

k′2 [S(|k − k′|) − 1]
d3k′

(2π )3
. (8)

Finally, the CSR is most generally expressed through the
long-wavelength limit of the static density response (SDR) as
[30,87,89]

lim
k→0

[
1

χ (k, 0)
+ U (k)

]
= − ∂2

∂n2
[n f (n, T )],

where f (n, T ) denotes the total free energy per parti-
cle. Application of the above formula for the interact-
ing and noninteracting case, subtraction by parts, sub-
stitution for the general density response function from
Eq. (4), and introduction of the exchange-correlation free
energy (per particle) fxc, allows us to alternatively ex-
press the CSR via the long-wavelength limit of the SLFC
as [31,32]

lim
k→0

GVS(k)

k2
= − 1

4πe2

∂2

∂n2
[n fxc(n, T )]. (9)

Taking into account that GVS(k) explicitly depends on α

and that fxc(n, T ) implicity depends on α, Eq. (9) es-
sentially constitutes a nonlinear equation that determines
the self-consistency parameter α for every state point. It
is also important to emphasize that the 1/2 � α � 1 UEF
ground-state bounds [70] and the α 	 2/3 UEF ground-
state approximation [70] are not applicable to the finite
temperature UEF.

C. Vashishta-Singwi scheme: Correct finite
temperature formulation

In the standard normalized units, for the correct calculation
of the density derivative present in the VS SLFC, one should
take into account that the STLS SLFC depends on the density
through the quantum coupling parameter rs (see the Wigner-
Seitz radius), the quantum degeneracy parameter � (see the
Fermi energy), and the normalized wave number x = k/kF

(see the Fermi wave number). Thus, the chain differentiation
rule leads to the VS SLFC

GVS(x; rs,�)

=
[

1 + α(rs,�)

(
−2

3
�

∂

∂�
− 1

3
rs

∂

∂rs
−1

3
x

∂

∂x

)]
× GSTLS(x; rs,�), (10)

with the STLS SLFC given by [31,68]

GSTLS(x; rs,�) = − 3

4

∫ ∞

0
dyy2[S(y; rs,�) − 1]

×
[

1 + x2 − y2

2xy
ln

∣∣∣∣x + y

x − y

∣∣∣∣]. (11)

In the standard normalized units where the energies are nor-
malized with the Hartree energy, the CSR becomes

lim
x→0

GVS(x; rs,�)

x2
= −3π

4
λrs

{
n

∂2

∂n2
[n f̃xc(rs,�)]

}
.

The RHS is first computed by taking into account that
the exchange-correlation free energy depends on the density
through the quantum coupling parameter rs (see the Wigner-
Seitz radius) and the quantum degeneracy parameter � (see
the Fermi energy). Thus, repeated applications of the chain
differentiation rule yield

n
∂2

∂n2
[n f̃xc(rs,�)] = 1

9

(
4�2 ∂2

∂�2
+ r2

s
∂2

∂r2
s

+ 4�rs
∂2

∂�∂rs

− 2�
∂

∂�
− 2rs

∂

∂rs

)
f̃xc(rs,�).

The LHS is then computed with the aid of the straightforward
[see Eq. (11)] long-wavelength limits

lim
x→0

GSTLS(x; rs,�)

x2
= −1

2
πλrsũint (rs,�),

lim
x→0

1

x

∂

∂x
GSTLS(x; rs,�) = −πλrsũint (rs,�),

where the fundamental expression for the interaction energy
of the UEF [30,31,89] has been employed

ũint (rs,�) = 1

πλrs

∫ ∞

0
dy[S(y; rs,�) − 1]. (12)

Substituting for the VS SLFC from Eq. (10) and utilizing the
above two limits, one expresses the LHS as

lim
x→0

GVS(x; rs,�)

x2
= −π

2
λrs

{
1 − α(rs,�)

[
1 + 2

3
�

∂

∂�

+1

3
rs

∂

∂rs

]}
ũint (rs,�).

Finally, combining the RHS, LHS expressions with the CSR
expression, solving the linear explicit dependence with re-
spect to the self-consistency parameter α(rs,�), utilizing
the differential version of the adiabatic connection formula
in order to symmetrize the numerators and denominators
[30,31,89]

f̃xc(rs,�) = 1

r2
s

∫ rs

0
r′

sũint (r
′
s,�)dr′

s, (13)

ũint (rs,�) = 2 f̃xc(rs,�) + rs
∂

∂rs
f̃xc(rs,�), (14)

and carrying out some simple algebraic manipulations, the
CSR expression for the finite temperature VS scheme is
ultimately transformed to a compact equation for the self-
consistency parameter α. It is emphasized that this equation is
highly nonlinear owing to the implicit dependence of the
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interaction energy and exchange-correlation energy on α,
as discerned by inspecting Eqs. (12), (13) in view of the

α-dependent VS SLFC, see Eqs. (10), (11). The compact
equation reads as

α(rs,�) =
(

2 − 2
3�2 ∂2

∂�2 − 1
6 r2

s
∂2

∂r2
s

− 2
3�rs

∂2

∂�∂rs
+ 1

3� ∂
∂�

+ 4
3 rs

∂
∂rs

)
f̃xc(rs,�)(

1 + 2
3� ∂

∂�
+ 1

3 rs
∂

∂rs

)̃
uint (rs,�)

. (15)

To sum up, in normalized units, the correct finite temperature
formulation of the VS closure consists of Eqs. (10), (11) for
the SLFC and Eq. (15) for the CSR.

D. Vashishta-Singwi scheme: Sjostrom-Dufty
finite temperature formulation

As aforementioned, the VS scheme was originally for-
mulated for the UEF ground state [70]. It is noted that the
ground-state assumption has strong implications for the self-
consistent dielectric formalism itself; when T = 0 there are
no hyperbolic cotangent poles in the frequency-integrated
fluctuation-dissipation theorem, the bosonic Matsubara fre-
quencies collapse and the Matsubara infinite sum is substi-
tuted with a positive frequency integral. The first rigorous
attempt to extend the VS scheme to the finite temperature UEF
was due to Sjostrom and Dufty [71]. In what follows, we will
refer to it as VS-SD. Unfortunately, when progressing from
the general formulation to the finite temperature formulation,
the authors did not take into account the density dependence
of the degeneracy parameter � in both the VS SLFC and the
CSR expression, see their Eq. (15). As a consequence, the
VS-SD SLFC reads as

GSD
VS(x; rs,�) =

[
1 + α(rs,�)

(
−1

3
rs

∂

∂rs
− 1

3
x

∂

∂x

)]
× GSTLS(x; rs,�), (16)

and the VS-SD self-consistency parameter equation that stems
from the CSR expression reads as

αSD(rs,�) =
(

2 − 1
6 r2

s
∂2

∂r2
s

+ 4
3 rs

∂
∂rs

)
f̃xc(rs,�)(

1 + 1
3 rs

∂
∂rs

)̃
uint (rs,�)

. (17)

It is straightforward that the VS-SD formulation can be di-
rectly obtained from the correct VS formulation by setting
� = 0 whenever � appears explicitly, leaving the implicit
� dependence of thermodynamic and structural properties
intact. It is also apparent that the VS-SD finite tempera-
ture formulation results in the same SLFC closure and the
same self-consistency parameter equation as the original VS
ground-state formulation. Nevertheless, the dielectric formal-
ism machinery and thus the numerical solution of the two
formulations are different. In spite of the thermodynamic
error of the Sjostrom and Dufty analysis, the VS-SD finite
temperature scheme is still valuable, since it is numerically
much simpler as well as computationally much less costly
than the correct VS finite temperature scheme but also since
the two schemes should lead to identical predictions at the

limit of high degeneracy and/or strong coupling. To sum up,
in normalized units, the SD finite temperature formulation of
the VS closure consists of Eqs. (11), (16) for the SLFC and
Eq. (17) for the CSR.

