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We performed high-magnetic-field magnetization, polarization, and ultrasonic measurements in Ba2CuGe2O7

to investigate field-induced multiferroic properties arising from a cross-correlation between electric dipoles and
electric quadrupoles in addition to cross-correlation between magnetic dipoles and electric dipoles. Magnetiza-
tion M shows saturation behavior above 20 T for several magnetic field directions, however, electric polarization
Pc exhibits an increase, and elastic constants show a softening above 20 T. Based on quantum states with a
crystalline electric field for the D2d point group and d-p hybridization between Cu-3d and O-2p electrons,
we confirmed that the matrix of an electric dipole Pz was proportional to that of an electric quadrupole Oxy.
Furthermore, considering the spin-orbit coupling of 3d electrons and the Zeeman effect, we showed that Pz

and Oxy simultaneously exhibited field-induced responses. These findings indicate that the orbital degrees of
freedom, in addition to the spin degrees of freedom, contribute to the high-field multiferroicity in Ba2CuGe2O7.

DOI: 10.1103/PhysRevB.109.125129

I. INTRODUCTION

A cross-correlation between magnetic dipoles and electric
dipoles has been focused on solid-state physics [1]. Because
this phenomenon describes how magnetic (electric) fields
generate electric (magnetic) fields in solids, scientists and
engineers aim for application to some electronic devices.
Furthermore, a piezoelectric effect due to a cross-correlation
between electric dipoles and elastic quadrupoles, which de-
scribes how electric fields (elastic strains) induce elastic
strains (electric fields) [2], has also been applied to a variety
of items like motors, injectors, speakers, stages, etc. These
phenomena arising from the interplay of different types of
multipoles are known as multiferroicity. Understanding the
multiferroicity mechanism is an important scientific subject
for further applications.

Several mechanisms have been proposed to describe mul-
tiferroic properties between magnetic dipoles and electric
dipoles. One is an exchange striction model described as
|Pi j | ∝ Si · S j [3–5]. Here, Pi j is the polarization vector
and Si (S j) is the spin at site i ( j). Another is an inverse
Dzyaloshinskii-Moriya (DM) model written as Pi j ∝ ei j ×
(Si × S j ), where ei j denotes the unit vector connecting the
neighboring site i and j [6]. These two mechanisms are based
on intersite interactions. Therefore the magnetic structure
plays a key role in such polarizations. In contrast, a spin-
dependent d-p hybridization model [7,8], described as Pl ∝
(S · rl )2rl , is based on a cluster consisting of a magnetic ion
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and nonmagnetic ions. Here, rl is the bonding vector between
the transition metal and the l-th ligand oxygen ion. This model
indicates that the rotation of the magnetic moments in real
space carries a polarization change. As long as magnetization
is increased by magnetic fields, a field-induced electric polar-
ization (FIEP) can be expected in such a model.

Recently, the spin-dependent d-p hybridization has been
proposed in Ba2XGe2O7 (X = Mn, Co, Cu) to describe the
FIEP of Pc along the c axis of the crystallographic orien-
tation accompanied by a magnetization process [8,9]. Here,
Pc is the sum of the electric dipole Pz in the solid, and the
quantization axis z is set along the c axis. Figure 1(a) shows
the crystal structure of Ba2CuGe2O7 with an åkermanite-type
structure belonging to the tetragonal space group P421m. Cu
ions responsible for magnetic moments are at the center of
deformed O4 tetrahedra [see Fig. 1(b)]. Thus a point group
symmetry at Cu-site is D2d without the inversion operation (I)
[11]. The local coordinates of CuO4 clusters, Xi and Yi, (i = A
and B), are tilted around c-axis with the angle ±κ = ±22◦
[see Fig. 1(a)]. 3d and 2p orbitals in the CuO4 clusters form
valence and conduction bands [12]. A magnetic structure be-
low antiferromagnetic (AFM) transition at TN = 3.2 K shows
a spiral structure [13] because the DM interaction is active
in such tilting crystals without the inversion operation. In
magnetic fields, the magnetic structure changes from an in-
commensurate spiral to a commensurate one [14]. The electric
polarization Pc for B//[110] exhibits an anomaly at such a
transition field in addition to the magnetization curve [9].

On the other hand, another mechanism describing the
FIEP has been indicated. In åkermanite-type compounds
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FIG. 1. (a) Top view of the crystal structure of Ba2CuGe2O7

produced by VESTA [10]. a and b axes indicate the crystallographic
coordinates. XA (XB) and YA (YB) axes are defined as the local co-
ordinates at A site (B site). ±κ indicates the tilting angle of CuO4

tetrahedra about the c axis. (b) Schematic view of the CuO4 tetra-
hedron. Vertical arrows indicate the deformation direction of CuO4.
(c) Schematic view of the electric dipole Pz and the conjugating
external field of the electric field Ez. (d) Schematic view of the
electric quadrupole Oxy and the conjugate external field of the crystal
strain εxy.

Sr2CoSi2O7 and Ca2CoSi2O7, the FIEP has been observed
even in spin saturation regions [15,16]. Since the spin-
dependent d-p hybridization model is proportional to (S ·
rl )2rl , field-dependent electric polarization cannot be ex-
pected above the spin saturation fields. Furthermore, a
theoretical study has suggested that such a spin-dependent
scenario based on the Kramers doublet with spin-1/2 is ex-
cluded in terms of the vanishment of single-site anisotropy
[17]. Therefore we deduce that other electronic degrees of
freedom also contribute to the FIEP.

One of the candidate degrees of freedom can be electric
multipoles. A previous study in Ba2CuGe2O7 has focused on
a cross-correlation between the electric dipole, Pz ∝ z, and the
spin-nematic operator, SxSy + SySx, that is equal to the electric
quadrupole, Oxy ∝ xy [see Figs. 1(c) and 1(d)] [18]. Because
the spatial inversion symmetry is broken at Cu-sites centered
at O4 tetrahedra, both Pz and Oxy belong to the irreducible
representation (irrep) B2 of the point group D2d (see Tables I
and II and Appendix A) [11,19]. In other words, the matrix of
Pz should be proportional to the matrix of Oxy for the quantum
states under the D2d . This fact indicates that the response of
electric quadrupole Oxy induces the electric polarization Pc

via the response of the electric dipole Pz. Furthermore, due

to the coupling between the electric quadrupole Oxy and an
elastic strain εxy [see Fig. 1(d)], we can expect the electric
polarization mediated by the crystal distortion of the CuO4

tetrahedra [20,21]. Above the spin saturation fields, we deduce
that the field-dependent electric polarization is brought about
by the cross-correlation described as Pz ∝ Oxy.

Since the electric dipole and quadrupole responses are
expected, the orbital part of wave functions plays a key role
in the FIEP. From the microscopic point of view, the contri-
bution of d-p hybridized states consisting of O-2p and Cu-3d
orbitals is expected because parity-mixed wave functions lead
the electric dipole degree of freedom [22]. In addition, 3d-yz
and zx orbitals and 2p-x and y orbitals in the d-p hybridized
states also carry the electric quadrupole Oxy [23]. Therefore
we focused on the polarization and elastic constant measure-
ments in high-magnetic fields to detect the electric dipole and
electric quadrupole response in Ba2CuGe2O7. Furthermore,
we discuss another possible mechanism of the FIEP based on
the d-p hybridization and spin-orbit coupling.

This paper is organized as follows. In Sec. II, the experi-
mental procedures are described. In Sec. III, we present the
experimental results of the high-field magnetization, polariza-
tion, and ultrasonic measurements. We show the field-induced
elastic softening in addition to the field-dependent electric
polarization above the spin saturation fields. In Sec. IV, we
present quantum states in high fields and the electric dipole
and quadrupole susceptibilities to describe our experimental
results of polarization and elastic constants. We conclude our
results in Sec. V.

II. EXPERIMENTAL DETAILS

Single crystals of Ba2CuGe2O7 were grown by the floating
zone method. The Laue x-ray backscattering technique was
used to cut samples with (100), (1̄00), (001), and (001̄) faces
and (110), (11̄0), (001), and (001̄) faces. The magnetization
M in pulsed magnetic fields was measured by the induction
method using coaxial pickup coils. The FIEP of Pc was
obtained by integrating the polarization current as a function
of time [24]. The ultrasonic pulse-echo method with a
numerical vector-type phase detection technique was used for
the ultrasonic velocity v [25,26]. Piezoelectric transducers
using LiNbO3 plates with a 36◦ Y-cut and an X-cut (Yamaju
Co.) were employed to generate longitudinal ultrasonic
waves with the fundamental frequency of approximately

TABLE I. Characters and several basis functions of the point group D2d . Here, we do not consider the time-reversal symmetry. lx =
−i(y∂z − z∂y ), ly = −i(z∂x − x∂z ), and lz = −i(x∂y − y∂x ) are the angular momentum operators. li (i = x, y, z) is related to the rotation of
crystal lattice and electronic systems around the i-axis and the Zeeman effect. Bx , By, and Bz represent the components of the magnetic fields.

Irrep E 2IC4 C2 2C′
2 2σd Basis function: Polar Axial Quadratic Producted

A1 1 1 1 1 1 z2 xyz
z(lxly + lylx ), xlx − yly, yzlx − zxly

zBxBy, xBx − yBy, xyBxBy, yzBx − zxBy

lxBx + lyBy

A2 1 1 1 −1 −1 lz, Bz z(x2 − y2), xy(x2 − y2)
B1 1 −1 1 1 −1 x2 − y2

B2 1 −1 1 −1 1 z xy (lxly + lylx )
E 2 0 −2 0 0 {x, y} {lx, ly}, {Bx, By} {yz, zx}
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TABLE II. Conjugate fields, electric multipoles, and response functions corresponding to the irreducible representations (irreps) of the
point group D2d at Cu sites. Ei (i = x, y, z) is an electric field and ε� (� = 3z2 − r2, x2 − y2, yz, zx, xy) is a symmetry strain, respectively. The
electric dipole Pi (i = x, y, z) and the electric quadrupole O� (� = 3z2 − r2, x2 − y2, yz, zx, xy) are written as the electric multipoles. The sign
in column I indicates the spatial inversion property of conjugating fields and electric multipoles (even: +, odd: −). Extra suffixes g (gerade)
and u (un-gerade) of the irreps describe the parity of conjugate fields, multipoles, and response functions.

Irrep Conjugating field Electric multipole Response function I

A1(g) εB = εxx + εyy + εzz OB = 1/r CB = (2C11 + 2C12 + 4C13 + C33)/9 +
εu = (2εzz − εxx − εyy )/

√
3 O3z2−r2 = (3z2 − r2)/r2 Cu = (C11 + C12 − 4C13 + 2C33)/6 +

B1(g) εx2−y2 = (εxx − εyy )/
√

2 Ox2−y2 = (x2 − y2)/(
√

2r2) CT = (C11 − C12)/2 +
B2(g)

√
2εxy Oxy = √

2xy/r2 C66 +
B2(u) Ez Pz = z/r Pc −
E(g)

√
2εyz Oyz = √

2yz/r2 C44 +√
2εzx Ozx = √

2zx/r2 C44 +
E(u) Ex Px = x/r Pa −

Ey Py = y/r Pb −

f = 30 MHz and the transverse waves with 16 MHz,
respectively. Higher-harmonic frequencies of 68 and
112 MHz were also employed. The elastic constant, C = ρv2,
was obtained from the ultrasonic velocity, v. Here, the mass
density, ρ = 5.07 g/cm3, for Ba2CuGe2O7 is calculated by
the structural parameters [13]. The direction of ultrasonic
propagation, q, and the direction of polarization, ξ, for the
elastic constant, Ci j , are indicated in figures. g values of 2.04
for the in-plane field direction and 2.44 for the interplane
field direction based on the Cu2+ ions were estimated by the
x-band electron spin resonance (ESR) measurements with the
frequency of 9.12 GHz.

For high-field measurements up to 60 T, nondestructive
pulse magnets with time durations of 25 and 36 ms installed at
The Institute for Solid State Physics, The University of Tokyo
were used.

The energy scheme and the electric multipole susceptibility
are calculated by the Julia language.

III. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. High-field magnetization

Figure 2(a) shows the magnetization as a function of fields
in Ba2CuGe2O7 at 1.3 K for various field directions. We
observed several characteristic anomalies and a magnetiza-
tion plateau in high fields. The magnetization curve M for
B//[100] and [110] show the increase in the field up to
BM

c2 = 25.3 T, which is determined by the first derivative of the
magnetization with respect to the field, dM/dB, in Fig. 2(b).
With further application of the fields, M exhibits a plateau
above Bsat = 27.8 T up to 56 T. The difference in BM

c2 and Bsat

between the field up-sweep and down-dweep processes was
hardly noticeable within our experimental resolution. We also
observed the anomaly at BM

c1 = 10.1 T for field up-sweep and
7.1 T for down-sweep in dM/dB [Fig. 2(c)].

