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Comparison of interband related optical transitions and excitons in ZnGeN, and GaN
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The optical dielectric function of ZnGeNj is calculated from the interband transitions using the energy bands
calculated in the quasiparticle self-consistent (QS)GW method using two different levels of approximation: the
independent particle approximation and the Bethe-Salpeter equation (BSE) approach. The first allows us to relate
peaks in &;(w) to specific bands and k points but does not include electron-hole interaction effects. The second
includes electron-hole interaction or excitonic effects. The corresponding changes in the shape of &, (w) are found
to be similar to those in GaN. The screened Coulomb interaction W is here calculated including electron-hole
interactions in the polarization function and gives a band structure already going beyond the random phase
approximation. The static dielectric constants including only electronic screening, commonly referred to as e*,
were calculated separately by extrapolating the wave-vector-dependent macroscopic €y (q, @ = 0) for ¢ — 0.
Below the quasiparticle gap, we find three bound excitons optically active for different polarization. The
convergence of these bound excitons with respect to the density of the k mesh used in the BSE is studied and
found to require a fine mesh. It is also found that these bound excitons originate from only the lowest conduction
band and the top three valence bands. To incorporate the lattice screening, we include a scaling factor (£°/°)?,
which allows us to obtain exciton binding energies of the correct order of magnitude similar to those in GaN.
The excitons are related to each of the threefold split valence bands and the splittings of the latter are also studied
as a function of strain. Finally, a relation between the anisotropic effective masses and the valence-band splitting

is pointed out and explained.
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I. INTRODUCTION

ZnGeN; is a heterovalent ternary semiconductor closely
related to wurtzite GaN. The Pna2; structure, which is the
ground-state structure, corresponds to a specific ordering of
the divalent Zn and tetravalent Ge ions on the cation sublattice
of wurtzite, in which each N is surrounded by two Zn and
two Ge, thus locally obeying the octet rule. The resulting
orthorhombic symmetry lowering leads to some distortion of
the parent hexagonal lattice vectors away from the perfect
a = +/3ay,, b = 2a,, and ¢ = ¢, with a,, and c¢,, the corre-
sponding wurtzite lattice constants. (Unlike in some of our
previous papers on these materials, we here use the standard
setting of the space group of the International Tables of X-ray
Crystallography.) ZnGeN, and other heterovalent II-IV-N,
ternaries have recently received increasing attention as being
complementary to the well-studied III-N semiconductors, pro-
viding several opportunities for increased flexibility in tuning
their properties. Several recent reviews are available on the
current state of knowledge on crystal growth, electronic band
structure, phonon, elastic, piezoelectric, and defect properties
of these materials [1-3].

Specifically for the Zn-based Zn-IV-Nj, the electronic band
structure was previously calculated [4] using the quasipar-
ticle self-consistent GW method, which is one of the most
accurate and predictive methods available. It uses many-
body perturbation theory in the GW approximation due to
Hedin [5,6], where G is the one-electron Green’s function
and W is the screened Coulomb interaction. The quasi-
particle self-consistent version [7,8] of this method, named
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QSGW, optimizes the noninteracting H° from which the
dynamic self-energy effects are calculated as ¥ = iG'W?,
by extracting a static (i.e., energy-independent) and Hermi-
tian (Re) but nonlocal exchange-correlation potential ¥;; =
IRe{Z;j(€;) + Zij(€;)}. This self-energy %;; is obtained in
the basis of eigenstates of H°, and by iterating H® + ¥ — v,,,
with v, the exchange-correlation potential in the initial H?, to
convergence. It thereby becomes independent of the starting
H® which is usually taken as the density functional theory
(DFT) Kohn-Sham Hamiltonian in either the local density ap-
proximation (LDA) or the generalized gradient approximation
(GGA). The quasiparticle energies then become identical to
the Kohn-Sham eigenvalues at convergence, hence the name
“quasiparticle” self-consistent. However, the H° Hamiltonian
is then no longer a Kohn-Sham Hamiltonian in the DFT sense,
since it is not the functional derivative 8EPFT/Sn(r) of a
corresponding DFT total energy anymore.

Here we revisit the QSGW calculations of ZnGeN, for
various reasons. First, there have been recent improvements
in the QSGW method including electron-hole effects in the
screening of W. Second, the QUESTAAL codes [9,10] used for
these calculations have been made more efficient, which al-
lows us to check the convergence with stricter criteria. Third,
the structural parameters used in previous calculations [4]
were, in retrospect, not fully optimized. The main difference
is that the larger a/b ratio leads to a different ordering of the
top two valence bands as will be discussed in Sec. III E. The
structural parameters were already corrected in Ref. [11]. To
extract the best possible band structure and optical properties,
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we here use the experimental crystal structure parameters
(a=5.45 A, b=06.44 A, and ¢ = 5.19 A). The first focus of
the paper is on calculating the optical dielectric function and
analyzing it in terms of band-to-band transitions. To do this
we calculate the optical dielectric function in the continuum
region above the quasiparticle gap in the independent particle
approximation (IPA) and including electron-hole interaction
effects using the Bethe-Salpeter equation (BSE) approach. We
also perform similar calculations for the parent compound
GaN to highlight the similarities in optical properties and to
facilitate the comparison by considering the band-structure
folding effects from the GaN wurtzite Brillouin zone to the
Pna?2, Brillouin zone.

Our second aim is to understand the valence-band maxi-
mum splitting and the resulting exciton fine structure below
the band-to-band continuum. We study the convergence of
the exciton gaps with increasingly finer k mesh near I' and
show how their polarization is related to the symmetry of the
valence bands involved and study their dependence on strain.
Finally, we point out a relation of the symmetry of the top
three valence bands to the anisotropy of the effective mass
tensor of each of these bands.

