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The obstruction to constructing localized degrees of freedom is a signature of several interesting condensed
matter phases. We introduce a localization renormalization procedure that harnesses this property and apply our
method to distinguish between topological and trivial phases in quantum Hall and Chern insulators. By iteratively
removing a fraction of maximally localized orthogonal basis states, we find that the localization length in the
residual Hilbert space exhibits a power-law divergence as the fraction of remaining states approaches zero,
with an exponent of v = 0.5. In sharp contrast, the localization length converges to a system-size-independent
constant in the trivial phase. We verify this scaling using a variety of algorithms to truncate the Hilbert space
and show that it corresponds to a statistically self-similar expansion of the real-space projector. This result is in
accord with a renormalization group picture and motivates the use of localization renormalization as a versatile

numerical diagnostic for quantum Hall systems.

DOLI: 10.1103/PhysRevB.109.125132

I. INTRODUCTION

Renormalization group (RG) approaches are widely em-
ployed to distill the essential information from complex
configurations and are an invaluable tool for studying the
universal properties of systems close to criticality [1-5]. Gen-
erally, when scaling relations indicate that a correlation length
is the only relevant length scale close to a phase transition, we
can leverage the statistical self-similarity of fluctuations up
to this correlation scale, by gradually eliminating correlated
degrees of freedom at all microscopic lengths. This is the basis
of Kadanoff-Wilson RG, which is ubiquitous across a diverse
body of research [6]. In recent years, a specific class of phase
transitions, distinguished by the divergence or saturation of a
characteristic localization length, which we call “localization
transitions,” has attracted renewed interest. Examples include
transitions arising from the topology-localization dichotomy,
such as the plateau transition [7-10], and those related to
exotic localization phenomena, such as the thermal-MBL
crossover [11-14]. In these systems, it is natural to construct a
renormalization procedure based explicitly on the localization
length to describe the critical phenomena. In analogy to tradi-
tional RG, when scaling relations indicate that the localization
length is the pertinent length scale close to a phase transition,
we can renormalize the system by gradually eliminating lo-
calized degrees of freedom, which has analogous implications
on the statistical self-similarity of the localized removal basis.
In light of current research [11,15-19], there is motivation
to leverage the localization properties of critical systems in
numerical methods and apply such a procedure to study the
growing array of localization transitions.
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In this paper, we introduce a localization renormalization
formalism and apply it to a selection of single-particle exam-
ples. Specifically, we focus on phase transitions resulting from
the topology-localization dichotomy in quantum Hall sys-
tems. By iteratively removing the maximally localized states
from distinct sites in the system, we can induce a localization
transition with a scaling given by the power-law divergence
lim,_07 00 &(0) ~ p~%3, where £ is the localization length
in the residual Hilbert space, p is the fraction of states remain-
ing, and L is the linear system size. In contrast, the localization
length converges to a system-size-independent constant in the
trivial phase. We show that this scaling holds irrespective of
the model used to describe the system, the metric used to
quantify the localization length, and the way in which states
are removed. Furthermore, we examine the expansion of the
projector corresponding to the elimination of an orthogonal
subset of maximally localized states. Here, we reveal a direct
correspondence between the power-law divergence of the lo-
calization length and a statistically self-similar expansion of
the projector in real space. These results are in accord with
an RG picture, where the effective length scale per state is
increased by a factor of p~!/ on each step and topological
phases are identified by the presence of a phase transition.
Apart from shedding additional light on the properties of inte-
ger quantum Hall systems, localization renormalization may
be utilized as a numerical tool to characterize a wide variety
of localization-delocalization transitions, including those in
topologically trivial systems.

The structure of this paper is as follows. In Sec. II,
we define the localization renormalization procedure and in
Sec. III we apply it to single-particle case studies, representing
continuous and discrete quantum Hall systems. In Sec. 1V,
we then discuss the interpretations and scope of our results
and finally, in Sec. V, we summarize the conclusions and
outlook.
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II. LOCALIZATION RENORMALIZATION

We consider a d-dimensional quantum system, with single-
particle Hilbert space H, occupying a real-space region A €
R? of linear extent L. To simply illustrate the steps, we focus
on single-component single-particle orbitals residing in an
isolated band.

We start by identifying a complete basis of wave func-
tions for a given band {|y)}. These single-particle orbitals are
confined to regions surrounding points in space or sites on a
lattice and are maximally localized according to a real-space
metric—conventionally, the distance-squared metric [20]. We
emphasize that this basis does not need to be exponentially
localized, as this is not always possible, such as for quantum
Hall systems [21].