III. COMPUTATIONAL DETAILS

A. Set of equations

The closed normalized set of equations emerges by com-
bining the general ingredients of the dielectric formalism
with the specific VS closure. The VS equations feature:
(i) The normalization condition of the Fermi-Dirac en-
ergy distribution function that allows the computation of
the reduced chemical potential μ̄ = βμ [see Eq. (18)]. (ii)
The analytic continuation of the ideal Lindhard density re-
sponse evaluated at the imaginary Matsubara frequencies
ωl = 2π l/(β h̄). In particular, an auxiliary complex function
�(k, z) = −(2Ef/3n)χ̃0(k, z) is introduced, which directly
leads to χ̃0(x, l )/(nβ ) = −(3/2)��(x, l ) in the normalized
wave number Matsubara space [68]. Note that �(x, l 
= 0)
and �(x, 0) are considered separately due to a logarithmic
singularity (at y = x/2 when l = 0) that is removable after
integration by parts [see Eqs. (19), (20)]. (iii) The VS SLFC
as extensively discussed in Sec. II C [see Eq. (21)]. (iv) The
Matsubara summation expression for the SSF [see Eq. (22)].
In practice, in the numerical implementation, the auxiliary
complex function �(x, l ) and the square of the combined
high-frequency large wave number asymptotic expansion of
the square of the auxiliary complex function �2(x, l → ∞)
are split up from the infinite series coefficients. Then, the
resulting infinite sums can be evaluated exactly leading to the
noninteracting (Hartree-Fock) SSF SHF(x) and a residual SSF
correction S∞(x) [68,74,99]. As a direct consequence, there
is a significant acceleration of the convergence rate of the
Matsubara summation even at strong degeneracy [79–81]. (v)
The nonlinear equation for the theoretical value of the self-
consistency parameter ath, i.e., the value that exactly satisfies
the CSR, as extensively discussed in Sec. II C [see Eq. (23)].∫ ∞

0

√
zdz

exp (z − μ̄) + 1
= 2

3
�−3/2, (18)

�(x, l ) = 1

2x

∫ ∞

0

y

exp
(

y2

�
− μ̄

)
+ 1

× ln

[(
x2 + 2xy

)2 + (2π l�)2

(x2 − 2xy)2 + (2π l�)2

]
dy, (19)
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�(x, 0) = 1

�x

∫ ∞

0

y exp
(

y2

�
− μ̄

)
[
exp

(
y2

�
− μ̄

)
+ 1

]2

[(
y2 − x2

4

)
ln

∣∣∣∣2y + x

2y − x

∣∣∣∣ + xy

]
dy, (20)

GVS(x) =
[

1 + α

(
−2

3
�

∂

∂�
− 1

3
rs

∂

∂rs
− 1

3
x

∂

∂x

)][
−3

4

∫ ∞

0
dyy2[S(y) − 1]

[
1 + x2 − y2

2xy
ln

∣∣∣∣x + y

x − y

∣∣∣∣]]
, (21)

S(x) = 3

2
�

+∞∑
l=−∞

�(x, l )

1 + 4
π
λrs

1
x2 [1 − GVS(x)]�(x, l )

, (22)

αth =
(

2 − 2
3�2 ∂2

∂�2 − 1
6 r2

s
∂2

∂r2
s

− 2
3�rs

∂2

∂�∂rs
+ 1

3� ∂
∂�

+ 4
3 rs

∂
∂rs

)
f̃xc(rs,�)(

1 + 2
3� ∂

∂�
+ 1

3 rs
∂

∂rs

)̃
uint (rs,�)

. (23)

B. Numerical algorithm

The closed normalized set of equations is solved in a home-
made hybrid code, where C++ is used for the back end (where
all the numerics are handled) and PYTHON is used for the
front end (where all the user inputs are introduced, all scheme
outputs are extracted and the primary data postprocessing
is done).

The first step concerns the computation of the reduced
chemical potential μ̄(�) for each value of the degeneracy
parameter. The solution of Eq. (18) is found by applying
the Brent-Dekker hybrid root-finding algorithm. The second
step concerns the computation of the ideal Lindhard density
response for all Matsubara frequencies from Eqs. (19), (20).
For state points close to the ground state, � � 1, l = 500
Matsubara frequencies are required for truncated series con-
vergence. For larger values of the degeneracy parameter, the
number of Matsubara frequencies can be safely lowered down
to l = 300. The improper integrals are handled with the dou-
bly adaptive general-purpose quadrature routine CQUAD of
the GSL library; a 0.1 grid resolution and 50 upper cutoff are
employed.

The third step concerns the computation of the VS SLFC
from Eq. (21). The STLS SSF is used as the initial value
for the SSF. Two initial values are then required for the self-
consistency parameter, α(k)

num, α(k+1)
num ∈ [−0.5, 1] with α(k)

num <

α(k+1)
num . As a practical rule, the lower the quantum coupling

parameter is, the lower the chosen αnum initial values should
be. The reason behind the necessity for computations for two
initial values will become apparent when αth is computed
in the fifth step upon the enforcement of the CSR. More-
over, the derivatives with respect to the state point variables
(rs,�) need to be computed. Therefore, as deduced from
the computational stencil that is shown in Fig. 1, the VS
scheme needs to be solved simultaneously for the nine state
points (rs,�), (rs + �rs,�), (rs − �rs,�), (rs,� + ��),
(rs,� − ��), (rs + �rs,� + ��), (rs + �rs,� − ��),
(rs − �rs,� + ��), (rs − �rs,� − ��). The combination
of central, forward, and backward difference approximations
is such that there is no need to supply boundary conditions
outside the stencil in order to close the system of equations. In
addition, the x derivatives are just computed on a grid depend-
ing on how fine the normalized wave vector discretization is.
To be more specific, we typically have �� = 0.1, �rs = 0.1,

and �x = 0.1. With this method, the different state points
can be easily stored in a two-dimensional matrix G[i][ j] with
the x values stored as the i components and the (rs,�) grid
as the j components. Since all computations are done up to
xmax = 50, i corresponds to 500 and j to 9. For the rs state
points, which are (rs,�), (rs,� + ��), (rs,� − ��) and
with j = {3, 4, 5}, the central second-order difference is used:

∂G(x; rs)

∂rs
≈ G[i][ j + 1] − G[i][ j − 1]

2�rs
.

For the rs + �rs state points, which are (rs + �rs,�), (rs +
�rs,� + ��), (rs + �rs,� − ��) and with j = {0, 1, 2},
the forward second-order difference is used:

∂G(x; rs + �rs)

∂rs
≈ −3G[i][ j] + 4G[i][ j + 1] − G[i][ j + 2]

2�rs
.

For the rs − �rs state points, which are (rs − �rs,�), (rs −
�rs,� + ��), (rs − �rs,� − ��) and with j = {6, 7, 8},
the backward second-order difference is used:

∂G(x; rs − �rs)

∂rs
≈ 3G[i][ j] − 4G[i][ j − 1] + G[i][ j − 2]

2�rs
.

FIG. 1. Two-dimensional (2D) grid for the finite difference ap-
proximation of the state point derivatives.
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The same is done for the � derivatives, but now we have
j = {1, 4, 7} for the central difference, j = {0, 3, 6} for the
forward difference, and j = {2, 5, 8} for the backward differ-
ence. Finally, the derivatives with respect to x are computed
with the central second-order difference:

∂G(x)

∂x
≈ G[i + 1][ j] − G[i − 1][ j]

2�x
.

It is emphasized that all finite difference approximations are
second order, which implies that the truncation errors are
O[(�rs)2], O[(��)2], O[(�x)2]. The combination of central,
backward, and forward differences was chosen so that the grid
extent is minimized.

The fourth step concerns the computation of the VS SSF
from Eq. (22) for the nine relevant UEF state points. Then,
steps 3 and 4 are repeated until the convergence criterion∑

i{G(n)
VS[i][4] − G(n−1)

VS [i][4]} � 10−5 is satisfied for the cen-
tral point (rs,�), where (n), (n − 1) denote the current and
previous iteration values of GVS. From now on, this will be
referred to as the inner loop. Typically, the number of iter-
ations required to reach convergence for GVS per numerical

self-consistency parameter per state point is of the order
of ∼100.

The fifth step concerns the convergence of the self-
consistency parameter αnum so that the CSR is automatically
enforced. The interaction energy ũint is computed from the
SSF, see Eq. (12). The exchange correlation free energy f̃xc is
computed from the adiabatic connection formula, see Eq. (13).
The respective wave number and coupling parameter integra-
tions are again performed with the doubly adaptive general-
purpose quadrature routine CQUAD. Various thermodynamic
derivatives of ũint, f̃xc need to be computed. All the involved
derivatives are approximated with central differences. For the
first-order derivatives (below for ũint but also for f̃xc), we have

∂ ũint (rs,�)

∂rs
≈ ũint (rs + �rs,�) − ũint (rs − �rs,�)

2�rs
,

∂ ũint (rs,�)

∂�
≈ ũint (rs,� + ��) − ũint (rs,� − ��)

2��
.