II. COMPUTATIONAL METHOD

As already mentioned, the calculations in this study are
carried out using the QUESTAAL code suite [10], which imple-
ments DFT using a full-potential linearized muffin-tin-orbital
(FP-LMTO) basis set and extends beyond DFT to many-body
perturbation theory by incorporating the GW and BSE meth-
ods. For details about the QSGW method, see Ref. [8] and
for a full description of the FP-LMTO method, see Ref. [10].
While the QSGW method is a great advance compared to
DFT calculations in terms of the accuracy of band gaps and
other band-structure features, it tends to somewhat overesti-
mate the band gaps because it underestimates the screening by
not incorporating the electron-hole interactions in the screen-
ing of the screened Coulomb interaction W = (1 — Pv)~'v,
where v is the bare Coulomb interaction and P is the two-
point polarization propagator. This is commonly known as
the random phase approximation (RPA). Calculations using
an exchange-correlation kernel f,., extracted from BSE cal-
culations or using a bootstrap kernel approximation [12,13]
within time-dependent DFT (TDDFT), i.e., W =[1 — P(v +
fee)]"'v, have shown that this tends to reduce the self-energy
by a factor of ~0.8 and this has led to the commonly used
approach, namely, the 0.8 approximation [14—16]. That ap-
proach was also used in the previous calculations on ZnGeN,
[4,11].

Recently, a new approach, calculating directly the four-
point polarization function via a BSE at all q points and
then recontracting it to a two-point function was introduced
by Cunningham et al. [17-19]. This approach is equivalent
to adding a vertex correction to the polarization function
in the Hedin set of equations with the vertex based on
§%6W(12)/6G(34). However, it was argued that, within the
spirit of the QSGW approach, no corresponding vertex correc-
tions are needed in the self-energy because of the cancellation
of the Z factor between the coherent part of the Green’s
function and the vertex. The Z factor Z = (1 —dX/dw)™!

measures the reduction of the coherent quasiparticle part of
the dynamic Green’s function G compared to the independent
particle Green’s function G°. Since only G° is made self-
consistent in the QSGW method, not G itself, the Z factor
is omitted. In any case, this new approach, named QSGW,
removes the arbitrariness of an ad hoc correction factor.

While in the previous calculations of ZnGeN, the 0.8%
approach was used, we here use the QSGW approach. Sec-
ond, other factors still limit the accuracy of our previous
calculations of ZnGeN,. The calculations of Ref. [4] used, in
retrospect, a somewhat imperfectly relaxed crystal structure.
This was later corrected in Ref. [11], where we used a GGA
relaxed structure within the Perdew-Burke-Ernzerhof (PBE)
parametrization. Here, we prefer to use the actual experimen-
tal structure because the typical overestimate of the lattice
constants, in particular the volume per unit cell, leads to an
underestimation of the gap.

The present calculations also use a larger basis set than
in the previous work [4,11]. LMTO envelope functions are
included with two smoothed Hankel function basis sets in-
cluding up to I < 3 and [ < 2, respectively, and standard
choices of the smoothing radii and Hankel function kinetic
energy k2 suitable for GW calculations. In addition, the Zn
3d orbitals are treated as augmented orbitals while the 4d are
included as local orbitals to better represent the high-lying
conduction-band states. For Ge, the 3d semicore orbitals are
included as local orbitals while the 4d are augmented orbitals.
Augmentation inside the spheres is done up to [ < 4. By
augmentation we mean that the expansion in spherical har-
monics of a basis envelope function centered on one site about
another site is replaced by a combination of the solutions
of the radial Schrodinger equation ¢;(€,, r) at a linearization
energy €, and its energy derivative ¢, that matches the en-
velope in value and slope. This expansion is carried out by
means of structure constants. All calculations are including
scalar relativistic effects in the potential. In the GW self-
energy calculations, we include all the bands generated by
this basis set. This includes bands up to about 10 Ry. Two
point quantities are expanded in an auxiliary basis set of
products of partial waves inside the spheres and products of
interstitial plane waves. This basis set describes screening as
embodied in the dielectric response function e,’ll(q, ) more
efficiently than a plane-wave expansion and thereby bypasses
the need for higher conduction bands in the generation of the
dielectric function. Here the subscripts /, J label the auxiliary
basis set. The short-wavelength screening is taken care of
by the products of partial waves inside the spheres. Other
convergence parameters include the k mesh on which the self-
energy is calculated for which we went up to 4 x 4 x 4 and
found negligible difference from the 3 x 3 x 3 mesh. Using
the atom-centered LMTO basis set the self-energy can then
be expanded in real space and transformed back by Fourier
transformation to a finer k mesh used for the self-consistent
charge density or spectral functions, and for the k points along
symmetry lines. In other words, the LMTO atom-centered
basis set serves as a Wannier-type expansion for interpolations
with the difference that it is not an orthogonal basis set and
thereby more localized. The self-energy matrix in the basis
set of the Kohn-Sham eigenstates is fully included instead of
only carrying out a perturbative calculation of the Kohn-Sham
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to GW eigenvalue shifts. To facilitate the above-mentioned
interpolation of the self-energy, which requires sufficiently
well-localized basis functions, it approximates the full self-
energy matrix by a diagonal average value above a certain
energy cutoff chosen to be 2.71 Ry here. This average value of
the self-energy is evaluated over a range of 0.5 Ry above this
cutoff. The rationale behind these approximations and other
details about the method are explained in Ref. [8].

