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Strong-coupling theory of quantum-dot Josephson junctions: Role of a residual quasiparticle
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We consider an interacting quantum dot strongly coupled to two superconducting leads in a Josephson junction
geometry. By defining symmetry-adapted superpositions of states from the leads, we formulate an effective
Hamiltonian for the strong-hybridization regime with a single orbital directly coupled to the dot and three
additional indirectly coupled orbitals. This minimal basis set allows one to account for the quasiparticles in the
vicinity of the dot as well as those further away in the leads and to describe how their role evolves as a function
of coupling strength and phase bias φ. This formulation also reveals the changing nature of the spin-doublet
state for the experimentally relevant coupling strengths. The binding of a nearly decoupled quasiparticle in the
vicinity of the quantum dot explains the “doublet chimney” in the phase diagram for φ ∼ π , in contrast to φ ∼ 0,
where the residual quasiparticle escapes to infinity and plays no active role.
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I. INTRODUCTION

Josephson junctions (JJs) are key constituents in modern
platforms for quantum state engineering using superconduc-
tors (SCs) [1] and they are continuously enhanced with novel
functionalities such as gate tunability, compatibility with mag-
netic fields [2], and unconventional Josephson potentials for
building parity-protected qubits [3]. Another target is fully
exploiting the microscopic degrees of freedom in the JJ,
namely its subgap levels in the few-channel regime. A recent
example are Andreev spin qubits (ASQ) [4–6], where quan-
tum information is stored in the spin degree of freedom of a
trapped quasiparticle. The first experimental realization of this
idea [7] relied on noninteracting Andreev levels, but required
a complex scheme involving higher energy levels for qubit
manipulation. A promising alternative makes use of interact-
ing subgap states in JJs with an embedded semiconducting
quantum dot (QD) tuned into a spinful doublet ground state
(GS) [8–10]. The QD needs sufficiently strong coupling to
the SC leads for efficient control and readout, but at too large
coupling the doublet is no longer the GS, leading to increased
leakage out of the computational subspace. The competition
between singlet and doublet GSs is governed by the coupling
strength, charging energy, QD filling, and phase difference
across the junction, φ [11,12]. Furthermore, a doublet GS
that is appropriate for use in ASQs needs to fulfill specific
requirements, in particular good manipulability using local
electromagnetic fields produced by nearby gate electrodes
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[10]. For this reason, not only is the phase diagram important,
but also the doublet state wave function and its properties.

Optimized ASQs will most likely operate in the interme-
diate coupling regime. This regime is easily accessible using
modern impurity solvers and it has been rather thoroughly ex-
plored using the numerical renormalization group (NRG) and
other methods. For the physical interpretation of the obtained
numerical results one usually relies on simplified toy mod-
els defined on smaller Hilbert spaces. Our work introduces
an effective model with a minimal set of orbitals that pro-
vides qualitatively correct results for all coupling strengths,
from weak to strong coupling regimes, and for all values of
φ. Furthermore, our work clarifies the role of Bogoliubov
quasiparticles in the superconducting lead in the formation
of the subgap states. In particular, we point out the need for
taking into consideration not only the quasiparticles in the
immediate vicinity of the quantum dot, but also those further
away in the leads (but not necessarily in infinity, where they
may be ignored altogether). This work hence goes beyond
the approximations such as the superconducting atomic limit
(SAL) and the zero-bandwidth approximation (ZBA) [13–20],
defined only on local orbitals (QD orbital alone for SAL;
QD orbital + one orbital per lead in ZBA). It does so by
including the leading order effects of the finite bandwidth
in the superconducting channels. This step is necessary to
correctly capture all properties of the subgap states for strong
coupling—in particular their symmetry properties.