For the second-order derivatives, we have

∂2 f̃xc(rs,�)

∂r2
s

≈ f̃xc(rs + �rs,�) − 2 f̃xc(rs,�) + f̃xc(rs − �rs,�)

2�rs
,

∂2 f̃xc(rs,�)

∂�2
≈ f̃xc(rs,� + ��) − 2 f̃xc(rs,�) + f̃xc(rs,� − ��)

2��
,

∂2 f̃xc(rs,�)

∂rs∂�
≈ f̃xc(rs + �rs,� + ��) − f̃xc(rs + �rs,� − ��)

4�rs��
− f̃xc(rs − �rs,� + ��) − f̃xc(rs − �rs,� − ��)

4�rs��
.

These allow the computation of αth from Eq. (23). After
convergence of the initial inner loop, the G(k)

VS, G(k+1)
VS that

correspond to the guesses α(k)
num, α(k+1)

num yield the values
α

(k)
th (rs,�), α(k+1)

th (rs,�). The root of f (αth, αnum ) =
αth(rs,�) − αnum = 0, which yields the αnum that satisfies
the CSR near exactly, is found with the secant method.
After the inner loop has converged, f (k) = α

(k)
th − α(k)

num and
f (k+1) = α

(k+1)
th − α(k+1)

num are computed. If the convergence
criterion | f (k+1) − f (k)| < 10−3 is not satisfied, then the next
guess α(k+2)

num is computed via

α(k+2)
num = α(k+1)

num − f (k+1) α
(k+1)
num − α(k)

num

f (k+1) − f (k)
.

At this point, the fifth step, which constitutes the outer loop is
concluded, and the inner loop is restarted with initial guesses
α(k+2)

num , α(k+1)
num . For the full VS scheme to be solved, the inner

and outer loops must be repeated until both convergence
criteria are satisfied. On average, the outer loop requires less
than five iterations before convergence is reached. Hence,
the homemade VS solver is very fast. Typically, the solution
of the VS scheme per UEF state point requires 5 s on a
conventional laptop.

IV. RESULTS

In this section, the numerical solutions of our finite tem-
perature VS scheme for thermodynamic quantities and static

structural properties (SSF, PCF, SDR, SLFC) will be com-
pared with the predictions of the STLS scheme and the VS-SD
scheme. The VS thermodynamic properties will also be com-
pared with highly accurate warm dense UEF equations of
state [31,60,61,100,101]. The GDSMFB parametrization of
the UEF exchange correlation free energy f̃xc will be pre-
ferred [31,60]. The GDSMFB parametrization is based on
the Ichimaru-Iyetomi-Tanaka (IIT) functional form for ũint

[60,88,102]. The classical analytical Debye-Hückel limit
(� → ∞) [90] as well as the Perrot and Dharma-wardana
closed-form approximation of the Hartree-Fock limit (rs →
0) [103] are exactly incorporated. The GDSMFB parametriza-
tion primarily utilizes finite-size corrected QMC results [54]
obtained by various novel PIMC methods within 0.1 � rs �
20 and 0.5 � � � 8, which are complemented by ground-
state QMC results within 0.5 � rs � 20 [104]. The GDSMFB
parametrization also utilizes synthetic data in the range
0.0625 � � � 0.25 (inaccessible to simulations owing to the
prevalence of the fermion sign problem [50]), which are con-
structed by combining the ground-state QMC results with a
small STLS-based temperature correction. For the paramag-
netic case, the quasiexact QMC results employed for the fit
concern 58 warm dense UEF state points and seven ground-
state UEF state points [54,60,104].

VS-generated structural properties will also be compared
with the highly accurate results of the effective static approx-
imation (ESA). The ESA approach is a recently developed
semiempirical scheme of the dielectric formalism that targets
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FIG. 2. (Main) Dependence of the self-consistency parameter α

of the VS scheme on the UEF thermodynamic variables. Numer-
ical data (symbols) and analytic fits (solid lines) for rs = 0.5–15
and � = 0.5 (purple), � = 1.0 (gray), � = 2.0 (green), � = 4.0
(yellow). (Inset) The �-dependent functions of the exponential fit.
Numerical data (symbols) and Padé approximants (solid lines).

the WDM regime (strict applicability limits within 0.7 �
rs � 20 and 0 � � � 4) [62,63]. More specifically, the ESA
constructs an analytical SLFC based on the exact long wave-
length limit as determined from the CSR [105], on the exact
large wave number limit as determined from the cusp rela-
tion within the static assumption [106] and on a neural net
representation of QMC results at the intermediate wave num-
bers [107]. The quasiexact incorporation of the asymptotic
limits is facilitated by the availability of the aforementioned
GDSMFB fxc parametrization and the availability of an on-
top PCF (value at zero distance) parametrization [43,62,104].
ESA yields remarkable results for most physical quantities
in the WDM regime, not only static (such as the SSF and
the electronically screened ion potential) but even dynamic
(such as the dynamic structure factor and the stopping power)
[63]. In addition, the computational cost of the ESA scheme
is negligible, since it is comparable to that of the RPA scheme
owing to the fact that the SLFC is introduced as function of the
wave number and not as a functional of the SSF. Nevertheless,
given its QMC-based construction, the ESA scheme cannot
provide microscopic insights on the interplay between thermal
excitations, strong correlations, and quantum effects.

A. Self-consistency parameter

The complications in the numerical solution of the finite
temperature VS scheme primarily originate from the necessity
for a double convergence of the inner and outer loops.
The availability of a closed-form expression for the self-
consistency parameter α(rs,�) is equivalent to canceling the
outer loop and considerably simplifies the VS algorithm. The
dependence of the self-consistency parameter α on the UEF
thermodynamic variables (rs,�) is explored in Fig. 2. The
following conclusions are due: For any �, α is a monotoni-
cally increasing function of the quantum coupling parameter
that rises abruptly until it reaches an extended plateau. For
any rs, α is a monotonically decreasing function of the
degeneracy parameter up to � ∼ 4, with the dependence

TABLE I. Padé coefficients for the self-consistency parameter of
the VS scheme, see Eqs. (24), (25). The mean absolute relative error
of each Padé fit is reported in the last row.

i γ α
i δα

i ζ α
i ηα

i

1 0.7002 1.1498 0.5854 1.5104
2 −2.7913 −12.9044 10.6079 −22.9869
3 4.4473 101.674 −49.863 99.745
4 −3.7928 −1.0153 −7.2311 −5.7303
5 0.4222 0.8387 −0.8369 1.8335
6 5.4892 9.5142 21.0284 18.3802
7 0.7531 0.3872 0.6994 0.5487
% 0.23 0.71 0.49 0.26

becoming nonmonotonic at higher temperatures. In contrast
to the ground-state limit, α is not bound within 1/2 � α � 1
[70] and even obtains negative values at very high densities.
In contrast to the ground-state limit, α 	 2/3 [70] does
not constitute an accurate approximation, unless � � 0.5
and rs � 1.

The analytic expression for α(rs,�) is obtained by solv-
ing the correct finite temperature VS scheme for 2250
UEF state points spanning the entire warm dense matter
regime. To be more specific, 150 values of the quantum
coupling parameter, rs ∈ [0.1, 15] with a step of 0.1, are
combined with 15 values of the degeneracy parameter � ∈
[0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8]. In or-
der to take advantage of the monotonic rs dependence, the
isothermal values of α are first least-square fitted to

α(rs,�) = γ α (�) − δα (�)e−[ζ α (�)r1/2
s +ηα (�)r1/3

s ]. (24)

The resulting 15 data points for the four �-dependent func-
tions κα = {γ α, δα, ζ α, ηα} are then fitted to even Padé
approximants of the order 6/6,

κα (�) = κα
1 + κα

2 �2 + κα
3 �4 + κα

4 �6

1 + κα
5 �2 + κα

6 �4 + κα
7 �6

. (25)

The 28 Padé coefficients are provided in Table I together with
the mean absolute relative error of each Padé fit. The Padé
approximants are plotted in the inset of Fig. 2. The overall
mean absolute relative error of the total fit is 1.4%. The errors
stem mostly from the plateau region, where there are weak
α fluctuations that are smoothed out by the fitting function,
see Fig. 2.