The main focus of the present paper is the optical interband
transition properties. We calculate the imaginary part of the
dielectric function &;(w) at various levels of approximation.
First, in the IPA one uses

2.2
)= o e S fal— )

v ¢ keBZ
x (Yol [H, Pl|Ya) P8(0 — € + €). (1)

Here, the dielectric function is calculated as a sum over
band-to-band transitions weighted by the matrix elements of
the velocity operator. In this calculation we used a fine and
well-converged 16 x 16 x 16 k mesh. In case of the bands
being calculated at the QSGW or QSGW level, the nonlocal
exchange-correlation potential leads to additional terms be-
yond the momentum matrix elements, which involve d s /dk.
The advantage of this approach is that, in principle, it takes the
q — 0 limit exactly. However, technical difficulties in evalu-
ating d%. /dk lead to some overestimate of the optical matrix
elements. Alternatively, one can evaluate directly &;(q, w),
which would involve matrix elements of e/ rather than the
commutator, at small but finite q, and take the limit numeri-
cally by extrapolation.

The main advantage of the sum-over-transitions expres-
sion of Eq. (1) is that we can take the optical function apart
into its separate band-to-band contributions. Comparing these
with the interband differences plotted as functions of k along
symmetry lines, we can identify how peaks in the &,(w) con-
tributions are related to singularities (corresponding to critical
points) or flat regions of the interband differences (corre-
sponding to parallel bands) and therefore high joint density
of states (JDOS) contributions.

On the other hand, this approach does not include electron-
hole interaction or local field effects which modify the shape
of the optical dielectric function. These can be obtained within
the BSE approach to many-body perturbation theory. Here,
the key step is to calculate the four-point polarization

P(1234)=P°(1234)+ f d(5678)P°(1256)K (5678)P(7834),

(@)
with the kernel

K(1234) = §(12)(34)0 — §(13)82HW(12),  (3)

where 9g(q) = 47 /|q + G|? if G # 0, and zero otherwise, is
the microscopic part of the bare Coulomb interaction and we
have expressed it here in terms of a plane-wave basis set. The
macroscopic dielectric function is then given by

ey(w)=1- (llig}) V6=0(q)Pc=¢'=0(q, ®). 4)

The contribution from v adds local field effects while the
contribution from W, or in our case W, leads to the explicit

excitonic effects on the dielectric function. Here, the four-
point polarization depends on the coordinates, spin, and time
of four particles. The numbers 1,2,3,4 are a shorthand for
position, spin, and time of each particle; in other words, 1 =
(r1, o1, 7). In practice, this integral equation is solved by in-
troducing a resonant transition state basis set Y (r;)* ¥k (Te),
which are products of one-particle eigenstates. Specifically,

— ;T 2 :
P(r’ r’ r ) r/) = Pn1n2n3n4

ny,0,13,14

X WYy (O Yy ()Y, (), (B ()

The polarization is then given by

Poymnsny (@) = (fu, = fi JH? — )7, (6)

with the two-particle Hamiltonian

- Knlnzn_;m ((,()), (7)

2p —
Hnlnzn3n4 - (6”1 - Eﬂ2)8ﬂ1ﬂ35n2n4

where K uses a similar expansion of K(1, 2, 3, 4) in the basis
functions of the one-particle Hamiltonian. In the present work
a static approximation w = 0 for the W, hence for the kernel
K, and the Tamm-Dancoff approximation of only keeping
resonant and not antiresonant transitions are used. In the
above, the basis state indices n; and n3 can then be identified
with valence bands vk and v’k’, respectively, and n, and ny
with conduction-band states ck and ¢'k’. In the first term
only direct vertical transitions €.-€,x occur, while the kernel
term mixes states at different k and k', as well as between
different valence- and conduction-band pairs. In other words,
the two-particle Hamiltonian of the BSE H,ck 'k has dimen-
sions N,N.N; with N, the number of valence bands, N, the
number of conduction bands, and N the number of k points
included. The k points are taken on a regular mesh in the
Brillouin zone. The equations used here and approximations
follow the review paper of Onida et al. [20]. Diagonaliz-
ing this two-particle Hamiltonian yields the eigenvalues and
eigenvectors of the excitons in terms of the one-particle eigen-
states, from which the dielectric function can be obtained. The
same cautions apply about the accuracy of the optical dipole
matrix elements as mentioned above. The eigenstates of the
two-particle Hamiltonian, however, are mixtures of different
vertical transitions and hence the decomposition in individual
band-to-band transitions, strictly speaking, no longer makes
sense. We should also mention that we here only calculate
the spin singlet excitons. As explained in Ref. [21], the spin
structure, if no spin polarization is present and we ignore spin-
orbit coupling, can readily be taken into account. The singlet
excitons then involve 29 — W in the kernel in Eq. (3). For the
calculations of the full energy range of ¢, (w) we choose N, =
24, N, = 16, which encompasses all N 2p—derived valence
bands and conduction bands up to a similar energy above the
conduction-band minimum. To examine the excitons in more
detail we use a smaller set of N, = 3 and N, = 1, which were
found to be the main contributing bands to these excitons but
with a larger k mesh, which is required to converge the exciton
binding energies.
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FIG. 1. Band structure of Pna2; ZnGeN, at experimental lattice
parameters in GGA (red dotted), QSGW (green dashed), and QSGW
(blue solid). The zero is placed at the VBM of GGA.

III. RESULTS
A. Band structure

The band structure of ZnGeN, is shown in Fig. 1 in
three different approaches: GGA, QSGW, and QSGW. The
zero of energy is placed at the valence-band maximum
(VBM) of the GGA. One can thus see that in QSGW, the
VBM shifts down by 0.77 eV while the conduction-band
minimum (CBM) shifts up by 1.30 eV. Adding the lad-
der diagrams reduces the self-energy shifts of both band
edges by a small amount. The band gaps are summarized
in Table I and for comparison we include the corresponding
results for GaN. For both QSGW and QSGW calculations we
used a 4 x 4 x 4 k mesh for ZnGeN,. To be consistent, an
8 x 8 x 4 k mesh was used for GaN. One can see that the
self-energy corrections to the gap, AXpsgw = E,(QSGW) —
E,(GGA) and AX 56y = Eg(QSGW) — E;(GGA), have ara-
tio of AX s /AZgsew = 0.89 in ZnGeN,, and the same
ratio is 0.88 for GaN. Thus, the inclusion of ladder diagrams
reduces the self-energy gap correction by slightly larger than
10%, which is somewhat smaller than the often used 20%
reduction in the 0.8% approach. We caution that this ratio is

TABLE 1. Band gaps in eV for ZnGeN,, and GaN in different
approximations. The GaN band gap is reported for two different
lattice constants and calculations where we include different numbers
of conduction bands in the QSGW approach.