We approach this task by reformulating the superconduct-
ing Anderson model (SAM) in the basis of symmetry-adapted
orbitals, using a minimal set of states that permits one to
account for the finite bandwidth. The model makes it possible
to properly account for the screening of the QD spin, the main
mechanism responsible for lowering the energy of the sub-
gap states below the continuum of elementary quasiparticle
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(Bogoliubov) excitations. It has long been believed that the
QD spin is fully screened in the singlet and “unscreened”
in the doublet GS, but NRG results show that the doublet
state is actually partially screened for any nonzero value of
coupling [21,22]. In fact, for very strong coupling the QD spin
is completely screened in all states, singlet and doublet, for all
values of φ [22].

In this work, we show that in the strong-coupling limit
the doublet becomes the same as the well-understood sin-
glet state, but with an overall doublet character owing to
one residual spin resulting from the broken Cooper pair. We
furthermore establish that the wave function of this spin (its
orbital character) depends on the value of φ: for φ ∼ 0 it
is far away from the QD in a symmetric orbital, while for
φ ∼ π it is located closer to the QD in an antisymmetric
orbital. Importantly, while the free magnetic moment exists in
the doublet state at large coupling, it is no longer localized
on the QD itself, but rather smeared across the supercon-
ducting leads. The exact spatial location and extent depend
on the model parameters, especially the phase bias φ. This
puts constraints on the coupling strength in JJs intended to
be used as ASQs: if the coupling is too strong, the moment
is less responsive to modulation and readout schemes that
locally address the dot. Furthermore, the qubit encoded in
the spin degree of freedom of the ASQ is expected to have
a different decoherence rate depending on the distribution in
space of the spin doublet wave function because the QD and
the superconducting leads are made of materials representing
different noise environments.

The notion of unscreened QD spin in the doublet states is
also challenged by the existence of the “doublet chimney.”
This extended doublet phase at φ = π that persists even for
large coupling strengths where a singlet GS is generally ex-
pected [see Fig. 1(d)] has been predicted theoretically [23–27]
long ago and recently directly observed in experiment [8].
We show that this limit (exactly at φ = π ) is actually cor-
rectly captured by the ZBA. Expansion in the inverse coupling
strength gives analytical insight into the regime of intermedi-
ate QD-SC coupling and explains the role of the residual spin
as well as the shape of the phase boundary.

II. MODEL

The system, sketched in Fig. 1(a), is modeled by SAM,
H = H (L)

SC + H (R)
SC + HQD + Hhop, with

H (β )
SC =

∑
kσ

εkc†
βkσ

cβkσ − �
∑

k

eiφβ c†
βk↓c†

βk↑ + H.c.,

HQD = ε
∑

σ

n̂dσ + Un̂d↑n̂d↓,

Hhop = − 1√
N

∑
β=L,R

Vβ

∑
kσ

d†
σ cβkσ + H.c.

cβkσ is the operator for an electron in the superconductor β ∈
{L, R} with energy εk and spin σ . dσ is the operator for the QD
level, n̂dσ = d†

σ dσ the corresponding number operator, ε the
impurity level, U the on-site interaction, and Vβ the hopping to
lead β. We parametrize the hoppings as VL = V (1 − η), VR =
V (1 + η), so that η quantifies the left-right asymmetry. N is
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FIG. 1. (a) Sketch of the quantum-dot Josephson junction. (b),
(d) Phase diagrams for φ = 0 and φ = π within the minimal model,
Eqs. (1) and (2), for a left-right symmetric system. V is the cou-
pling strength; ν = 1/2 − ε/U is the dot filling in units of charge.
Parameters are U = 10� and t = 0.2�. The “doublet chimney” for
φ = π is given in the ZBA limit by |ν − 1| = �2/4V 2, Eq. (9).
(c) Sketch of the model expressed in terms of a proximal and a
distal set of symmetric and antisymmetric superconductor orbitals.
Only the proximal symmetric orbital couples directly to the dot.
Superconducting pairing materializes as a φ-dependent anomalous
hopping that mixes the different types of orbitals, as described in
the Hamiltonian in Eq. (2). The hopping term t simulates the finite
bandwidth of the superconductors.

the number of k states in a SC lead. We set φL = −φ/2 and
φR = φ/2.