We then define a family of projectors P, : p € [0, 1], which
remove a fraction 1 — p of the maximally localized single-
particle basis, such that

Py = Poana — »_ 1V} (i, e)

iel,

where Py is a projector onto the relevant single-particle
band and |v;) is the symmetrically orthogonalized wave func-
tion at site i in the removal subregion £,, which satisfies
IL£,] < Lol < |A] [22]. We note that, although the states in
the basis are generally linearly independent, they are not
mutually orthogonal, and so we first need to symmetrically
orthogonalize the removal states, such that {|1/)} — {|i/)}.
Details of the symmetric orthogonalization procedure are
given in Sec. SI of the Supplemental Material [23]. Cru-
cially, since the quasilocal projector |v;)(1;| corresponds to
the number operator n; for the single-particle orbital at site
i € L,, the overall projector P, restricts the system to a Hilbert
space in which these operators have a fixed (zero) eigenvalue.
Hence, by eliminating a maximally localized orthogonal sub-
set of states in the basis, we truncate the Hilbert space
H—H.

Provided the family of projectors P, are statistically self-
similar under this decimation, we can relate the truncated
system H(r) = P,H(r)P, to the original system H(r) by a
rescaling r’ = br and renormalization H'(r') = ¢ "'H(x'). In
this way, we can consider the ground state of H'(r’) as the
new ground state defined on the space of states [24]. We then
iterate this process to construct a renormalization flow, based
on the removal of maximally localized single-particle orbitals,
which we call “localization renormalization.”

For the case of quantum Hall systems, we deduce the
rescaling and renormalization factors to be b= p~'/? and
¢ = p, respectively. In particular, we observe a divergence
of the localization length in the p — 0,L — oo limits,
governed by a universal scaling exponent v ~ 1/2 for
topological bands, whereas we observe convergence to a
system-size-independent constant in the trivial phase. This
holds independently of how the single-particle states are re-
moved and how the localization length is defined.

III. QUANTUM HALL EXAMPLES

In this section, we demonstrate the localization renormal-
ization procedure through the use of two examples, based on

the integer quantum Hall effect. In Sec IIT A, we examine con-
tinuous systems in the form of Landau levels and, in Sec. III B,
we examine discrete systems in the form of Chern insulators.

A. Landau levels

To begin, we focus on Landau levels. In Sec. III A 1, we
summarize the Landau level Hamiltonian and properties of
coherent states, in Sec. III A2, we explain the state removal
algorithm and, in Sec. IIT A 3, we present numerical results
for the localization renormalization.

1. Model

We consider a free spinless electron of mass m. and
charge —e, confined to the xy plane, in the presence of a
perpendicular magnetic field B = Bé,. The Hamiltonian is
given as Hy; = m?/2m., where ™ = p — eA is the dynami-
cal momentum, p is the canonical momentum, and A is the
vector potential. Since 7, and m, are canonical conjugates,
this Hamiltonian has the same structure as a harmonic os-
cillator, such that Hy; = hw.(a'a + 1/2), where w. is the
cyclotron frequency and (" are the ladder operators hopping
between energy levels. The eigenspectrum is composed of
evenly spaced and highly degenerate Landau levels at energies
E, = hw.(n + 1/2), where n is the Landau level index. Using
symmetric gauge, we may simply express the angular momen-
tum operator as L, = fi(a'a — b'b), where we have introduced
the ladder operators b"), defined using center coordinates R
conjugate to m, governing the angular momentum quantum
number m. Hence the Landau level states are conventionally
indexed as |n, m) [25,26].

The coordinate representation of a Landau level wave
function may be obtained by solving the differential equa-
tion a|0, m) = b|n, 0) = 0 in an appropriate basis and can be
subsequently translated through a distance & using the mag-
netic translation operator #(8) = exp(—id - K/h), where K =
P — €A + eB X r is the pseudomomentum, which commutes
with the Hamiltonian. In symmetric gauge, the Landau level
states take the form of a Gaussian, modulated by Laguerre
polynomial and monomial prefactors [25]. From the eigen-
spectrum of the angular momentum operator, we can see that
the most-localized Landau level states are obtained at n = m
with second moment (n, n|r?|n, n) = 2(2n + 1)€2, where £ is
the magnetic length. For example, the most-localized state in
the lowest Landau level (LLL) is given in a coordinate rep-
resentation as ¢ o(r) ~ exp(—r?/4£?) with a second moment
(0,0]710, 0) = 2¢2.