With the aid of this α(rs,�) expression, the VS scheme
can now be solved by algorithms that simultaneously solve
the STLS scheme for nine UEF state points. Given the ∼1%
fitting error and the 10−3 convergence criterion of the outer
loop, it can be roughly stated that such STLS algorithms will
solve the VS scheme with approximately an order of accuracy
less than our pure VS algorithm.

B. Exchange correlation free energy

As per usual, the VS SSF is employed for the determina-
tion of the UEF interaction energy ũint via the fundamental
expression of Eq. (12). Then, the UEF interaction energy is
employed for the computation of the UEF exchange correla-
tion free energy f̃xc via the integral version of the adiabatic
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FIG. 3. Equation of state for the UEF interaction energy of the
VS scheme. Numerical data (symbols) and analytic fits (solid lines)
for rs = 1 − 15 and � = 1 (purple), � = 2 (blue), � = 4 (green),
� = 8 (yellow). The ũint fit follows Eqs. (26), (27) but the Padé
coefficients are not provided in the main text.

connection formula of Eq. (13). Different thermodynamic
properties can then be computed from well-known expres-
sions [30]. The VS-generated ũint and f̃xc have the standard
UEF dependencies [31], as seen in Figs. 3, 4. In what follows,
we exclusively focus on f̃xc.

The f̃xc(rs,�) parametrization is based on the solution
of the finite temperature VS scheme for 2250 UEF states
that cover the entire WDM regime. Again, 150 values
of the quantum coupling parameter, rs ∈ [0.1, 15] with a
step of 0.1, and 15 values of the degeneracy parameter
� ∈ [0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 8]
are probed. Our f̃xc parametrization is inspired by the IIT
parametrization originally proposed for ũint [31,60,88]. The
isothermal values are first least-square fitted to

f̃xc(rs,�) = − 1

rs

αHF(�) + γ f (�)
√

rs + δf (�)rs

1 + ζ f (�)
√

rs + ηf (�)rs
, (26)

FIG. 4. Equation of state for the UEF exchange correlation free
energy of the VS scheme. Numerical data (symbols) and analytic fits
(solid lines) for rs = 1 − 15 and � = 1.0 (blue), � = 2.0 (orange),
� = 4.0 (green), � = 8.0 (red). The f̃xc fit follows Eqs. (26), (27)
with the Padé coefficients of Table II.

TABLE II. Padé coefficients for the exchange correlation free
energy of the VS scheme, see Eqs. (26), (27). The mean absolute
relative error of each Padé fit is reported in the last row.

i γ f
i δf

i ζ f
i ηf

i

1 43.9016 30.0595 99.9987 35.8655
2 103.113 150.869 99.5025 98.756
3 17.751 150.733 71.9001 98.331
4 0.0798 1.9005 101.654 0.5388
5 6.2362 1.4741 0.995 0.4205
6 4.2003 4.429 0.719 3.1564
7 0.2626 0.1749 1.0165 0.1049
% 0.03 0.05 0.09 0.14

where αHF(�) corresponds to the exact Hartree-Fock co-
efficient of the noninteracting UEF exchange free energy
f̃ (rs,�) = −αHF(�)/rs that is rigorously defined by the dou-
ble integral presentation

αHF(�) = 3

4πλ
�

∫ ∞

0

∫ ∞

0

y

x

1

exp
(

y2

�
− μ̄

)
+ 1

× ln

∣∣∣∣∣∣∣
1 + exp

[
μ̄ − (y−x)2

�

]
1 + exp

[
μ̄ − (y+x)2

�

]
∣∣∣∣∣∣∣dydx,

and has been approximated by the very accurate Perrot and
Dharma-wardana parametrization [103]

αHF(�) = 1

πλ
tanh

(
1

�

)
× 0.75 + 3.04363�2 − 0.09227�3 + 1.7035�4

1 + 8.31051�2 + 5.1105�4
.

The resulting 15 data points for the four �-dependent
functions κ f = {γ f , δf , ζ f , ηf} are then fitted to even Padé
approximants of the order 6/6,

κ f (�) = κ f
1 + κ f

2�
2 + κ f

3�
4 + κ f

4�
6

1 + κ f
5�

2 + κ f
6�

4 + κ f
7�

6
. (27)

The 28 Padé coefficients are provided in Table II together
with the mean absolute relative error of each Padé fit.
The overall mean absolute relative error of the total fit is
merely 0.36%.

A direct comparison between the VS-generated f̃xc and
STLS-generated f̃xc can be performed neither graphically
(small differences) nor tabularly (too many data points). An
indirect comparison will be facilitated by the very accurate
GDSMFB parametrization. The absolute relative deviations
of the VS and STLS f̃xc predictions from the GDSMFB f̃xc

value as a function of rs have been plotted in Fig. 5 for
3 � values. Raw VS and STLS data have been preferred
over the analytic fits for the purposes of comparison. Thus,
the smoothness of the curves is a direct manifestation of
the stability and accuracy of our algorithm. This analysis
has been pursued for all 15 probed �. In the entire WDM
regime, the STLS predictions f̃xc are more accurate. The rea-
son for the thermodynamic superiority of the STLS has been
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FIG. 5. The absolute relative deviations of the VS f̃xc predictions
(blue) and the STLS f̃xc predictions (orange) from the very accurate
f̃xc value of the GDSMFB parametrization as a function of rs for
� = 0.5 (top), � = 2.0 (center), and � = 4.0 (bottom). In the case
of � = 0.5, the abrupt monotonicity change for the STLS scheme
that occurs at rs 	 5.5 corresponds to the switch of the sign of the
difference.

earlier discussed in the literature and will be elucidated in
Sec. IV C. As we will see, this does not translate to structural
superiority.

C. Static structure factor

A comparison between the SSF predictions of the STLS,
VS, and ESA schemes is featured in Fig. 6. (i) The
STLS-generated SSF is consistently characterized by an
overestimation at low wave numbers followed by an un-
derestimation at intermediate and high wave numbers, with
the crossover point lying within 1.5kF–2.0kF. On the other
hand, the VS-generated SSF is consistently characterized by
an underestimation at low and intermediate wave numbers
followed by a slight overestimation at high wave numbers,
with the crossover point lying in the vicinity of 3kF. Since
the integrated SSF yields the interaction energy, see Eq. (12),
this observation suggests a favorable cancellation of errors
for the STLS scheme and weak cancellation of errors for the
VS scheme, which explains the thermodynamic supremacy
of the STLS scheme. (ii) At sufficiently high densities for
which the SSF maximum is either extremely shallow or even
nonexistent, the STLS scheme is consistently more accurate
than the VS scheme in nearly the entire wave number range.
The ESA SSF lies in between the STLS SSF and VS SSF
at small wave numbers, while SESA > SSTLS > SVS is valid at
intermediate and large wave numbers. (iii) At stronger cou-
pling parameters for which the SSF maximum is apparent but
remains shallow, the accuracy of the STLS and VS schemes
becomes comparable. The ESA-generated SSF is nearly over-
lapping with the VS SSF at small wave numbers, in better
agreement with the STLS SSF at intermediate wave numbers
and slightly closer to the VS SSF near the large wave number
limit. It should also be noted that the VS scheme leads to
an extremely shallow SSF maximum, while the STLS SSF
remains bounded below unity. (iv) Near the boundary between
the WDM and the strong coupling regimes where the SSF
maximum is pronounced and the secondary extrema begin to
emerge, the VS scheme is superior with the exception of a
narrow 1.5kF–2.0kF interval located in the neighborhood of
the ESA-STLS crossover. More specifically, the VS-generated
SSF is nearly indistinguishable from the ESA-generated SSF
within the small wave number range and it is characterized by
a well-developed maximum, albeit weaker and broader than
the nearly exact prediction of the ESA scheme. Meanwhile,
the STLS-generated SSF remains bounded below unity.