GGA QSGW QSGW

ZnGeN, 1.801 3.874 3.641
GaN a=23.189 A 1.884 3.868 3.624°
3.487"
a=3215A 1.697 3.638 3.392°
3.261°

“W was calculated using N, = 4.
"W was calculated using N, = 10.

M K
X S M
r X K

FIG. 2. Relation of hexagonal to Pna2, Brillouin zone.

sensitive to the numbers of bands N, and N, in the QSGW
calculations. We here used N, = 24 valence and N, = 16 con-
duction bands for ZnGeN,. To obtain the same accuracy, we
use N, = 6 and N, = 4 for GaN. As seen in Table I, using
a higher N, = 10 reduces the gap slightly more, so that the
QSGW to QSGW gap reduction factor becomes 0.81 instead
of 0.88. However, this would then also lead to a smaller
W in the BSE calculations, which would correspondingly
reduce the exciton binding energies and shift the peaks be-
tween IPA and BSE, but the actual exciton gaps would stay
similar. Furthermore, the gaps depend strongly on the lattice
constants. For ZnGeN,, we had used experimental lattice con-
stants but for GaN, the value of a = 3.215 A corresponds to
the calculated PBE-GGA value and is slightly overestimated.
Using the room-temperature experimental lattice constant of
3.189 A [22,23], we obtain a higher gap by 0.23 eV. We
should note that these gaps do not include zero-point-motion
(ZPM) corrections or finite temperature corrections. The ZPM
band-gap renormalization is expected to be of order —0.15 eV
in ZnGeN, by comparison with GaN [24].

It is instructive to compare the band structure of ZnGeN,
with that of its parent compound GaN. The band structure of
GaN in the wurtzite structure is well known and is shown
in the Supplemental Material [25] in the usual hexagonal
Brillouin zone as obtained with the present computational
method. Here we discuss how it relates to the ZnGeN, band
structure by band folding.

The Pna2; structure can be viewed as a 2 x 2 supercell
of the wurtzite, with a° = 2ay’ + a{’, b° = 2a}’, and ¢’ = ¢”.
The relation of the Pna2; Brillouin zone to that of wurtzite
is illustrated in Fig. 2. One can see that the M-K line will
be folded about the X-S line onto the bottom I'-K’ line and
subsequently a second folding takes place about the Y-S line.
Thus, the eigenvalues of the M point will now occur at I but
also the M’ point is folded onto X, so the same M eigenvalues
will also occur at X. In Fig. 3 we show how the bands along
I'-M of wurtzite are found back in folded fashion along I'-X
by a single folding about the point X. Additional details of
the band folding of K are discussed in the Supplemental
Material [25].

These help to understand the band structure of the GaN
16-atom supercell directly plotted in the Pna2; Brillouin zone,
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Band folding along I'-M
GaN QSGW
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Energy (eV)

L r T | D
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wavevector k M

0]
r

FIG. 3. Folding of GaN bands along wurtzite I"'-M onto the I"-X
line of Pna2,.

which can then in turn be compared with that of ZnGeN, as
shown in Fig. 4. The correspondence is seen to be quite close,
especially in the conduction-band region. The perturbation
due to the Zn-Ge difference in potential is thus rather small.
Of course, in the deeper valence-band region near —8 eV
we recognize the close set of bands from the Zn 3d bands
while the Ga 3d lie much deeper and are not included in the
presently shown energy range. The results for GaN in the

10 ?&
- /—
y/\/ —|
5 4 .

3

Q 0 — N —
-
= g —— o~——T —
§<
] —~~—

10

N
L
@ 0
(5]
=}
43|

=CamiN
£ ms=

-10

r X S Y T Z U R T Z

FIG. 4. Band structure of ZnGenN, (top) compared to GaN (bot-
tom) both in Pna2; structure.
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Eg§§W:3,641 ----- IPA high #k
104 Ela ' s~ === IPABroadened
3 BSE
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. .
----- IPA high #k
5 104 EIb IPA Broadened
= BSE
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. _/‘. ........
IPA high #k
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J.’ -----------
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0 2 4 6 8 10 12 14 16 18 20
Energy (eV)

FIG. 5. Imaginary part of the dielectric function of ZnGeN, for
three polarizations and comparing IPA with BSE approximations.
Imaginary part of energy is set to 0.02 Ry. The IPA is once calculated
via Eq. (1) with a 16 x 16 x 16 k mesh and the tetrahedron integra-
tion method, and also with an imaginary part of w and a6 x 6 x 6
mesh. The latter k mesh was also used in BSE calculation.

supercell were obtained from those in the primitive wurtzite
cell by converting the self-energy matrix to real space using
the procedure of Ref. [26] followed by a simple band-structure
step without having to reconstruct the self-consistent poten-
tial. Just as M-L is folded onto I'-X the points above it along
the z direction L will fold onto Z of Pna2;. The whole M-L
line is thus folded onto I'-Z. This will be seen to be relevant
in the next section.

B. Dielectric function in BSE

In Fig. 5 we compare the dielectric function in the IPA
with the BSE calculation for ZnGeN,. We show the IPA result
once with a converged number of k points as obtained from
Eq. (1) and once with the same broadening and k-point mesh
as used in the BSE, where we can only afford a less dense k
mesh. The broadening is chosen to match the results of the
IPA as closely as possible between the two approaches and
amounts to an imaginary part of the energies of ~0.3 eV. For
a smaller broadening, unphysical oscillations appear in the
spectrum. These oscillations result from the coarse sampling
which misses the eigenvalues at points in between the sampled
k points and make it difficult to discern actual peak structure
from artifacts of the k-point sampling.

