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Including the effect of the trivial band near Weyl nodes, we evaluate the longitudinal magnetoconductivity
(LMC) of Weyl semimetals along the magnetic field direction using the Boltzmann magnetotransport theory and
study its dependence on the magnetic field, Fermi energy, and temperature. We find that for weak internode and
node-trivial band scatterings, the LMC is quadratic in the magnetic field and is inversely proportional to the
fourth power of the Fermi energy at high densities due to internode scatterings and to the square of the Fermi
energy at low densities due to scatterings between a Weyl node and the trivial band. In the case of strong internode
and node-trivial band scatterings, the magnetic field-driven anisotropy induced by the phase-space volume
element and the orbital magnetic moment cannot be neglected. As a result, the LMC exhibits a significantly
different trend compared to that in the weak internode and node-trivial band scattering limit. Finally, we
calculate the temperature dependence of the LMC in the strong inelastic scattering limit and obtain its asymptotic
behaviors at low and high temperatures, respectively, demonstrating that the temperature dependence is strongly
affected by the existence of the trivial band.
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I. INTRODUCTION

When an electric field E and magnetic field B are applied
to Weyl semimetals (WSMs), the chiral anomaly [1,2] breaks
the number conservation of electrons in each Weyl node with
chirality χ = ±1, given by

∂nχ

∂t
= χ

e2E · B

4π2h̄2c
, (1)

where nχ is the electron number density at node χ . It ef-
fectively pumps electrons from one node to another, leading
to the charge imbalance between the nodes, which induces
the positive longitudinal magnetoconductivity (LMC) along
the magnetic field direction in WSMs [3–14]. Utilizing the
relaxation time approximation dfχ

dt = − fχ
τ a , where fχ is the

nonequilibrium distribution function and τ a is the anomalous
relaxation time which characterizes the relaxation rate of the
chiral charge imbalance, Ref. [3] found that the LMC is
given by

δσ (B) = ge2

4π2h̄c

v

c

(eB)2v2

ε2
F

τ a(εF), (2)

where g is the number of Weyl node pairs, v is the Fermi
velocity of Weyl nodes, and εF is the Fermi energy measured
from the Weyl point energy.

Understanding the anomalous relaxation time is essential
to properly estimate the LMC. Conventional theories have
assumed that, for a steady state, the charge pumping by the
chiral anomaly is entirely compensated by the scatterings
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between the Weyl nodes. Therefore, τ a has been considered
as the internode scattering time [3,4,7–10,13–17]. However,
as shown in Fig. 1, scatterings between the Weyl nodes and
the neighboring trivial band can also affect the chiral charge

FIG. 1. Schematic illustration of the charge imbalance caused by
the chiral anomaly and the associated scattering processes leading to
a steady state. The colored arrows represent scatterings by impurities
indicated by the star at the center. The global and local Fermi levels
of each node are represented by the dotted and solid brown lines,
respectively, and the energy of the Weyl point is set to zero, as
indicated by the dotted gray line. Focusing on the vicinity of the
Weyl point energy, we assume that the Fermi energy measured from
the trivial band center is substantially larger than that measured from
the Weyl point. Note that E · B > 0 is assumed.
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imbalance. For instance, for the + node, the influx of electrons
by the chiral anomaly is balanced by the outflux not only
by internode scatterings (green arrow) but also by scatterings
between the trivial band and the + node (red arrow). In ad-
dition, the trivial band which is not involved in the charge
pumping by the chiral anomaly maintains a steady state by
balancing the influx by scatterings between the trivial band
and the + node (red arrow) and the outflux by scatterings
between the trivial band and the − node (blue arrow). This
trivial band effect becomes dominant near the Weyl point due
to the low density of states (DOS) at the Weyl nodes, making
scatterings between the Weyl nodes and the trivial band pre-
vail over internode scatterings. On the contrary, as the Fermi
energy increases, the effects of internode scatterings become
significant compared to node-trivial band scatterings and the
anomalous relaxation time would exhibit distinct dependence
on the Fermi energy, showing a crossover as carrier density
increases.

In this work, using the Boltzmann magnetotransport the-
ory, we evaluate the LMC of WSMs along the magnetic field
direction and study its dependence on the magnetic field,
Fermi energy, and temperature. Contrary to conventional the-
ories, we not only consider a pair of Weyl nodes but also
a trivial band near them, demonstrating that the trivial band
significantly affects the LMC. In the weak internode and
node-trivial band scattering limit, where internode scatterings
and scatterings between a Weyl node and the trivial band are
negligible compared to intranode and intratrivial band scatter-
ings, the LMC is quadratic in the magnetic field, exhibiting
1/ε4

F dependence at high densities due to internode scatter-
ings and 1/ε2

F dependence at low densities due to scatterings
between a Weyl node and the trivial band, consistent with
the experimental results in Ref. [9]. For strong internode
and node-trivial band scatterings comparable to intranode
and intratrivial band scatterings, the magnetic field-driven
anisotropy arising from the phase-space volume element and
the orbital magnetic moment is no longer negligible; thus the
LMC substantially deviates from that in the weak internode
and node-trivial band scattering limit. We also evaluate the
temperature dependence of the LMC assuming strong inelas-
tic scatterings and find its asymptotic behaviors at low and
high temperatures, respectively. The LMC exhibits 1 − αT 2

dependence for some α > 0 in the low temperature regime,
1/T 2 dependence due to scatterings between a Weyl node
and the trivial band in the intermediate regime, and 1/T 4

dependence due to internode scatterings at high temperatures.

II. REVIEW ON BOLTZMANN
MAGNETOTRANSPORT THEORY

In a stationary, homogeneous system with nonvanishing
Berry curvature �k, the Boltzmann equation states that the
nonequilibrium distribution function fk satisfies

dfk

dt
= k̇ · ∂ fk

∂k
=
∫

dd k′

(2π )d
Dk′Wkk′ ( fk′ − fk), (3)

where d is the dimension of the system, Dk ≡ 1 + e
h̄c (�k · B)

is the phase-space volume element [18,19], and Wkk′ is the
transition rate from k to k′. If not specified otherwise, we
assume nonmagnetic elastic impurity scatterings so that

Wkk′ = 2π
h̄ nimp|Vkk′ |2δ(ε̃k − ε̃k′ ) by the Fermi golden rule,

where nimp is the impurity density and Vkk′ is the matrix
element of the impurity potential. By the magnetic field,
the dispersion of electrons is modified into ε̃k ≡ εk − mk · B,
where εk and mk are the dispersion without a magnetic field
and the orbital magnetic moment, respectively.

The equations of motion for Bloch electrons read [20]

ṙ = vk − k̇ × �k, h̄k̇ = (−e)

(
E + ṙ

c
× B

)
, (4)

where vk ≡ 1
h̄

∂
∂k ε̃k is the group velocity. Thus, introduc-

ing the mean-free-path vector Lk as fk ≈ f eq
k − eE · LkS(ε̃k)

to the linear order in E, where f eq
k is the equilibrium

Fermi-Dirac distribution and S(ε̃k) ≡ −∂ f eq
k /∂ε̃k, Eq. (4)

transforms Eq. (3) into [21–23]

vmod
k + e

h̄c

[(
vmod

k × B
) · ∂

∂k

]
Lk

=
∫

dd k′

(2π )d
Dk′Wkk′ (Lk − Lk′ ). (5)

Here, vmod
k ≡ D−1

k [vk + e
h̄c (�k · vk)B] is the modified veloc-

ity. Solving Eq. (5), we obtain the current density from
J = g(−e)

∫
dd k

(2π )d ṙ fk and the corresponding conductivity
from [23]

σi j = ge2
∫

dd k

(2π )d
DkS(ε̃k)vmod(i)

k L( j)
k . (6)

III. EVALUATION AND ANALYSIS OF LMC
AT ZERO TEMPERATURE

For numerical calculations, we consider a model where
a magnetic field B = Bẑ is applied on a WSM with a pair
of two isotropic Weyl nodes and an isotropic trivial band
separated equally from each node. The effective Hamilto-
nian near a Weyl node is given by Hkχ = χ h̄vσ · k, where
k is the momentum measured from the node χ and σ

is the vector of Pauli matrices. Without loss of general-
ity, we assume that the Fermi energy lies on the upper
band. Then, the eigenvalues are given by εk = h̄vk with
the eigenstates |uk+〉 = [cos(θ/2), sin(θ/2)eiφ]t and |uk−〉 =
[sin(θ/2),− cos(θ/2)eiφ]t for the χ = ±1 nodes, respec-
tively, where (k, θ, φ) is the spherical coordinate of k. The
overlap factor between the states in the Weyl nodes is given
by Fkχ ;k′χ ′ = 1

2 (1 + χχ ′k̂ · k̂
′
), the Berry curvature is given by

�kχ = −χk/2k3, and the orbital magnetic moment is given
by mkχ = −χevk/2ck2.