FIG. 6. The static structure factor of the paramagnetic uniform electron fluid in the warm dense matter regime, as predicted by the VS
scheme (red), the STLS scheme (black), and the quasiexact ESA scheme (blue). Results for � = 1.0 and for rs = 5 (left), rs = 10 (center),
rs = 15 (right).
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At strong coupling, as far as static structural properties
are concerned, the improved performance of the VS scheme
compared to the STLS scheme is expected from a general
equilibrium statistical mechanics perspective [108]. Let us
first recall an exact relationship between successive order
reduced density matrices, which reads as [95]

�s(rs; Rs) = 1

N − s

∫
d3rs+1�s+1(rs, rs+1; Rs, rs+1),

where �s(rs; Rs) = 〈rs|�̂s|Rs〉 is the reduced s-particle den-
sity matrix within the coordinate representation and xs =
{x1, x2, . . . , xs} for the positions x = r, R of the s � N
electrons. In terms of reduced s-particle densities ns(rs) =
�s(rs; rs), this relationship remains intact, i.e.,

ns(rs) = 1

N − s

∫
d3rs+1ns+1(rs+1).

Within the thermodynamic limit s � N → ∞ and for ho-
mogeneous systems, in terms of reduced s-particle correla-
tion functions gs(rs) = ns(rs)/ns, this relationship becomes
[108,109]

gs(rs) = 1

V

∫
d3rs+1gs+1(rs+1). (28)

Setting s = 2, the above implies a connection between the
(isothermal) density derivative of the pair correlation func-
tion and the triplet correlation function. Such connections
have been long exploited in the theory of classical liquids
[110–112]. Thus, it is concluded that the indirect inclusion
of ternary correlations in the VS scheme is responsible for
the improved description of equal-time density correlations
compared to the STLS scheme.

The dependence of the VS-generated SSFs on the UEF
thermodynamic variables (rs,�) is explored in Fig. 7. At
constant � and for increasing rs; the small wave number
behavior of the SSF becomes less steep. When � = 0.5, a
shallow maximum appears for rs � 8, which becomes sharper
as the quantum coupling parameter further increases. For
all probed isothermal state points, the large wave number
limit of unity is always reached before 4.5kF. Essentially,
the � dependency follows the same reasoning as the rs de-
pendency, provided that an effective coupling parameter �eff

is introduced, which considers the contribution of exchange
effects on an equal footing with thermal effects. In view
of the classical coupling parameter, one now defines �eff =
e2/(d

√
T 2 + E2

f ), which yields �eff = 2λ2rs/
√

1 + �2 [23].
For constant rs and increasing �, the small wave number be-
havior of the SSF becomes steeper. When rs = 10, a shallow
maximum appears for � � 2 that becomes sharper as the de-
generacy parameter further decreases. For all probed isochoric
state points, the large wave number limit of unity is reached
before 5kF.

D. Static density response function

The linear SDR function is directly obtained from PIMC
results for the imaginary time density-density correlation
function via the imaginary-time version of the quantum
fluctuation-dissipation theorem [113–115]. The SDR function
is known to be more sensitive to quantum effects compared

FIG. 7. The dependence of the static structure factor of the
paramagnetic warm dense uniform electron fluid on the thermo-
dynamic variables (rs,�), as predicted by the finite temperature
VS scheme. (Top) Results for constant � = 0.5 and for varying
rs = {1, 3, 5, 8, 10, 15}. (Bottom) Results for constant rs = 10 and
for varying � = {0.2, 0.5, 1.0, 2.0, 4.0, 8.0}.

to the SSF [115]. Nevertheless, no surprises are expected in
the course of the comparison between the VS scheme and the
STLS scheme, given the fact that both schemes treat quantum
effects at the level of the RPA. It is pointed out that the large
wave number limit of the SDR is dictated by the ideal SDR,
i.e., [116,117]

lim
k→∞

χ (k) = χ0(k), (29)

and that the long wavelength limit of the SDR is dictated by
the perfect screening, i.e., [116,117]

lim
k→0

χ (k) = − k2

4πe2
. (30)

A comparison of the SDR predictions of the STLS, VS,
and ESA schemes is featured in Fig. 8. The asymptotic lim-
its are indicated by the dashed lines. (i) In accordance with
the SSF observations, in the small wave number region, the
quasiexact ESA SDR lies in-between the VS-generated and
STLS-generated SDRs at high densities. When the quan-
tum coupling parameter rs increases, the VS-generated SDR
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FIG. 8. The static density response of the paramagnetic uniform electron fluid in the warm dense matter regime, as predicted by the VS
scheme (red solid line), the STLS scheme (black solid line) and the quasiexact ESA scheme (blue solid line). The ideal noninteracting limit
(green dashed line) and the perfect screening limit (orange dashed line) are also indicated. Results for � = 1.0 and for rs = 5 (left), rs = 10
(center), rs = 15 (right).

nearly overlaps with the ESA SDR for k � 1.5kF, while the
STLS-generated SDR exhibits observable deviations from the
ESA SDR up to k/kF ∼ 0.7. It is noted that the perfect screen-
ing limit is reached for smaller wave numbers, as the coupling
becomes stronger. (ii) Again in accordance with the SSF ob-
servations, in the large wave number region, the quasiexact
ESA SDRs lie closer to the VS-generated SDRs irrespective
of the quantum coupling parameter. Unsurprisingly, as the
coupling becomes stronger, the convergence to the ideal SDR
is shifted to higher wave numbers. (iii) Irrespective of the
quantum coupling parameter, the STLS scheme yields more
accurate predictions for the magnitude of the SDR minimum,
while the VS scheme yields more accurate predictions for the
position of the SDR minimum. In particular, as the coupling
increases; the STLS predictions for the magnitude of the mini-
mum become progressively worse while the offset concerning
the position of the minimum remains nearly constant, the
VS predictions for the position of the minimum remain very
accurate while the discrepancy concerning the magnitude of
the minimum remains nearly constant. (iv) Overall, also in
line with the SSF observations, the STLS-generated SDRs are
more accurate for weak coupling and the VS-generated SDRs
are more accurate for moderate coupling.

The dependence of the VS-generated SDRs on the UEF
thermodynamic variables (rs,�) is explored in Fig. 9. At
constant � and for increasing rs; the short wave num-
ber behavior of the SDR is characterized by a very strong
dependence as expected from the normalized unit ver-
sion limx→0 χ (x)/(nβ ) = −(3π/8λ)(�/rs)x2 of the perfect
screening asymptote. On the other hand, all the SDRs exhibit
the same large wave number behavior given the rs indepen-
dence of the ideal SDR with the rs = 15 curve attaining its
limiting behavior at the highest wave number. The position
of the omnipresent SDR minimum gets gradually shifted to
larger wave numbers, as the quantum coupling parameter
increases. The magnitude of the SDR minimum is monotoni-
cally decreasing with rs up to the emergence of the maximum
of the SSF. At even higher coupling, the magnitude of the SDR
minimum begins to increase with rs [57,118]. At constant rs,
there is a strong dependence of both asymptotic limits on
�. It is emphasized that the position of the SDR minimum

weakly depends on the degeneracy parameter, whereas the
SDR minimum becomes broader as � increases.

FIG. 9. The dependence of the static density response of the
paramagnetic warm dense uniform electron fluid on the thermo-
dynamic variables (rs,�), as predicted by the finite temperature
VS scheme. (Top) Results for constant � = 0.5 and for varying
rs = {1, 3, 5, 8, 10, 15}. (Bottom) Results for constant rs = 10 and
for varying � = {0.2, 0.5, 1.0, 2.0, 4.0, 8.0}.
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FIG. 10. The pair correlation function of the paramagnetic uniform electron fluid in the warm dense matter regime, as predicted by the VS
scheme (red), the STLS scheme (black) and the quasiexact ESA scheme (blue). Results for � = 1.0 and for rs = 5 (left), rs = 10 (center),
rs = 15 (right).

E. Pair correlation function

The PCF is obtained from the SSF by the inverse Fourier
transform of the fundamental microscopic expression S(k) =
1 + nH (k) [97]. For isotropic systems such as the UEF, use of
spherical coordinates and normalized units leads to

g(x) = 1 + 3

2x

∫ ∞

0
[S(y) − 1]y sin (xy)dy. (31)

It is emphasized that specialized quadrature algorithms are
necessary for accurate numerical evaluation of this integral
at short distances owing to the rapid oscillatory nature of
the sin (xy) factor of the integrand [119–121]. It is also
pointed out that the truncation of the upper integration limit
should be handled with care; the SSF reaches its unity
asymptotic limit around y ∼ 5 and thus it is possible that
noise of alternating sign is solely integrated at large wave
numbers for which the SSF fluctuates around unity with
magnitudes that are lower than the accuracy of the algo-
rithm employed for the solution of the dielectric scheme
of interest.