As discussed later, the anomaly BM
c1 corresponds to the tran-

sition field of the incommensurate spiral to the commensurate
one. For B//[001], M shows the increase in the field up to
BM

c2 = 20.8 T and a plateau above Bsat = 21.6 T. The anomaly
at BM

c1 = 1.7 T is also observed as shown in Fig. 2(d). As
shown in the inset of Fig. 2(a), each magnetization curve is

normalized using the g value of 2.04 for the in-plane field
direction and 2.44 for interplane field direction, which is
comparable to the previous study [27]. Above Bsat, normalized
magnetizations (2/g)M show almost 1, suggesting that the
polarized paramagnetic (PPM) state is realized.

Figures 3 show the magnetization as a function of fields
in Ba2CuGe2O7 at several temperatures. We investigated the
evolution of anomalies with temperature changes. As the tem-
perature is raised, the anomaly at BM

c2 shifts to a lower field
and the hysteresis loop opens for both field directions of [110]
and [001]. The saturation field Bsat shifts to higher fields
with increasing temperatures for both B//[110] and B//[001].
Here, Bsat was determined from the field down-sweep

s
s

FIG. 2. (a) Magnetization curve M in Ba2CuGe2O7 at 1.3 K for
B//[001], B//[100], and B//[110]. The vertical arrows indicate char-
acteristic fields BM

c2 and Bsat . The inset in (a) shows the normalized
magnetization curves, (2/g)M, as a function of normalized magnetic
field, (2/g)B. (b) First derivative of M with respect to magnetic
field B for B//[001], B//[100], and B//[110] in the range of 18 to
30 T. The vertical arrows indicate transition fields BM

c2 and Bsat . The
data sets are shifted consecutively along the dM/dB axes for clarity.
(c) dM/dB for B//[110] in the range of 5 to 15 T. The vertical arrows
indicate transition fields BM

c1 for the field up-sweep and down-sweep.
The data sets are shifted consecutively along the dM/dB axes for
clarity. (d) M for B//[001] below 3 T. The vertical arrow indicates
transition field BM

c1.

125129-3



R. KURIHARA et al. PHYSICAL REVIEW B 109, 125129 (2024)

FIG. 3. Magnetization curve M in Ba2CuGe2O7 at several tem-
peratures for (a) B//[110] and (b) B//[001]. The vertical arrows
indicate the characteristic fields BM

c1, BM
c2, and Bsat . Up-arrows (down-

arrows) for BM
c1 and BM

c2 indicate the anomaly for field up-sweep
(down-sweep). The data sets are shifted consecutively along the M
axes for clarity.

process because of the gradual change in M for the up-sweep
process. The hysteresis behavior at BM

c1 appears below 4.0 K
for both B//[110] and B//[001]. The difference of BM

c1 for
B//[001] between the field up-sweep and field down-sweep
is smaller than that for B//[110]. Above 10 K, the loop closes
for B//[110]. BM

c2 also shifts to a lower field with increasing
temperatures. In addition, the bend in M at BM

c2 becomes more
gradual, and hysteresis behavior becomes more pronounced.
In the magnetization curve for B//[110] at 4.2 K, the shape
for the field down-sweep seems to be similar to the M at 1.3 K
while the shape of M for the field up-sweep can be similar
to that at 5 K. We deduce that the hysteresis behavior around
Bc2 and Bsat originates from temperature changes in the sam-
ple caused by magnetocaloric effects under quasi-adiabatic
conditions [28–30]. The magnetocaloric effect can lead to a
lower sample temperature during the field down-sweep pro-
cess compared to the field up-sweep process.

As shown above, we observed several anomalies in the
magnetization curves. In particular, the observation of spin
saturation plays a key role in understanding the multiferroic
mechanism in Ba2CuGe2O7. In the following Sec. III B, we
discuss the magnetic phase diagram and the origin of anoma-
lies.

B. Phase diagram

To compare the characteristic anomalies to those of the
previous reports, we summarized several characteristic fields
of Ba2CuGe2O7 in the temperature-magnetic field phase di-
agram in Fig. 4. For B//[110], the phase boundary below
10 T seems to be consistent with the previous reports [see
Fig. 4(a)] [9,31]. Thus we conclude that the anomaly at BM

c1
originates from the transition of the incommensurate spiral to
the commensurate one. The saturation field Bsat is our new
observations. Bsat seems to be almost independent of temper-
atures. We also observed BM

c2 obtained from the peak structure
of dM/dB. BM

c2 decreases with increasing temperatures.

PPM PPM

commensurate spiral

incommensurate spiral incommensurate spiral

PM PM

commensurate spiral

FIG. 4. Temperature-field phase diagram of Ba2CuGe2O7 for
(a) B//[110] and (b) B//[001]. The spin saturation field Bsat de-
termined by the magnetization is shown by the filled red triangles.
The characteristic field BM

c1 (BP
c1) determined by the magnetization

(polarization) measurements is indicated by filled red (blue) squares
for field up-seep and open red (blue) squares for down-sweep,
respectively. The characteristic field BM

c2 (BP
c2) determined by the

magnetization (polarization) measurements is indicated by filled
red (blue) circles for field up-seep and open red (blue) circles for
down-sweep, respectively. The filled black triangles and filled gray
triangles show transition fields in Refs. [31] and [9]. The background
colors are the guide to distinguish each phase.

For B//[001], the low-field phase boundary seems to be
consistent with the previous results [see Fig. 4(b)] [14,31].
Thus BM

c1 for B//[001] can correspond to the boundary of the
incommensurate spiral to the commensurate one. In contrast,
the AF cone state [31] is hardly visible in our high-field
measurements. We also observed the anomaly at BM

c2 and Bsat

for B/[001]. Bsat increases with increasing temperature while
BM

c2 decreases. Our magnetization measurements confirmed
the phase boundary between the incommensurate spiral to
the commensurate one. We observed the difference in Bc1

between the field up-sweep and down-sweep processes.
As shown in the phase diagram, our results in low fields are

consistent with those in the previous studies [9,31]. In addition
to the previous studies, we demonstrate that the polarized
paramagnetic state can be realized above Bsat.

C. Field-induced electric polarization

To investigate the multiferroicity above the spin satura-
tion regions, we measured the polarization in high fields.
Figure 5 shows the magnetic field dependence of the elec-
tric polarization ΔPc in Ba2CuGe2O7 for B//[110] at 1.4 K.
We also exhibits the first derivative of ΔPc with respect to
B, d (ΔPc)/dB, in the inset of Fig. 5. We observed several
anomalies in the magnetization. ΔPc and d (ΔPc)/dB exhibit
the anomalies at BP

c1 = 9.3 T for field up-sweep and 7.2 T for
down-sweep. The anomaly BP

c1 corresponds to the transition
field of the incommensurate spiral to the commensurate one.
The hysteresis behavior around Bc1 can be attributed to the
field-induced magnetic structure change (see Appendix B).
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FIG. 5. Magnetic field dependence of the electric polarization
ΔPc in Ba2CuGe2O7 at 1.4 K for B//[110]. The down arrows in-
dicate the characteristic transition fields BP

c1 and BP
c2 determined by

Pc and Bsat by M. The inset shows d (ΔPc )/dB.

For further increasing fields, ΔPc shows the anomaly at BP
c2 =

25.7 T (26.4 T) for field up-sweep (down-sweep). BP
c2 in ΔPc

is consistent with BM
c2 in the magnetization for B//[110].

Above the saturation field Bsat, ΔPc increases in the field up
to 56 T.

To investigate the temperature dependence of these anoma-
lies and the deviation of ΔPc from 1.4 K, we also measured
the magnetic-field dependence of ΔPc in Ba2CuGe2O7 at sev-
eral temperatures (see Fig. 6). As the temperature is raised,
BP

c1 shifts to lower fields and the hysteresis loop closes. BP
c2

also shifts to a lower field with increasing temperatures. In
addition, the hump-shaped anomaly around BP

c2 disappears
and hysteresis behavior becomes more pronounced. Above
3.8 K, the anomaly at BP

c1 is hardly visible in the polarization
measurements. The hysteresis loop in high fields closes above
30 K. We added BP

c1 and BP
c2 appeared in Pc to the phase

diagram (see Fig. 4). These characteristic fields are consistent
with those in M.

Despite the spin saturation above Bsat, our polarization
measurements revealed that the polarization Pc showed still
increase in the fields, indicating another mechanism of
multiferroicity in Ba2CuGe2O7. Therefore we focused on
the cross-correlation described as Pz ∝ Oxy to understand
the quantum states that carry the mechanism of the field-
dependent electric polarization above Bsat.

D. Elastic constants in high fields

To investigate the cross-correlation between the electric
dipole and electric quadrupole, we measured elastic constants
in Ba2CuGe2O7. Figure 7 shows the magnetic-field depen-
dence of the relative elastic constants ΔCi j/Ci j at 1.4 and
4.2 K for B//[110]. In the AFM phase at 1.4 K, we observed
the elastic softening with increasing fields and characteristic
anomalies. At 1.4 K, the longitudinal elastic constants C11

FIG. 6. Magnetic-field dependence of the electric polarization
ΔPc in Ba2CuGe2O7 at several temperatures for B//[110]. The ver-
tical arrows indicate the characteristic fields BP

c1 and BP
c2 determined

by Pc and Bsat by M. In particular, up-arrows (down-arrows) for BP
c1

and BP
c2 indicate the anomaly for field up-sweep (down-sweep). The

data sets are shifted consecutively along the ΔPc axes for clarity.

in Fig. 7(a) and CL[110] = (C11 + C12 + 2C66)/2 in Fig. 7(b)
with the in-plane-type ultrasonic propagating direction show
softening with the increase in the field up to around BM(P)

c2
accompanying hysteresis loop. With the further application
of the fields, each elastic constant shows a rapid increase
with the bending point around Bsat, then elastic constants
exhibit slight softening up to 60 T. In contrast to the C11

and CL[110], the longitudinal elastic constant C33 with the
inter-plane-type ultrasonic propagating direction in Fig. 7(c)
shows hardening with the increase in the fields accompanying
the anomaly at around Bsat. The transverse elastic constant
C44 with inter-plane-type ultrasonic propagation in Fig. 7(d)
shows a steplike anomaly around Bsat while the field depen-
dence can be almost field independent. The transverse elastic
constants CT = (C11 − C12)/2 in Fig. 7(e) and C66 in Fig. 7(f)
show softening with the increasig fields up to Bsat. With the
further application of the fields, each elastic constant shows
slight softening up to 60 T. We could not observe the elastic
anomaly at BM(P)

c1 in all elastic constants within our exper-
imental resolution, suggesting that the contribution of the
magnetoelastic coupling around BM(P)

c1 is small. To study the
contribution of the magnetoelastic coupling to the transition
of the incommensurate spiral to the commensurate one, we
need high-precision ultrasonic measurements.
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FIG. 7. Magnetic-field dependence of the relative elastic con-
stants ΔCi j/Ci j = [Ci j (B) − Ci j (B = 0)]/Ci j (B = 0) of longitudinal
elastic constants (a) C11, (b) CL[110], and (c) C33 and transverse
elastic constants (d) C44, (e) CT = (C11 − C12)/2, and (f) C66 in
Ba2CuGe2O7 at 1.4 and 4.2 K for B//[110]. The ultrasonic propa-
gation direction q and polarization direction ξ are listed. The solid
(dotted) lines indicate the elastic constant for the field-upsweep
(down-dweep) process. The dashed lines in each panel indicate BM(P)

c2

and Bsat determined by the magnetization curve.

At 4.2 K, each elastic constant shows a similar field depen-
dence to that at 1.4 K except around 27 T, where the anomaly
appears. Below 20 T and above 30 T, the field dependence of
each elastic constant is almost the same as that at 4.2 K. The
anomaly in C11 and CL[110] changes from a rapid increase to
a gradual slope. C33 can be almost temperature independent.
The steplike anomaly of C44 shifts to the lower field side. The
anomaly in CT and C66 changes from the bendinglike form to
a gradual slope.

We also observed elastic softening above Bsat indicating
the electric quadrupole response. This fact demonstrates that
the quantum states in high fields provide the finite diagonal

elements of multipole matrices and the expectation value of
multipoles.

E. Discussions

We observed the spin saturation above Bsat and the char-
acteristic anomaly at BM(P)

c2 in Ba2CuGe2O7 for B//[110].
Around Bsat and BM(P)

c2 , both the polarization and the elastic
constants show step-wise change. We discuss the origin of
this step-wise anomaly in terms of the thermodynamic rela-
tion between magnetization and elastic constants. Figure 8
shows the magnetic-field dependence of the relative elastic
constants, the subtracted polarization ΔP′

c, and the first deriva-
tive of the magnetization with respect to magnetic fields,
dM/dB. Using the linear slope f (T) of ΔPc above 40 T, we
calculated ΔP′

c as f (T) − ΔPc to demonstrate the step-wise
change in the electric polarization. The form of the step-wise
anomaly in ΔC11/C11, ΔCL[110]/CL[110], and ΔPc seems to
be reproduced by −dM/dB, suggesting that the elastic con-
stants and the electric polarization are proportional to dM/dB
around the spin saturation fields. In the low-dimensional spin
magnetic compound NH4CuCl3, experimental studies have
proposed that the elastic anomaly is proportional to dM/dB
around the magnetization plateaus [32]. A theoretical study
has confirmed ΔC/C ∝ dM/dB based on the Ehrenfest rela-
tion, albeit under special circumstances [33]. Since ΔP′

c can
also be proportional to dM/dB around Bsat, we deduce that
this Ehrenfest relation is applicable to polarization. Therefore
we conclude that the steplike behavior in the elastic constants
and the polarization originates from the spin saturation of M in
Ba2CuGe2O7. As shown in Fig. 7, the little steplike anomaly
in C44 can also be attributed to dM/dB.