For the trivial band, we assume the Hamiltonian to be Hq =
εq1 for some isotropic εq, so that the Berry curvature and the
orbital magnetic moment vanish. Here, q is the momentum
measured from the center of the trivial band and, for each q,
there exist (pseudo)spin up/down states represented by s =
±1. The overlap factors are given by Fqs;q′s′ = δss′ between
the states in the trivial band and Fkχ ;qs = (1 + χs cos θ )/2
between the states in the Weyl node and the trivial band. In
addition, we adopt the impurity potential Vn for intranode scat-
terings, Vt for intratrivial band scatterings, Vnn for internode
scatterings, and Vnt for scatterings between a Weyl node and
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the trivial band. Assuming that the Fermi wave vector is much
smaller than the inverse screening length, and the separation
between the Weyl nodes or between a Weyl node and the
trivial band, we neglect the momentum dependence of the
impurity potentials.

Based on this model, we rewrite Eq. (5) along the z direc-
tion as

v(z)
q =

∫
d3q′

(2π )3
Wqq′

(
L(z)

qs − L(z)
q′s′
)

+
∑
χ

∫
d3k

(2π )3
DkχWqs;kχ

(
L(z)

qs − L(z)
kχ

)
(7a)

and

v
mod(z)
kχ

=
∑

s

∫
d3q

(2π )3
Wkχ ;qs

(
L(z)

kχ
− L(z)

qs

)

+
∑
χ ′

∫
d3k′

(2π )3
Dk′χ ′Wkχ ;k′χ ′

(
L(z)

kχ
− L(z)

k′χ ′
)
. (7b)

Here, the transition rates are given by Wqq′ = 2π
h̄ nimpV 2

t δ

(εq − εq′ ) between the states in the trivial band, Wqs;kχ =
Wkχ ;qs = 2π

h̄ nimpV 2
ntFkχ ;qsδ(ε̃kχ − εq) between the states in the

trivial band and a Weyl node, and Wkχ ;k′χ ′ = 2π
h̄ nimpV 2

χχ ′
Fkχ ;k′χ ′δ(ε̃kχ − ε̃k′χ ′ ) between the states in the Weyl nodes,
where Vχχ ′ = Vn for χ = χ ′ and Vnn otherwise. Note that the
Lorentz force term, the second term on the left-hand side of
Eq. (5), vanishes since it does not affect the transport along
the magnetic field direction in isotropic systems.

Solving Eq. (7), we can evaluate the conductivity along the
magnetic field direction through

σzz(B) = σ tri
zz (B) + σ n

zz(B), (8)

where

σ tri
zz (B) = ge2

∑
s

∫
d3q

(2π )3
S(εq)v(z)

q L(z)
qs (9)

and

σ n
zz(B) = ge2

∑
χ

∫
d3k

(2π )3
DkχS(ε̃kχ )vmod(z)

kχ
L(z)

kχ
. (10)

Note that S(ε) = δ(ε − εF) at zero temperature. Details on the
calculations are presented in Appendix A.

A. Dependence on the magnetic field

Figure 2 illustrates the conductivity σzz(B)/σzz(0) as a
function of bF, where bF ≡ e

h̄c |B||�kχ |k=kF = eB/2h̄ck2
F is the

dimensionless quantity representing the coupling strength be-
tween the magnetic field and the Berry curvature [23,24].
From Fig. 2(a), we find that weak internode and node-
trivial band scatterings yield a large positive LMC increasing
quadratically with respect to the magnetic field, as seen from
Eq. (2). As ρtri(εF) increases, where ρtri(εF) is the DOS per
(pseudo)spin of the trivial band at the Fermi level, scatterings
between a Weyl node and the trivial band become significant,
increasing the anomalous relaxation rate and consequently
lowering the LMC. On the other hand, as seen in Fig. 2(b),
for strong internode and node-trivial band scatterings, the

FIG. 2. σzz(B)/σzz(0) as a function of bF for (a) Vnn = Vnt =
0.1Vn and (b) Vnn = Vnt = Vn. The blue, orange, and green lines rep-
resent the results for ρtri (εF)/ρn(εF) = 0, 0.15, and 1.5, respectively.
The dashed lines with the corresponding colors represent Eq. (13)
neglecting the field-driven anisotropy. Here we assume vt = v and
Vt = Vn.

negative LMC appears in the absence of the trivial band due to
the phase-space volume element and the orbital magnetic mo-
ment, consistent with Refs. [21,22,25]. As ρtri(εF) increases,
however, the LMC becomes positive in contrast to the weak
internode and node-trivial band scattering case.

Magnetic fields affect the LMC in two distinct ways: by
inducing a charge imbalance through the chiral anomaly and
by affecting intranode scatterings through the field-driven
anisotropy induced by the phase-space volume element and
the orbital magnetic moment. If internode and node-trivial
band scatterings are sufficiently weak, the chiral charge im-
balance becomes significant, making the former dominant.
Otherwise, the contributions from the latter cannot be ne-
glected. This accounts for the substantial difference between
the results in Figs. 2(a) and 2(b). For verification, we an-
alytically obtain the conductivity neglecting the field-driven
anisotropy. In the absence of the phase-space volume element
and the orbital magnetic moment, Eq. (5) along the magnetic
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field direction, with no Lorentz force term, reduces to

v
(z)
k + v

a(z)
k =

∫
dd k′

(2π )d
Wkk′

(
L(z)

k − L(z)
k′
)
, (11)

where va
k ≡ e

h̄c (�k · vk)B is the anomalous velocity. Writing
L(z)

k = l (z)
k + la(z)

k , we separate Eq. (11) into two parts: the
nonmagnetic part that does not depend on the magnetic field
and the anomalous part that depends on the magnetic field.
In our model, considering the isotropy of the system, we
obtain l (z)

q = v(z)
q τ tr

t (εq), la(z)
qs = 0, l (z)

k = v
(z)
k τ tr

n (εk), and l (z)
kχ

=
v

a(z)
kχ

τ a(εk), where va
kχ = −χvbkẑ and bk = eB/2h̄ck2. From

Eq. (7) assuming Dkχ ≈ 1 and ε̃kχ ≈ εk, the relaxation times
at the Fermi energy are given by (see Appendix C for the
details)

1

τ tr
t (εF)

= 1

τt
+ 1

τnt
, (12a)

1

τ tr
n (εF)

= 1

τtn
+ 1

3τn
+ 2

3τnn
, (12b)

1

τ a(εF)
= 1

τtn
+ 1

τnn
. (12c)

Here, 1/τn ≡ 2π
h̄ nimpV 2

n ρn(εF), 1/τt ≡ 2π
h̄ nimpV 2

t ρtri(εF),
1/τnn ≡ 2π

h̄ nimpV 2
nnρn(εF), 1/τnt ≡ 2π

h̄ nimpV 2
ntρn(εF), and

1/τtn ≡ 2π
h̄ nimpV 2

ntρtri(εF) characterize the scattering rates
for intranode scatterings, intratrivial band scatterings,
internode scatterings, node-to-trivial band scatterings,
and trivial band-to-node scatterings, respectively, and
ρn(ε) = ε2/2π2(h̄v)3 is the DOS of a single Weyl node at
energy ε. Finally, from Eqs. (9) and (10), the zero temperature
conductivities from the trivial band and the Weyl nodes are
given by

σ tri
zz (B) ≈ 2ge2ρtri(εF)

[
v2

t τ
tr
t (εF)

3

]
= 2σ tri

0

1 + τt/τnt
(13a)

and σ n
zz(B) ≈ σ n0

zz (B) + σ a
zz(B), respectively, where

σ n0
zz (B) ≈ 2ge2ρn(εF)

[
v2τ tr

n (εF)

3

]

= 6σ n
0

(
1 + 2τn

τnn
+ 3τn

τtn

)−1

(13b)

is the normal conductivity that does not depend on the mag-
netic field and

σ a
zz(B) ≈ 2ge2ρn(εF)[(vbF)2τ a(εF)]

= 6b2
Fσ

n
0

(
τn

τnn
+ τn

τtn

)−1

(13c)

is the anomalous conductivity that depends on the magnetic
field following Eq. (2). Here, σ n

0 ≡ ge2ρn(εF)v2τn/3, σ tri
0 ≡

ge2ρtri(εF)v2
t τt/3, and vt is the Fermi velocity at the trivial

band. In Fig. 2, we observe that Eq. (13), illustrated in the
dotted lines, is well fitted to the results for weak internode
and node-trivial band scatterings, but shows a significant de-
viation from the results for strong internode and node-trivial
band scatterings. Here, the deviation decreases with increas-
ing ρtri(εF) since no field-driven anisotropy exists in the trivial
band.