A comparison of the PCF predictions of the STLS, VS, and
ESA schemes is featured in Fig. 10. It is preferable to distin-
guish between the near-contact short distance region (which is
primarily shaped by the competition between quantum effects
that allow the overlap of electrons of opposite spin [122]
and strong interaction effects that favor the formation of cor-
relation voids [123,124]) and the intermediate-long distance
region that consists of the first coordination shell (which is
primarily shaped by the relative strength of the correlations
[97,108]) together with the asymptotic decay range (where the
PCF reaches its long distance limit of unity [97]). (i) Let us
first consider the combined intermediate-long distance region
rkF � 1. At high densities, the STLS-generated and VS-
generated PCFs have comparable accuracy and exhibit small
deviations from the quasi-exact ESA PCF that are spread
over all distances rkF � 4. At stronger coupling, the ESA
PCF has a shallow maximum whose position is accurately
predicted by the VS scheme, unlike its magnitude, which is
underestimated by the VS scheme. On the other hand, the
STLS scheme leads to an even shallower PCF maximum that
is displaced towards larger distances. Thus, STLS-generated

PCFs may attain their asymptotic limit at larger distances
than VS- and ESA-generated PCFs. (ii) Let us next proceed
with the discussion of the short distance region rkF � 1. The
STLS and the VS schemes lead to an unphysical negative
PCF region near the origin (r = 0). This is a well-known
common pathological feature of all nonempirical schemes of
the dielectric formalism that originates from the approximate
treatment of quantum effects [31,125,126]. It is particularly
prominent in semiclassical schemes, but it is also present
in pure quantum schemes as well as in quantized schemes
based on integral equation theories [79,81]. On the other hand,
mapping approaches that are based integral equation theories
for an effective pair interaction potential within a specific
classical-quantum state correspondence rule by default lead
to a non-negative PCF [125,126]. As expected based on their
semiclassical classification, both the VS and STLS schemes
are characterized by extended negative PCF regions. For most
state points, the absolute value of the integrated negative re-
gion of the VS-generated PCF is larger than the respective
absolute value of the STLS-generated PCF. (iii) Let us also
focus on the contact (r = 0). The larger integrated negative
PCF region of the VS scheme does not necessarily trans-
late to a more negative on-top PCF, g(r = 0), owing to the
existence of a still unphysical negative global minimum of
the PCF. The latter is observed for both the VS and the
STLS schemes from moderate coupling. More specifically,
even though the VS minimum is deeper, the larger VS slope
at the contact side of the minimum yields less negative (or
even positive) on-top PCF values compared to the STLS
scheme. (iv) For completeness, it is noted that the semiem-
pirical nature of the ESA scheme allows it to be an exception
to the negative PCF pathology of dielectric schemes. It in-
corporates accurate QMC-based on-top PCF values and, for
nearly all state points within its applicability range, yields
a PCF that is monotonic prior to the first coordination shell
maximum implying that ESA-generated PCFs are always
positive.

The dependence of the VS-generated PCFs on the UEF
thermodynamic variables (rs,�) is explored in Fig. 11. In-
side the first coordination shell, the rs dependence and the
� dependence of the PCF can be fully understood on the
basis of the earlier SSF discussion at the last paragraph of
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FIG. 11. Dependence of the pair correlation function of the
paramagnetic warm dense uniform electron fluid on the thermo-
dynamic variables (rs, �), as predicted by the finite temperature
VS scheme. (Top) Results for constant � = 0.5 and for varying
rs = {1, 3, 5, 8, 10, 15}. (Bottom) Results for constant rs = 10 and
for varying � = {0.2, 0.5, 1.0, 2.0, 4.0, 8.0}.

Sec. IV C. Concerning short distances; the PCF is always
positive and monotonic at high electron densities, the onset
(but not necessarily the extent) of the negative PCF region is
observed to monotonically increase as rs rises and monotoni-
cally increase as � decreases up to 0.5 � � � 1, the negative
PCF minimum is not present for low effective coupling pa-
rameters (high � and/or low rs) and the on-top PCF values
are positive either at high densities (non-negative PCF) or for
large effective coupling parameters (negative PCF region with
a minimum).

F. Static local field correction

Provided that the local field correction is static, its large
wave number limit is algebraically connected to the on-top
PCF. After the substitution of G(k, ω) ≡ G(k) in the con-
stitutive relation for the density response function Eq. (4),
the combination with the infinite Matsubara summation of
Eq. (5) and the utilization of the fundamental PCF-SSF con-
nection, an intricate asymptotic analysis yields the general

result [68,88]

∂g(r)

∂r

∣∣∣∣
r=0

= 1

aB

[
1 − lim

k→∞
G(k)

]
. (32)

Simultaneously, the cusp condition is exactly valid, which
states that the derivative of the PCF logarithm at the origin
equals the inverse Bohr radius [106,127,128], i.e.,

∂g(r)

∂r

∣∣∣∣
r=0

= g(0)

aB
. (33)

Combining the above, one obtains the exact cusp relation that
reads as [68,88]

lim
k→∞

G(k) = 1 − g(0). (34)

This can be considered as a self-consistency condition [68,88]
since it solely originates from the first two exact building
blocks of the dielectric formalism, see Eqs. (4), (5), and needs
to be independently satisfied by the third approximate build-
ing block, see the closure functional of Eq. (6) without the
frequency dependence.

It can be easily shown that the STLS scheme satisfies the
cusp self-consistency relation. The large wave number limit
x → ∞ of the bracketed factor of the STLS SLFC integrand,
see Eq. (11), is found to be equal to 2, after a Taylor expansion
with respect to y/x → 0. This leads to

GSTLS(x) = −3

2

∫ ∞

0
dyy2[S(y) − 1],

where the state point dependence has been suppressed. The
short distance limit x → 0 of the fundamental PCF-SSF con-
nection, see Eq. (31), since sin (xy) 	 xy, yields

g(0) = 1 + 3

2

∫ ∞

0
y2[S(y) − 1]dy.

Thus, combining the above, one indeed obtains that

lim
x→∞ GSTLS(x) = 1 − g(0). (35)

It is rather straightforward to prove that the VS scheme can-
not satisfy the cusp self-consistency relation. In view of the
differential connection between the VS and STLS SLFCs,
see Eq. (7) or Eq. (10), and courtesy of the asymptotic
x(∂GSTLS(x)/∂x)|x→∞ = 0, we directly obtain [105]

lim
x→∞ GVS(x) = 1 − g(0) + 2

3
α�

∂g(0)

∂�
+ 1

3
αrs

∂g(0)

∂rs
. (36)

From general physical arguments that are based on the non-
interacting limit and the strongly interacting limit, it can be
deduced that the thermodynamic derivatives of the on-top PCF
cannot be identically zero. In addition, based on the extended
discussion featured at the last paragraph of Sec. IV E, it can
be safely concluded that the thermodynamic derivatives of
the on-top PCF do not provide negligible contributions to
Eq. (36). Therefore, the VS scheme does not even roughly
comply with the cusp self-consistency relation. In a sense,
enforcement of small wave number consistency (satisfaction
of isothermal compressibility sum rule) has the undesired side
effect of large wave number inconsistency (violation of cusp
condition).
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FIG. 12. Static local field correction of the paramagnetic uniform electron fluid in the warm dense matter regime, as predicted by the VS
scheme (red), the STLS scheme (black), and the ESA scheme (blue). Results for � = 1.0 and for rs = 5 (left), rs = 10 (center), rs = 15 (right).