The overall spectrum of &;(w) in Fig. 5 can be described
as follows. First, there is a region of slowly increasing &;(w)
(X /E — Eonser) between 3.6 eV and about 6 eV in both BSE
and IPA. In the BSE at 6 eV a new feature sets in, peaking
at about 6.5 eV, and decreasing to about 10 eV followed by
another broad peak between about 12 and 14 eV after which
the intensity decreases. In the IPA, the first peak reaches its
maximum at a somewhat higher energy, around 7.5 eV, but
the spectrum does not show a minimum near 10 eV and
instead shows a broad series of peaks of about the same value
till 14 eV. One can see that the BSE overall shifts oscillator
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FIG. 6. Imaginary part of the dielectric function in BSE and IPA
for GaN for polarizations perpendicular and parallel to the ¢ axis.
The imaginary part of the energy was set to 0.01 Ry. The IPA is
once calculated via Eq. (1) with a 32 x 32 x 16 k mesh and the
tetrahedron integration method, and also with an imaginary part of
w and a 12 x 12 x 6 mesh. The latter k mesh was also used in the
BSE calculation.

strength to lower energies and results in a clearer two-broad-
peaks structure: one between 6 and 10 eV and one between
10 and 16 eV. The first peak in BSE appears to occur at the
onset of the steep rise in &(w) of the IPA spectrum. The
quasiparticle gap is indicated by the vertical dashed line. With
a smaller imaginary part, the BSE also shows peaks below
the quasiparticle gap, which correspond to bound excitons, but
with the broadening in Fig. 5 these features are smeared out
and appear only as a shoulder below the quasiparticle gap. We
will discuss the excitons separately in a later section.

A similar overall behavior of the dielectric function occurs
in GaN, as seen in Fig. 6. We thus expect that there is a similar
underlying physics going on in the band-to-band contributions
and the BSE effects. We now discuss the origin of these obser-
vations. Because of the smaller number of bands, the analysis
in terms of separate band-to-band transitions and where they
mostly occur from in Kk space is somewhat easier to analyze
in GaN. We will then use the band folding of the wurtzite to
Pna?2, Brillouin zone to translate these findings to ZnGeN,.

In Fig. 7 we show the contribution to the dielectric function
in the IPA from the top valence band (VB;) to conduction
bands 1-3 (CB;_3) along with the vertical difference in the
bands at each k point along the symmetry lines. We can see
that the onset comes only from VB; — CB, transitions and
is mainly polarized E L c. This is consistent with a strongly
dispersing lowest conduction band near " and a gradual /o
increase of &;(w) in the IPA. The IPA &;(w) is essentially
a matrix-element-modulated JDOS which is proportional to
> ek 8(w — (€ — €k)). One expects the JDOS contribu-
tions from different band pairs vc to show peaks when this
energy band difference is nearly parallel over some region of
k space. However, the matrix elements play a significant role
in decreasing the intensity as energy increases and the &;(w)
shows a clearer peak structure than the JDOS. We thus focus
directly on the IPA &,(w) rather than the JDOS. The JDOS

14
121
~101
>
[0}
C)
g i
[=]
i3
6.
/
—— CB1-VB1
4 —— CB2VBL |
CB2-VB1 CB3-VB1
CB3-VB1
r MK FA LMKH A 2 4 6 8 2 4 6 8 2 4 6 8

&2(w)

FIG. 7. Imaginary part of the dielectric function &,(w) of GaN in
the IPA associated with the transitions from the VBM and the lowest
three conduction bands (right), and the differences between the band
pairs along symmetry lines of the Brillouin zone. Higher &, values
are expected where the band differences (solid purple lines in the left
panel) are flat.

is shown and further discussed in the Supplemental Material
[25].

Returning to Fig. 7, the peak starting at ~7.0 eV is seen
to be related to a relatively flat energy band difference along
the M-L line and the onset of that peak coincides with the
minimum of the CB; — VB, energy difference along M-L,
which is a saddle point in the interband energy difference
surface. We can thus conclude that the electron-hole interac-
tion effects in BSE shift the oscillator strength toward the van
Hove singularity saddle point. This provides an a posteriori
justification for the common practice of analyzing the optical
dielectric function in terms of a critical point analysis, em-
phasizing the behavior near high-symmetry points where van
Hove-type singularities occur [27-29]. This was previously
discussed in Ref. [30] and is here confirmed. It was noted
in Ref. [30] that the electron and hole have exactly the same
velocity at these points, which could heuristically explain why
they might plausibly interact more strongly and make a large
contribution when electron-hole pair interactions are included.
A full analytical explanation of this observation would require
an analysis of the matrix elements of W as a function of k
near these singularities, which is a challenging task and has
not yet been done. However, one does expect that W shifts
the transitions down to lower energy, which explains why the
peak in IPA is redshifted in the BSE. Various interband tran-
sitions close in energy to each other in this region of high IPA
contribute to a “continuum” excitonlike peak in the BSE just
below or at the saddle point. In other words, the two-particle
Hamiltonian or “exciton” Hamiltonian has eigenvalues more
concentrated in energy and right at the singularity that de-
rive from a wider region of k space individual band-to-band
transitions.

The CB; is close to CB; along M-L and also contributes
to the peak within the range 7-9 eV. There is also a rather flat
interband difference of CB, — VB, along I'-M near M. This
appears at about 8 eV and contributes to the second peak in
the IPA dielectric function. Its relation to the BSE peaks is not
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FIG. 8. Imaginary part of the dielectric function &;(w) of
ZnGeN, in the IPA associated with the transitions from the VBM and
the lowest three conduction bands (right) and the differences between
the band pairs along symmetry lines of the Brillouin zone. Higher &,
values are expected where the band differences (solid purple lines in
the left panel) are flat.

entirely clear because in the BSE formalism one can no longer
associate peaks to particular band-to-band transitions. On the
other hand, CBj is related to flat band regions along I'-A-L
and contributes to the peaks near 11 eV.