FIG. 3. (a) δσzz/δσc as a function of εF/εc. The blue, orange,
green, and red lines represent the results for Vnn = Vnt = 0.1Vn, 0.4Vn,
0.8Vn, and 1.0Vn, respectively. The black dashed line represents the
result obtained using Eq. (14). Here, we assume bc ≡ eB/2h̄ck2

c =
0.001 with kc ≡ εc/h̄v, vt = v, and Vt = Vn. (b) Experimental data
measuring the LMC of TaAs in Ref. [9] (black dots) and its fitting
curve using Eq. (14) (black line) with εc = 10.18 meV and δσc =
0.101σnor. As seen from the red and blue dotted lines, δσzz ∝ 1/ε2

F

at low densities and δσzz ∝ 1/ε4
F at high densities. For experimental

details and the definition of σnor, refer to Ref. [9].

B. Dependence on the Fermi energy

In Fig. 3(a), we illustrate the LMC δσzz ≡ σzz(B) − σzz(0)
normalized by δσc as a function of εF/εc, where εc ≡
(Vnt/Vnn)

√
2π2(h̄v)3ρtri(0) is the crossover energy that sat-

isfies τnn/τtn = (εc/εF)2 and δσc ≡ δσzz|εF=εc is the LMC at
εF = εc. As seen from Fig. 3(a), the LMC rapidly decreases
with increasing Fermi energy due to the corresponding de-
crease of the Berry curvature |�| ∼ 1/ε2

F, which couples with
the magnetic field. In the weak internode and node-trivial band
scattering limit, δσzz(B) ≈ σ a

zz(B) given by Eq. (13c). From
bF ∼ 1/ε2

F, σ n
0 ∼ ε0

F, τn/τnn = (Vnn/Vn)2 ∼ ε0
F, and τn/τtn =

(Vnt/Vn)2[ρtri(0)/ρn(εF)] ∼ 1/ε2
F, we obtain

δσzz(B) ≈ 2δσc(B)

(εF/εc)2 + (εF/εc)4
, (14)
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which is quadratic in the magnetic field from δσc(B) ∝ B2.
The crossover energy εc characterizes a threshold beyond
which dominant scatterings transition from trivial band-to-
node scatterings to internode scatterings, while the crossover
conductivity δσc characterizes the overall scale of the anoma-
lous relaxation time and the corresponding LMC, quantifying
the nonuniversal aspect of the sample quality. Note that fo-
cusing on the vicinity of the Weyl point energy, where the
chiral anomaly becomes significant, we assume that the Fermi
energy measured from the trivial band center is substantially
larger than εF measured from the Weyl point. Consequently,
we can treat the Fermi energy measured from the trivial band
center as a constant, leading to an approximation ρtri(εF) ≈
ρtri(0) for the corresponding DOS. We emphasize that at low
densities where scatterings between a Weyl node and the
trivial band are dominant, δσzz ∝ 1/ε2

F, and at high densities
where internode scatterings are dominant, δσzz ∝ 1/ε4

F.
On the other hand, Fig. 3(b) shows the experimental data

for the LMC of TaAs in Ref. [9]. Conventional theories have
claimed δσzz ∝ 1/ε2

F assuming the constant anomalous relax-
ation time [9,26] or δσzz ∝ 1/ε4

F assuming ideal WSMs with
no trivial bands [15,27]. However, as seen in Fig. 3(b), the
experimental result cannot be explained by either of the two.
Indeed, since the anomalous relaxation time is much larger
than the quasiparticle lifetime [9], the sample used in the ex-
periment belongs to the weak internode and node-trivial band
scattering regime, so that the LMC would follow Eq. (14).
From Fig. 3(b), we find that the experimental result fits well
with Eq. (14).

IV. TEMPERATURE DEPENDENCE OF LMC

It is widely known that the LMC induced by the chi-
ral anomaly rapidly decreases as the temperature increases
[7,9,26]. At finite temperature, inelastic scatterings such as
electron-electron or electron-phonon scatterings are involved.
However, exactly incorporating inelastic scatterings into the
Boltzmann transport equation is quite challenging. Thus, for
simplicity, we assume strong inelastic scatterings, as well
as weak internode and node-trivial band scatterings, so that
each Weyl node reaches local thermal equilibrium [8] with
the local chemical potential μχ = μ − eE · la

χ , where la
χ =

〈va
kχ 〉/〈1/τ a(εk)〉. Here, for an arbitrary Ak, 〈Ak〉 is defined by

〈Ak〉 ≡ 1

ρn(εF)

∫
dεkρn(εk)S(εk)Ak. (15)

The corresponding LMC is given by

δσzz = ge2ρn(εF)
∑

χ

〈
va

kχ

〉2
〈1/τ a(εk)〉

= ge2

4π2h̄c

v

c

(eB)2v2

ε2
F

1

〈1/τ a(εk)〉 , (16)

which has the same form as in Eq. (2). For detailed
derivations, see Appendix D.

Figure 4 illustrates the LMC normalized by its value at zero
temperature as a function of the normalized temperature T/TF,
where TF is the Fermi temperature. As mentioned above, the
LMC rapidly decreases with temperature. To analyze further,

FIG. 4. δσzz(T ) normalized by δσzz(0) as a function of T/TF for
(ρr, τnn/τtn ) to be (a) (1, 7), (b) (7, 7), and (c) (7,49), where ρr ≡
ρtri (0)/ρn(εF). The red and blue dashed lines represent Eqs. (17) and
(18), respectively. The intermediate regime TF < T < Tc with δσzz ∼
1/T 2 only appears in (c), where the trivial band effect is significant.

we study the asymptotic behaviors of the LMC with the aid
of Ref. [28] (see Appendix E for the details). At T 	 TF, the
LMC follows

δσzz(T )

δσzz(0)
≈ 21

5

(τtn/τnn)(1 + τtn/τnn)

(T/Tc)2 + (T/Tc)4
, (17)

where Tc =
√

5
7π2 (τnn/τtn )TF is the crossover temperature.

The first and second terms in the denominator on the right-
hand side of Eq. (17) originate from node-trivial band
scatterings and internode scatterings, respectively. From
Eq. (17), δσzz ∼ 1/T 4 in the high temperature regime T >

max(TF, Tc). If Tc > TF, the intermediate temperature regime
TF < T < Tc with δσzz ∼ 1/T 2 appears [Fig. 4(c)]. As ob-
served in Figs. 4(a) and 4(b) with the same value of τnn/τtn,
the high and intermediate temperature behaviors are com-
pletely determined by τnn/τtn. The decrease of the LMC with
temperature stems from the excited electrons at high energy
where the internode and node-trivial band scattering rates
are significant. Therefore, increasing τnn/τtn results in a large
crossover energy εc ∝ √

τnn/τtn, slowing down the increase of
the anomalous relaxation rate with energy and consequently
decelerating the decrease of the LMC with temperature. On
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the other hand, at T � TF, the LMC follows

δσzz(T )

δσzz(0)
≈ 1 − α

(
T

TF

)2

, (18)

where

α = π2[2(1 + 3ρr ) − (τnn/τtn )(1 − ρr )]

3(1 + ρr )(1 + τnn/τtn)
. (19)

Here, ρr ≡ ρtri(0)/ρn(εF). Contrary to T > TF, τnn/τtn alone
does not completely determine the low temperature behaviors.
Given τnn/τtn, the LMC decreases more rapidly as ρr increases
in the low temperature regime [Figs. 4(a) and 4(b)]. At low
temperatures T � TF, the trivial band DOS characterized by
ρr affects the chemical potential μ ≈ εF[1 − π2

3(1+ρr )
( T

TF
)2] (see

Appendix E for its derivation) and corresponding S(εk), accel-
erating the decrease of the LMC given by Eqs. (15) and (16).
This effect barely affects the LMC at high temperatures where
μ ≈ 0.