In contrast, our experimental results suggest that the
alternative mechanism of the FIEP can be realized in
Ba2CuGe2O7. As shown in Fig. 2, the spin saturation for
B//[110] above Bsat suggests that magnetic moments can
be aligned parallel to the magnetic field direction. Since the
electric dipole Pz is proportional to the square of magnetic
moments in the spin-dependent d-p hybridization model, the
polarization should be independent of fields in the spin satura-
tion regions. However, the polarization for B//[110] increases
in the fields above Bsat. This fact indicates that the quantum
states describing the polarization still depend on the magnetic
fields in the saturation magnetic moment region. In addition,
our ultrasonic measurements revealed the response of electric
quadrupole in magnetic fields. Therefore we need to consider
new quantum states and the mechanism of the FIEP accompa-
nying the elastic response in magnetic fields.

To describe another possible multiferroic mechanism, we
focus on active electric multipoles based on the point group
D2d . The irrep of elastic constants and polarization provides
information on possible quantum states in terms of group
theory. As shown in Table II, the transverse elastic constant
C44 with the irrep E reflects the response of the electric
quadrupoles Oyz and Ozx because the ultrasonic waves for
C44 induces the strains εyz and εzx. The monotonic hardening
of C44 with increasing fields indicates that the contribution
of the quadrupole-strain coupling between Oyz (Ozx) and εyz

(εzx) to elasticity is negligibly small. The elastic softening
of CT with the irrep B1 originates from the coupling of the
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s
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FIG. 8. Magnetic-field dependence of the relative elastic con-
stants (a) C11 and (b) CL[110], (c) the electric polarization ΔP′

c, and
(d) the first derivative of the magnetization with respect to magnetic
fields −dM/dB for the field down-sweep process in Ba2CuGe2O7.
dM/dB is calculated after applying binominal smoothing to M. The
horizontal broken lines indicating the field-independent factor are
shown in (a)–(c) as guides for the eyes. The horizontal broken line
in panel (d) represents the zero line of dM/dB indicating saturation
magnetization. The vertical broken lines indicate Bsat . Because the
bend in dM/dB becomes gradual due to the smoothing, Bsat may
appear different compared to dM/dB before smoothing in Fig. 2(b).

quadrupole Ox2−y2 with the strain εx2−y2 . The softening of C66

with the irrep B2 is attributed to the Oxy and εxy. The elastic
constant C11 is measured by the longitudinal ultrasonic waves
inducing the strain εxx (εyy). As listed in Table III, since εxx

(εyy) includes εx2−y2 , the softening of C11 originates from the
coupling of Ox2−y2 to εx2−y2 because little contribution of the
coupling between OB (O3z2−r2 ) and εB (ε3z2−r2 ) with the irrep
A1 is indicated by the hardening of C33. This fact for the
interplane-type strain ε3z2−r2 is in contrast to magnetostric-
tion around the spin saturation in Ba2FeSi2O7 [34]. Also, the

TABLE III. Longitudinal strains, that of reduction by the sym-
metry strains, and decomposition for the point group D2d .

Strain Reduction Decomposition

εxx εB/3 − εu/(2
√

3) + εx2−y2/
√

2 2A1 ⊕ B1

εyy εB/3 − εu/(2
√

3) − εx2−y2/
√

2 2A1 ⊕ B1

εL[110] εB/3 − εu/(2
√

3) + √
2εxy 2A1 ⊕ B2

εzz εB/3 + εu/
√

3 2A1

elastic softening of CL[110] is attributed to the coupling of Oxy

to εxy. In addition to the elastic constants, the increase of
polarization Pc indicates the response of the electric dipole
Pz with the irrep B2. Thus our experiments suggest that the
active multipoles in high fields are the electric dipole Pz with
the irrep B2 and the electric quadrupoles Ox2−y2 with B1 and
Oxy with B2.

Since the above group-theoretical analysis is based on the
global coordinates of the crystal lattice, we should discuss the
active multipoles for the local coordinates. Considering the
tilting of CuO4 tetrahedra, we deduce that both the response
of the electric quadrupole Ox2−y2 with the irrep B1 and Oxy

with B2 for the global coordinates originate from the response
of an electric quadrupole OXY with B2 for the local coordi-
nates. As a result of this response, the elastic softening of
CT with the irrep B1 for the global coordinates is induced by
the elastic softening of C66 with the irrep B2 for the local
coordinates. The response of the electric dipole Pz for the
global coordinates is the same as that for the local coordinates
because the z component is invariant for the tilting of CuO4

tetrahedra around the c-axis. Therefore we conclude that the
active multipoles are Pz and OXY with the irrep B2 of the point
group D2d .

Focusing on the active representation B2 obtained by the
group-theoretical analysis, we can describe the free energy
based on the Landau phenomenological theory for the D2d

point group. Considering the basis functions with the irrep
A1 in Table I, the conjugate fields and electric multipoles in
Table II, and the product table of the D2d point group in
Table IV, we can describe the free energy F composed of
the minimal elements as a function of the electric dipole Pz,
the electric quadrupole OXY , the strain εXY , the electric field
Ez, and the in-plane magnetic field (BX , BY , 0) for the local

TABLE IV. Product table of the point group D2d calculated by
the characters in Table I. The basis functions of the irreps A1, A2, B1,
B2, and E are z2 and xyz, lz, x2 − y2, z and xy, and {x, y}, {yz, zx},
{lx, ly}, and {Bx, By}, respectively.

D2d A1 A2 B1 B2 E

A1 A1 A2 B1 B2 E
A2 A2 A1 B2 B1 E
B1 B1 B2 A1 A2 E
B2 B2 B1 A2 A1 E
E E E E E A1 ⊕ A2 ⊕ B1 ⊕ B2
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coordinate as below:

F = 1
2αzP

2
z + 1

2αXY O2
XY + 1

2C′0
66ε

2
XY

− gzPzEz − gXY OXY εXY − μZ(lX BX + lY BY )

− αA1 PzOXY − gA1 PzBX BY . (1)

Here, αz, αXY , C′0
66, gz, gXY , μZ, αA1 , and gA1 are the coeffi-

cients. The terms from the first to the sixth on the right-hand
side in Eq. (1) indicate the conventional terms incorporated
in the free energy. While the angular momentums lx and ly
are bases of the irrep E , we include the Zeeman effect for
the in-plane magnetic fields as the seventh term. Although
the eighth and ninth terms are constructed from the products
of the basis functions with different properties under spatial
inversion, each is also invariant for the symmetry operations
of D2d . We emphasize that the eighth term can be the char-
acteristic term describing the cross-correlation between the
electric dipole and electric quadrupole. We can also expect
field-induced electric polarization because the contribution of
the tenth term is allowed under the D2d . Based on the character
table of Table I, we can also include other terms, such as the
sum of the possible permutations of lX OY Z , lY OZX , lX lY Pz, and
PX BX − PY BY , in the free energy of Eq. (1). However, the con-
tributions of OY Z and OZX with the irrep E can be negligible
because the elastic hardening of C44 indicates no-contribution
of Oyz and Ozx. We also deduce that (lX lY + lY lX )Pz is in-
cluded in the eighth term of αA1 PzOXY because lX lY + lY lX
is equivalent to OXY in terms of the Stevens’ operator [35].
Since PX BX − PY BY is not constructed by the electric dipole
Pz with the irrep B2, we do not include this term in the free
energy.

Based on the free energy of Eq. (1), we can qualitatively
describe the cross-correlation between Pz and OXY and the
FIEP and elastic softening. From the equilibrium conditions,
denoted by ∂F/∂Pz = 0 and ∂F/∂OXY = 0, the following
relationships are obtained:

Pz = 1

αz
(gzEz + αA1 OXY + gA1 BX BY ), (2)

OXY = 1

αXY
(αA1 Pz + gXY εXY ). (3)

These results indicate the cross-correlation between the elec-
tric dipole Pz and the electric quadrupole Oxy. In addition, we
can describe Pz and OXY as a function of Ez, εXY , and (BX , BY )
as (

Pz

OXY

)
= gz

αzαXY − α2
A1

(
αXY

αA1

)
Ez

+ gXY

αzαXY − α2
A1

(
αA1

αz

)
εXY

+ gA1

αzαXY − α2
A1

(
αXY

αA1

)
BX BY . (4)

This result indicates the FIEP and elastic softening and piezo-
electric. However, we cannot explain the microscopic origin
of the multipoles and the mechanism of the FIEP and elastic
softening. Therefore we discuss the possible quantum states
so as not to contradict our group-theoretical analysis.

Since Pz and OXY with the irrep B2 can be the active mul-
tipoles, the direct product of the irrep of the quantum states
should contain the decomposition of B2(u)(Pz ) ⊕ B2(g)(Oxy).
Here, we use the irrep with the extra suffix g (gerade) and
u (un-gerade) to distinguish between even and odd parity. As
shown in Table IV, the irrep of candidate orbitals constracting
the quantum states is E . This result indicates that the quantum
states are formed by the yz and zx orbitals of Cu-3d electrons
and x and y orbitals of O-2p electrons. Furthermore, because
the spatial inversion property of these electric multipoles is
different from each other as listed in Table II, we should
describe parity-hybridized wave functions. This fact indicates
that the hybridization between yz and x, zx and y, and xy and z
orbitals can play a key role in the quantum states. The possibil-
ity of d-p hybridization as an origin of such parity-hybridized
states is indicated by the basis function of xyz with the irrep
A1 of D2d .

In addition to the multipole effects, we should consider the
magnetic field effects to describe the quantum states. Since the
AFM ordering has been observed in Ba2CuGe2O7, the spin
degrees of freedom can be necessary to describe the quantum
states. Thus we consider the spin-orbit coupling. Furthermore,
we deduce that the field dependence of the electric multipole
response is dominated by the Zeeman effect for the orbital part
of the high-field quantum states because the FIEP and elastic
softening appear above Bsat. Therefore we focus on the angu-
lar momentum operators lX and lY for the local coordinates
with the irrep E of the D2d point group for the in-plane mag-
netic field direction. To take into account the Zeeman effect,
the direct product of the irrep of the quantum states should
contain the irrep E . This fact indicates that the quantum states
should contain E and B2 orbitals (see Table IV). We would
like to mention that if the magnetic field is applied along the
c axis, lz with the irrep A2 contributes to the Zeeman effect.
Then, we consider the tilting crystal structure of CuO4 tetra-
hedra. In our measurements, the magnetic field was applied
along the [110] direction for the global coordinates. Thus,
based on the tilting angle ±κ of CuO4 tetrahedra, we should
calculate the high-field quantum states and the magnetic field
dependence of the multipole response.

In the above discussions, we assumed that the crystal sym-
metry and the point group remained conserved above Bsat.
Before delving into the analysis of quantum states, it is neces-
sary to evaluate the validity of this assumption. Below Bsat, we
also observed the FIEP and elastic softening, indicating that
the crystal symmetry breaking characterized by the irrep B2

was already induced by the magnetic field. Due to the crystal
symmetry breaking, the symmetry lowering of the point group
from D2d to C2 can be realized above Bsat. Furthermore, the
field-independent behavior of the electric polarization and the
transverse elastic constants are expected above Bsat. However,
this contradicts our experimental results. Hence, it can be
reasonably assumed that the group-theoretical analysis based
on D2d is approximately applicable above Bsat.

Based on the above discussions, we describe the quan-
tum states based on the Cu-3d and O-2p orbitals with the
d-p hybridization, the spin-orbit coupling, and the Zeeman
effect, whose contributions are indicated by our group-
theoretical analysis. We show several theoretical studies of
the wave functions in high fields, the electric multipole
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FIG. 9. (a) Energy scheme of the quantum state for the crystalline electric field HCEF with D2d point group symmetry, d-p hybridization
HCEF + Hd−p, and spin-orbit coupling HCEF + Hd−p + HSO. The red (blue) broken lines indicate the 3d-orbital (2p-orbital) contributions for
d-p hybridized states. The black broken lines exhibit the contributions of d-p hybridized states to the spin-orbit coupled states. The green
broken line indicates the origin of the energy (0 eV). Zeeman splitting of the spin-orbit coupled states (b) ψ3±

SO , (c)ψ2±
SO , and (d)ψ1±

SO . The solid
(dashed) lines indicate the energy of the quantum state at the A (B) site.

susceptibility, and group theoretical analysis in the following
Sec. IV.