In this section, we focus our attention on coherent states,
which are nondispersive wave packets that saturate the un-
certainty principle and correspond to classical observable
evolution. Formally, these states are defined as eigenstates
of the lowering operator. Since we restrict ourselves to a
single Landau level, we consider the eigenstates of b|8) =
B1B), where |B8) is a coherent state with corresponding eigen-
value 8. Coherent states have several important properties
for this study. In particular, since the ladder operators b'") =
JLE(X +iY)® are defined using the center coordinates R,
saturating the Heisenberg uncertainty principle corresponds
to AXAY = /2. Hence a coherent state in a Landau level
is necessarily a maximally localized state and so may be
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obtained by magnetically translating the » = m Landau level
states, described above [27]. Removing maximally localized
states in Landau levels is the main step of our Hilbert space
truncation algorithm, outlined in Sec. III A 2.

Finally, we note that coherent states trivially form an
overcomplete basis for a given Landau level, since they are
enumerated by an uncountable set, whereas the orthogonal
basis of angular momentum eigenstates is countable. There-
fore, it is desirable to truncate the set of coherent states to
obtain a complete basis. Indeed, it has been shown that we
can form a critical basis set by restricting coherent states to
the sites of a grid in the XY plane of unit cell area S =27
and an overcomplete set with S < 27 [28-30]. By removing
just one state from the critical set, we can make the set exactly
complete. However, naively attempting to symmetrically or-
thogonalize such a complete set of coherent states in a Landau
level compromises locality. It has been shown that the result-
ing states have a high overlap with Gaussian states at short
distances from the origin, but an oscillating power-law decay
at long distances with a diverging second moment [21]. This
highlights the topology-localization dichotomy: it is impossi-
ble to construct exponentially localized Wannier functions in
a topological system.

2. Method

Having shown that a critical set of maximally localized
Landau level states may be obtained using a grid of coher-
ent states in the XY plane with a unit cell area of 2w, we
can utilize this in our Hilbert space truncation algorithm. In
this procedure, we simultaneously remove the most-localized
states on the sites of a square grid, converging from an arbi-
trarily large unit cell area to the unit cell area corresponding
to this critical set. However, we note that the results hold
independently of the truncation algorithm and removal grid
geometry, as demonstrated in Secs. SII and SIII of the Sup-
plemental Material [23]. The method is as follows.

We work in a Landau level |n, m) defined on a continu-
ous disk of radius R, centered at the origin. In each Landau
level n, we use a truncated angular momentum basis m €
{0,1,..., %Rz}. The basis cutoff is chosen based on empirical
convergence, such that the critical grid of wave packets on the
disk is approximately homogeneous and not distorted by the
boundary. Next, we introduce a removal lattice £, with sites
on a square grid

rij = ap[(i — 1/2)& + (j — 1/2)&], 2)

where a, = /27 /(1 — p) is the lattice constant and i, j € Z,
as sketched in Fig. 1. The quantity p is the fraction of states
remaining relative to Lo, defined as p =1 —Ag/A, € [0, 1].
For each lattice site r;; € £,, we then find the maximally
localized state |1/;;), which in this case is given by the Landau
level coherent state.

This defines the set of maximally localized states in a
Landau level for each p. However, although these states are
generally linearly independent, they are not mutually orthog-
onal. Therefore, in order to project these states out of the
Hilbert space, we first need to orthogonalize the subspace. To
this end, we use the symmetric orthogonalization procedure to

O0<p<l1

FIG. 1. Removal lattice for Landau levels. Convergence of the
removal lattice £, in Landau levels, sketched for three values of p.
The area of the £, unit cell af) =2 /(1 — p) is shaded pink and the
disk radius R is marked with an arrow.

transform {|y)} — {|¥)}. We can then apply the projector
P =PuL— Y i) (il 3)

i,jeL,

where P, is the projector to the nth Landau level.

Finally, on each removal iteration we record the localiza-
tion length of the system &. Note that we have offset the
removal lattice from the origin, as shown in Eq. (2), so that
we can use this as our reference site for the most-localized
state in the system. The origin is also furthest away from the
boundary of the disk and hence least susceptible to finite-size
effects. Although there are many metrics for quantifying the
localization length, we choose the minimum eigenvalue of the
distance-squared matrix [20], such that D? = P;‘erP;‘L. A
discussion of metrics for the localization length is presented
in Sec. SIV of the Supplemental Material [23].

In summary, we identify the maximally localized states
{l¥)} at sites r;; € L, after which we symmetrically orthog-
onalize the states {|/)} — {|v/)}, project them out of the
system using P'*, and subsequently compute the localization
length &, corresponding to the second moment of the max-
imally localized state at the origin. We start at p < 1 and
then repeat for decreasing p, taking the limit p — 0, which
corresponds to eliminating a critical basis of states and hence
a localization length divergence.