We simplify the Hamiltonian in several steps. In the first
step, we apply the gauge transformation cβkσ → eφβ/2cβkσ

[28,29]. This removes the phase from the pairing terms and
transfers it to the hybridization part Hhop.

In the second step, we reduce the infinite basis set by
retaining two states for each superconductor—one represent-
ing states in the immediate vicinity of the QD and another
representing states far away from the QD. One could, in
principle, determine the set of the most relevant orbitals nu-
merically, for example, by determining the natural orbitals
of the impurity problem (we return to this question in the
Conclusion). For simplicity, we choose here instead two local-
ized orbitals, cβσ (r) = (1/

√
N )

∑
k eikrcβkσ with r = 0 and

r = l , respectively. By transforming the kinetic-energy part
of the Hamiltonian to the new basis, we find that the two or-
bitals are coupled by a complex-valued hopping term obtained
by Fourier transforming the dispersion, t = (1/N )

∑
k eiklεk .

The parameter l has no particular physical meaning and only
the resulting t has a bearing on the effective Hamiltonian. For
an orbital far from the QD (large l , in particular much larger
than the Fermi wavelength 2π/kF ) the sum rapidly oscillates
and t is small. We will consider t to be a free parameter that
is much smaller than the bare bandwidth, but nonzero. The
qualitative behavior of the results does not depend on the
value of t (see Appendix A); what matters above all is that
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t accounts for the nonzero mobility of quasiparticles (QPs) in
the truncated model.

In the final step, we define the orthogonal symmetric b and
antisymmetric a orbitals:

bσ (r) = 1√
V 2

L + V 2
R

[
VLe−i φ

4 cLσ (r) + VRei φ

4 cRσ (r)
]
,

aσ (r) = 1√
V 2

L + V 2
R

[ − VRe−i φ

4 cLσ (r) + VLei φ

4 cRσ (r)
]
,

resulting in a minimal model H = HSC + HQD + Hhop, where

Hhop = −V
√

2(1 + η2)
∑

σ

[d†
σ bσ (0) + H.c.] (1)

describes the coupling between the QD and the symmetric
proximal orbital b(0), while

HSC = −� cos
φ

2

∑
r=0,l

[a↓(r)a↑(r) + b↓(r)b↑(r) + H.c.]

− i�
1 − η2

1 + η2
sin

φ

2

∑
r=0,l

[a↑(r)b↓(r) − a↓(r)b↑(r)

+ H.c.]

− i�
2η

1 + η2
sin

φ

2

∑
r=0,l

[b↓(r)b↑(r) − a↓(r)a↑(r)

+ H.c.]

− t
∑

σ

[a†
σ (0)aσ (l ) + b†

σ (0)bσ (l ) + H.c.] (2)

describes the additional effects brought about by possible
additional quasiparticles in the system.

The special cases where the model further simplifies are as
follows: (i) φ = 0, where the second and third lines are zero;
(ii) φ = π , where the first line is zero; (iii) η = 0, where the
third line is zero; (iv) φ = π and η = 0, i.e., the combination
of the former two.

In the first case, the model has time-reversal invariance,
with d↑ → −d↓, d↓ → d↑, followed by complex conjuga-
tion, which inverts spin. In the second case, the system has
a different symmetry: d↑ → d↓, d↓ → d↑ (without any sign
change in the operators) followed by complex conjugation.
This operation reflects spin across the (xy) plane in the spin
space. It is an antiunitary symmetry different from the time-
reversal symmetry at φ = 0. The third case is by definition
the left-right (LR) symmetric situation. Finally, the fourth
case corresponds to a particularly high symmetry: this is the
regime where the doublet chimney persists to arbitrarily large
coupling strength and the singlet is never the GS.