V. DISCUSSION

This work focuses on the WSMs without tilt. However, it
would be possible to analyze the tilted WSMs in a similar
manner by solving Eq. (5) for the Hamiltonian Hkχ = χ h̄vk ·
(σ + β), where β is the tilt vector normalized by v. Here, we
briefly discuss the LMC of tilted type-I WSMs with |β| < 1
in the weak internode and node-trivial band scattering limit.
Using the relaxation time approximation, Ref. [14] found that
the LMC induced by the chiral anomaly can be decomposed
into δσzz(B) = σ1(B) + σ2(B), where

σ1(B) = − ge2v

2π2h̄

eB

h̄c
β (z)τ tr

n , (20)

with the intranode relaxation time τ tr
n , and

σ2(B) = (1 − |β|2)2 ge2

4π2h̄c

v

c

(eB)2v2

ε2
F

τ a, (21)

with the anomalous relaxation time τ a. Since this type of tilt
does not change the power-law dependence of the DOS and
the corresponding power-law dependence of the relaxation
times on the Fermi energy, τ tr

n and τ a exhibit the same power-
law dependence on the Fermi energy as that of WSMs without
tilt. From Eq. (12), for weak internode and node-trivial band
scatterings with τn � τnn and τn � τtn, 1/τ tr

n ∼ ε2
F, whereas

1/τ a ∼ ε0
F at low densities due to scatterings between a Weyl

node and the trivial band, while 1/τ a ∼ ε2
F at high densities

due to internode scatterings. Therefore, σ1(B) ∼ 1/ε2
F, while

σ2(B) follows the same power-law dependence presented in
Eq. (14). On the other hand, for type-II WSMs with |β| > 1,
the linear Weyl Hamiltonian itself cannot capture the closed
Fermi pocket. Thus the Fermi energy dependence of the DOS,
relaxation times, and LMC are determined by the higher-order
terms in k in the Hamiltonian.

So far, we have assumed that the Fermi energy measured
from the trivial band center is substantially larger than that
measured from the Weyl point. Consequently, the LMC de-
pends only on εF measured from the Weyl point. However,
when the two Fermi energies are comparable, the LMC would
also depend on the Fermi energy measured from the trivial

band center, through the dependence of the trivial band DOS
and the corresponding trivial band-to-node scattering time.
Similarly, in the temperature dependence of the LMC, the
crossover would occur at both Fermi temperatures with re-
spect to the Weyl point and the trivial band center.

The Boltzmann magnetotransport theory is only valid in
the semiclassical regime with a weak magnetic field bF � 1.
To study a system with strong magnetic field or low carrier
density, the quantum mechanical approach is needed, taking
the Landau levels into account. We expect that, contrary to
conventional theories, the vertex correction should not be ne-
glected. As seen from Eq. (C4) in Appendix C, the (1 − cos)
factor originating from the vertex correction cancels off the
contributions of intranode scatterings from the anomalous
relaxation time, increasing the LMC by order τnn/τn. We leave
the fully quantum mechanical approach for future work.

In summary, we use the Boltzmann magnetotransport the-
ory to find how the LMC of WSMs depends on the magnetic
field, Fermi energy, and temperature, incorporating the effects
of the trivial band near the Weyl nodes, which have been
neglected so far. The trivial band significantly affects not only
the value of the LMC, but also the power-law dependence
on the Fermi energy and temperature. Thus trivial bands in
WSMs should also be widely considered when studying the
chiral-anomaly induced magnetotransport.
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APPENDIX A: DETAILS FOR THE CALCULATION
OF LMC

In isotropic 3D WSMs, the effective Hamiltonian is given
by Hkχ = χ h̄vσ · k, where k is the momentum measured
from a Weyl node with chirality χ = ±1. Without loss of
generality, we assume that the Fermi energy lies on the
upper band. Then, the eigenvalues are given by εkχ = h̄vk
with the eigenstates |uk+〉 = [cos(θ/2), sin(θ/2)eiφ]t and
|uk−〉 = [sin(θ/2),− cos(θ/2)eiφ]t for the nodes χ = ±1,
respectively, where (k, θ, φ) is the spherical coordinate of k.
The overlap factor is given by Fkχ ;k′χ ′ = 1

2 (1 + χχ ′k̂ · k̂
′
) =

1
2 {1 + χχ ′[cos θ cos θ ′ + sin θ sin θ ′ cos(φ − φ′)]}, the
Berry curvature is given by

�kχ = −Im

[〈
∂ukχ

∂k

∣∣∣∣×
∣∣∣∣∂ukχ

∂k

〉]
= − χ k̂

2k2
, (A1a)

and the orbital magnetic moment is given by

mkχ = e

2h̄c
Im

[〈
∂ukχ

∂k

∣∣∣∣× (Hkχ − εkχ )

∣∣∣∣∂ukχ

∂k

〉]
= −χevk̂

2ck
.

(A1b)

Thus, in the presence of a magnetic field B = Bẑ, the
phase-space volume element and the dispersion are given
by Dkχ = 1 − χbF cos θ/r2 and ε̃kχ = εF(r + χbF cos θ/r),
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respectively, where r ≡ k/kF and bF ≡ eB/2h̄ck2
F. From the

dispersion, the z component of the modified velocity can be
written by

v
mod(z)
kχ

= D−1
kχ

[
∂ε̃kχ

∂kz
+ e

h̄c

(
�kχ · ∂ε̃kχ

∂k

)
B

]

= v

(
cos θ − χbF cos(2θ )/r2

1 − χbF cos θ/r2
− χbF

r2

)
. (A2)

We define a new coordinate system (R, θ, φ) with R ≡
ε̃kχ/εF = r + χbF cos θ/r or equivalently rχ (R, θ ) = R/2 +√

(R/2)2 − χbF cos θ . The Jacobian for the coordinate trans-
formation from (r, θ, φ) to (R, θ, φ) is given by

Jχ (R, θ ) =
∣∣∣∣∂rχ (R, θ )

∂R

∣∣∣∣ = 1

2

(
1 + R/2√

(R/2)2 − χbF cos θ

)
.

(A3)

On the other hand, we assume the trivial band Hamilto-
nian to be Hq = εq1 for some isotropic εq, where q is the
momentum measured from the center of the trivial band.
For each momentum q, there exist (pseudo)spin up/down
states represented by s = ±1. The overlap factors are given
by Fqs;q′s′ = δss′ between the states in the trivial band and
Fkχ ;qs = 1

2 (1 + χs cos θ ) between the states in a Weyl node
and the trivial band. There are no Berry curvature or the orbital
magnetic moment in the trivial band. For the scattering poten-
tial, we adopt Vn for intranode scatterings, Vt for intratrivial
band scatterings, Vnn for internode scatterings, and Vnt for
node-trivial band scatterings, all of which are assumed to be
momentum independent.