A comparison of the SLFC predictions of the STLS, VS,
and ESA schemes is featured in Fig. 12. It is pointed out
that the ESA scheme nearly exactly satisfies the cusp self-
consistency relation and the CSR expression by construction
[63]. To prevent possible misconceptions, it is also empha-
sized that the ESA scheme features a frequency-averaged
LFC that does not correspond to the exact static limit of
the dynamic LFC as that would emerge from QMC simu-
lations [62,63]. (i) Concerning the SLFC long wavelength
limit, as expected from its direct connection with the CSR,
VS-generated SLFCs are more accurate than STLS-generated
SLFCs regardless of the UEF state point. Furthermore, as
the quantum coupling parameter increases, the SLFC result
exhibits less deviations from the accurate ESA result. This is
consistent with the improved agreement of the VS exchange
correlation free energy with the GDSMFB parametrization
as rs increases. (ii) Concerning the large wave number limit
of the SLFC, as expected from its connection with the cusp
condition, the VS-generated SLFCs are less accurate than the
STLS-generated SLFCs regardless of the UEF state point of
interest. Regarding the STLS scheme and the ESA scheme,
the cusp self-consistency relation also provides an inde-
pendent check of the numerical accuracy of the respective
algorithms; the STLS SLFC large wave number limit is indeed
larger than unity in accordance with the negative on-top PCF,
whereas the ESA SLFC large wave number limit is indeed
smaller (or nearly equal to) than unity in accordance with the
non-negative on-top PCF. (iii) Concerning the intermediate
wave number region, the deviations from the ESA SLFC
are always rather large, but it can be stated that the STLS
SLFC is more accurate at high densities and that the VS
SLFC becomes more accurate as the coupling increases. The
STLS SLFC is characterized by a shallow maximum only near
the boundary between the WDM and the strongly coupled
regimes, while the VS SLFC only lacks a maximum at high
densities. Yet, even at the largest coupling parameters probed,
the well-formed VS SLFC maximum could not match the
magnitude, position and width of the ESA SLFC maximum.
(iv) In contrast to the sharp ESA SLFC transition between the
intermediate wave number region and the asymptotic value,
in case a SLFC maximum is present, the respective VS and
STLS SLFC transitions are slow and could even extend over
several Fermi wave numbers.

The dependence of VS-generated SLFCs on the UEF
thermodynamic variables (rs,�) is explored in Fig. 13. The
strong dependence of the large wave number limit on (rs,�)
reflects the strong dependence of the on-top PCF on (rs,�), in

FIG. 13. Dependence of the static local field correction of the
paramagnetic warm dense uniform electron fluid on the thermo-
dynamic variables (rs,�), as predicted by the finite temperature
VS scheme. (Top) Results for constant � = 0.5 and for varying
rs = {1, 3, 5, 8, 10, 15}. (Bottom) Results for constant rs = 10 and
for varying � = {0.2, 0.5, 1.0, 2.0, 4.0, 8.0}.
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FIG. 14. Static structure factor (main) and pair correlation function (inset) of the paramagnetic uniform electron fluid in the warm dense
matter regime, as predicted by the VS-SD scheme (blue), VS scheme (red) and STLS scheme (black). Results for � = 5.0 and rs = 5 (left),
rs = 10 (right).

view of Eq. (36). The aforementioned correlation between the
presence of a SLFC maximum and the prolonged asymptotic
transition is also apparent. Finally, the weak dependence of the
long wavelength limit (rs,�), except from high � and/or low
rs, reflects the relatively weak dependence of the exchange-
correlation free energy on (rs,�), in view of Eq. (9).

G. Comparison with the VS-SD scheme

Owing to the erroneous chain rule application in the den-
sity derivative, the Sjostrom and Dufty formulation of the
finite temperature VS scheme (VS-SD scheme) [71] is consid-
erably simpler than the present corrected formulation of the
finite temperature VS scheme. First and foremost, when uti-
lizing second-order finite difference schemes to approximate
the thermodynamic derivatives, the minimum VS-SD compu-
tational stencil features three state points, while the minimum
corrected VS computational stencil features nine state points,
compare Eqs. (10), (16). As a consequence, the inner loop of
the VS-SD algorithm needs to be simultaneously run for three
state points, while the inner loop of the VS algorithm needs to
be simultaneously run for nine state points. Thus, the VS-SD
computational cost is at least three times smaller. In addition,
the self-consistency parameter equation of the VS-SD scheme
involves considerably less thermodynamic derivatives than the
self-consistency parameter equation of the VS scheme, com-
pare Eqs. (15), (17). This directly suggests less complexity
and indirectly implies less computational cost due to the faster
convergence of the outer loop.

In this section, we compare the predictions of the (cor-
rected) VS scheme with the predictions of the VS-SD scheme.
Such a comparison allows us to confirm that the corrected
treatment has an meaningful impact on the structural prop-
erties of the UEF and is not merely an added complexity.
Such a comparison also allows us to identify phase diagram
regions wherein the VS scheme is indistinguishable with the
VS-SD scheme and thus the simpler version can be employed

without introducing errors. After a simple inspection of the
respective SLFC closures and respective self-consistency pa-
rameter equations, it can be deduced that the two schemes will
have maximum differences at high � and/or small rs and will
nearly overlap at low � and/or large rs. On the other hand, the
structural properties are not very sensitive to typical values of
the quantum coupling parameter that are relevant for WDM
applications (rs ∼ 5), see Figs. 7, 9.

A comparison of the SSF and PCF predictions of the STLS,
VS, and VS-SD schemes for � = 5 and rs = 5, 10 is featured
in Fig. 14. In line with our expectations, the VS-SD scheme
leads to unique predictions for both structural properties. In
particular, as discerned in the main figures, the VS-generated
SSF consistently lies in between the STLS (upper bound) and
VS-SD (lower bound) predictions. Furthermore, as illustrated
in the insets, there are substantial PCF differences between the
VS and the VS-SD schemes that are mainly confined to short
distances. Finally, the inset of the right panel even reveals
that the unphysical negative PCF region near the origin can
be monotonic for the VS scheme and nonmonotonic for the
VS-SD scheme.

A comparison of the SDR predictions of the STLS, the VS
and the VS-SD schemes for � = 5 and rs = 5, 10 is featured
in Fig. 15. Unsurprisingly, the VS-SD scheme yields distinct
predictions for the static limit of the linear density response
function. For both coupling parameters, the VS-generated
SDR lies in-between the STLS (lower bound) and the VS-
SD (upper bound) predictions. In general, this is a pattern
that persists within the WDM regime. Therefore, it can be
stated that the correct finite temperature formulation of the
VS scheme leads to predictions that are closer to the STLS
scheme compared to the predictions of the VS-SD scheme.
Another comparison of the SDR predictions of the STLS,
VS and VS-SD schemes now for � = 0.5 and rs = 5, 10 is
featured in Fig. 16. The VS and VS-SD results for the SDR are
truly indistinguishable, overlapping in the entire wave number
range. The same applies for the PCF, SSF, and SLFC.
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FIG. 15. Static density response of the paramagnetic uniform electron fluid in the warm dense matter regime, as predicted by the VS-SD
scheme (blue), VS scheme (red) and STLS scheme (black). Results for � = 5.0 and rs = 5 (left), rs = 10 (right).

V. SUMMARY AND FUTURE WORK

A. Summary

In this work, the finite temperature formulation of the
Vashishta-Singwi dielectric formalism scheme for the uniform
electron fluid was reported correcting for a thermodynamic
derivative error that was present in the earlier formulation of
Sjostrom and Dufty. This is a truly self-consistent version,
where the density expansion parameter α is not locked to
an approximate state-independent value but is determined
by enforcing the compressibility sum rule at each thermody-
namic point. An efficient computational scheme was devised
for the solution of the VS scheme that was presented in full
detail. It features an inner loop that simultaneously solves the
scheme for nine state points, which form a minimum extent

computational stencil when all finite difference approxima-
tions of the thermodynamic derivatives are of the second
order. It also features an outer loop that determines the
self-consistency parameter α through a nonlinear equation of
the form α = f1[ f̃xc(α)]/ f2[̃uint (α)], where f1 contains all
possible first- and second-order thermodynamic derivatives
of f̃xc and f2 contains all possible first-order thermodynamic
derivatives of ũint , which is solved with the secant method.
The VS algorithm is implemented in a homemade hybrid
code, where C++ is used for the back end and PYTHON is
used for the front end.