We note that, for t = 0, our model becomes equivalent
to the zero-bandwidth approximation (ZBA) amended with
additional orbitals that are fully decoupled from the QD (i.e.,
l → ∞ limit). Alternatively, our model can be seen as the
minimal extension of the ZBA taking into account the finite
bandwidth of the superconductors. Comparing the results of
our model for finite t and for strictly zero t (i.e., ZBA amended
with additional fully decoupled orbitals), we find similar re-
sults except for the lifting of level degeneracies at nonzero t

and for the discontinuous evolution (vs V ) at zero t instead of
the smooth crossovers at nonzero t ; the solution at nonzero t
has the same qualitative behavior as the NRG solution of the
full Hamiltonian, motivating the choice of finite value of t . (In
principle, one could also fix t by comparing with the reference
NRG results.) See Sec. VI for further discussion.

III. EIGENSTATES

The strong-coupling theory is based on expanding in 1/V ,
with Hhop as the nonperturbed part and H ′ = HQD + HSC as
the perturbation. We use projector-based perturbation theory
(PT) to deal with the large degeneracy [30].

Low-energy eigenstates of Hhop have two electrons occu-
pying the d − b(0) bonding orbital,

|B〉 = d†
↑ + b†

↑(0)√
2

d†
↓ + b†

↓(0)√
2

|0〉, (3)

with a bonding energy of EB = −2V
√

2(1 + η2). The config-
uration of electrons in the remaining SC orbitals is arbitrary
and does not affect the energy of unperturbed states. It does
determine their total spin, with the doublets having a free spin
in one of the orbitals.

For nonzero 1/V the GS degeneracy is lifted. The first-
order energy corrections are

δE (1)
S = U

4
+ ε ± �

√[
(1 + η2) cos φ

2

]2 + [
2η sin φ

2

]2

1 + η2
,

δE (1)
D = U

4
+ ε, (4)

for the lowest singlet (S) and the lowest doublet (D). The
� term simplifies to δE (1)

S = U
4 + ε ± � cos(φ/2) for η = 0,

the cosine factors originating from the interference processes
between the two leads; this is the same cosine factor that
arises in the anomalous part of the hybridization function of
SAM [31]. Unless η = 0 and φ = π , the two S states are
split, with D exactly midway between them. Finite bandwidth
effects (t term) favor states where the a orbitals form an
a(0) − a(l ) bond. In the doublet state this leaves the b(l )
orbital occupied by a free spin, while in the singlet states two
types of a local singlet are formed in the b(l ) orbital, namely
1b(l ) ± b†

↓(l )b†
↑(l ). The sum with equal phase (+ sign) for the

lower-energy state can be interpreted as a Cooper pair, while
the sum with the opposite phase (−) for the higher-energy
state corresponds to a broken Cooper pair, i.e., two QPs.

The energy spectrum is shown in Fig. 2. At small to in-
termediate V ∼ �, the singlet becomes the ground state for
φ = 0 as the bonding energy of |B〉 overcomes the energy
penalty of breaking of a Cooper pair. In the doublet sector, we
find an avoided crossing as the nature of the lowest doublet
transforms from the state with a decoupled QD spin at V → 0
into the state with a large contribution of |B〉 at large V .
For φ = π the doublet remains below the singlet state for
all V , resulting in the formation of the chimney. At V � �

the spectrum splits into several manifolds depending on the
occupancy of the bonding and antibonding orbitals between d
and b(0), with all states within the same manifold having the
same V dependence.
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FIG. 2. Low-energy spectra, singlet (red, S = 0) and doublet
(blue, S = 1/2) states. (a) φ = 0 and (b) φ = π eigenenergies vs
coupling strength V . The top row shows the spectra at small to
intermediate V/� and the bottom row shows the spectra up to large
V/�. The black dashed lines are the first-order expansion for large
V , Eq. (4). (c) φ dependence at large V/�. Full lines: eigenvalues
of the Hamiltonian; dashed lines: first-order expansion for large V ,
Eq. (4). The labels 2× and 4× indicate the double or quadruple
multiplicity of the excited states. (d) Energy difference between
the lowest doublet and singlet at φ = π in log-log scale. Dashed
line: fifth-order correction, Eq. (8). Parameters are η = 0, U = 5�,
ε = −U/2, and t = 0.1�. The energies are shifted by U/2 + 4� so
that the zero-coupling ground state energy is at zero.