IV. QUANTUM STATES IN HIGH FIELDS AND ELECTRIC
MULTIPOLE SUSCEPTIBILITY

A. Wave functions and field dependence of eigenenergies

In this section, we discuss the origin of the electric dipole
and the electric quadrupole in Ba2CuGe2O7 to calculate
quantum states based on the crystalline electric field (CEF)
HCEF, the d-p hybridization Hd−p, the spin-orbit coupling
HSO, and the Zeeman effect HZeeman. Taking into account
the electric dipole-electric field interaction HL

DE (electric
quadrupole-strain interaction HL

QS), we calculate the electric
dipole (electric quadrupole) susceptibility for the local coor-
dinate. Furthermore, we discuss the possible contribution of
intersite quadrupole interaction HG

QQ to the high-field quan-
tum states. Therefore total Hamiltonian Htotal is described as
below:

Htotal = H0 + Hext + HG
QQ, (5)

H0 = HCEF + Hd−p + HSO + HZeeman, (6)

Hext = HL
DE + HL

QS. (7)

Based on this Hamiltonian, we demonstrate that the orbital
part of the wave functions, in addition to the spins, contributes
to the field-induced multiferroicity.

At first, we describe the wave functions of Cu-3d electrons
and the molecular orbitals constructed by the 2p electrons
of O4 tetrahedra. In Ba2CuGe2O7, Cu ions are centered at
O4 tetrahedron with the point group symmetry D2d . Thus,

considering the CEF for Cu-3d electrons described as [23]

HCEF = A0
2

(
3z2 − r2

2r2

)
+ A0

4

(
35z4 − 30z2r2 + 3r4

8r4

)

+ A4
4

(√
35

8

x4 − 6x2y2 + y4

r4

)
, (8)

we obtain doubly degenerate 3d orbitals yz and zx and an
excited singlet orbital xy as shown in Fig. 9(a). Here, A0

2, A0
4,

and A4
4 denote the CEF parameters. The wave functions of yz,

zx, and xy orbitals and the relationship between the energy
levels and the CEF parameters are written in Appendix C.
Based on the previous studies in the åkermanite-type com-
pound [20], we set the energy levels of xy and degenerate yz
and zx orbitals to 0.1 and −0.7 eV, respectively [see Fig. 9(a)].
We deduce that 3z2 − r2 and x2 − y2 orbitals of 3d electrons
do not contribute to the polarization and elasticity because
they exist deep in the energy levels [12]. The 2p orbitals on O4

tetrahedra are also transformed by the symmetry operations
of D2d . As shown in Appendix D, a group theoretical analysis
provides eight molecular orbitals consisting of x and y orbitals
of O-2p electrons. We ignore the molecular orbitals consisting
of z orbital of 2p electrons because z orbital with the irrep B2

does not carry Pz, Ox2−y2 , and Oxy (see Table IV). Considering
the previous studies in the åkermanite-type compound [20],
we set the energy level of degenerate x and y orbitals to
−4.5 eV. As we will discuss late, our calculations using these
values can reproduce the electronic structure near the Fermi
level proposed in the previous study [12].

We stress that the electric dipole and electric quadrupole
degrees of freedom are attributed to the 3d-yz and zx and 2p-x
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and y orbitals with the irrep E . The matrix elements of the
electric dipole and electric quadrupoles for the yz, zx, and xy
orbitals of 3d electrons and the x and y orbitals of 2p electrons
are described as

Ox2−y2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

yz zx xy x y

−
√

2
7 r2

d 0 0 0 0

0
√

2
7 r2

d 0 0 0

0 0 0 0 0

0 0 0
√

2
5 r2

p 0

0 0 0 0 −
√

2
5 r2

p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (9)

Oxy =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√

2
7 r2

d 0 0 0
√

2
7 r2

d 0 0 0 0

0 0 0 0 0

0 0 0 0
√

2
5 r2

p

0 0 0
√

2
5 r2

p 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (10)

Pz =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 p

0 0 0 p 0

0 0 0 0 0

0 p 0 0 0

p 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

Here, we set r2
d = ∫∞

0 dr[r f3d (r)]2 and r2
p = ∫∞

0 dr[r f2p(r)]2

for the convenience. p in Pz of Eq. (11) indicates the radial
integration of the wave functions for the 3d-yz and zx and
2p-x and y orbitals. Using the matrices of Eqs. (9)–(11),
we can describe the matrices of these electric multipoles for
the molecular orbitals with the irrep E [see Eqs. (D2)–(D4)
in Appendix D]. This matrix analysis is consistent with the
group-theoretical analysis (see Table IV).

The group-theoretical analysis also indicates the contri-
butions of the spin-orbit coupling and the Zeemam effect
for the quantum states in CuO4 clusters. yz and zx orbitals
with the irrep E and xy orbital with the irrep B2 carry the
angular momentums lx and ly with the irrep E to reduce
(E ⊕ B2) ⊗ (E ⊕ B2) (see Table IV). The matrix elements of
lx and ly are written as

lx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 i 0 0

0 −i 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (12)

ly =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −i 0 0

0 0 0 0 0

i 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13)

Therefore both the spin-orbit coupling proportional to lxsx +
lysy and the Zeeman effect for B//[110] including lx and ly
cause the orbital mixing in quantum states.

To obtain the finite expectation value of the electric dipole
Pz, we consider the parity hybridization between the Cu-3d
and O-2p orbitals. The hybridization between 3d orbitals of
Cu ions and the 2p molecular orbitals of O4 clusters is de-
scribed by the following Hamiltonian [20]:

Hd−p =
∑

l ′

∑
l

∑
σ,σ ′

tl ′,l,σ,σ ′ (p†
l ′,σ ′dl,σ + h.c.). (14)

Here, l = yz, zx, xy and l ′ = x, y are the indices of the 3d-
and 2p-electron orbitals, σ and σ ′ =↑,↓ are the indices of
spin, tl,l ′,σ,σ ′ is a transfer energy between Cu-3d and O-2p
electrons [36], dl,σ and d†

l,σ are an annihilation operator and

a creation operator of 3d electrons, and pl ′,σ ′ and p†
l ′,σ ′ are an

annihilation operator and a creation operator of 2p electrons,
respectively. We used tx,yz = −0.73 eV, tx,xy = −0.53 eV, and
tx,zx = −0.41 eV to estimate the energy scheme (see Ap-
pendix D). We obtain eleven d-p hybridized states and that
of eigenenergies to diagonalize HCEF + Hd−p shown in Ap-
pendix D. The energy scheme and the irrep of hybridized
states are depicted in Fig. 9(a). The energy levels of ψ3,
ψ4, and ψ7 can reproduce the electronic structure around the
Fermi level in the previous study [12]. As shown in Table. V,
the higher-level hybridized states ψ3 and ψ4 with the irrep E
and ψ7 with B2 are mainly contributed by 3d orbitals. The
difference of the energy levels between ψ3 and ψ4 states and
ψ7 state is attributed to the energy scheme of yz, zx, and xy
orbitals for HCEF. In contrast, the low-energy states ψ5 and
ψ6 with E and ψ8 with B2 are mainly constructed by the 2p
orbitals. The other five states consist of the 2p orbitals.

We emphasize that the multipoles are active for the d-p
hybridized states. As shown in Eqs. (D26)–(D28) in Ap-
pendix D, ψ3 and ψ4 states with the irrep E provide the
multipole matrices with nonzero elements. This result is also
confirmed in terms of the group theoretical analysis for the ψ3

and ψ4 states that are constructed by yz and zx orbitals with the
irrep E(g) and x and y orbitals with the irrep E(u) because the
decomposition of the direct product of (E(g) ⊕ E(u) ) ⊗ (E(g) ⊕
E(u) ) includes B1(u)(Pz ) ⊕ B1(g)(Ox2−y2 ) ⊕ B2(g)(Oxy). We also
stress that both the matrix Pz and Oxy are proportional to
the z component of Pauli matrix, σz [see Eqs. (D27)–(D29)].
Therefore we can conclude that Pz is proportional to Oxy in a
zero field.

We also need to reproduce the magnetic-field dependence
of the polarization and elastic constants as experimentally
observed. Thus we introduce the spin-orbit coupling of Cu-3d
electrons written as

HSO = λSO(l · s). (15)
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TABLE V. Coefficients of ψyz, ψzx , ψE (1+), ψE (1−), ψE (2+), ψE (2−), ψxy, and ψB2 that constitute the wave function ψi (i = 3 − 8).

ψyz ψzx ψE (1+) ψE (1−) ψE (2+) ψE (2−) ψxy ψB2

ψ3 −0.66 −0.66 0.31 0 0.17 0 0 0
ψ4 −0.66 0.66 0 0.31 0 0.17 0 0
ψ5 0.25 0.25 0 0.82 0 0.46 0 0
ψ6 0.25 −0.25 0.82 0.46 0 0 0
ψ7 0 0 0 0 0 0 −0.96 0.29
ψ8 0 0 0 0 0 0 −0.29 −0.96

Here, λSO is the coupling constant for 3d electrons, l =
(lx, ly, lz ) is the vector form of the azimuthal angular momen-
tums, and s = (sx, sy, sz ) is the vector form of spin angular
momentums. We used λSO = −0.1 eV for calculations [37].
Using the d-p hybridized states of H = HCEF + Hd−p, the
matrix elements of H + HSO are written in Appendix E. Diag-
onalizing H + HSO, we obtain the wave functions describing
the spin-dependent quantum states. The energy scheme of
each state is illustrated in Fig. 9(a). As shown in Tables VI,
ψ1+

SO (ψ1−
SO ) consists of ψ3,↑ and ψ4,↑ (ψ3,↓ and ψ4,↓). ψ2+

SO
(ψ2−

SO ) is dominated by the contribution of ψ3,↑ and ψ4,↑ (ψ3,↓
and ψ4,↓) rather than ψ7,↓ (ψ7,↑). In contrast, ψ3+

SO (ψ3−
SO ) is

mainly constructed by ψ7,↓ (ψ7,↑). We also show that the
low-energy states ψ1±

SO consist of the 3d-yz and zx orbitals
and the molecular orbitals with the irrep E (see Table X in
Appendix E). The ψ2±

SO states contain the xy and the molecular
orbital with the irrep B2 in addition to these E orbitals. In con-
trast, the high-energy states ψ3±

SO consist of these B2 orbitals
orbitals. We deduce that the reason why the ψ1+

SO states have
the lowest energy is attributed to the energy scheme of yz, zx,
and xy orbitals for HCEF.

Each degenerate state formed by HSO may seem to carry
the electric multipole degrees of freedom in terms of the
contribution of ψ3,↑(3,↓) and ψ4,↑(4,↓), however, the diagonal
elements are absent because ψ1±

SO , ψ2±
SO , and ψ3±

SO are each
Kramers doublet. From a different perspective, the diagonal
elements of the multipole matrices become zero because the
absolute values of the coefficients of ψ3,↑(3,↓) and ψ4,↑(4,↓)

that constitute these three states are equal. On the other hand,
as shown in Eqs. (E28)–(E30) in Appendix E, ψ3,↑(3,↓) and
ψ4,↑(4,↓) in these states bring about the off-diagonal elements
between these states. This fact indicates that mixing between
these three states provides multipole contributions to polariza-
tion and elasticity in fields. Therefore we focus on the Zeeman

effect described below:

HZeeman = −μB(l + 2s) · B. (16)

Here, μB is the Bohr magneton and B = (Bx, By, Bz ) is the
vector form of magnetic fields. We show the matrix of H +
HSO + HZeeman in Appendix F. Diagonalizing HSO + HZeeman

for the d-p hybridized wave functions, we obtain the field
dependence of the eigenenergies for the magnetic fields
along the crystallographic orientation of [110] as shown in
Figs. 9(b)–9(d). The energy levels depend on magnetic fields,
but no level crossings or hybridized gaps are observed below
60 T, suggesting that such anomalous states cannot be the
origin of multipole response in high fields.

To discuss the origin of the multipole response, for in-
stance, we show the coefficients of the wave functions at 50 T
for A site (see Table VII). The proportion of ψ3,↑ (ψ4,↓) in the
lowest energy state ψ1+′

SO (second-lowest energy state ψ1−′
SO ) in

Fig. 9(d) increases with the applied fields. Due to this imbal-
ance of the proportion of ψ3,↑(3,↓) and ψ4,↑(4,↓), the diagonal
elements of the multipole matrices become nonzero value
(see Table XI in Appendix F). In other words, the quantum
states in high fields obtain the multipole degrees of freedom.
Such imbalance of the proportion of ψ3,↑(3,↓) and ψ4,↑(4,↓)

causes the field-induced proportion change of the 3d-yz and
zx orbitals and 2p-x and y orbitals.

To confirm the field-induced proportion change, we calcu-
lated the field-dependence of the difference in the coefficients
of the wave functions, which was denoted by Δn (see Fig. 10).
In zero magnetic fields, the values of |Δn| for ψyz and ψzx,
ψE (1+) and ψE (1−), and ψE (2+) and ψE (2−) are zero. On the
other hand, |Δn| for each wave function show finite val-
ues, indicating that magnetic fields induce an anisotropic
charge distribution breaking spatial inversion and rotational

TABLE VI. Coefficients of ψ3,↑, ψ4,↑, ψ7,↓, ψ3,↓, ψ4,↓, and ψ7,↑ that constitute the wave function ψ i±
SO (i = 1 − 3) at a zero magnetic field.