3. Results

After iteratively performing this state removal, we can plot
the behavior of & as a function of p in each case. In the
left panels of Fig. 2, we show the scaling of £(p) at various
system sizes R, in the (a) n =0, (b) n =1, and (c) n =2
Landau levels. From the figures, we can see a divergence of
the localization length in the p — 0 and R — oo limits [31].
In order to quantify this divergence, we perform a finite-size
scaling analysis. By finding a dimensionless scaling function
g, which satisfies

£(p)/50(p) = g(R/Eoc(p)), “

where &, is the extrapolated localization length in the ther-
modynamic limit, we can verify the power-law divergence
lim,_,o&(p) ~ p~". Furthermore, by quantifying how well
the data from Eq. (4) collapse onto the same curve, we can
compute the scaling exponent v [32]. Minimizing a quality
metric of data collapse d(v) [33] yields the scaling exponent
in each case, as shown in the right panels of Fig. 2. The com-
puted values, vo . = 0.500 £ 0.005, v = 0.500 &£ 0.006,
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FIG. 2. Localization scaling in Landau levels. (Left) Localiza-
tion length £ (p) obtained by the simultaneous elimination of a lattice
of localized states in the (a) n = 0, (b) n = 1, and (c) n = 2 Landau
levels. The system size R is depicted in different colors. At small p
and large system sizes, the relationship is linear indicating power-law
behavior in the thermodynamic limit. (Right) The quality function
of data collapse d(v) for the (a) n =0, (b) n=1, and (c) n =2
Landau levels; optimization of the quality function results in critical
exponents of (a) vor. = 0.500 = 0.005, (b) vy = 0.500 £ 0.006,
and (c) vy, = 0.500 = 0.006.

and vy = 0.500 £ 0.006, are in accord precisely with a
scaling exponent of v = 0.5 in each case, with only minor dis-
crepancies due to numerical imprecision. Here, the error bars
are given as the 1% fluctuations of the quality metric about the
minimum, computed using the Hessian d”(v). Further details
on the finite-size scaling analysis are given in Sec. SV of the
Supplemental Material [23].

To gain further insight on the nature of this scaling, we ex-
amine the projector P;L at each step, as sketched in Fig. 3(i).
In the left panels of Fig. 3(ii), we show the magnitude of
the projector in real space, relative to the origin, |P(r, 0)] =
[(r|PL*0)| in the (a) n = 0, (b) n = 1, and (c) n = 2 Landau
levels. Starting with the inset of Fig. 3(ii)(a), we present the
normalized projector |P| ~ p~!|P| for various p in the small-
est system size R = 20. At p = 1, we start with the Gaussian
state at the origin and on each removal iteration the projector
expands, continuing until the edge of the system (r = 20)
is reached at p &~ 1.57°. This corresponds to the value of p
where the linear scaling breaks down in Fig. 2(a). We note
also that there are slight oscillations in the amplitude of P
with length scale ay = +/27, corresponding to the modulation
of the removal lattice £y. Crucially, in the right panel of

(i) sketch of | Py (r,0)]
in the LLL

| (x]OrLL) | ~ e/

Cw 0 r
(ii) Kip=po
02 4 6 8101214 16 18 R
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FIG. 3. Projector expansion in Landau levels. (i) Sketch of the
averaged real-space projector expansion as p — 0 in the LLL. (ii)
(Left) Real-space radial profile of the projector P(r, 0) = (r|P/EL|0).
The rotationally and translationally averaged projector, normalized
with respect to the initial value, Pav, is shown in the main plot.
The original unaveraged projector, normalized with respect to the
maximum value, P, is shown inset. The projectors are presented for
the (a)n = 0, (b) n = 1, and (c) n = 2 Landau levels, at a system size
of R = 40 in the main plot and R = 20 in the inset, with py = 1.5.
The boundary of the system at » = 20 in the inset is marked with
a dashed line. Note that the projectors are plotted in reverse order,
such that the ¥ = 0 line is on top. (ii) (Right) Finite-size scaling of
the second moment of the projector for the (a) n = 0, (b) n = 1, and
(c) n = 2 Landau levels. The lines of best fit, for the linear region
of the largest system size, are overlaid in black. The corresponding
higher moments, £ = (r"), are shown inset for R = 20.