Figure 2(c) shows the φ dependence in the lowest manifold
at large V . In the singlet subspace (red), the GS contains a
Cooper pair, gaining � cos(φ/2) condensation energy, while
the first excited singlet has one broken Cooper pair, costing
an additional � cos(φ/2). The lowest-energy doublet (blue)
contains a single QP. This pattern repeats with higher excita-
tions containing increasing numbers of broken Cooper pairs
and QPs [32].

IV. SPIN SCREENING

At V = 0, the GS is a doublet D0—a product state com-
posed of a free spin on the QD and decoupled SC leads.
At V = ∞, the GS is a doublet Db, where the QD spin is
bound into a singlet with the quasiparticle in orbital b(0) in the
same way as in the singlet state and a residual quasiparticle
in orbital b(l ). In true ZBA this state cannot be represented
because the Hilbert space is simply too small: the addition of
an orbital such as b(l ) is necessary for this state to be even
defined.

FIG. 3. Local moment screening in the doublet ground state.
(a) Spin compensation κ vs V for φ = 0 (yellow), π/2 (magenta),
and π (blue). (b) Addition amplitudes χ vs φ for V = 2.5�. (c) Ad-
dition amplitudes χ vs V for φ = 0. (d) Addition amplitudes χ

vs V for φ = π . Parameters are η = 0, U = 10�, ε = −U/2, and
t = 0.2�. χa(l ) is negligibly small in all cases.

The mixing of states D0 and Db as a function of V can be
quantified using the spin compensation

κ = 1 − 2
〈
Sz

QD

〉
, (5)

ranging from κ = 0 for a free spin to κ = 1 for a completely
screened QD [21]. Figure 3(a) shows that κ (V ) is indeed
monotonously increasing from 0 to 1 as V is increased. It
weakly depends on φ due to anomalous hopping terms in
Eq. (2). We note that, for zero t , the curves for φ �= π are
not smoothly increasing, but show a discrete jump where the
doublet ground state and the first excitation cross (see Sec. VI
for a comparison of finite and zero t). Devising a minimal
model which qualitatively correctly captures the evolution of
the lowest-energy doublet state from D0 to Db character, for
all values of V and φ, is the first main result of this work.

The relation between the lowest singlet and doublet states
is revealed through matrix elements

χα = |〈D|α†
↑|S〉|, (6)

with α ∈ {a(0), a(l ), b(0), b(l )}. Figure 3(b) shows the φ de-
pendence of χ at large V = 2.5�. Because the QD spin is
always completely screened in the singlet, χb(0) is small when
the [d, b(0)] configuration in both states is similar, i.e., when
the QD spin is screened in the doublet as well. The remaining
χ quantify the position of the spin-carrying residual QP in
the doublet. For φ ∼ 0, it clearly resides in the orbital b(l ).
The maximum value 1/

√
2 is explained by the fact that the

state of b(l ) in the singlet is (1b(l ) + b†
↓(l )b†

↑(l ))/
√

2. For
φ ∼ π , the residual spin resides mostly in a(0), with some
weak admixture of b(l ); the ratio depends on t/� and it goes
to zero as t → 0. Figure 3(c) shows the V dependence at
φ = 0. It directly confirms the interpretation of κ variation
in terms of the changing nature of the doublet from D0 to
Db. Figure 3(d) shows the V dependence at φ = π . At V = 0,
the singlet is a linear combination of singlet states involving
a(0) and b(0), seen through equal values of the corresponding
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χ . With increasing V , the singlet and doublet evolve into a
similar screened state, except for the residual quasiparticle in
orbital a(0).