ψ3,↑ ψ4,↑ ψ7,↓ ψ3,↓ ψ4,↓ ψ7,↑

ψ1+
SO −0.71 0.71i 0 0 0 0

ψ1−
SO 0 0 0 −0.71 −0.71i 0

ψ2+
SO −0.50 + 0.50i −0.50 − 0.50i −0.11 0 0 0

ψ2−
SO 0 0 0 −0.50 − 0.50i −0.50 + 0.50i 0.11

ψ3+
SO −0.05 + 0.05i −0.05 − 0.05i 0.99 0 0 0

ψ3−
SO 0 0 0 0.05 + 0.05i 0.05 − 0.05i 0.99
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TABLE VII. Coefficients of ψ3,↑, ψ4,↑, ψ7,↓, ψ3,↓, ψ4,↓, and ψ7,↑ that constitute the wave function ψ i±′
SO (i = 1 − 3) at 50 T for A site.

ψ3,↑ ψ4,↑ ψ7,↓ ψ3,↓ ψ4,↓ ψ7,↑

ψ1+′
SO 0.39 + 0.33i 0.26 − 0.42i −0.01 −0.31 − 0.40i −0.34 − 0.35i −0.01

ψ1−′
SO 0.42 + 0.26i 0.33 − 0.39i 0.01 0.35 − 0.34i 0.40 − 0.31i −0.01

ψ2+′
SO −0.23 + 0.44i −0.47 − 0.16i −0.07 + 0.03i 0.38 + 0.32i 0.38 − 0.33i −0.08

ψ2−′
SO −0.16 + 0.47i −0.44 − 0.23i −0.07 + 0.03i −0.33 − 0.38i −0.33 + 0.38i 0.01

ψ3+′
SO −0.02 + 0.05i −0.05 − 0.02i 0.65 − 0.26i 0.04 + 0.04i 0.04 − 0.04i 0.70

ψ3−′
SO 0.02 − 0.05i 0.05 + 0.02i −0.65 + 0.26i 0.04 + 0.04i 0.04 − 0.04i 0.70

operations of the D2d point group. This anisotropy of charge
distribution can be the microscopic origin of the electric
dipole and quadrupoles in high fields.

B. Electric multipole susceptibility without intersite interaction

Here, we show the field dependence of the multipole sus-
ceptibility of Pz, Ox2−y2 , and Oxy and the thermal average of
Pz without intersite interaction. Our analysis can explain the
field-induced electric polarization and elastic softening.

To describe multipole properties, we focus on the charac-
teristic crystal structure of Ba2CuGe2O7. We need to identify
CuO4 on the corner (A site) and the center (B site) of the
crystal shown in Fig. 1(a). Relationship between the crys-
tallographic coordinate r = (x, y, z) and the local coordinate
RA = (XA,YA, ZA) for A sites is described as

RA = R(κ )r. (17)

Here, κ is a tilting angle of CuO4 tetrahedron at A sites and
R(κ ) is described as

R(κ ) =

⎛
⎜⎜⎝

cos κ − sin κ 0

sin κ cos κ 0

0 0 1

⎞
⎟⎟⎠. (18)

Relation between r and RB = (XB,YB, ZB) for B sites is also
described as

RB = R(−κ )r (19)

FIG. 10. Magnetic-field dependence of the difference in the coef-
ficients of the wave functions ψyz,↑, ψzx↑, ψE (1+)↑, ψE (1−)↑, ψE (2+)↑,
and ψE (2−)↑ that constitute the lowest-energy states ψ1+

SO . The solid
(broken) lines indicate the Δn at A site (B site).

As shown in Eqs. (17) and (19), z component is invariant for
this tilting structure.

Due to the relation of Eqs. (17) and (19), the multipoles
in local coordinates are also described by those of the global
coordinates. The electric quadrupoles Oi

X 2−Y 2 and Oi
XY and

electric dipole Pi
Z on the local sites i = (A, B) are written by a

vector-type coordinate of multipoles O(r) = (Ox2−y2 , Oxy, Pz )
for the global coordination and O(Ri ) = (Oi

X 2−Y 2 , Oi
XY , Pi

Z )
for the local coordinates as

O(RA) = R(2κ )O(r), (20)

O(RB) = R(−2κ )O(r). (21)

Here, the quadrupoles for each coordinate are defined as fol-
lows:

Ox2−y2 = 1√
2

x2 − y2

r2
, (22)

Oxy =
√

2
xy

r2
, (23)

Oi
X 2−Y 2 = 1√

2

X 2
i − Y 2

i

R2
i

, (24)

Oi
XY =

√
2

XiYi

R2
i

. (25)

These quadrupoles for the local coordinates are written by
the linear combination of Ox2−y2 and Oxy. Because the z
component is invariant for the in-plane tilting of CuO4, the
electric dipole Pz is also invariant for the rotational operation
R(±2κ ). We stress that Ox2−y2 with the irrep B1 for the global
coordinates includes Oi

XY with B2 for the local coordinates.
To describe the electric quadrupole and dipole susceptibil-

ity, we also need to consider the quadrupole-strain interaction
and the dipole-electric field interaction for both local and
global coordinates. The rotational transformation of Eqs. (17)
and (19) provides the strains for local coordinate (see Ap-
pendix G). The strains εi

X 2−Y 2 and εi
XY and electric field Ez

for the local coordinates are written by the global coordinate
as

ε(RA) = R(2κ )ε(r), (26)

ε(RB) = R(−2κ )ε(r). (27)

Here, ε(r) = (εx2−y2 , εxy, Ez ) and ε(Ri ) = (εi
X 2−X 2 , ε

i
XY , Ei

Z )
are the vector-type coordinates of external fields for the global
and local coordinates, respectively. Thus each strain for the
local coordinates is written by the linear combination of εx2−y2
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and εxy. The electric field Ez is invariant for the rotational
operation R(±2κ ).

As discussed above, we obtained the multipoles and ex-
ternal fields for local coordinates. Thus the quadrupole-strain
interaction for the local coordinates,

HL
QS = −

∑
i=A,B

∑
�=X 2−Y 2,XY

g�Oi
�εi

� (28)

also depends on Ox2−y2 , Oxy, εx2−y2 , and εxy as written in
Eqs. (G2) and (G3) (see Appendix G). The partition function
for electric quadrupoles for the site i is described as

Zi
(
εi

X 2−Y 2 , ε
i
XY , T, B

) =
∑

�=X 2−Y 2,XY

∑
l

exp

[
−Ei

l

(
εi
�, B
)

kBT

]
.

(29)

Here, Ei
l (εi

�, B) is the second perturbation energy for the
quantum state l in the magnetic fields B at i site of CuO4

clusters based on HL
QS described below:

Ei
l

(
εi
�, B
) = Ei

l

(
εi
� = 0, B

)− 〈l, B|HL
QS|l, B〉

+
∑
l ′( =l )

〈l, B|HL
QS|l ′, B〉〈l ′, B|HL

QS|l, B〉
Ei

l

(
εi
� = 0, B

)− Ei
l ′
(
εi
� = 0, B

) . (30)

Here, Ei
l (εi

� = 0, B) is the eigen energy of the nonpurturba-
tion Hamiltonian, HCEF + Hd−p + HSO + HZeeman. Consider-
ing the free energy of quadrupoles for the local sites,

F = Flattice + Felectronic

=
∑

�

1

2
C0

�ε2
� −

∑
i

NikBT ln Zi
(
εi

X 2−Y 2 , ε
i
XY , T, B

)
, (31)

which include the elastic part Flattice for the global strain ε�

and electronic part Felectronic, we show that the elastic constants
are written as

C66(T, B) = ∂2F

∂ε2
xy

= C0
66 − N

{
g2

XY

[
χA

XY (T, B) + χB
XY (T, B)

]
cos2 2κ

+ g2
X 2−Y 2

[
χA

X 2−Y 2 (T, B) + χB
X 2−Y 2 (T, B)

]
sin2 2κ

− gXY gX 2−Y 2

kBT

(〈
OA

XY (T, B)
〉〈

OA
X 2−Y 2 (T, B)

〉
− 〈OB

XY (T, B)
〉〈

OB
X 2−Y 2 (T, B)

〉)
sin 4κ

}
, (32)

CT(T, B) = ∂2F

∂ε2
x2−y2

= C0
T − N

{
g2

XY

[
χA

XY (T, B) + χB
XY (T, B)

]
sin2 2κ

+ g2
X 2−Y 2

[
χA

X 2−Y 2 (T, B) + χB
X 2−Y 2 (T, B)

]
cos2 2κ

− gXY gX 2−Y 2

kBT

(−〈OA
XY (T, B)

〉〈
OA

X 2−Y 2 (T, B)
〉

+ 〈OB
XY (T, B)

〉〈
OB

X 2−Y 2 (T, B)
〉)

sin 4κ

}
. (33)

Here, N is half the number of CuO4 clus-
ters in the unit cell and 〈Oi

� (T, B)〉 denotes the
thermal average for the Boltzmann statistics as∑

l〈l, B|Oi
�|l, B〉 exp[−Ei

l (εi
�, B)/kBT ]/Zi(εi

X 2−Y 2 , ε
i
XY , T,

B)|εi
�→0. To calculate C66 and CT, we used the trans-

formation of the derivative with respect to the strains
in Eqs. (G4) and (G5) (see Appendix G). Because
〈OA

XY (T, B)〉〈OA
X 2−Y 2 (T, B)〉 − 〈OB

XY (T, B)〉〈OB
X 2−Y 2 (T, B)〉 in

Eqs. (32) and (33) is on the oder of 10−6 K−1 at 60 T, we
ignore this term. χ i

� (T, B) is the susceptibility of quadrupole
O� at i site described below:

−g2
�χ i

� (T, B) =
〈

∂2El
(
εi

X 2−Y 2 , ε
i
XY , B

)
∂εi2

�

∣∣∣∣∣
εi
�→0

〉

− 1

kBT

{〈⎛⎝∂El
(
εi

X 2−Y 2 , ε
i
XY , B

)
∂εi

�

∣∣∣∣∣
εi
�→0

⎞
⎠

2〉

−
〈

∂El
(
εi

X 2−Y 2 , ε
i
XY , B

)
∂εi

�

∣∣∣∣∣
εi
�→0

〉2}
. (34)

We also describe the electric dipole susceptibility. The
electric dipole-electric field interaction for the local coordi-
nates is written as

HL
DE = −

∑
i=A,B

gzP
i
z E i

z . (35)

The partition function for electric dipole for the site i is de-
scribed as

Zi
(
Ei

z, T, B
) =

∑
l

exp

[
−Ei

l

(
Ei

z, B
)

kBT

]
. (36)

Considering the second perturbation energy of Eq. (30) for
HDE and the free energy for the electric dipole,

F = −
∑

i

NikBT ln Zi
(
Ei

z, T, B
)
, (37)

we can describe the thermal average of the electric dipole Pz

for the Boltzmann statistics as below:

〈
Pi

z (T, B)
〉 =

∑
l〈l, B|Pi

z |l, B〉 exp
[−Ei

l

(
Ei

z, B
)
/kBT

]
Zi
(
Ei

z, T, B
) ∣∣∣∣

Ei
z→0

.

(38)

Here, Ei
l (Ei

z, B) is the second perturbation energy for HL
DE.

The susceptibility of Pz is written as

−g2
zχ

i
z (T, B) =

〈
∂2El

(
Ei

z, B
)

∂Ei2
z

∣∣∣∣
Ei

z→0

〉

− 1

kBT

{〈(
∂El
(
Ei

z, B
)

∂Ei
z

∣∣∣∣
Ei

z→0

)2〉

−
〈

∂El
(
Ei

z, B
)

∂Ei
z

∣∣∣∣
Ei

z→0

〉2}
. (39)

Our calculations demonstrate that the multipoles are ac-
tive for the quantum states in high fields. We show the field
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FIG. 11. (a) Magnetic-field dependence of the electric multipole
susceptibility at A and B sites of CuO4 clusters at 1.4 K. The solid
(broken) lines indicate the susceptibilities at the A site (B site).
(b) Magnetic-field dependence of the thermal average of the electric
dipole Pz for the Boltzmann statistics divided by p in Eq. (11) at
1.4 K. The dashed (broken) lines indicate the thermal average at the
A site (B site). The solid line shows the sum of the thermal averages
for the A and B sites.

dependence of multipole susceptibility for A and B sites at
1.4 K [see Fig. 11(a)]. These susceptibilities of the electric
dipole Pz and the electric quadrupoles OX 2−Y 2 and OXY for
the local coordinates demonstrate the increase in the fields.
Furthermore, we show that the thermal average of the electric
dipole denoted by 〈Pz〉 for A site (B site) at 1.4 K exhibits the
increase (decrease) in the fields. The sum of 〈Pz〉 also shows
the increase in the field. These results are qualitatively con-
sistent with the field-induced electric polarization and elastic
softening in Ba2CuGe2O7.