Fig. 3(ii)(a), we plot the localization length quantified via the
second moment of the projector against p and show that we
can recover the same scaling exponent. In the inset of the
right panel of Fig. 3(ii)(a), we further show that this scaling
relation is not only recovered from the second moment but
also for higher moments, y < 10 [34]. This indicates that
the projector is self-similar in a statistical sense [35]. Further
details of the moment computations are provided in Sec. SVI
of the Supplemental Material [23]. Finally, to elucidate this
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statistical self-similarity, we can rescale the family of projec-
tors P:;L to show that they collapse onto the same curve. In
the left panel of Fig. 3(ii)(a), we present the translationally
and rotationally averaged normalized projector P,,, which
eliminates any artifacts specific to the removal lattice, and we
plot this using the rescaled spatial coordinates r' = p~!/?r.
Here, we clearly observe that the projectors collapse onto the
initial Gaussian. In higher Landau levels, this picture also
holds, albeit slightly obscured by the complexity of our ini-
tial coherent state |(r|0,.0)| ~ ¢~ /4|L,(r2/2)|, where L, is
the nth Laguerre polynomial. Again, we find that the second
moment of the expanding projector can be used as a proxy
for the localization to extract the scaling exponent, as shown
in the right panels of Figs. 3(ii)(b) and 3(ii)(c). Moreover,
the projector is statistically self-similar up to high moments
y < 10, as shown in the insets. Rescaling the projector, as
before, we find that the curves approximately collapse onto a
single Gaussian, as shown in the left panels of Figs. 3(ii)(b)
and 3(ii)(c); however, this is now more difficult to discern
visually due to the Laguerre polynomial modulation in the
initial coherent state. In all cases, we obtain a scaling ex-
ponent v >~ 0.5 from the self-similar projector expansion.
Although this is numerically more challenging to extract for
higher Landau levels, all three computed values agree within
error bars.

B. Chern insulators

To complement this analysis, we now focus on Chern in-
sulators. In Sec. III B 1, we define the tight-binding model, in
Sec. IIIB 2, we outline the truncation algorithm for discrete
systems and, in Sec. III B 3, we present results for the scaling
exponent.

1. Model

We consider a free spinless electron confined to a lattice
on the xy plane. One of the most well-understood examples of
a Chern insulator is the Haldane model [36], defined on the
honeycomb lattice as

Hep= — 1 Z cich —h Z eii"’c;c_,-
(i) ((ij))
+M Z(nA,i —np;)+H.c., (5)
i

where #; and f, are the amplitudes corresponding to nearest-
((ij)) and next-nearest-neighbor ({(i))) hoppings, ¢(" are the
spinless fermion creation (annihilation) operators, e*' is the
next-nearest-neighbor complex phase factor, M is the stag-
gered chemical potential, and n4p) is the density operator on
sublattice A (B). The sign of the complex phase is determined
by the direction of the next-nearest-neighbor hopping. The
phase is positive clockwise around a minimal down-pointing
triangle of the A sublattice and counterclockwise around a
minimal down-pointing triangle of the B sublattice. By care-
fully selecting the parameters in the Haldane model, we can
tune between a topological and trivial phase.

For consistency with our state removal algorithm de-
fined for Landau levels in Sec. Il A2, we map the Haldane
model onto a square lattice with orthogonal basis vectors

(a) a1 = (v3,0), as = (V3,3)/2

a; = (2,0), ay = (0,1)

b
() 10 A ot
~ 01:0
S
= 04 oft
C;=-1 C; =+1

- 77rl/2 0 7rl/2 ™
¢

FIG. 4. Haldane model on a square lattice. (a) Mapping of the
Haldane model onto a square lattice. The basis vectors {a;, a,} are
given in units of the lattice constant and the unit cell is shaded gray.
The #; hoppings are colored green and the #, hoppings are colored
red (blue) according to their A (B) sublattice, with the direction of
the arrows corresponding to a positive complex phase. (b) Phase
diagram for the Haldane model, as a function of complex phase ¢
and chemical potential M, colored according to the sign of the Chern
number for the lowest band C;. The three selected parameter sets
are at t, ={t, =0.1,M =0}, t, ={t, =0.2,M = 0.1}, and t. =
{t = 0.1, M = 1}. For all parameter sets, ¢ = /2, and in all cases
we sett; = 1.

a; -a; =0, as depicted in Fig. 4(a). Although the geome-
try of the model changes under this mapping, with nearest-
and next-nearest neighbors no longer preserved, the topology
is unchanged [37]. Specifically, we obtain the same Hal-
dane lobe phase diagram in the M/t, against ¢ parameter
plane. The Haldane Hamiltonian yields a two-band eigenspec-
trum, where the bottom band has Chern number C; = —1 for
IM /1] < 3+4/3sin(¢) with ¢ € (=, 0), C; = 1 for |M/t;| <
34/3sin(¢) with ¢ € (0, ), and C; = 0 elsewhere. In this
section, we restrict ourselves to the physics of the lowest band
and study three configurations, t, (topological), t; (topolog-
ical), and t. (trivial), as shown in Fig. 4(b). Further details
on the choice of parameters are discussed in Sec. SVII of
the Supplemental Material [23]. We note that the localization
renormalization described in this section works for any choice
of Chern insulator. We choose the Haldane model due to
its popularity, motivated particularly by recent realizations in
moiré materials [38] and theoretical studies of its topological
phase transitions [19].