Based on our model, Eq. (5) along the z direction trans-
forms into

v(z)
q =

∫
d3q′

(2π )3
Wqq′

(
L(z)

qs − L(z)
q′s
)

+
∑

χ

∫
d3k

(2π )3
DkχWqs;kχ

(
L(z)

qs − L(z)
kχ

)
(A4a)

and

v
mod(z)
kχ

=
∑

s

∫
d3q

(2π )3
Wkχ ;qs

(
L(z)

kχ
− L(z)

qs

)

+
∑
χ ′

∫
d3k′

(2π )3
Dk′χ ′Wkχ ;k′χ ′

(
L(z)

kχ
− L(z)

k′χ ′
)
, (A4b)

where the transition rates are given by Wqq′ = 2π
h̄ nimp

V 2
t δ(εq − εq′ ), Wqs;kχ = Wkχ ;qs = 2π

h̄ nimpV 2
ntFkχ ;qsδ(ε̃kχ − εq),

and Wkχ ;k′χ ′ = 2π
h̄ nimpV 2

χχ ′Fkχ ;k′χ ′δ(ε̃kχ − ε̃k′χ ′ ) with Vχχ ′ =
Vn for χ = χ ′ and Vnn otherwise. Here the Lorentz force
term, the second term on the left-hand side of Eq. (5), van-
ishes since the Lorentz force does not affect the transport
along the magnetic field direction in isotropic systems. In
addition, since the Weyl Hamiltonian Hkχ = χ h̄vk · σ and
the corresponding eigenstates are invariant under the trans-
formation (k, χ ) → (−k,−χ ), note that Dkχ = D(−k)(−χ ),
Wqs;kχ = Wqs;(−k)(−χ ), and Fkχ ;k′χ ′ = Fkχ ;(−k′ )(−χ ′ ) resulting in
Wkχ ;(−k′ )(−χ ) = (Vnn/Vn)2Wkχ ;k′χ . Thus, from Eq. (A4a), we
find L(z)

qs = v(z)
q τ tr

qs + ds(εq), where

1

τ tr
qs

=
∫

d3q′

(2π )3
Wqq′

(
1 − q̂ · q̂′)+

∑
χ

∫
d3k

(2π )3
DkχWqs;kχ

=
∫

d3q′

(2π )3
Wqq′

(
1 − q̂ · q̂′)+ 2

∫
d3k

(2π )3
Dk+Wqs;k+

(A5)

and

ds(εq) =
∑

χ

∫
d3k

(2π )3 DkχWqs;kχL(z)
kχ∑

χ

∫
d3k

(2π )3 DkχWqs;kχ

=
∫

d3k
(2π )3 Dk+Wqs;k+

(
L(z)

k+ + L(z)
(−k)−

)
2
∫

d3k
(2π )3 Dk+Wqs;k+

. (A6)

Here, ds(εq) characterizes the asymmetry of the mean-free
path between the χ = +1 and χ = −1 nodes due to scat-
terings with the trivial band. Assuming that the trivial band
is separated equally from the two Weyl nodes, we expect
ds(εq) = 0 (see Appendix B for the formal demonstration
using the number conservation). From Eq. (A4b), on the other
hand, we obtain

L(z)
kχ

=
v

mod(z)
kχ

+∑
χ ′
∫

d3k′
(2π )3 Dk′χ ′Wkχ ;k′χ ′L(z)

k′χ ′∑
s

∫ d3q
(2π )3 Wkχ ;qs +∑

χ ′
∫

d3k′
(2π )3 Dk′χ ′Wkχ ;k′χ ′

=
v

mod(z)
kχ

+ ∫
d3k′

(2π )3 Dk′χWkχ ;k′χ
[
L(z)

k′χ + (Vnn/Vn)2L(z)
(−k′ )(−χ )

]
∑

s

∫ d3q
(2π )3 Wkχ ;qs + [1 + (Vnn/Vn)2]

∫
d3k′

(2π )3 Dk′χWkχ ;k′χ
. (A7)

Assuming zero temperature, we focus on the Fermi surface by setting R = 1 and replacing all k dependence to the θ

dependence. Then, Eq. (A5) transforms into

1

τ tr
s (εF)

= 1

τt
+ 1

τnt

∫
dθ sin θ f (θ )

(
1 + s cos θ

2

)
, (A8)

where 1/τt ≡ 2π
h̄ nimpV 2

t ρtri(εF) and 1/τnt ≡ 2π
h̄ nimpV 2

ntρn(εF) characterize the intratrivial band and node-to-trivial band scattering
rates, respectively, and ρn(ε) = ε2/2π2(h̄v)3 and ρtri(ε) are the DOS of a single Weyl node and the trivial band with a single
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(pseudo)spin, respectively. Here, f (θ ) ≡ f+(θ ) = f−(π − θ ) with fχ (θ ) ≡ r2
χ (1, θ )Jχ (1, θ )Dχ (θ ), where Dχ (θ ) ≡ Dkχ on the

Fermi surface. On the other hand, considering the θ dependence and χ dependence of the transition rates, we rewrite Eq. (A7)
as

L̃(z)
χ (θ ) = ṽmod(z)

χ (θ ) + β1,χ + χβ2,χ cos θ

α1 + χα2 cos θ
, (A9)

with (
α1

α2

)
= τn

τtn

(
1
0

)
+ 1

4

(
1 + τn

τnn

)∫
dθ sin θ fχ (θ )

(
1

χ cos θ

)

= τn

τtn

(
1
0

)
+ 1

4

(
1 + τn

τnn

)∫
dθ sin θ f (θ )

(
1

cos θ

)
(A10)

and (
β1,χ

β2,χ

)
= 1

4

∑
χ ′

(
Vχχ ′

Vn

)2 ∫
dθ ′ sin θ ′ fχ ′ (θ ′)L̃(z)

χ ′ (θ ′)
(

1
χ ′ cos θ ′

)

= 1

4

∫
dθ sin θ fχ (θ )

[
L̃(z)

χ (θ ) + τn

τnn
L̃(z)

−χ (π − θ )

](
1

χ cos θ

)
, (A11)

where L̃(z)
χ (θ ) ≡ L(z)

kχ
/(vτn), ṽmod(z)

χ (θ ) ≡ v
mod(z)
kχ

/v, and 1/τn ≡ 2π
h̄ nimpV 2

n ρn(εF), 1/τtn ≡ 2π
h̄ nimpV 2

ntρtri(εF), and 1/τnn ≡
2π
h̄ nimpV 2

nnρn(εF) characterize the intranode, trivial band-to-node, and internode scattering rates, respectively. In general, we
can write β1,χ = χβ1 + β ′

1 and β2,χ = χβ2 + β ′
2. Using the number conservation, we find β ′

1 = β ′
2 = 0 (see Appendix B for

details), so that Eq. (A9) satisfies L(z)
(−k)(−χ ) = −L(z)

kχ
as expected from the symmetry H(−k)(−χ ) = Hkχ and equal separation of the

trivial band from the two Weyl nodes. Thus β1 and β2 can be simplified into(
β1

β2

)
= 1

4

(
1 − τn

τnn

)∫
dθ sin θ fχ (θ )L̃(z)

χ (θ )

(
1

χ cos θ

)

= 1

4

(
1 − τn

τnn

)∫
dθ sin θ f (θ )L̃(z)

+ (θ )

(
1

cos θ

)
. (A12)

Substituting Eq. (A9) into Eq. (A12), we obtain the following:(
β1

β2

)
=
(

γ1

γ2

)
+ M

(
β1

β2

)
= (1 − M)−1

(
γ1

γ2

)
, (A13)

where (
γ1

γ2

)
= 1

4

(
1 − τn

τnn

)∫
dθ

sin θ f (θ )ṽmod(z)
+ (θ )

α1 + α2 cos θ

(
1

cos θ

)
(A14)

and

M = 1

4

(
1 − τn

τnn

)∫
dθ

sin θ f (θ )

α1 + α2 cos θ

(
1 cos θ

cos θ cos2 θ

)
. (A15)

Solving Eq. (A13), we obtain the LMC along the magnetic field direction using Eq. (6). The conductivity σzz(B) = σ tri
zz (B) +

σ n
zz(B) is given by the sum of conductivities from the trivial band and the Weyl nodes, each of which is given by

σ tri
zz (B) = ge2

∑
s

∫
d3q

(2π )3
S(εq)v(z)

q L(z)
qs = σ tri

0

∑
s

τ tr
s (εF)

τt
(A16)

and

σ n
zz(B) = ge2

∑
χ

∫
d3k

(2π )3
DkχS(ε̃kχ )vmod(z)

kχ
L(z)

kχ
= 3σ n

0

∫
dθ sin θ f (θ )ṽmod(z)

+ (θ )L̃(z)
+ (θ ), (A17)

where vt is the Fermi velocity at the trivial band, and σ tri
0 ≡ ge2ρtri(εF)(v2

t τt/3) and σ n
0 ≡ ge2ρn(εF)(v2τn/3) are the characteristic

conductivities for the trivial band and a Weyl node, respectively. Note that, since Dkχ = D(−k)(−χ ), v
mod(z)
kχ

= −v
mod(z)
(−k)(−χ ), and

L(z)
kχ

= −L(z)
(−k)(−χ ), both Weyl nodes give the same contributions to the conductivities.