Using these susceptibilities and expectation values, we an-
alyzed our experimental results. Figure 12 shows the results of
the analysis. The FIEP above Bsat is described by P0

c + P1
c ×

B + p × 〈Pz〉 where P0
c is the constant, P1

c is the coefficient of
the first-order term of B, and p is the matrix element of Pz in
Eq. (11). We obtaind P0

c = 2.8 μC/m2, P1
c = 0.80 μC/m2 ·

T, and p = 4.0 × 103 μC/m2. Furthermore, the transverse
elastic constants CT and C66 above Bsat are described by
Eqs. (32) and (33). We obtained C0

T = 3.3664 × 1010 J/m3,
C0

66 = 3.3563 × 1010 J/m3, gX 2−Y 2 = 0 K, and gXY = 1.9 K.
This result indicates that the elastic softening of C66 is at-
tributed to the electric quadrupole OXY with the irrep B2g

for the local coordinates. The softening of CT originates
from the response of OXY and the tilting crystal structure of
CuO4 tetrahedra. Since p and gXY are attributed to the radial

FIG. 12. Analytical results of the field dependence of (a) the
electric polarization ΔPc and (b) the elastic constant CT and (c) C66.
The black lines indicate the fit of each physical quantity above Bsat .

integration of the wave functions, estimated values can reflect
the spatial extent of these wave functions (see Appendix E.)
We stress that this field-induced phenomenon is attributed to
the proportion change of the 3d-yz and zx orbitals and 2p-x
and y orbitals in the fields.

While our model successfully provides a qualitative expla-
nation of the experimental results, several aspects could be
further improved. One is the field dependence of 〈Pz〉. Our
experimental and analytical results of FIEP show the contri-
bution of B-linear term in addition to our calculated 〈Pz〉. For
quantitative explanations, it may be necessary to incorporate
other interactions such as dipole-dipole and spin interactions
to calculate the quantum state in high fields. Another is the
qualitative explanation of g value. The models with the CEF,
the d-p hybridization, and the spin-orbit coupling provide
a qualitative description of the anisotropy of magnetization.
Based on these wave functions and energy schemes, we can
estimate an effective g value [38,39] for the [110] ([001])
crystallographic orientation to be 2.13 (2). While we can
explain the enhancement of the g value greater than 2 for
the in-plane field direction, there is room for improvement to
reproduce our experimental result of g = 2.44. By adjusting
the energy levels of each orbital under the CEF as follows:
εdB2 = 0.1 eV, εdE = −0.25 eV, and εpE = −2.5 eV, we can
reproduce g ∼ 2.44. We can also reproduce the g value by
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increasing the magnitude of the d-p hybridization. However,
the energy levels of the hybridized orbitals calculated from
these parameters are narrower compared to the previous study
[12]. Another approach to reproduce g = 2.44 is to enhance
the strength of the spin-orbit coupling from λSO = −0.1 eV to
−0.35 eV. Nevertheless, such an enhancement cannot be con-
sidered realistic since the magnitude of the spin-orbit coupling
is determined by the atomic orbitals. Therefore we deduce that
other interactions, such as magnetic and anisotropic exchange
interactions, contribute to the observed magnetic anisotropy
in Ba2CuGe2O7. Although a quantitative explanation for the
energy levels cannot be achieved, it is possible to provide a
quantitative explanation for the multipole degrees of freedom
originating from the quantum states in Fig. 9(a).

C. Possible contribution of intersite interaction
to multipole susceptibility

In addition to the quadrupole-strain interaction,
quadrupole-quadrupole interaction is also needed for
the quadrupole susceptibility. The quadrupole-quadrupole
interaction for the global coordinate is written as

HG
QQ = −

∑
i∈A, j∈B

∑
�=x2−y2,xy

Gi j
� Oi

�O j
�. (40)

Here, Gi j
� is an interaction coefficient. If we define the

quadrupole-quadrupole interaction for local coordinates using
the interaction coefficient Gi j

�′ as

HL
QQ = −

∑
i∈A, j∈B

∑
�′=X 2−Y 2,XY

Gi j
�′Oi

�′O
j
�′ , (41)

HG
QQ is decomposed as below:

HG
QQ = HL

QQ + Hcross. (42)

Here, Hcross is additional Hamiltonian, which is similar to the
DM interaction described as

Hcross = −
∑

i∈A, j∈B

Gi j
cross

(
Oi

X 2−Y 2 O j
XY − Oi

XY O j
X 2−Y 2

)

= −
∑

i∈A, j∈B

Gi j
cross[O(Ri ) × O(R j )]z. (43)

The interaction coefficients Gi j
X 2−Y 2 , Gi j

XY , and Gi j
cross are de-

scribed as

Gi j
X 2−Y 2 = Gi j

x2−y2 cos2 2κ − Gi j
xy sin2 2κ, (44)

Gi j
XY = −Gi j

x2−y2 sin2 2κ + Gi j
xy cos2 2κ, (45)

Gi j
cross = −(Gi j

x2−y2 + Gi j
xy

)
sin 4κ. (46)

Hcross originates from the tilting crystal structure. The addi-
tional term of the dipole-dipole interaction for Pz does not
appear because Pz is invariant for the rotational operation
R(κ ). Considering the tilting angle κ in Ba2CuGe2O7, we
deduce that sin 4κ in Gi j

cross is not negligible. Therefore, if the
sum of the interaction coefficients, Gi j

x2−y2 + Gi j
xy, has a finite

value, we should take Hcross into account for calculating the
multipole susceptibility.

We could calculate the quantum states and the quadrupole
susceptibility with Hcross, however, it is hard to obtain an-
alytical results. We desire the theoretical calculations of
the elastic constants and the polarization with the inter-
site quadrupole-quadrupole interaction in Eq. (42) and the
DM-like quadrupole-quadrupole interaction in Eq. (43). Con-
sidering these interactions may provide a more quantitative
explanation of the experimental results. Although we ignore
magnetic interactions for calculations, we believe that our
calculations successfully demonstrate the importance of the
orbital contributions to the field-induced multiferroicity. Tak-
ing into account the magnetic interactions, our model can also
explain the FIEP and elastic softening below Bsat.

V. CONCLUSION

We investigated magnetization, polarization, and elas-
tic constants in Ba2CuGe2O7 under high-magnetic fields to
elucidate the contribution of electric dipoles and electric
quadrupoles to the multiferroicity. Above the spin saturation
fields, we found that the electric polarization Pc exhibited in-
creasing up to 56 T and the elastic constants showed softening
with the increase in the fields up to 60 T. Our theoretical
calculation revealed that orbital degrees of freedom of O-2p
and Cu-3d electrons can play a key role in the multiferroicity
between the electric polarization and elastic constants in high-
magnetic fields. This characteristic phenomenon originates
from the crystalline electric field, d-p hybridization between
Cu-3d and O-2p electrons, and the spin-orbit coupling of 3d
electrons. Cross-correlation between the electric dipole Pz and
the electric quadrupole Oxy satisfying Pz ∝ Oxy can be another
possible multiferroic mechanism in such quantum systems.
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APPENDIX A: SYMMETRY OPERATIONS OF THE D2d

POINT GROUP FOR SEVERAL BASIS FUNCTIONS

We show the representation matrices of the symmetry op-
erations of the D2d point group for several basis functions in
Table VIII. Considering the transformation of basis functions,
we can reproduce the character table of Table I.

APPENDIX B: FIELD-SWEEP DEPENDENCE OF THE
ANOMALY AROUND Bc1

In this section, we discuss the origin of the hysteresis
behavior around Bc1 appearing in the magnetization and polar-
ization. Figure 13 shows the magnetic-field dependence of the
electric polarization ΔPc in Ba2CuGe2O7 at several temper-
atures measured at several sweep rates of magnetic fields. In
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TABLE VIII. Representation matrix of the symmetry operation of the point group D2d for the polar bases x, y, and z, quadratic bases yz,
zx, and xy, the axial bases lx , ly, and lz, and the producted bases. The lines drawn within the matrix are used to distinguish between the block
matrices of the two- and one-dimensional representations.

Basis E IC4 IC−1
4 C2 Cy

2 Cx
2 σ

y
d σ x

d⎛
⎜⎝

x

y

z

⎞
⎟⎠

⎛
⎜⎝

1 0 0
0 1 0

0 0 1

⎞
⎟⎠

⎛
⎜⎜⎝

0 1 0

1 0 0

0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 1 0

1 0 0

0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 1 0

1 0 0

0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 1 0

1 0 0

0 0 1

⎞
⎟⎟⎠

⎛
⎜⎝

yz

zx

xy

⎞
⎟⎠

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 1 0

1 0 0

0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 1 0

1 0 0

0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 1 0

1 0 0

0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 1 0

1 0 0

0 0 1

⎞
⎟⎟⎠

⎛
⎜⎝

lx

ly

lz

⎞
⎟⎠

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 1 0

1 0 0

0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 1 0

1 0 0

0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 1 0

1 0 0

0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 1 0

1 0 0

0 0 1

⎞
⎟⎟⎠

high-field measurements using the pulsed magnet, the sweep
time of the magnetic field is kept constant while varying the
maximum value of the magnetic field (see the inset of Fig. 13).
As a result, a higher maximum magnetic field corresponds to
a faster sweep rate of magnetic fields. In these measurements,
the hysteresis behavior around BP

c1 seems to be independent
of the sweep rate of magnetic fields. If the hysteresis behavior
is due to temperature changes induced by the magnetic fields,
we can expect that Bc1 depends on the time for the temperature
to relax. In other words, Bc1 can depend on the sweep rate of
the magnetic fields. Therefore we concluded that the origin
of this hysteresis behavior is attributed to the field-induced
magnetic structure change from the incommensurate spiral to
the commensurate one.

FIG. 13. Magnetic-field dependence of the electric polarization
ΔPc in Ba2CuGe2O7 at several temperatures for B//[110] measured
at several sweep rates of magnetic fields. The data sets are shifted
consecutively along the ΔPc axes for clarity. The inset shows the
time dependence of magnetic fields.

APPENDIX C: WAVE FUNCTIONS OF Cu − 3d AND O − 2p
ELECTRONS AND CEF PARAMETERS

We show the wave functions describing Cu-3d electrons
and O-2p electrons as follows:

ψyz(r) =
√

15

4π
f3d (r)

yz

r2
, (C1)

ψzx(r) =
√

15

4π
f3d (r)

zx

r2
, (C2)

ψxy(r) =
√

15

4π
f3d (r)

xy

r2
, (C3)

ψx(r) =
√

3

4π
f2p(r)

x

r
, (C4)

ψy(r) =
√

3

4π
f2p(r)

y

r
. (C5)

Here, f3d (r) and f2d (r) are radial distribution functions for 3d
and 2p electrons, respectively. Based on the wave functions
of 3d electrons, we can describe the relationship between the
energy levels εE (εB2 ) for the yz and zx (xy) orbitals and the
CEF parameters A0

2 A0
4 and A4

4 in Eq. (8) as below:

εE = 1

7
A0

2 − 4

21
A0

4, (C6)

εB2 = −2

7
A0

2 + 4

21
A0

4 −
√

35

21
A4

4. (C7)

APPENDIX D: MOLECULAR ORBITALS OF CuO4

TETRAHEDRA

In this section, we describe the molecular orbitals of CuO4

tetrahedra consisting of Cu-3d and O-2p electrons. At first, we
describe the molecular orbitals of O4 tetrahedron consisting of
O-2p electrons. We consider the O-2p orbitals (pi

x, pi
y, pi

z ) at
the Oi for i = 1, 2, 3, 4. The symmetry transformations of the
point group D2d for these orbitals are summarized in Table IX.
The characters χ (R) in Table IX leads the decomposi-
tion 2A1 ⊕ A2 ⊕ B1 ⊕ 2B2 ⊕ 3E . Considering the projection
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TABLE IX. Transformations of the O-2p orbitals (pi
x, pi

y, pi
z ) at Oi (i = 1, 2, 3, 4) by the eight operations R (= E , C2, Cy

2 , Cx
2 , IC4, IC−1

4 ,

σ
y
d , σ x

d ) of the point group D2d and the characters χ (R).