2. Method

The method is similar to the procedure described for
Landau levels in Sec. III A 2. However, there are a few tech-
nical nuances specific to discrete systems that increase the
complexity in this case. As before, the renormalization is in-
dependent of the details of the algorithm, as shown in Secs. SII
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p=1 O<p<l1

FIG. 5. Removal lattice for the Haldane model. Convergence of
the removal lattice £, for the square-lattice Haldane model, sketched
for three values of p. The area of the £ unit cell > = 1 is shaded
gray, the area of the £, unit cell af, = 1/(1 — p) is shaded pink, and
the linear system size L is marked with an arrow.

and SIII of the Supplemental Material [23]. The method is as
follows.

We start with an underlying square lattice for the Haldane
model Ly, with lattice constant @ = 1, dimensions L x L, and
periodic boundary conditions. Here, the simple translational
symmetry and toroidal topology are expedient for numerical
simulations. Next, we introduce a square removal lattice £,
with lattice constant a, = 4/1/(1 — p), symmetrically offset
from a chosen “origin” site of Ly, analogously to how L,
was offset on the disk in Eq. (2), as sketched in Fig. 5. For
each site of the removal lattice r;; € £,, we then find the
corresponding most-localized state |v;;) in the Ly basis. In
contrast to the continuous case, since Ly and L, are in-
commensurate lattices, we can no longer exploit conventional
translation operators to simplify the computations. Instead,
we compute the most-localized state at each r;; € £, by ex-
tracting the minimum-eigenvalue state of the distance-squared
matrix Dizj = Pp(r —rjj V2P g, where P is the projector to
the lowest band. Furthermore, care needs to be taken when
r;; falls on an axis of Ly, since this can result in a two- or
fourfold degeneracy for the minimum localization length. In
these cases, we break the degeneracy to avoid any linear de-
pendencies by selecting the state that has the smallest overlap
with the previously selected states {|i)}. Finally, due to the
incommensurability of Ly and £, coupled with the periodic
boundary conditions, we need to ensure that £, does not have
any overlapping regions.

Now that we have defined the set of maximally localized
states in our Chern insulator for each removal iteration p,
we can proceed to remove these states from the system. As
before, we note that, although the most-localized states cor-
responding to our removal lattice £, are generally linearly
independent, they are not mutually orthogonal. Hence we
first symmetrically orthogonalize the set of maximally local-
ized states {|¥)} — {|¥)} and then project them out of the
system, using

PS'=Pg— > W) (- (6)

i,jeL,

Note that this has the same form as the projector in Eq. (3)
[39]. Finally, we record the localization length, which we
quantify as the minimum eigenvalue of the distance-squared
operator, with respect to the origin D* = PS'r?*PS". In this
case, care needs to be taken to ensure that we are minimiz-
ing distances on the torus. As before, we have designed our
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FIG. 6. Localization scaling in the Haldane model. (Left) Local-
ization length £(p) obtained by the simultaneous elimination of a
lattice of localized degrees of freedom, applied to the Haldane model
with parameters (a) t,, (b) t;, and (c) t.. The system size L is depicted
in different colors. (Right) The quality function of data collapse d(v)
for systems in the topological Haldane model with parameters (a) t,
and (b) t,; optimization of the quality function results in critical
exponents of (a) v, = 0.503 & 0.011 and (b) v, = 0.499 & 0.012.

system such that the reference “origin” site hosts the most-
localized remaining state and is least susceptible to numerical
artifacts. We start with a large lattice constant with p < 1
and then symmetrically shrink the lattice by taking the limit
o — 0. In this limit, the Ly and £, interpenetrating lattices
have the same lattice constant, which corresponds to the re-
moval of a complete basis of states and hence a divergence of
the localization length for a topological phase, in general [40].