Neglecting the field-driven anisotropy, rχ (R, θ ) = R, Jχ (R, θ ) = 1, and Dχ (θ ) = 1, then Eq. (A16) reduces to

σ tri
zz (B) = 2σ tri

0

1 + τt/τnt
. (A18)
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In addition, ṽmod(z)
χ (θ ) = cos θ−χbF, (α1, α2)t = ( 1

2+ τn
2τnn

+ τn
τtn

, 0)t, M= 1−τn/τnn

1+τn/τnn+2τn/τtn
diag(1, 1/3), (γ1, γ2)t = 1 − τn/τnn

1+τn/τnn+2τn/τtn

(−bF, 1/3)t, (β1, β2)t = ( −bF(1−τn/τnn )
2(τn/τnn+τn/τtn ) ,

1−τn/τnn

2(1+2τn/τnn+3τn/τtn ) )t, and

L̃(z)
χ (θ ) = 3 cos θ

1 + 2τn/τnn + 3τn/τtn
− χbF

τn/τnn + τn/τtn
, (A19)

and thus Eq. (A17) reduces to

σ n
zz(B) = 6σ n

0

[
1

1 + 2τn/τnn + 3τn/τtn
+ b2

F

τn/τnn + τn/τtn

]
. (A20)

APPENDIX B: CONSTRAINT FOR THE NUMBER CONSERVATION

Restoring ds(εq) which is assumed to be zero in the previous section, Eq. (A7) is replaced by

L(z)
kχ

=
v

mod(z)
kχ

+∑
s ds(εq)

∫ d3q
(2π )3 Wkχ ;qs +∑

χ ′
∫

d3k′
(2π )3 Dk′χ ′Wkχ ;k′χ ′L(z)

k′χ ′∑
s

∫ d3q
(2π )3 Wkχ ;qs +∑

χ ′
∫

d3k′
(2π )3 Dk′χ ′Wkχ ;k′χ ′

=
v

mod(z)
kχ

+∑
s ds(εq)

∫ d3q
(2π )3 Wkχ ;qs + ∫

d3k′
(2π )3 Dk′χWkχ ;k′χ

[
L(z)

k′χ + (Vnn/Vn)2L(z)
(−k′ )(−χ )

]
∑

s

∫ d3q
(2π )3 Wkχ ;qs + [1 + (Vnn/Vn)2]

∫
d3k′

(2π )3 Dk′χWkχ ;k′χ
(B1)

and consequently Eq. (A11) is replaced by(
β1,χ

β2,χ

)
= τn

2τtn

(∑
s d̃s∑

s sd̃s

)
+ 1

4

∫
dθ sin θ fχ (θ )

[
L̃(z)

χ (θ ) + τn

τnn
L̃(z)

−χ (π − θ )

](
1

χ cos θ

)
, (B2)

where d̃s ≡ ds/(vτn). Substituting Eq. (A9) with β1,χ = χβ1 + β ′
1 and β2,χ = χβ2 + β ′

2, we obtain Eq. (A13), as well as

d̃s

∫
dθ sin θ f (θ )(1 + s cos θ ) =

∫
dθ sin θ f (θ )(1 + s cos θ )

β ′
1 + β ′

2 cos θ

α1 + α2 cos θ
(B3a)

from Eq. (A6) and (
β ′

1
β ′

2

)
= τn

2τtn

(∑
s d̃s∑

s sd̃s

)
+ 1

4

(
1 + τn

τnn

)∫
dθ sin θ f (θ )

β ′
1 + β ′

2 cos θ

α1 + α2 cos θ

(
1

cos θ

)
(B3b)

from Eq. (B2). However, as seen from the invariance under the transformation (d̃s, β
′
1, β

′
2) → (d̃s + λ, β ′

1 + λα1, β
′
2 + λα2) for

arbitrary λ, the four equations in Eq. (B3) are not linearly independent. Thus, to uniquely determine the mean-free-path vectors
and the corresponding LMC, we introduce an additional constraint induced by the number conservation. Since the total carrier
density remains the same in the absence or presence of an electric field E, we have the following relation to the leading order in
E (at zero temperature):

0 =
∑

s

∫
d3q

(2π )3

(
fqs − f eq

qs

)+
∑

χ

∫
d3k

(2π )3
Dkχ

(
fkχ − f eq

kχ

)

= −eE ·
⎧⎨
⎩
∑

s

∫
d3q

(2π )3
Lqsδ(εq − εF) +

∑
χ

∫
d3k

(2π )3
DkχLkχδ(ε̃kχ − εF)

⎫⎬
⎭, (B4)

where fqs ≈ f eq
qs − eE · LqsS(εq) and fkχ ≈ f eq

kχ
− eE ·

LkχS(ε̃kχ ) are the nonequilibrium distribution function at
the trivial band and the Weyl nodes, respectively, and f eq

represents the equilibrium Fermi-Dirac distribution function.
Adopting the electric field along the z direction and inserting
L(z)

qs = v(z)
qs τ tr

qs + ds(εq) and Eq. (A9) into Eq. (B4), we have

ρtri(εF)
∑

s

d̃s + ρn(εF)
∫

dθ sin θ f (θ )
β ′

1 + β ′
2 cos θ

α1 + α2 cos θ
= 0.

(B5)

Combining Eqs. (B3) and (B5), we obtain the unique solution
β ′

1 = β ′
2 = d̃s = 0 as we expected in Appendix A.

APPENDIX C: ANALYTIC ANALYSIS OF LMC
IN THE WEAK INTERNODE AND NODE-TRIVIAL

BAND SCATTERING LIMIT

Neglecting the phase-space volume element and the orbital
magnetic moment, the z component of Eq. (5) is given by

v
(z)
k + v

a(z)
k =

∫
dd k′

(2π )d
Wkk′

(
L(z)

k − L(z)
k′
)
, (C1)
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where va
k ≡ e

h̄c (�k · vk)B is the anomalous velocity. Here the
Lorentz force term which does not affect the transport along
the magnetic field direction in isotropic systems is omitted.
Writing L(z)

k = l (z)
k + la(z)

k , we naturally separate Eq. (C1) into
two parts: the nonmagnetic part that does not depend on the
magnetic field and the anomalous part that depends on the
magnetic field.

Solving Eq. (C1) for our model, we obtain l (z)
q = v(z)

q τ tr
t (εq)

for the trivial band and l (z)
k = v

(z)
k τ tr

n (εk) for the Weyl nodes.
Considering that the isotropic trivial band is placed symmetri-
cally with respect to isotropic Weyl nodes, the relaxation times
are given as follows with the well-known (1 − cos) factor:

1

τ tr
t (εq)

=
∫

d3q′

(2π )3
Wqq′ (1 − q̂ · q̂′)

+
∑
χ

∫
d3k

(2π )3
Wqs;kχ

[
1 − vq · vk

|vq|2
τ tr

n (εk)

τ tr
t (εq)

]
, (C2)

which corresponds to 1/τ tr
qs in Eq. (A5) with Dkχ ≈ 1 and

ε̃kχ ≈ εk, and

1

τ tr
n (εk)

=
∑

s

∫
d3q

(2π )3
Wkχ ;qs

[
1 − vk · vq

|vk|2
τ tr

t (εq)

τ tr
n (εk)

]

+
∑
χ ′

∫
d3k′

(2π )3
Wkχ ;k′χ ′ (1 − k̂ · k̂

′
). (C3)

Note that 1/τ tr
t and 1/τ tr

n are independent of s and χ , respec-
tively. Similarly, the anomalous part also yields la(z)

q = 0 and

la(z)
kχ

= v
a(z)
kχ

τ a(εk), where va
kχ = −χvbkẑ, bk ≡ eB/2h̄ck2,

and

1

τ a(εk)
=
∑

s

∫
d3q

(2π )3
Wkχ ;qs

+
∑
χ ′

∫
d3k′

(2π )3
Wkχ ;k′χ ′

(
1 − v̂a

kχ · v̂a
k′χ ′
)

(C4)

independent on χ . Here we use va
q = 0 due to the absence

of the Berry curvature and the orbital magnetic moment in
the trivial band. Note that all contributions from intranode
scatterings to τ a vanishes by (1 − v̂a

kχ · v̂a
k′χ ′ ) = (1 − χχ ′)

factor. Evaluating Eqs. (C2) to (C4) at the Fermi energy, we
obtain

1

τ tr
t (εF)

= 1

τt
+ 1

τnt
, (C5)

1

τ tr
n (εF)

= 1

τtn
+ 1

2τn

∑
χ ′

(
Vχχ ′

Vn

)2 ∫
dθkk′ sin θkk′

×
(

1 + χχ ′ cos θkk′

2

)
(1 − cos θkk′ )

= 1

τtn
+ 1

3τn
+ 2

3τnn
, (C6)

where θkk′ is the angle between k and k′ satisfying cos θkk′ =
cos θ cos θ ′ + sin θ sin θ ′ cos(φ − φ′) and

1

τ a(εF)
= 1

τtn
+ 1

2τn

∑
χ ′

(
Vχχ ′

Vn

)2

(1 − χχ ′) = 1

τtn
+ 1

τnn
.