R p1
x p2

x p3
x p4

x p1
y p2

y p3
y p4

y p1
z p2

z p3
z p4

z χ (R)

E p1
x p2

x p3
x p4

x p1
y p2

y p3
y p4

y p1
z p2

z p3
z p4

z 12

IC4 −p4
y −p1

y −p2
y −p3

y p4
x p1

x p2
x p3

x −p4
z −p1

z −p2
z −p3

z 0

IC−1
4 p2

y p3
y p4

y p1
y −p2

x −p3
x −p4

x −p1
x −p2

z −p3
z −p4

z −p1
z 0

C2 −p3
x −p4

x p1
x −p2

y −p3
y −p4

y −p1
y −p2

y p3
z p4

z p1
z p2

z 0

Cy
2 −p2

x −p1
x −p4

x −p3
x p2

y p1
y p4

y p3
y −p2

z −p1
z −p4

z −p3
z 0

Cx
2 p4

x p3
x p2

x p1
x −p4

y −p3
y −p2

y −p1
y −p4

z −p3
z −p2

z −p1
z 0

σ
y
d −p3

y −p2
y −p1

y −p4
y −p3

x −p2
x −p1

x −p4
x p3

z p2
z p1

z p4
z 2

σ x
d p1

y p4
y p3

y p2
y p1

x p4
x p3

x p2
x p1

z p4
z p3

z p2
z 2

operators for the irrep � of D2d , we obtain the twelve molec-
ular orbitals of O4 tetrahedron. Because 2p-z orbital does not
contribute to the response of the electric multipoles with the

irreps B1 and B2, we focus on the eight molecular orbitals
consisting of x and y orbitals described as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψA1 (r1, r2, r3, r4)

ψA2 (r1, r2, r3, r4)

ψB1 (r1, r2, r3, r4)

ψB2 (r1, r2, r3, r4)

ψE(1+) (r1, r2, r3, r4)

ψE(1−) (r1, r2, r3, r4)

ψE(2+) (r1, r2, r3, r4)

ψE(2−) (r1, r2, r3, r4)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1

2
√

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 −1 1 −1 −1 1 −1

1 −1 1 1 −1 1 −1 −1

1 −1 −1 −1 −1 1 1 1

1 1 1 −1 −1 −1 −1 1

1 1 1 1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 1 1 −1 −1

−1 1 1 −1 −1 1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψx(r1)

ψy(r1)

ψx(r2)

ψy(r2)

ψx(r3)

ψy(r3)

ψx(r4)

ψy(r4)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D1)

We stress that the molecular orbitals with the irrep E in Eq. (D1) and 3d-yz and zx orbitals with the irrep E provide the finite
value of the matrix elements of the electric multipoles described as follows:

Ox2−y2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψyz ψzx ψE (1+) ψE (1−) ψE (2+) ψE (2−)

−√
2/7r2

d 0 0 0 0 0

0
√

2/7r2
d 0 0 0 0

0 0
√

2/5r2
p 0 0 0

0 0 0 −√
2/5r2

p 0 0

0 0 0 0
√

2/5r2
p 0

0 0 0 0 0 −√
2/5r2

p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D2)

Oxy =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√

2/7r2
d 0 0 0 0

√
2/7r2

d 0 0 0 0 0

0 0 0
√

2/5r2
p 0 0

0 0
√

2/5r2
p 0 0 0

0 0 0 0 0 −√
2/5r2

p

0 0 0 0 −√
2/5r2

p 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D3)
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Pz =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
√

2p −√
2p 0 0

0 0
√

2p
√

2p 0 0
√

2p
√

2p 0 0 0 0

−√
2p

√
2p 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D4)

The d-p hybridization between 3d-yz, zx, and xy orbitals and molecular orbitals in Eq. (D1) leads following matrix, HCEF + Hd−p,
as

HCEF + Hd−p

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψyz ψzx ψE (1+) ψE (1−) ψE (2+) ψE (2−) ψxy ψB2 ψA1 ψA2 ψB1

εdE 0
√

2tx,yz

√
2tx,yz

√
2tx,zx

√
2tx,zx 0 0 0 0 0

0 εdE

√
2tx,yz −√

2tx,yz

√
2tx,zx

√
2tx,zx 0 0 0 0 0

√
2tx,yz

√
2tx,yz εpE 0 0 0 0 0 0 0 0

√
2tx,yz −√

2tx,yz 0 εpE 0 0 0 0 0 0 0
√

2tx,zx

√
2tx,zx 0 0 εpE 0 0 0 0 0 0

√
2tx,zx −√

2tx,zx 0 0 0 εpE 0 0 0 0 0

0 0 0 0 0 0 εdB2 2
√

2tx,xy 0 0 0

0 0 0 0 0 0 2
√

2tx,xy εpB2 0 0 0

0 0 0 0 0 0 0 0 εpA1 0 0

0 0 0 0 0 0 0 0 0 εpA2 0

0 0 0 0 0 0 0 0 0 0 εpB1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D5)

Here, the diagonal elements εd� and εp� are the eigenenergies of CEF states, respectively. tx,yz, tx,zx, and tx,xy in the matrix of
Eq. (D5) are the transfer energy between 2p orbitals and 3d orbitals written as [36]

tx,yz = s2c(
√

3Vpdσ − 2Vpdπ ), (D6)

tx,zx = s2c(
√

3Vpdσ − 2Vpdπ ) + cVpdπ , (D7)

tx,xy = s3(
√

3Vpdσ − 2Vpdπ ) + sVpdπ . (D8)

Here, s = sin(κ0 + δθ )/
√

2, c = cos(κ0 + δθ ), and cos2 κ0 = 1/3 are the structural parameters describing the distortion of CuO4

tetrahedra. sin(κ0 + δθ ) = 0.880 and cos(κ0 + δθ ) = 0.474 are estimated by the structural parameters in Ba2CuGe2O7 [13]. We
used Vpdσ = −1.5 eV and Vpdπ = −0.45Vpdσ [40,41] in Eqs. (D6)–(D8) to estimate the energy scheme. Diagonalizing the matrix
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of Eq. (D5), we obtains the eigenenergies as

HCEF + Hd−p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7 ψ8 ψA1 ψA2 ψB1

εpE

εpE

ε+
E

ε+
E

ε−
E

ε−
E

ε+
B2

ε−
B2

εpA1

εpA2

εpB1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D9)

Here, zeros in the off-diagonal elements are omitted for simplicity. The eigenenergies are described as follows:

ε±
E = εdE + εpE

2
± δεE , (D10)

δεE =
√(

�εE

2

)2

+ 4[(tx,yz )2 + (tx,zx )2], (D11)

�εE = εpE − εdE , (D12)

ε±
B2

= εdB2 + εpB2

2
± δεB2 , (D13)

δεB2 =
√(

�εB2

2

)2

+ 8(tx,xy)2, (D14)

�εB2 = εpB2 − εdB2 . (D15)

Thus the energy of six orbitals is shifted due to Hd−p. The eigenfunctions describing CuO4 molecular orbitals and those
coefficients are written as

ψ1(r1, r2, r3, r4) = tx,zx√
(tx,yz )2 + (tx,zx )2

ψE (1+)(r1, r2, r3, r4) − tx,yz√
(tx,yz )2 + (tx,zx )2

ψE (2+)(r1, r2, r3, r4), (D16)

ψ2 = tx,zx√
(tx,yz )2 + (tx,zx )2

ψE (1−) − tx,yz√
(tx,yz )2 + (tx,zx )2

ψE (2−), (D17)

ψ3 = 1

2Cε+
E

(
�εE

2
− δεE

)
ψyz + 1

2Cε+
E

(
�εE

2
− δεE

)
ψzx −

√
2tx,yz

Cε+
E

ψE (1+) −
√

2tx,zx

Cε+
E

ψE (2+), (D18)

ψ4 = 1

2Cε+
E

(
�εE

2
− δεE

)
ψyz − 1

2Cε+
E

(
�εE

2
− δεE

)
ψzx −

√
2tx,yz

Cε+
E

ψE (1−) −
√

2tx,zx

Cε+
E

ψE (2−), (D19)

ψ5 = 1

2Cε−
E

(
�εE

2
+ δεE

)
ψyz + 1

2Cε−
E

(
�εE

2
+ δεE

)
ψzx −

√
2tx,yz

Cε−
E

ψE (1+) −
√

2tx,zx

Cε−
E

ψE (2+), (D20)

ψ6 = 1

2Cε−
E

(
�εE

2
+ δεE

)
ψyz − 1

2Cε−
E

(
�εE

2
+ δεE

)
ψzx −

√
2tx,yz

Cε−
E

ψE (1−) −
√

2tx,zx

Cε−
E

ψE (2−), (D21)

ψ7 = 1

CεB2

(
�εB2

2
− δεB2

)
ψxy − 2

√
2tx,xy

CεB2

ψB2 , (D22)

ψ8 = 2
√

2tx,xy

CεB2

ψxy + 1

CεB2

(
�εB2

2
− δεB2

)
ψB2 , (D23)
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Cε±
E

=
√

1

2

(
�εE

2
∓ δεE

)2

+
√

2(tx,yz )2 +
√

2(tx,zx )2, (D24)

CεB2
=
√(

�εB2

2
− δεB2

)2

+ 8(tx,xy)2. (D25)

Here, (r1, r2, r3, r4) in Eqs. (D17)–(D25) is ommited for simplicity.
Considering these molecular orbitals with the irrep E , we can describe the matrices of multipoles as follows:

Ox2−y2 = C−2
ε+

E

⎛
⎜⎜⎜⎝

ψ3 ψ4

0
√

2
14 r2

d

(
�εE

2 − δεE
)2 + 2

√
2

5 r2
p

(
t2
x,yz − t2

x,zx

)
√

2
14 r2

d

(
�εE

2 − δεE
)2 + 2

√
2

5 r2
p

(
t2
x,yz − t2

x,zx

)
0

⎞
⎟⎟⎟⎠, (D26)

Oxy = C−2
ε+

E

⎛
⎝

√
2

14 r2
d

(
�εE

2 − δεE
)2 + 2

√
2

5 r2
p

(
t2
x,yz + t2

x,zx

)
0

0 −
√

2
14 r2

d

(
�εE

2 − δεE
)2 − 2

√
2

5 r2
p

(
t2
x,yz + t2

x,zx

)
⎞
⎠, (D27)

Pz = C−2
ε+

E

(−4ptx,yz
(

�εE
2 − δεE

)
0

0 4ptx,yz
(

�εE
2 − δεE

)
)

. (D28)

Using the z component of the Pauli matrix,

σz =
(

1 0

0 −1

)
, (D29)

we obtain the relations between the electric multipoles and the Paul matrix, Oxy ∝ σz and Pz ∝ σz. Therefore anomalous
elasticity as a result of electric quadrupoles in addition to the dipole responses is expected in the CuO4 molecular orbitals.
Because CuO4 tetrahedra are compressed along the c axis, the eigenenergies of the yz and zx orbitals for HCEF are lower than
that of the xy orbital. On the other hand, ψ3 and ψ4 wave functions are mainly constructed by yz and zx orbitals. We deduce that
these energy levels for HCEF can be the reason why the Hilbert space spanned by ψ3 and ψ4 becomes important both in zero and
high-magnetic fields.

APPENDIX E: SPIN-ORBIT COUPLING AND EIGENFUNCTIONS

In this section, we describe the spin-orbit coupling for the molecular orbitals. First, we write the matrix of spin-orbit coupling
for the yz, zx, and xy orbitals as

HSO = λSO

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψyz,↑ ψzx,↑ ψxy,↓ ψyz,↓ ψzx,↓ ψxy,↑
0 i −1 0 0 0

−i 0 i 0 0 0

−1 −i 0 0 0 0

0 0 0 0 −i 1

0 0 0 i 0 i

0 0 0 1 −i 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (E1)

Thus we can write the matrix of H (= HCEF + Hd−p) + HSO as below:

H + HSO =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ3,↑ ψ4,↑ ψ5,↑ ψ6,↑ ψ7,↓ ψ8,↓

ε+
E −iα+

E 0 −iβE ei 3π
4 γ + ei 3π

4 ρ+

iα+
E ε+

E iβE 0 e−i 3π
4 γ + e−i 3π

4 ρ+

0 −iβE ε−
E −iα−

E ei 3π
4 γ − ei 3π

4 ρ−

iβE 0 iα−
E ε−

E e−i 3π
4 γ − e−i 3π

4 ρ−

e−i 3π
4 γ + ei 3π

4 γ + e−i 3π
4 γ − ei 3π

4 γ − ε+
B2

0

e−i 3π
4 ρ+ ei 3π

4 ρ+ e−i 3π
4 ρ− ei 3π

4 ρ− 0 ε−
B2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊕ (c.c.). (E2)
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Here, we set matrix elements for the convenience as below:

α±
E = λSO

4
(
Cε±

E

)2
(

�εE

2
∓ δεE

)2

, (E3)

βE = λSO

4Cε+
E
Cε−

E

[(
�εE

2

)2

− δε2
E

]
, (E4)

γ ± = λSO

2
√

2Cε±
E
CεB2

(
�εE

2
∓ δεE

)(
�εB2

2
− δεB2

)
, (E5)

ρ± = λSO

Cε±
E
CεB2

(
�εE

2
∓ δεE

)
t1
x,xy. (E6)

We ignore ψ1 and ψ2 because of the absence of 3d orbitals in these wave functions. We deduce that the matrix elements between
the high-energy states of ψ3, ψ4, and ψ7 and low-energy states of ψ5, ψ6, and ψ8 are negligible because the spin-orbit coupling
constant λSO ∼ 0.1 eV is much smaller than the energy gap of ∼6 eV. Thus we can write H + HSO as following simple form:

H + HSO =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ3,↑ ψ4,↑ ψ7,↓ ψ5,↑ ψ6,↑ ψ8,↓

ε+
E −iα+

E ei 3π
4 γ + 0 0 0

iα+
E ε+

E e−i 3π
4 γ + 0 0 0

e−i 3π
4 γ + ei 3π

4 γ + ε+
B2

0 0 0

0 0 0 ε−
E −iα−

E ei 3π
4 ρ−

0 0 0 iα−
E ε−

E e−i 3π
4 ρ−

0 0 0 e−i 3π
4 ρ− ei 3π

4 ρ− ε−
B2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊕ (c.c.). (E7)

To diagonalize H + HSO, we obtain the eigenenergies and eigenstates described as follows:

H + HSO =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ1+
SO ψ1−

SO ψ2+
SO ψ2−

SO ψ3+
SO ψ3−

SO ψ4+
SO ψ4−

SO ψ5+
SO ψ5−

SO ψ6+
SO ψ6−

SO

ε1
SO

ε1
SO

ε2
SO

ε2
SO

ε3
SO

ε3
SO

ε4
SO

ε4
SO

ε5
SO

ε5
SO

ε6
SO

ε6
SO

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (E8)

ψ1+
SO = 1√

2
(−ψ3,↑ + iψ4,↑), (E9)

ψ2+
SO = 1

Cε2
SO

[
γ +(iψ3,↑ − ψ4,↑) + ei 3π

4

(
ε+

E − ε+
B2

+ α+
E

2
− δε+

SO

)
ψ7,↓

]
, (E10)

ψ3+
SO = 1

Cε3
SO

[
γ +(iψ3,↑ − ψ4,↑) + ei 3π

4

(
ε+

E − ε+
B2

+ α+
E

2
+ δε+

SO

)
ψ7,↓

]
, (E11)

ψ4+
SO = 1√

2
(ψ5,↑ − iψ6,↑), (E12)
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TABLE X. Norm of the coefficients of ψyz,↑, ψzx↑, ψE (1+)↑, ψE (1−)↑, ψE (2+)↑, ψE (2−)↑, ψxy↑, and ψB2↑ that constitute the wave function ψ i±
SO

(i = 1 − 3) at 0 T for A site.