A similar behavior is seen in ZnGeN,. Figure 8 shows
various contributions VB; — CB,, to &; for three polarizations.
Additional figures are shown for the next top valence bands
in the Supplemental Material [25]. We can again first see a
relatively slow onset from the strongly dispersing conduction
band near I'. It is primarily polarized along x = a near its
onset, consistent with the symmetry of VB (which is b;- or
x-like) and the s-like (a; symmetry of CB; at I'). A peak
starts emerging at about 6.5 eV and has contributions from
CB; and CBj;. The onset of the peak near 6 eV is similar to
what we just discussed for GaN but now is related to van Hove
singularities and nearly parallel bands along I'-Z which is the
folded version of M-L in the wurtzite. One may also note the
rather flat energy band difference of CB; — VB, along S-Y
near Y. This could be related to the discontinuity in slope for
the corresponding contribution to the IPA &;(w) for E || a (red
solid line). However, it has only minor effects on the BSE
dielectric function.

In summary of this section, the major peak structure of the
&(w) in ZnGeNj; has similar origins to that in GaN and can
be explained in terms of the band-folding effects. The peaks
in the IPA correspond to regions of high JDOS (modified
by matrix elements which decrease with increasing energy)
where various bands are close to being parallel and allowed
dipole matrix elements. The electron-hole effects further shift
the oscillator strength towards the van Hove singularities,
where the bands become exactly parallel, which facilitates the
stronger electron-hole coupling.

C. Static dielectric constant &;(w = 0)

We also calculate the real part of the dielectric function
€1(q¢ = 0, w = 0). In principle, we can obtain it directly from

® gla
® gjb
® gjc

51(0)

0:0 0:2 0:4 0:6 O.'8
g (units of 2m/a)

FIG. 9. &(w = 0) of ZnGeNj is plotted with respect to g points
around g = 0.

a Kramers-Kronig transformation of the results of Fig. 5.
However, this quantity is quite sensitive to the accuracy of the
matrix elements of the velocity operator because through the
Kramers-Kronig relation,

£1(0) = P/OO 2wdw sz(a))’ @)
0

T w?

it depends on an integral over &;(w) for all w > 0 and is
thus sensitive to the values of ¢, not just where its peaks
occur. Because of the difficulties in incorporating the self-
energy contribution to the velocity matrix elements, it is more
accurate to directly examine ¢;(q, 0) for finite ¢ values and
then extrapolate numerically to zero. Furthermore, we obtain
additional information on the q dependence by looking at ¢
throughout the Brillouin zone.

We use a model dielectric function, which was introduced
by Cappellini et al. [31], to fit to the directly calculated results
from the BSE at finite q shown as solid circles in Fig. 9.
Extrapolation of this fit to the g = 0 limit gives the &,(g =
0, = 0) values of 5.04 along the x, 5.01 along the y, and 5.13
along the z direction. These values of course correspond to
electronic screening only and, therefore, to what is commonly
referred to as ¢°°, rather than the true static value which would
include the phonon contributions. In other words, it applies to
the frequency range well below the band gap but high above
the phonon frequencies and is related to the index of refraction
measured in this region by n = ,/¢;. The indices of refraction
are thus 2.24, 2.24, and 2.26 for x, y, and z directions. Our
values of £;(q — 0, @ = 0) obtained here are close to those
obtained from a Berry phase calculation of the polarization
in the LDA [32] which are 5.232, 5.166, and 5.725 for a,
b, and c directions, respectively, or corresponding to indices
of refraction of 2.29, 2.26, and 2.39. On the other hand, if
we had used the ¢;(q = 0, w = 0) obtained directly from the
Kramers-Kronig transformation of the BSE results in Fig. 5,
we would find £* values of 9.79, 9.02, and 9.30 for the a,
b, and ¢ directions. These are significantly overestimated by
almost a factor of 2 and this results from the incorrect velocity
matrix elements when taking the limit q — O analytically.
Furthermore, the values obtained by the numerical extrapo-
lation are close to those for GaN which is about 5.35 and

125133-7



OZAN DERNEK AND WALTER R. L. LAMBRECHT

PHYSICAL REVIEW B 109, 125133 (2024)

4.013 7] 11T 4.073 T
‘ w | it \ | it
3.9{| Ht tl 399 H
3.8, s b s8] M
3.7% it 1 374 1
S 3.7 [ o a o
e ¥ ‘ L’ ) ¥
> 3.6 = S e i S ¥ S
2 01— SRS I N T (o 13 5, WS SN, SRNY VEURT SS. S S
[
S |
* 00 : j 0.0 0.0¢
| ' ‘* \
-0.14% -0.14y -0.1%
l‘\ \‘.j\ T\\
\ \ \
-0.214 -0.214 -0.211
r x s u R T Z r x s vy Uu R T z r x s Yy Uu R T z

FIG. 10. Exciton band weights for the lowest three excitons, associated each with a single valence band. Note that N, = 24 and N.=16
bands were included but only the bands shown contribute significantly to these excitons.

with only small anisotropy for the high-frequency dielectric
constant. They are slightly smaller than the values obtained
by calculating the adiabatic response to a static electric field
using Berry phase calculations of the polarization as reported
in Ref. [32], which used the local density approximation.