We observe that χa(l ) is always negligibly small. This
simply indicates that this orbital plays no role in spin screen-
ing. Nevertheless, it needs to be retained in the Hamiltonian
in order to obtain the correct energetics (i.e., the order of
states) by the formation of a(0) − a(l ) valence bond states,
as discussed in the previous section.

The ZBA is commonly used to explore the subgap spec-
trum and it is widely believed to reproduce all qualitative
features correctly. For φ = 0, ZBA predicts a level crossing
between two doublet states having different mirror symmetry
as V is increased, which is at odds with the NRG calculations
for the full model [33] that clearly shows that at φ = 0 the
symmetry of the doublet state (which is a mixture of D0 and
Db) does not change. In ZBA with no distal orbitals, the
second QP of the doublet state at high V is constrained to
always sit in the proximal antisymmetric orbital a(0), while
in our model the finite hopping t allows it to tunnel to a distal
symmetric orbital b(l ), while a(0) and a(l ) form an intersite
singlet, thereby reducing the energy of Db and restoring the
expected symmetry as well as the correct order of states at
φ = 0. This explains the origin of the main deficiency of ZBA
in the strong-coupling limit for values of φ close to zero.

The identification of the orbital in which the residual quasi-
particle resides is the second main result of this work. Our
model is thus indeed the minimal model that can qualitatively
describe the fate of both quasiparticles following the breaking
of the Cooper pair by the magnetic impurity.

V. DOUBLET CHIMNEY

At φ = π and η = 0, the lowest-lying singlet and doublet
states are degenerate to lowest order; see Eq. (4). Yet, the exact
numerical solution gives slightly lower energy for the doublet.

It is possible to analytically calculate high-order cor-
rections at φ = π because the “nearly free” quasiparticle
occupies a proximal orbital a(0); see Figs. 3(b) and 3(d); thus
it is admissible to set t = 0 without qualitatively changing
the low-energy states. For η = 0 the lowest two singlet states
are exactly degenerate at φ = π as H ′ = HQD + HSC does
not mix them in any order. This is the result of the fourth
symmetry case discussed in Sec. II. In the following we focus
on this special case of φ = π and η = 0, where the ZBA is an
adequate description.

We now use the nondegenerate Rayleigh-Schrödinger PT.
In third order, we find

δE (3)
S − δE (3)

D = −1

2

U�2

V 2
|ν − 1|, (7)

with ν = 1
2 − ε

U the QD filling in units of particle number. For
ν = 1, a difference is found only in the fifth order and it has a
surprisingly simple form:

δE (5)
S − δE (5)

D = 1

8

U�4

V 4
. (8)

The energy corrections at all lower orders are exactly the
same in both spin sectors. At fifth order, there are U 5, U 3�2,

and U�4 contributions, with only the terms of the last kind
not canceling out. Figure 2(d) shows that Eq. (8) becomes
a good approximation for V � �. Combining the third and
fifth order equations gives the shape of the transition line
(the chimney) as

|ν − 1| = �2/4V 2. (9)

At large V , the d and b(0) orbitals are equally strongly
coupled in S and D states and, counterintuitively, it is the state
of the antisymmetric orbital a(0) (the number of quasiparticles
it contains) that differentiates them via higher order processes.
This residual interaction is a kind of blocking effect [34]:
pairing processes are ineffective for orbitals occupied by a sin-
gle quasiparticle, leading to different combinatorial prefactors
that result in the nonzero fifth order energy difference [35]
All perturbation calculations as well as an extended collection
of exact numerical results is available in the form of Wol-
fram Mathematica notebooks in the Supplemental Material.
Obtaining a deeper understanding of the physical origin of the
doublet chimney is the third main result of this work.