ψyz,↑ ψzx,↑ ψE (1+),↑ ψE (1−),↑ ψE (2+),↑ ψE (2−),↑ ψxy,↑ ψB2,↑

ψ1+
SO 0.66 0.66 0.22 0.22 0.12 0.12 0 0

ψ1−
SO 0 0 0 0 0 0 0 0

ψ2+
SO 0.66 0.66 0.22 0.22 0.12 0.12 0 0

ψ2−
SO 0 0 0 0 0 0 0.10 0.03

ψ3+
SO 0.07 0.07 0.02 0.02 0.01 0.01 0 0

ψ3−
SO 0 0 0 0 0 0 0.95 0.29

ψ5+
SO = 1

Cε5
SO

[
ρ−(iψ5,↑ − ψ6,↑) + ei 3π

4

(
ε−

E − ε−
B2

+ α−
E

2
− δε−

SO

)
ψ8,↓

]
, (E13)

ψ6+
SO = 1

Cε6
SO

[
ρ−(iψ5,↑ − ψ6,↑) + ei 3π

4

(
ε−

E − ε−
B2

+ α−
E

2
+ δε−

SO

)
ψ8,↓

]
, (E14)

ψ
j−

SO = T ψ
j+

SO , (E15)

ε1
SO = ε+

E − α+
E , (E16)

ε2
SO = ε+

E + ε+
B2

+ α+
E

2
+ δε+

SO, (E17)

ε3
SO = ε+

E + ε+
B2

+ α+
E

2
− δε+

SO, (E18)

ε4
SO = ε−

E − α−
E , (E19)

ε5
SO = ε−

E + ε−
B2

+ α−
E

2
+ δε−

SO, (E20)

ε6
SO = ε−

E + ε−
B2

+ α−
E

2
− δε−

SO, (E21)

δε+
SO =

√√√√(ε+
E − ε+

B2
+ α+

E

2

)2

+ 2(γ +)2, (E22)

δε−
SO =

√√√√(ε−
E − ε−

B2
+ α−

E

2

)2

+ 2(ρ−)2, (E23)

Cε2
SO

=

√√√√2(γ +)2 +
(

ε+
E − ε+

B2
+ α+

E

2
− δε+

SO

)2

, (E24)

Cε3
SO

=

√√√√2(γ +)2 +
(

ε+
E − ε+

B2
+ α+

E

2
+ δε+

SO

)2

, (E25)

Cε5
SO

=

√√√√2(ρ−)2 +
(

ε−
E − ε−

B2
+ α−

E

2
− δε−

SO

)2

, (E26)

Cε6
SO

=

√√√√2(ρ−)2 +
(

ε−
E − ε−

B2
+ α−

E

2
+ δε−

SO

)2

. (E27)

Here, T indicates the time reversal operator. We omitted zero elements in this matrix for convenience. These wave functions are
also written by the yz, zx, and xy orbitals and the molecular orbitals. Taking into account the construction of the wave functions
ψ3, ψ4, and ψ7 in Table V, we show the norm of the coefficients of such wave functions (see Table X).
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For these states, we can calculate the matrix elements of Ox2−y2 , Oxy, and Pz as below:

Ox2−y2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ1+
SO ψ1−

SO ψ2+
SO ψ2−

SO ψ3+
SO ψ3−

SO

0 0 −0.15 + 0.18i 0 −0.02 + 0.02i 0

0 0 0 −0.15 − 0.18i 0 0.02 + 0.02i

−0.15 − 0.18i 0 0 0 0 0

0 −0.15 − 0.18i 0 0 0 0

−0.02 − 0.02i 0 0 0 0 0

0 0.02 − 0.02i 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (E28)

Oxy =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0.20 + 0.16i 0 0.02 + 0.02i 0

0 0 0 0.20 − 0.16i 0 −0.02 + 0.02i

0.20 − 0.16i 0 0 0 0 0

0 0.20 + 0.16i 0 0 0 0

0.02 − 0.02i 0 0 0 0 0

0 −0.02 − 0.02i 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (E29)

Pz =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 −0.31 − 0.25i 0 −0.03 − 0.03i 0

0 0 0 −0.31 + 0.25i 0 0.03 − 0.03i

−0.31 + 0.25i 0 0 0 0 0

0 −0.31 − 0.25i 0 0 0 0

−0.03 + 0.03i 0 0 0 0 0

0 0.03 + 0.03i 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (E30)

To simplify the calculations, we computed the matrix elements with r2
d = 1 and r2

p = 1. These real values are considered to be
incorporated into the experimentally determined p and gXY. These three states carry the off-diagonal elements, indicating that
the mixing of the wave functions by the Zeeman effect provides the multipole degrees of freedom.

APPENDIX F: QUANTUM STATES IN MAGNETIC FIELDS

Here, we consider the Zeeman effects for the spin-dependent quantum states. The Zeeman effect HZeeman = −μB(l + 2s) · B
for the in-plane magnetic field directions B = (B0 cos φ, B0 sin φ, 0) is written in the following form:

HZeeman = −μBB0(lx cos φ + ly sin φ) − 2μBB0
(
e−iφs+ + eiφs−

)
. (F1)

Here, s+ = sx + isy and s− = sx − isy are ladder operators. If the strong magnetic field is applied along the [110] direction,
we deduce that the point group symmetry lowers from D2d to D2. In the D2, both electric dipole Pz and electric quadrupole
Oxy belong to the irrep B1. Even if the point group symmetry shows indeed lowering, we can still expect the FIEP and elastic
softening. For the yz, zx, and xy orbitals of 3d electrons, the matrix of HZeeman is written as

Hd
Zeeman = −μBB0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψyz,↑ ψzx,↑ ψxy,↓ ψyz,↓ ψzx,↓ ψxy,↑
0 0 −i sin φ 2e−iφ 0 0

0 0 i cos φ 0 2e−iφ 0

i sin φ −i cos φ 0 0 0 2e−iφ

2eiφ 0 0 0 0 −i sin φ

0 2eiφ 0 0 0 i cos φ

0 0 2eiφ i sin φ −i cos φ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (F2)
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TABLE XI. Diagonal elements of the electric multipoles Ox2−y2 , Oxy, and Pz for the quantum states ψ1+′
SO , ψ1−′

SO , ψ2+′
SO , ψ2−′

SO , ψ3+′
SO , and ψ3−′

SO

at 50 T for A site.

ψ1+′
SO ψ1−′

SO ψ2+′
SO ψ2−′

SO ψ3+′
SO ψ3−′

SO

Ox2−y2 −3.20 × 10−2 3.17 × 10−2 3.32 × 10−2 −3.28 × 10−2 −5.10 × 10−5 5.00 × 10−5

Oxy 9.31 × 10−3 −9.25 × 10−3 −8.12 × 10−4 7.45 × 10−4 1.05 × 10−4 −0.96 × 10−4

Pz −1.43 × 10−2 1.42 × 10−2 1.25 × 10−3 −1.14 × 10−3 −1.61 × 10−4 1.47 × 10−4

The matrix of HZeeman for the x and y orbitals of 2p electrons is also written as

H p
Zeeman = −μBB0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψx,↑ ψy,↑ ψx,↓ ψy,↓
0 0 2e−iφ 0

0 0 0 2e−iφ

2eiφ 0 0 0

0 2eiφ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (F3)

Thus we obtain the matrix of H + HSO + HZeeman as follow:

H + HSO + HZeeman =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ3,↑ ψ4,↑ ψ7,↓ ψ3,↓ ψ4,↓ ψ7,↑

ε+
E −iα+

E ei 3π
4 γ + −2μBB0e−iφ 0 iμBB0gφ−

iα+
E ε+

E e−i 3π
4 γ + 0 −2μBB0e−iφ −iμBB0gφ+

e−i 3π
4 γ + ei 3π

4 γ + ε+
B2

−iμBB0gφ− iμBB0gφ+ −2μBB0e−iφ

−2μBB0eiφ 0 iμBB0gφ− ε+
E iα+

E −e−i 3π
4 γ +

0 −2μBB0eiφ −iμBB0gφ+ −iα+
E ε+

E −ei 3π
4 γ +

−iμBB0gφ− iμBB0gφ+ −2μBB0eiφ −ei 3π
4 γ + −e−i 3π

4 γ + ε+
B2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (F4)

Here, we set several matrix elements for the convenience as

g = 1

2Cε+
E
CεB2

(
�εE

2
∓ δεE

)(
�εB2

2
− δεB2

)
, (F5)

φ± = cos φ ± sin φ. (F6)

H + HSO + HZeeman is hard to diagonalize analytically. So, we obtain the eigenstates and eigenenergies to diagonalize this
Hamiltonian numerically by Julia language. The field dependence of eigenenergies for B//[110] is shown in Figs. 9(b)–9(d).
Based on these calculations, for example, we can describe the diagonal elements of these multipole matrices in a magnetic field
of 50 T at A site (see Table XI).

APPENDIX G: LOCAL AND GLOBAL COORDINATES OF STRAINS AND QUADRUPOLES

The strains for local coordinates are written by that for global coordinates as below:

⎛
⎜⎜⎜⎝

ε
A(B)
XX ε

A(B)
XY ε

A(B)
XZ

ε
A(B)
Y X ε

A(B)
YY ε

A(B)
Y Z

ε
A(B)
ZX ε

A(B)
ZY ε

A(B)
ZZ

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

εxx cos2 κ ∓ εxy sin 2κ + εyy sin2 κ εxy cos 2κ ± 1
2 (εxx − εyy) sin 2κ εzx cos κ ∓ εyz sin κ

εxy cos 2κ ± 1
2 (εxx − εyy) sin 2κ εxx cos2 κ ± εxy sin 2κ + εyy sin2 κ ±εzx sin κ + εyz cos κ

εzx cos κ ∓ εyz sin κ ±εzx sin κ + εyz cos κ εzz

⎞
⎟⎟⎟⎠. (G1)
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Here, we set sign = +(−) for i = A(B). These transformations lead to Eqs. (26) and (27). Because of the transformation for
the strains in Eq (G1) and quadrupoles in Eqs (22)–(25), the quadrupole-strain coupling for the local coordinates in Eq. (28) is
described by the global coordinates as below:

HL
QS = −gX 2−Y 2 Oi

X 2−Y 2ε
i
X 2−Y 2

= −gX 2−Y 2 (Ox2−y2εx2−y2 cos2 2κ ∓ Ox2−y2εxy sin 4κ ∓ Oxyεx−y2 sin 4κ + Oxyεxy sin2 2κ ), (G2)

HL
QS = −gXY OB

XY εB
X 2−Y 2

= −gX 2−Y 2 (Ox2−y2εx2−y2 sin2 2κ ± Ox2−y2εxy sin 4κ ± Oxyεx−y2 sin 4κ + Oxyεxy cos2 2κ ). (G3)

In addition, the derivative with respect to the strains and the electric field for global coordinates are written by those for local
coordinates as below: ⎛

⎜⎜⎝
∂εx2−y2

∂εxy

∂Ez

⎞
⎟⎟⎠ = R(2κ )

⎛
⎜⎜⎝

∂εA
X2−Y 2

∂εA
XY

∂Ez

⎞
⎟⎟⎠, (G4)

⎛
⎜⎜⎝

∂εx2−y2

∂εxy

∂Ez

⎞
⎟⎟⎠ = R(−2κ )

⎛
⎜⎜⎝

∂εB
X2−Y 2

∂εB
XY

∂Ez

⎞
⎟⎟⎠. (G5)

These derivatives lead to the elastic constants of Eqs. (32) and (33) and the quadrupole susceptibility of Eq. (34).
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