D. Valence-band splittings and excitons

In this section, we turn our attention to the energy re-
gion below the band-to-band continuum. Using a smaller
broadening or examining the exciton eigenvalues below the
quasiparticle gap directly, we find that there are three bright
excitons, each polarized along a different direction, from
lower to higher energy x, y, and z. The excitons for each
polarization clearly correspond to transitions from each of
the top three valence bands to the CBM and are consistent
with the symmetry analysis of these bands given below. The
exciton energies, however, are found to be sensitive to the
k mesh used in the BSE equation. For the BSE dielectric
function calculation over the full w range as shown in Fig. 5
we used an N; x N x N, mesh with N, = 6 and with N, = 24
and N, = 16. Subsequently, we used different meshes with
Ny varying from 3 to 6 to study the exciton convergence
while maintaining the same N, and N,. Separately, because
we found (see Fig. 10) that these excitons arise primarily
from the top three valence bands and the lowest conduction
band, we solved the BSE for only N, = 3 and N, = 1, but now
going up to an Ny = 10 mesh. The extrapolation to Ny — oo
can be done in various ways, either fitting to an exponential
saturation curve or by plotting versus 1/N; and extrapolating
the points with smallest 1/N; to zero with a polynomial. The
details of our extrapolation are described in the Supplemental
Material [25].

We obtain a lowest exciton gap of 3.51 +0.01 eV. Com-
paring with the quasiparticle gap of 3.64 eV, this gives an
exciton binding energy of 0.13 £0.01 eV. To the precision
of the calculations, the same exciton binding energy is ob-
tained for the excitons polarized in the other directions. These
exciton binding energies are overestimated because they only
include electronic screening. Within a hydrogenic model of
the Wannier-Mott exciton, the binding energy would be given
by an effective Rydberg divided by the dielectric constant
squared and multiplied by a reduced effective mass. We can
thus correct for our use of only electronic screening by mul-
tiplying by a scaling factor &2 /¢2. Table II shows the e, and

&o values from the literature and our scaled binding energies.
The high-frequency dielectric tensor of GaN was calculated
by various authors using density functional perturbation the-
ory [33,34]. The phonon calculations in these papers provide
wro/wro for E || ¢ from the A; modes and for E L ¢ from
the E; modes and through the Lyddane-Sachs-Teller relation,
£0/E00 = (a)LO/a)TO)Z, provide us the scaling factor needed.
In Table II we used the values from Karch et al. [33], but to
the precision we here require, there is good agreement also
with the results extracted from Bungaro et al. [34] and also
with the experimental results e, &~ 5.35 for both parallel and
perpendicular to ¢ directions, and g5 = 9.5 and sg =104
given by Barker and Ilegems [35]. We can see from Table II
that the e.,/8¢ is about 0.55 £ 0.01 and [es/€0]* &~ 0.3 and
hence we obtain a binding energy of about 0.04 £ 0.02 eV.
Similar results are obtained for GaN and the details of these
calculations are given in the Supplemental Material [25]. The
resulting estimates for the exciton binding energy are of the
right order of magnitude and consistent with the known values
for GaN of 22-26 meV [36]. However, the accuracy with
which we can obtain these exciton binding energies is still
limited by the number of k points we can afford, by the
number of bands we can include concurrently, and by the
limitations of the present BSE implementation which does not
include lattice dynamical effects.

To further prove that these excitons are associated with
each of the valence bands, the contribution of the valence and
conduction bands in a band plot to each exciton are shown in

TABLEII. Literature values of static dielectric constant &, high-
frequency dielectric constant €., and the scaled binding energies.
The estimated uncertainty results primarily from the uncertainties in
the extrapolation.

€0 €00 (€2./83) BE (eV)
7ZnGeN, E | a* 9.28 5.24 0.32 0.044 £+ 0.003
E | b* 9.22 5.17 0.31 0.042 £ 0.003
E| ¢ 10.61 5.73 0.29 0.040 £ 0.003
GaN E | c® 10.3 5.41 0.28 0.042 £+ 0.001
E_Llch 9.22 5.21 0.32 0.049 £ 0.001

2Reference [32].
bReference [33].
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FIG. 11. Zoom in on the valence-band maximum region (left)
and conduction-band range (right) of ZnGeN, as obtained in QSGW.
The bands at I" are labeled by their irreducible representations.

Fig. 10. Again, this is obviously consistent with their polar-
ization and the symmetry of the valence bands at I'.

We now return to the valence-band splitting itself. In
Fig. 11 we show a zoom in on the valence-band maximum
energy range as well as the conduction-band region. The
bands are labeled at I" by their irreducible representations in
the point group C,,. The VBM has b symmetry, which corre-
sponds to x, and transitions from this band to the CBM, which
has s-like a; (I'y in Koster et al. notation [37]) symmetry,
and is thus allowed for E || a. The next band has symmetry
b, (I';) corresponding to y or b and the third band has a,
(I'1) symmetry corresponding to z or ¢. Note that although
this ordering appears to be the same as in Ref. [4], it is in
fact different because a different setting of the space group,
namely, Pbn2;, was used in that paper, which means that the a
and b directions are reversed from the present paper and hence
also x and y or by and b,. This difference is due to a difference
in the lattice constant ratio a/b and already indicates that
this splitting is sensitive to strain. We will discuss this strain
dependence in the following section. The next few valence
bands are also labeled in Fig. 11. The splittings between the
top VBM and the next two bands are given in Table III. The
next higher conduction bands have by, b,, and a, symmetry
and are situated at 2.68, 3.20, and 3.66 eV higher in energy,
respectively.

In terms of the valence bands, one may notice that the top
valence band with b; or x-like symmetry has the smallest hole
mass in the x direction, while the next one with b, or y-like
symmetry has the lowest mass in the y direction and the third
valence band (counted from the top down) has the lowest mass
in the z direction. Thus, the symmetry of the band corresponds
to the direction in which the hole mass is the smallest. This
was also noted in a recent paper on MgSiN,-GaN alloys [26],
although the explanation there is not quite correct. It can be
explained in terms of the well-known k - p expression for the

TABLE III. Valence-band splittings in meV in ZnGeN,.