The energy difference only appears for U �= 0; see Eq. (8).
This confirms that the doublet is stabilized by an effective
interaction between the QP screening the QD local moment
and the free QP. In the noninteracting resonant limit (U = 0,
ε = 0) the completely proximitized QD level is occupied by
a Cooper pair (Andreev bound state) and there is only one
free QP in the doublet state. At φ = π the singlet and doublet
states are then exactly degenerate. An experimental observa-
tion of a doublet chimney thus directly implies an interacting
QD level.

We note that an analogous phenomenon of persistent dou-
blet GSs is also found in the hard-gap Anderson impurity
model [36–42], to which the QD JJ problem maps for φ = π

[41,42]. Such states have been interpreted in terms of a fixed-
point effective Hamiltonian obtained in an NRG analysis of
finite-size spectra [37] and through the analytical structure of
the impurity self-energy which features a δ-peak pinned at the
Fermi level [38,39]. Interestingly, the fixed-point analysis in
Ref. [37] was also based on a two-orbital description [43].

If the mirror symmetry is broken (η �= 0), the doublet
chimney no longer extends to infinite hybridization strength
and it disappears altogether for large asymmetry (see also
Appendix B).

VI. DISCUSSION: RELATION TO THE
ZERO-BANDWIDTH APPROXIMATION

In Fig. 4, we show the striking difference in spin screening
κ for t = 0 and finite t . The spectra in Fig. 4(a) at t = 0
shows the crossing of the lowest doublet (D0) and the first two
excited doublet states (Db, Da) at V/� ∼ 1.3 (black circle).
Here, Db is the screened doublet introduced before, while
Da is a mirror-asymmetric (ungerade) screened doublet state,
with one quasiparticle in the b(0) orbital and another quasipar-
ticle in the a(0) orbital. In true ZBA, Db state does not exist,
there is only Da, because b(l ) does not exist.

For finite t , the crossing between D0 and Db becomes an
avoided crossing, with the two states mixing; see Fig. 4(b).
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FIG. 4. Effect of t on the doublet states at φ = 0. (a) Zoom-in on
the V dependence of the spectra shown in Fig. 2(a) for t = 0. The
black circle shows the crossing of the first excited (Db, degenerate
with Da) and the ground (D0) doublet states. (b) Same plot for
t = 0.1. The mixing between the states Db and D0 pushes one linear
superposition of these mirror-symmetric doublets below the mirror-
antisymmetric Da. (c) Spin screening κ for the same parameters and
different t .

The asymmetric orbital Da is unaffected. This results in the
lowest doublet state always having the correct symmetry (mir-
ror symmetric, gerade). Furthermore, the degree of screening
in the lowest doublet is then continuously increasing, con-
sistent with the NRG results. This is reflected in κ (V ) in
the doublet ground state, Fig. 4(c). For t = 0, it exhibits a
discrete jump at the point of the doublet state crossing, as the
completely screened Db (or the degenerate Da) becomes the
ground state. The mixing, induced by t , smoothens the jump
into the expected crossover.

VII. CONCLUSION

Except for certain high-symmetry points, the partially
screened doublet states in the strong-coupling limit of quan-
tum impurity Hamiltonians with a gapped bath cannot be
reproduced with a single-orbital (ZBA) description of the
bands. Our work explains this requirement in the context
of superconducting systems from the perspective of the two
electrons following the breakup of the Cooper pair due to
exchange coupling to the QD: one electron forms the singlet
state with the QD local moment, while the other either ex-
periences residual interaction (to produce a doublet ground
state at φ ∼ π ) or goes away to large distances (to produce
the doublet excited state at φ ∼ 0) or infinity (to produce
the singlet ground state at φ ∼ 0). Single-orbital descriptions
cannot cover all these possibilities.