(C7)

Note that all of the relaxation times in Eqs. (C5)
to (C7) do not depend on s and χ . Approximat-
ing ρtri(εF) ≈ ρtri(0), 1/τ a(εF) ∝ (ε2

F + ε2
c ), where εc ≡

(Vnt/Vnn)
√

2π2(h̄v)3ρtri(0). The ε2
F dependence in 1/τ a(εF)

originates from 1/τnn characterizing internode scatterings,
while the ε0

F dependence originates from 1/τtn characterizing
trivial band-to-node scatterings. On the other hand, assuming
τn � τtn and τn � τnn, 1/τ tr

n (εF) ∝ ε2
F.

When several bands cross the Fermi energy, the total con-
ductivity is given by the sum of conductivities from each band.
From the Einstein relation, we can obtain the zero-temperature
conductivity through σzz = σ tri

zz + σ n
zz with

σ tri
zz = 2ge2ρtri(εF)Dtri = 2σ tri

0

1 + τt/τnt
(C8a)

and

σ n
zz = 2ge2ρn(εF)(D + Da)

= 6σ n
0

1 + 2τn/τnn + 3τn/τtn
+ 6σ n

0 b2
F

τn/τnn + τn/τtn
, (C8b)

where Dtri ≡ v2
t τ

tr
t (εF)/3, D ≡ v2τ tr

n (εF)/3, and Da ≡
(vbF)2τ a(εF) are the diffusion constants with the
dimensionality 3 for the normal parts and 1 for the anomalous
part. Note that Eq. (C8) is exactly consistent with Eq. (13)
in the main text. The first term on the right-hand side of
Eq. (C8b) corresponds to the normal conductivity of the
Weyl nodes without magnetic field, while the second term
corresponds to the LMC given by Eq. (2). Discussions
regarding the εF dependence of the LMC are presented in
Sec. III B in the main text.

The analytic analysis in this section has assumed that the
field-driven anisotropy induced by the phase-space volume el-
ement and the orbital magnetic moment is negligible. As seen
in Appendix A, the anisotropy yields a correction of order
bF in the velocity and the corresponding mean-free-path vec-
tor; thus δlk ∼ vτ trbF. Assuming the weak-field limit bF � 1,
our assumption is valid only if δlk � la

k ∼ vbFτ
a, which

corresponds to the weak internode and node-trivial band scat-
tering limit τn � τtn and τn � τnn.

APPENDIX D: ANOMALOUS MEAN FREE PATH
AT FINITE TEMPERATURE

In the presence of inelastic scatterings, Eq. (5) along the
magnetic field direction, the z direction, is given as follows
with the factor (1 − f eq

k′ )/(1 − f eq
k ) [29]:

v
mod(z)
k =

∫
d3k′

(2π )3
Dk′Wkk′

(
L(z)

k − L(z)
k′
)(1 − f eq

k′

1 − f eq
k

)
, (D1)

where Wkk′ is the total transition rate from k to k′ including the
one for inelastic scatterings. Applying Eq. (D1) to our model,
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the anomalous part can be written by

v
a(z)
kχ

=
la(z)
kχ

τ a(εk)
+
∫

d3k′

(2π )3
W th

kk′

(
la(z)
kχ

− la(z)
k′χ

)(1 − f eq
k′

1 − f eq
k

)
,

(D2)

where v
a(z)
kχ

= −χvbk, τ a is the anomalous relaxation time

at zero temperature given by Eq. (C4), and W th
kk′ is the tran-

sition rate for inelastic scatterings from k to k′. For elastic
scatterings, we assume the weak internode and node-trivial
band scattering limit, incorporating their contributions into the
first term on the right-hand side of Eq. (D2) and neglecting
all the field-driven anisotropy. For inelastic scatterings, we
only consider the intranode contributions for simplicity. From
Eq. (D2), we obtain

la(z)
kχ

=
l th(z)
kχ

+ v
a(z)
kχ

τ th
k

1 + τ th
k /τ a(εk)

, (D3)

where τ th is the quasiparticle lifetime for inelastic scatterings
given by

1

τ th
k

=
∫

d3k′

(2π )3
W th

kk′

(
1 − f eq

k′

1 − f eq
k

)
(D4a)

and l th(z) is defined by

l th(z)
kχ

τ th
k

≡
∫

d3k′

(2π )3
W th

kk′

(
1 − f eq

k′

1 − f eq
k

)
la(z)
k′χ . (D4b)

Combining Eqs. (D3) and (D4b), we have

∫
d3k′

(2π )3
W th

kk′

(
1 − f eq

k′

1 − f eq
k

)⎡⎣l th(z)
kχ

−
l th(z)
k′χ

1 + τ th
k′ /τ a(εk′ )

⎤
⎦

=
∫

d3k′

(2π )3
W th

kk′

(
1 − f eq

k′

1 − f eq
k

)
v

a(z)
k′χ τ th

k′

1 + τ th
k′ /τ a(εk′ )

. (D5)

Solving Eq. (D5), we can evaluate the anomalous mean free
path and the corresponding conductivity.

In this work, we focus on the strong inelastic scattering
limit τ th � τ a0. To the zeroth order in τ th, Eq. (D5) reduces
to ∫

d3k′

(2π )3
W th

kk′

(
1 − f eq

k′

1 − f eq
k

)(
l th(z)
kχ

− l th(z)
k′χ

)
= 0. (D6)

From Eq. (D6), we find l th(z)
kχ

≈ l th(z)
χ independent of k. Note

that, for an arbitrary Gk, using S(εk) = β f eq
k (1 − f eq

k ) and
the detailed balance W th

kk′ f eq
k (1 − f eq

k′ ) = W th
k′k f eq

k′ (1 − f eq
k ),

we obtain the following relation:

∫
d3k

(2π )3
S(εk)

[∫
d3k′

(2π )3
W th

kk′

(
1 − f eq

k′

1 − f eq
k

)
Gk′

]
= β

∫
d3k

(2π )3

∫
d3k′

(2π )3
W th

kk′ f eq
k

(
1 − f eq

k′
)
Gk′

= β

∫
d3k′

(2π )3
Gk′

∫
d3k

(2π )3
W th

k′k f eq
k′
(
1 − f eq

k

)

=
∫

d3k′

(2π )3
β f eq

k′
(
1 − f eq

k′
)
Gk′

∫
d3k

(2π )3
W th

k′k

(
1 − f eq

k

1 − f eq
k′

)

=
∫

d3k′

(2π )3
S(εk′ )Gk′/τ th

k′ . (D7)

With the aid of Eq. (D7), Eq. (D5) transforms into

l th(z)
χ

∫
dεk

ρn(εk)S(εk)/τ a(εk)

1 + τ th
k /τ a(εk)

=
∫

dεk

ρn(εk)S(εk)va(z)
kχ

1 + τ th
k /τ a(εk)

. (D8)

Comparing both sides of Eq. (D8), we find l th(z) ∼ vbτ a. To the leading order in τ th/τ a � 1, Eq. (D3) results in la(z)
χ ≈ l th(z)

χ ≈
〈va(z)

kχ
〉/〈1/τ a(εk)〉 independent of k, where 〈Ak〉 for an arbitrary Ak is defined by

〈Ak〉 ≡ 1

ρn(εF)