The finite temperature VS scheme was numerically solved
for 2250 state points of the paramagnetic uniform electron
fluid that cover the entire warm dense matter regime. First,
this extended parametric study facilitated the extraction of an

FIG. 16. Static density response of the paramagnetic uniform electron fluid in the warm dense matter regime, as predicted by the VS-SD
scheme (blue), VS scheme (red) and STLS scheme (black). Results for � = 0.5 and rs = 5 (left), rs = 10 (right).
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accurate closed-form expression for the self-consistency pa-
rameter α(rs,�) whose availability removes the necessity for
an outer loop and permits the use of STLS-like algorithms for
the solution of the VS scheme. Furthermore, this systematic
investigation provided sufficient data for the determination
of an accurate closed-form expression for the exchange cor-
relation free energy following the lines of state-of-the-art
parametrizations, which adequately represents the thermody-
namic predictions of the VS scheme. More important, this
allowed a comprehensive thermodynamic and structural com-
parison with the respective predictions of the ubiquitous STLS
scheme as well as the near-exact thermodynamic results of
the QMC-based GDSMFB equation of state and the near-
exact structural results of the QMC-based effective static
approximation.

The primary conclusions drawn from the aforementioned
comparison are summarized in the following: (i) In the entire
WDM regime, the thermodynamic predictions of the STLS
scheme are more accurate than the thermodynamic predic-
tions of the VS scheme benefitting from a very favorable
cancellation of errors in the static structure factor integral for
the interaction energy. (ii) In the high-density range of the
WDM regime, rs � 5 at the Fermi temperature, the STLS
static structure factor is consistently more accurate than the
VS static structure factor. The situation reverses at the heart of
the WDM regime and towards its boundary with the strongly
coupled regime, especially at the long wavelength limit and
at the vicinity of the static structure factor maximum. This
observation can be explained by the fact that the VS scheme
indirectly includes ternary correlations through the density
derivative of the pair correlation function. (iii) As far as the
static density response is concerned, both long wavelength
and large wave number asymptotic limits are automatically
satisfied by both schemes, but the STLS scheme yields
more accurate predictions for the magnitude of the omni-
present minimum (which progressively worsen as the cou-
pling increases), while the VS scheme yields more accurate
predictions for the position of the omnipresent minimum. (iv)
The structural superiority of the VS scheme at the strongly
coupled region of the WDM regime and the structural superi-
ority of the STLS scheme at the high-density region of the
WDM regime are also confirmed from the pair correlation
function and the static local field correction. (v) An unphysical
negative region in the pair correlation function near contact is
present for both schemes. This does not necessarily translate
to negative on-top values, because, at strong coupling, the
pair correlation function can exhibit a negative minimum. For
most state points, the absolute value of the integrated negative
region is larger in the VS scheme than in the STLS scheme.
This short distance drawback of the VS scheme most probably
originates from the violation of the cusp condition, which is
exactly satisfied by the STLS scheme.

Finally, our correct formulation of the VS scheme col-
lapses to the earlier Sjostrom and Dufty formulation of the
VS scheme at low values of the degeneracy parameter and/or
large values of the quantum coupling parameter. This was
expected by the nature of the thermodynamic derivative error
of the Sjostrom and Dufty analysis and has been confirmed
numerically. Thus, there is still some utility in the less

computationally costly and easier to numerically implement
Sjostrom and Dufty formulation.

B. Future work

One of the main drawbacks of the finite temperature and
ground-state versions of the VS scheme concerns its semi-
classical nature, i.e., the treatment of quantum mechanical
effects at the level of the random phase approximation. How-
ever, the standard VS closure can be employed to truncate
the first member of the quantum BBGKY hierarchy, which
would allow the incorporation of quantum effects beyond the
Vlasov-Lindhard ideal response substitution that would then
be represented by a dynamic LFC (DLFC). We will refer to
this dielectric scheme as the quantum VS (qVS). The standard
perturbative analysis of the quantum kinetic equation within
the Wigner representation leads to the qVS DLFC that reads as

GqVS(k, ω) =
(

1 + αn
∂

∂n

)
GqSTLS(k, ω),

GqSTLS(k, ω) = −1

n

∫
d3k′

(2π )3

k2

k′2
χ0(k, k′, ω)

χ0(k, ω)
[S(k − k′)−1],

χ0(k, k′, ω) = −2

h̄

∫
d3q

(2π )3

f0
(
q + 1

2 k′) − f0
(
q − 1

2 k′)
ω − h̄

m k · q + ı0
.

In these expressions; GqSTLS(k, ω) denotes the DLFC of
the quantum STLS (qSTLS) scheme, which emerges by
truncating the first member of the quantum BBGKY hierarchy
with the standard STLS closure [72–74], while χ0(k, k′, ω)
denotes the three-argument ideal density response function,
which collapses to the ideal (Lindhard) density response
function when k′ = k, χ0(k, k, ω) = χ0(k, ω) [72–74]. Note
that the correspondence between the qVS DLFC, qSTLS
DLFC is exactly the same with the correspondence between
the VS SLFC, STLS SLFC, compare the above with Eqs. (7),
(8). It is also important to emphasize that the qVS DLFC can
be directly obtained from the VS SLFC after the substitution
(k · k′)/k2 → χ0(k, k′, ω)/χ0(k, ω) within the wave number
integrand; this substitution rule was first observed in Ref. [81]
where it was utilized to rapidly quantize semiclassical
nonperturbative schemes [77,79,80]. To our knowledge,
the ground-state version of the qVS scheme has only been
considered with a locked parameter α = 1/2 in the literature
[73,129], which implies that the CSR rule is slightly violated.
In the fully self-consistent case, the transition from the present
VS scheme to the envisaged qVS scheme will be accompanied
by a (manageable) blowup in the computational cost of the
inner loop. In particular, the dynamic nature of the LFC im-
plies that the qVS closure equation depends on the Matsubara
frequencies, while the presence of the three-argument ideal
density response implies that the qVS closure equation is now
described by a triple (instead of a single) integral.

Another main drawback of the finite temperature version
of the VS scheme concerns the violation of the cusp self-
consistency relation, see Eqs. (34), (36), which should be
partly responsible for the extended unphysical negative pair
correlation function region in the proximity of contact. The
importance of simultaneously satisfying the compressibility
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sum rule and the cusp relation has been manifested by the
semiempirical ESA scheme [62,63]. Thus, it is worth try-
ing to enforce both self-consistency relations in a dielectric
scheme that does not utilize QMC results. With this objec-
tive in mind, we bring forth the possibility for an extended
VS (eVS) scheme of semiclassical nature that features two
self-consistency parameters. The truncation at the first mem-
ber of the classical BBGKY hierarchy will be based on the
eVS closure f2(r, p, r′, p′, t ) = f (r, p, t ) f (r′, p′, t )g(r, r′, t )
where the nonequilibrium pair correlation function is now
given by

g(r, r′, t ) = geq(|r − r′|; n, T )

+ α[δn(r, t ) + δn(r′, t )]
∂geq(|r − r′|; n, T )

∂n

+ γ [δT (r, t ) + δT (r′, t )]
∂geq(|r − r′|; n, T )

∂T
.

The eVS closure is characterized by the addition of tem-
perature perturbations on an equal footing with the density
perturbations. This addition will have profound effects in the
mathematical treatment of the linearized kinetic equation and
thus in the inner loop of the eVS scheme’s algorithm. In par-
ticular, the linear temperature response function χT(k, ω) =
δT (k, ω)/δUext (k, ω) would need to be studied in paral-
lel with the linear density response function χ (k, ω) =
δn(k, ω)/δUext (k, ω), which would require that the zeroth and
second moments of the linearized kinetic equation are consid-
ered simultaneously, forming a set of equations that allows
the determination of both χT(k, ω) and χ (k, ω). An ideal
temperature response, i.e., the second moment equivalent of
the ideal (Lindhard) density response, would also naturally
emerge. The two self-consistency parameters α, γ would be
determined in the outer loop of the algorithm by a 2 × 2 set

of equations that is formed when simultaneously imposing
the cusp relation and compressibility sum rule. When γ = 0,
it is evident that the envisaged eVS scheme collapses to the
standard VS scheme. Finally, it is also worth noting that
the coupling between density and temperature fluctuations in
the eVS scheme would lead to a density response function
expression that does not comply with the general result of
the polarization potential approach [96], see Eq. (4). On the
other hand, since the zero-frequency moment sum rule and the
quantum fluctuation-dissipation theorem will remain intact,
this coupling between density and temperature fluctuations
will have no effect on the infinite Matsubara series expres-
sion that connects the static structure factor with the density
response function, see Eq. (5), which constitutes the backbone
of all schemes of the dielectric formalism.
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