GGA QSGW QSGW
by-b, 72 64 65
bi-a, 94 102 101
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FIG. 12. Splitting between the top valence bands due to strain
in x, y, and z directions (from top to bottom) are observed. The
percentages on the x axis of the figure indicate the amount of strain
applied to one major axis in comparison to the experimental lattice
constants, while the volume of the unit cell is kept fixed.

effective mass,

)

)
and the matrix elements between states that are nonzero can
be found by symmetry. For example, for the VBM of b,
symmetry and focusing first on the interaction between VBM
and CBM, momentum matrix elements are only allowed in the
x direction, so these bands are pushed away from each other
along I'-X, which reduces the hole mass in this direction. In
the y direction, only interactions with the higher a, conduction
band, or in the z direction, only interactions with the higher
b, conduction band, would come in. These will be smaller
because of the larger energy denominator; hence the hole mass
is expected to be smallest in the x direction due to the strongest
interaction with the conduction band. On the other hand, the
interactions between nearby valence bands below the b; state
would have the opposite effect of increasing the VBM hole
mass. While the VBM splittings are much smaller, the mo-
mentum matrix elements must be smaller so these have less
of an effect. This is because both valence bands are N»,-like
and intra-atomic matrix elements of the momentum operator
are forbidden for the same angular momentum £.

Likewise, for the second valence band the interaction with
the lowest conduction band is only allowed for the y direction,
and for the third valence band of a; symmetry this interaction
is only allowed for the z direction. On the other hand, from
the CBM point of view, there are matrix elements with either
the valence bands of symmetries b; in the x direction, with
b, along the y direction and with a; along the z direction.
Hence, the CBM has a nearly isotropic effective mass tensor.
These considerations apply quite generally to the II-IV-N,
semiconductors.

11 (nk|paln'k) (W'K|pglnk) + c.c.
+WZ

M} =684p—
apf of m, ¢ Enk — En’k

E. Strain effects on valence-band splittings

In Fig. 12, we show the strain effect on the band splittings
for the top three valence bands. We analyze the changes in
the splitting due to a uniaxial strain within £2%, applied
on one major axis at a time, where negative strain means
that the experimental lattice constants are compressed, and
positive strain means they are stretched. The unit cell volume
is kept constant at the experimental value. In other words,
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FIG. 13. Comparison between calculated results (blue curves)

and digitalized data (red curves) from Misaki er al. [38]. We used
the average of €,(w) in @ and b directions shown in Fig. 5.

we consider pure shear strains. As shown in Fig. 11, the top
three valence bands have the symmetry of by, b, and a;.
Figure 12 shows the splittings b,-b, and b-a;, following the
same symmetry labeling. Based on symmetry grounds, we
expect that with a strain along x, which has b; symmetry, only
the b, eigenvalue will shift. Hence, both band splittings will
shift parallel to each other. We can see that compressive strain
along x leads to a larger b;-a; and bi-b, splitting. For strain
along b or y, only b, eigenvalues should be affected, so the
bi-a; splitting stays constant but the b;-b, splitting behaves
linearly with strain. Again, compression raises the b, level
and hence reduces the b;-b, splitting. At some point it crosses
through zero at which point the VBM becomes the b, band.
Likewise, for strain along c, the a; level shifts and the b,-b,
splitting stays constant but the bi-a; splitting shifts linearly
and crosses through zero for a critical strain.

F. Comparison to experimental results

We are aware of only one experimental report of the optical
dielectric function in the visible-to-UV region. Misaki et al.
[38] reported reflectivity spectra of ZnGeN, parallel and per-
pendicular to the ¢ axis, then subsequently extracted ¢ (w) and
&(w) by using the Kramers-Kronig analysis. Unfortunately,
the data do not distinguish the a and b directions in the ¢
plane. It is also possible that cation disorder led to effectively a
wurtzite-type structure. We therefore compare an average of a
and b polarization with their results in Fig. 13. The location of
the main peaks is in reasonable agreement but the magnitude
of &, differs markedly between theory and experiment. They
show a first peak near 4 eV, a main peak near 7 eV, a dip

and small peak near 10 eV, and then a plateau between 15 and
20 eV. These results are roughly consistent with our calculated
optical properties. The experimental data show only a small
anisotropy. The cutoff at lower energies is likely affected
by the presence of finite film-thickness-related interference
effects. Our calculated values of &, are notably higher than
the experimental values. On the theory side, this could be, in
part, due to an overestimate of the velocity matrix elements.
This is known to lead to an overestimate of &;(w = 0) as well
as we discussed earlier. It can be remedied by performing cal-
culations at finite q close to q = 0 and extrapolating instead
of relying on an analytical derivation of the limit for ¢ — 0.
On the other hand, the experimental values, extracted from
reflectivity, may also be underestimated because of surface
roughness, which can reduce the fraction of the signal that
is specularly reflected [39].

IV. CONCLUSION

In this paper we revisited the QSGW band-structure cal-
culations of ZnGeN, using the experimental lattice constants
and an improved calculation of the screened Coulomb interac-
tion which includes ladder diagrams or electron-hole effects in
the polarization. We also calculated the optical dielectric func-
tion corresponding to interband transitions at both the IPA and
BSE levels. The differences between the two were compared
with those in GaN and indicate a shift of oscillator strength
of the first peak toward the critical points near its onset. These
were analyzed in terms of individual band-to-band transitions,
taking band-folding effects into account between GaN and
ZnGeN; Brillouin zones and analysis of the IPA &;(w) in
terms of band-to-band differences in k space. Well-defined
excitons below the gap are found but require very fine k
meshes to determine with sufficient accuracy. Strain effects
on the band splittings and hence exciton splittings resulting
from the orthorhombic crystal field splitting were presented.
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