3. Results

As before, we can plot the localization length & as a func-
tion of p under this iterative state removal. In Fig. 6, we
present the localization scaling for our three parameter sets: t,,
t,, and t.. Starting with the topological configurations shown
in Figs. 6(a) and 6(b), we find a scaling relation similar to that
observed for Landau levels in Fig. 2. That is, the localization
length & exhibits a power-law divergence as the fraction of
states remaining tends to zero p — 0 in the thermodynamic
limit L — oo, as shown in the left panels of Figs. 6(a) and
6(b). Furthermore, using a finite-size scaling ansatz, we can
accurately compute the scaling exponent by minimizing a
quality metric of data collapse, as shown in the right panels
of Figs. 6(a) and 6(b). Here, we obtain scaling exponents
of v, =0.503 £0.011 and vy, = 0.499 £ 0.012, where the
error bars are given by 1% deviations with respect to the
quality metric d(v). As before, the scaling exponents take
a value of v >~ 0.5 in each case. Although the precision is
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FIG. 7. Projector expansion in the Haldane model. (Left) Real-
space radial profile of the projector P(r,0) = (r|PpC'|0). The
rotationally and translationally averaged projector, normalized with
respect to the initial value, P,,, is shown in the main plot. The orig-
inal unaveraged projector, normalized with respect to the maximum
value, P, is shown inset. The projectors are presented for the (a) t,,
(b) t, and (c) t. phases of the Haldane model, at a system size of
L = 28 in the main plot and L = 20 in the inset, with py = 1.5. The
boundary of the system at » = 10 in the inset is marked with a dashed
line. Note that the projectors are plotted in reverse order, such that
the ¥ = 0 line is on top. (Right) Finite-size scaling of the second
moment of the projector for the (a) t,, (b) t,, and (c) t. phases of
the Haldane model. The lines of best fit, for the linear region of the
largest system size, are overlaid in black. The corresponding higher
moments, £V = (r”), are shown inset for L = 20.

reduced due to the discrete nature of the systems, all computed
values of v from continuous and discrete topological systems
agree within errors. In contrast, for the trivial configuration
t., shown in Fig. 6(c), we find that, as we decrease p, the
localization length & quickly and abruptly converges to an
L-independent constant [41]. This shows a sharp distinction
to the behavior in topological phases, which supports the
use of localization renormalization as an efficient numerical
diagnostic for quantum Hall systems.

To gain further insight into the distinct scaling behavior in
topological and trivial systems, we examine the expansion of
the projector in real space. In the left panels of Fig. 7, we show
the magnitude of the projector |P(r, 0)| = |(r|PpCI|0>| at each
removal iteration p. Starting with the insets in the left panels
of Figs. 7(a) and 7(b), we can see that in the topological phases
of the Haldane model, the normalized projector |P| ~ p~!|P]
behaves analogously to the projector in the LLL, shown in the

left inset of Fig. 3(ii)(a). We note that, in this case, the mod-
ulation of the normalized projector P due to £y, with length
scale ay = 1, is exacerbated by the presence of the underlying
lattice Ly. Starting with a Gaussian initial state at p = 1,
we observe an expansion of the projector at each removal
iteration, until the edge of the system (r = 10) is reached at
p ~ 1.57°. This corresponds to where the power-law scal-
ing of the L = 20 curves breaks down in the left panels of
Figs. 6(a) and 6(b). As before, in the right panels of Figs. 7(a)
and 7(b), we show that the second moment of the projector can
be used as a proxy for the localization. From this data, we can
extract the scaling exponents, which agree with those found
in Fig. 6, albeit with larger errors due to the indirect nature
of the computation. As for Landau levels, we find that this
scaling holds not only for the second moment of the projector
but also for higher moments, y < 10, indicating statistical
self-similarity, as shown in the right insets of Figs. 7(a) and
7(b). To elucidate this self-similarity, we plot the translation-
ally and rotationally averaged normalized projector £,,, which
eliminates any lattice artifacts, using rescaled coordinates r’ =
p~12r in the left panels of Figs. 7(a) and 7(b). Here, we
observe that the family of projectors approximately collapse
onto the initial Gaussian state. Although this collapse is not
as clear as for the LLL case in the left panel of Fig. 3(ii)(a),
due to the spatial discretization, the statistical agreement, in
terms of moments, is comparable. In contrast, for the trivial
phase of the Haldane model, shown in Fig. 7(c), we do not
observe a self-similar expansion of the projector in the left
inset. Instead, the projector quickly and abruptly converges
to a fixed position as we decrease p. Attempting to extract
the localization length via the second moment, as shown in
the right panel, we obtain a convergence to an L-independent
constant in agreement with Fig. 6(c). This demonstrates the
difference between topological and trivial phases at the level
of the projector. Just as localization length divergence in topo-
logical phases corresponds to self-similar projector expansion,
the convergence of the localization length in trivial phases
corresponds to projector convergence in real space.

IV. DISCUSSION

Following these results, in this section we discuss the
scaling exponent. In particular, we comment on the RG frame-
work of the truncation procedure in Sec. IV A, its analogy
with the plateau transition in Sec. IV B, and its utility in
diagnosing topological phases in Sec. IV C.