The multiorbital approximation proposed in this work pro-
vides insights into the spin-screening mechanisms and the
nature of the doublet state for all coupling strengths and all
values of phase bias φ. That will be instrumental in the design
of complex hybrid devices based on coupled spins and SC

degrees of freedom, such as ASQs. For example, our results
imply that the doublet spin can be partially redistributed into
the SCs and thus cannot be manipulated by experimental
methods locally addressing the QD. We also explained the
curious doublet chimney as a kind of blocking effect arising
from the presence of a residual quasiparticle, located close to
the QD at φ = π .

A possible followup to this work would be a detailed
real-space study of the relevant quasiparticle wave functions.
A possible path would be through constructing the natu-
ral orbitals [44–48] after appropriate generalization for the
superconducting case [49]. Experimentally, the localization
properties of the doublet state wave function are revealed,
for example, through the impurity Knight shift effect—the
effective g factor of the QD level is φ dependent [22]. It would
be of interest to perform such measurements in a controlled
manner, i.e., as a function of coupling strength V and phase
bias φ.
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APPENDIX A: DEPENDENCE ON T

Here we discuss the quantitative effect of t on the low-
energy eigenstates of the system.

Figure 5(a) shows the low-energy spectra for the same
parameters as Fig. 2(c), but for much larger t/� = 0.4. The
main effect of larger t is the splitting of the doublet states (blue
lines) at φ = 0. This stabilizes the lower energy state that has
the expected symmetry properties that match those of the full
problem.

In the language of the Hamiltonian in Eq. (2), t energet-
ically favors the formation of a singlet between a(0) and
a(l ), i.e., the state [a(0)†

↓a(l )†
↑ − a(0)†

↑a(l )†
↓]|0〉. In the dou-

blet manifold, the presence of a spin-carrying quasiparticle on
either a(0) or a(l ) hinders the formation of this singlet, so the
energy lowering due to singlet formation is only possible if
the quasiparticle occupies b(l ). This leads to the splitting of
the degeneracy at φ = 0.

The energy gained with the intersite singlet formation is
∼t2. This is confirmed in Figs. 5(b) and 5(c), which shows
the t dependence of the spectrum. The dashed black lines
are perturbative corrections, Eq. (4), to which we added −t2

terms.
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FIG. 5. Quantitative effects of parameter t on the spectra. All
other parameters are the same as in Fig. 2 of the main text. (a) Low-
energy spectra, singlet (red, S = 0) and doublet (blue, S = 1/2), for
t = 0.4�. (b), (c) Energies vs t for (b) φ = 0 and (c) φ = π . Red:
singlets; blue: doublets. Dashed black lines: perturbative corrections,
Eq. (4), with ∝−t2 terms.

APPENDIX B: DEPENDENCE ON η

In Fig. 6 we plot the phase diagrams and the addition
amplitudes for two nonzero values of the left-right asymmetry
parameter: a very small value η = 0.01 and a large value
η = 0.5. These results should be compared to Fig. 1(d) and to
Figs. 3(b), 3(c), and 3(d) in the main text. The main effects of
the asymmetry are the disappearance of the doublet chimney
at φ = π and the different composition of the doublet wave
function at φ = π . Both can be explained by the mapping of
the left-right asymmetric problems at φ = π to the symmetric
problem at some effective value of φ away from π [31].
For η = 0.01 there is still a visible protrusion of the doublet
phase in the phase diagram for φ = π , but it is no longer
perceptible at η = 0.05 (not shown). The doublet chimney
therefore requires a rather high degree of left-right symmetry
in the system.

FIG. 6. Phase diagrams and addition amplitudes for the left-right
asymmetry parameter η = 0.01 (left column) and η = 0.5 (right
column). (a), (b) Phase diagrams at φ = π . Parameters are U = 10�

and t = 0.2�. (c), (d) Addition amplitudes χ vs φ. (e)–(h) Addition
amplitudes χ vs V .
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