∫
dεkρn(εk)S(εk)Ak. (D9)

Finally, we can obtain the LMC through Eq. (6). Neglecting the field-driven anisotropy, the anomalous contribution corre-
sponding to the LMC is given by

σ a
zz(B) ≈ ge2

∑
χ

∫
dεkρn(εk)S(εk)va(z)

kχ
la(z)
kχ

≈ ge2ρn(εF)
∑

χ

〈
v

a(z)
kχ

〉2
〈1/τ a(εk)〉 = ge2

4π2h̄c

v

c

(eB)2v2

ε2
F

1

〈1/τ a(εk)〉 . (D10)
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Due to strong intranode scatterings, the normal contribution
to the distribution function is negligible. Thus, focusing on
the anomalous contribution, the distribution function devi-
ates from the equilibrium Fermi-Dirac distribution by δ fkχ ≈
−eE · la

χS(εk) with a k-independent la
χ ≡ la(z)

χ ẑ. From S(εk) =
−∂ f eq

k /∂εk, we have

fkχ ≈ f eq (εk − μ) + eE · la
χ

∂

∂εk
f eq (εk − μ)

≈ f eq [εk − (
μ − eE · la

χ

)]
, (D11)

where f eq (ε) ≡ 1/(eβε + 1) satisfying f eq
k = f eq (εk − μ),

so that each node reaches local thermal equilibrium with the
local chemical potential μχ = μ − eE · la

χ .

APPENDIX E: ASYMPTOTIC FORM OF LMC
AT FINITE TEMPERATURE

1. Chemical potential

Since the carrier density measured from the charge neutral
point does not vary under the temperature change, we obtain

n =
∫ εF

0
dε ρ(ε) =

∫ ∞

0
dε ρ(ε)[ f eq (ε − μ) − f eq (ε + μ)],

(E1)

where ρ(ε) = 2ρtri(ε) + 2ρn(ε) is the total DOS of the model.
Here we used f eq(ε + μ) + f eq (−ε − μ) = 1. Regarding
ρtri(ε) ≈ ρtri(0) as a constant near the Weyl point energy,
ρ(ε) ≈ (ε2 + ε2

0 )/π2(h̄v)3, where ε0 ≡
√

2π2(h̄v)3ρtri(0) =√
ρrεF, where ρr ≡ ρtri(0)/ρn(εF). To proceed further, we in-

troduce the following integral [28]:∫ ∞

0
dx

xα−1

z−1ex + 1

=
∫ ∞

0

xα−1ze−x

1 + ze−x
= −

∫ ∞

0
dx xα−1

∞∑
n=1

(−z)ne−nx

(t=nx)=
[∫ ∞

0
dt tα−1e−t

][
−

∞∑
n=1

(−z)n

nα

]
= �(α)Fα (z),

(E2)

where �(α) is the gamma function and Fα (z) ≡ −∑∞
n=1

(−z)n

nα .
Note that �(α) = (α − 1)�(α − 1) and F1(z) = ln(1 + z).
With the aid of Eq. (E2), Eq. (E1) transforms into

F3(z) − F3(1/z)

(βεF)3
+ ρr

2

(
μ

εF

)
= 1 + 3ρr

6
, (E3)

where z ≡ eβμ. At low temperature, the Sommerfeld expan-
sion reads [30]

lim
z→∞

∫ ∞

0
dx

H (x)

z−1ex + 1
≈
∫ βμ

0
dx H (x) + π2

6
H ′(βμ), (E4)

where H (x) is a function diverging no more rapidly than a
polynomial as x → ∞. Then using (E2) for H (x) = xα−1,
Eq. (E4) becomes

lim
z→∞ Fα (z) ≈ (βμ)α

�(α + 1)

[
1 + π2

6

α(α − 1)

(βμ)2

]
, (E5)

whereas Fα (z−1) = z−1 − z−2

2α + · · · vanishes as z → ∞. Thus
from Eq. (E3), we obtain

μ

εF
≈ 1 − π2

3(1 + ρr )

(
T

TF

)2

if T � TF. (E6)

On the other hand, at high temperature, βμ → 0 due to
the finite carrier densities; thus z → 1. From z ≈ 1 + βμ +
(βμ)2/2 for |βμ| � 1,

lim
z→1

Fα (z) ≈ η(α) + η(α − 1)βμ + η(α − 2)

2
(βμ)2, (E7)

where η(α) ≡ Fα (1) is the Dirichlet eta function [31]. Substi-
tuting Eq. (E7) into Eq. (E3), we obtain

μ

εF
≈ (1 + 3ρr )(TF/T )2

π2 + 3ρr(TF/T )2
if T 	 TF. (E8)

Here we used η(2) = π2/12.

2. Anomalous conductivity

Solving Eq. (C4) at arbitrary energy εk, we have

1

τ a(εk)
≈ 1

τnn(εk)
+ 1

τtn(εk)
= 1

τnn

(
εk

εF

)2

+ 1

τtn
, (E9)

where 1/τnn(εk) ≡ 2π
h̄ nimpV 2

nnρn(εk) and 1/τtn(εk) ≡
2π
h̄ nimpV 2

ntρtri(0) with ρtri(εk) ≈ ρtri(0). Therefore, 〈1/τ a(εk)〉
in Eq. (D10) is given by〈

1

τ a(εk)

〉
= 1

ρn(εF)

∫
dεk

ρn(εk)S(εk)

τ a(εk)

= 1

τnn

[
1

ε4
F

∫
dεkS(εk)

(
ε4

k + ε2
cε

2
k

)]
, (E10)

where εc ≡ (Vnt/Vnn)ε0 = √
τnn/τtnεF is the crossover energy.

Utilizing ∂
∂ε

f eq (−ε − μ) = − ∂
∂ε

f eq (ε + μ), we obtain the
following with the aid of Eq. (E2):

∫ ∞

−∞
dεkS(εk)

(
ε4

k + ε2
cε

2
k

) =
∫ ∞

0
dεk
(
ε4

k + ε2
cε

2
k

){− ∂

∂εk
[ f eq (εk − μ) + f eq (εk + μ)]

}

=
∫ ∞

0
dεk
(
4ε3

k + 2ε2
cεk
)
[ f eq (εk − μ) + f eq (εk + μ)]

= 24(kBT )4[F4(z) + F4(1/z)] + 2(kBT )2ε2
c [F2(z) + F2(1/z)], (E11)

resulting in

〈1/τ a(εk)〉
1/τ a(εF)

= τtn

τtn + τnn

{
24

(
T

TF

)4

[F4(z) + F4(1/z)] + 2

(
τnn

τtn

)(
T

TF

)2

[F2(z) + F2(1/z)]

}
. (E12)
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At T � TF, using Eqs. (E5) and (E6), we obtain

〈1/τ a(εk)〉
1/τ a(εF)

≈ 1 + π2[2(1 + 3ρr ) − (τnn/τtn )(1 − ρr )]

3(1 + ρr )(1 + τnn/τtn )

(
T

TF

)2

. (E13)

On the other hand, at T 	 TF, using Eq. (E7) with η(2) = π2/12 and η(4) = 7π4/720, we have

〈1/τ a(εk)〉
1/τ a(εF)

≈ τtn

τnn + τtn

7π4

15

(
T

TF

)4

+ τnn

τnn + τtn

π2

3

(
T

TF

)2

. (E14)

Finally, inserting Eqs. (E13) and (E14) into Eq. (D10), the asymptotic forms of the anomalous conductivity at low and high
temperatures, respectively, are given by

σ a
zz(T ) ≈ σ a

zz(0)

{
1 − π2[2(1 + 3ρr ) − (τnn/τtn )(1 − ρr )]

3(1 + ρr )(1 + τnn/τtn )

(
T

TF

)2
}

(E15)

for T � TF and

σ a
zz(T ) ≈ σ a

zz(0)

[
τtn

τnn + τtn

7π4

15

(
T

TF

)4

+ τnn

τnn + τtn

π2

3

(
T

TF

)2
]−1

(E16)

for T 	 TF, where σ a
zz(0) is the anomalous conductivity at zero temperature given by Eq. (2). Note that Eq. (E16) is equivalent

to Eq. (17) in the main text.
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