A. Real-space RG framework

As mentioned in Sec. II, in order for localization renor-
malization to hold, it is a necessary condition that we can
construct a renormalized system {H’, |')} from the origi-
nal system {H, [¢)}. In the single-particle case, one way of
demonstrating this is to show that the family of projectors
P,, defined in Eq. (1), is self-similar, which implies that the
truncated system can be related to the original system under a
coarse-graining, rescaling, and renormalization. By analyzing
the expansion of real-space projectors on each p iteration, we
have demonstrated that we can consolidate our state removal
procedure into such an RG framework [42]. Each step of
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removing the most-localized states in the system is analogous
to coarse graining the Hamiltonian to an effective system of
remaining states H(r) = P,H(r)P,. Subsequently, we have
shown, by studying the projectors in Figs. 3 and 7, that
the system is statistically self-similar under a rescaling r' =
o~ /?r and renormalization H'(r') = p~'H(r'). Although the
projectors do not exhibit an exact self-similarity in our
examples, they are statistically self-similar to a high degree—
approximately up to the tenth moment in the configurations
that we study. Moreover, since the localization length is con-
ventionally defined via the second moment of displacement, it
can be viewed as a self-similar property of the family of pro-
jectors P, and localization renormalization may be applied.

B. Quantum Hall plateau transition

The most famous example of a localization transition in-
duced by the topology-localization dichotomy in quantum
Hall systems is the plateau transition and so it is natural to
ask whether an analogy can be made with the localization
scaling studied in this paper. Although these two concepts
are fundamentally different, with the plateau transition yield-
ing a universal scaling exponent of v, >~ 2.5 [9,43-48], there
are certain qualitative comparisons that can be drawn. In lo-
calization renormalization, we induce a phase transition by
explicitly projecting out the most-localized states at individual
points in space. On the other hand, in the plateau transition,
we induce a phase transition by tuning the Fermi energy with
respect to a disorder potential landscape. Loosely speaking,
there is a correspondence between maximally localized states
and states that are trapped around extrema in a disorder land-
scape. In this language, localization renormalization equates
to trapping isolated states using equal-amplitude Dirac delta
extrema in a fictitious potential, whereas the plateau transition
equates to trapping eigenstates of a real disorder potential
V(r)~ ), Vid(r —r;), where V; is a random amplitude at
position r;. Although localization renormalization is a nu-
merical algorithm and does not correspond to a physically
motivated phase transition, it would be interesting to explore
this analogy in future work [18,19].

C. Topological phase diagnosis

The broad scope of the localization renormalization proce-
dure is to classify a variety of condensed matter phases using
universal scaling exponents. Based on our results, we conjec-
ture that v ~ 1/2 for all two-dimensional class A topological
insulators and we generally expect different scaling exponents
in other symmetry classes and dimensions, e.g., v ~ 1/d.
However, although the procedure is designed as a numerical
tool to study a diverse selection of localization transitions,
the examples shown in this paper are all centered on the
topology-localization dichotomy and so the method doubles
as a technique for diagnosing topological and trivial phases.

This has a number of advantages compared to conventional
approaches, such as computing edge modes or the Chern num-
ber. For example, the algorithm is spectrum independent and
so may be used to diagnose topology in disordered systems,
provided the disorder is sufficiently weak so as to not mix the
bands. Moreover, the method is numerically inexpensive, with
a clear power-law divergence and scaling exponent reported
after only the first few removal iterations [49]. These advan-
tages can prove particularly useful in cases where the phase
diagram is unknown or traditional methods for computing the
Chern number fail, such as in fractal lattices [50], hyperbolic
lattices [51], and quasicrystals [52], as well as in systems with
other symmetry classes or higher dimensions.

V. CONCLUSION

We have introduced the localization renormalization for-
malism as a way of analyzing a diverse range of localization
transitions, which we demonstrated numerically using in-
teger quantum Hall examples. By iteratively removing an
orthogonal subset of maximally localized states from distinct
sites, we can induce quantum Hall breakdown transitions with
a localization length divergence of lim,_.o ;o &(0) ~ p7"
with v = 0.5 in topological systems and convergence to a
system-size-independent constant in the trivial case. The scal-
ing exponent in these topological systems is universal and
therefore independent of the model used to describe the sys-
tem, the metric used to define the localization length, and the
details of the state removal algorithm. Moreover, by analyzing
the expansion of real-space projectors on each iteration, we
find that the scaling exponent is a self-similar property of
the family of projectors P,, which is in accord with an RG
picture. This motivates the use of localization renormalization
as a versatile diagnostic tool for quantum Hall systems, in
cases where traditional methods of diagnosing band topology
are inadequate, as well as in topologically trivial systems and
beyond.
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