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Diagrammatic Monte Carlo for dissipative quantum impurity models

Matthieu Vanhoecke * and Marco Schirò
JEIP, UAR 3573 CNRS, Collège de France, PSL Research University, 11, place Marcelin Berthelot, 75231 Paris Cedex 05, France

(Received 15 December 2023; revised 12 February 2024; accepted 12 February 2024; published 18 March 2024)

We develop a diagrammatic Monte Carlo method for the real-time dynamics of dissipative quantum impurity
models. These are small open quantum systems with interaction and local Markovian dissipation, coupled to
a large quantum bath. Our algorithm samples the hybridization expansion formulated on a single real-time
contour, rather than on the double Keldysh one, as it naturally arises in the thermofield/vectorized representation
of the Lindblad dynamics. We show that local Markovian dissipation generally helps the convergence of the
diagrammatic Monte Carlo sampling by reducing the sign problem, thus allowing to reach longer timescales as
compared to the conventional unitary case. We apply our method to an Anderson impurity model in the presence
of local dephasing and discuss its effect on the charge and spin dynamics of the impurity.
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I. INTRODUCTION

Quantum impurity models represent the simplest nontriv-
ial class of quantum many-body problems, where interaction
and correlation effects involve only a finite number of de-
grees of freedom, the impurity. This is in turn coupled to an
extended set of harmonic modes representing the bath or en-
vironment. Examples of these models emerge ubiquitously in
condensed matter, atomic physics, and quantum optics, from
the Caldeira-Leggett model of a dissipative two-level system
[1] to the Kondo effect of magnetic impurities in metals or
quantum dots in nanostructures [2] to the decay of a driven
atom in a cavity [3].

While sharing the general setting of an open quantum
system, much of the emergent low-energy, long-time physics
in these models is controlled by the spectral properties of
their respective environments. These can be rather different,
ranging from a gapless bath with power-law correlations for
the conduction electrons of a metal at zero temperature, to
fast, featureless Markovian environments used to describe
for example charge transport at high-temperature or photonic
degrees of freedom in atomic physics and quantum optics plat-
forms. As such, traditional studies have treated these two as
rather separate classes of dissipative quantum systems [4,5].

The recent development of quantum simulators and noisy
intermediate scale quantum devices has brought forth a variety
of platforms where different types of dissipative environment
can coexist and be controlled with high degree of tunability
[6]. Experiments with ultracold atoms, for example, have re-
alized quantum transport through a dissipative quantum point
contact [7–9], where the constriction between two quantum
conductors is exposed to additional particle losses. Celebrate
quantum impurity models such as the Anderson or the Kondo
model have been realized with ultracold alkaline-earth atoms
[10,11] which are naturally exposed to correlated dissipative
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processes, such as dephasing due to spontaneous emission
[12,13] or two-body losses due to inelastic scattering [14–16].
In solid state platforms, one can couple quantum dots to a
quantum point contact [17–19] or to monitoring environments
[20,21] to study the effect of dephasing or quantum mea-
surements on the Kondo effect [22]. Finally, superconducting
circuits are emerging as platform to explore the role of local
dissipation in a controlled way [6,23].

These developments have triggered the interest around a
new class of dissipative quantum impurity models, where the
impurity is both coupled to a quantum bath, i.e., a struc-
tured frequency-dependent environment, and exposed to fast
Markovian dissipation describing incoherent processes such
as particle losses or dephasing, that can often be modelled
within a Lindblad master equation [4]. The physics of these
dissipative quantum impurity models has started only recently
to be explored, with a focus on noninteracting chains with lo-
calized single particle losses [24–28], pumps [29,30], or local
dephasing [31–34]. Non-Hermitian quantum impurity mod-
els, arising from a postselection over quantum trajectories,
have also been studied [35–37]. In addition to their intrinsic
interest, dissipative quantum impurity models also arise as
effective description of open Markovian lattice models in the
large connectivity limit, within dynamical mean-field theory
[38].

Despite these recent progresses the physics of dissipative
quantum impurities is still largely unexplored, particularly
concerning the interplay between local dissipation and strong
correlations. This is in part because the range of methods and
techniques to solve them efficiently and numerically exactly is
rather limited. Several techniques have been developed in the
past decade to study the real-time dynamics of unitary quan-
tum impurity models ranging from time-dependent numerical
renormalization group [39], matrix product states and their
extensions [40–43], or auxiliary master equation approaches
[44–46]. We note a recent development using matrix product
state representation in the temporal domain [47–53] which is
particularly promising. Diagrammatic Monte Carlo methods,
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which are the workhorse for imaginary time dynamics, suffer
from a severe sign problem which limits in practice their
applicability [54–57], although recent developments have sig-
nificantly pushed this boundary [58–62].

In this work, we develop a real-time diagrammatic Monte
Carlo (DiagMC) algorithm to tackle dissipative quantum
impurity models. The idea is to combine the real-time hy-
bridization expansion algorithm [54] with the formalism used
to solve Lindblad Markovian problems, often called vector-
ization or super-fermion representation [44,63–66], in such a
way to include local dissipation into the solution of the atomic
limit and sample the hybridization expansion in the resulting
vectorized Hilbert space. A similar strategy was developed
in Refs. [31,67] leading to to a self-consistent diagrammatic
theory in the hybridization (noncrossing approximation and
its extensions). Here instead we sample all diagrams entering
the hybridization expansion using DiagMC. We formulate the
algorithm in the most general terms and apply it to the case in
which the jump operators are diagonal in the occupation of the
impurity, leading to a generalized segment picture [68]. As a
nontrivial application we study the dynamics of an Anderson
impurity model (AIM) in presence of local dephasing. We
show that strong local dissipation helps the convergence of
the diagrammatic expansion, reducing the average number of
vertex and thus the sign problem, allowing to reach longer
timescales than in the usual hybridization expansion algorithm
[54]. Our results for the charge and spin dynamics of the
AIM reveal that the former is strongly slowed down by a
large local dephasing, a signature of the Zeno effect, while
the latter is only partially affected by dissipation. On the other
hand, we show that an asymmetric dephasing for the two spin
species results in the formation of a metastable state with finite
impurity magnetization.

The paper is organized as follows. In Sec. II, we introduce
the general dissipative quantum impurity model and present
a brief recap of the vectorization formalism. In Sec. III,
we formulate the hybridization expansion in this extended
Hilbert space formalism, while in Sec. IV, we describe the
DiagMC algorithm we developed to sample the hybridization
expansion. Section V contains our main results for the Ander-
son impurity model with dephasing, including an analysis of
the algorithm performance, benchmarks in the noninteracting
case and the results on charge, spin and entanglement dynam-
ics. Section VI is devoted to conclusions. Two Appendixes
complete this work with additional technical details.

II. DISSIPATIVE QUANTUM IMPURITY MODELS

The aim of this section is to introduce the model and setting
we will be focusing throughout this work, namely, dissipative
quantum impurities and their out of equilibrium dynamics. To
this purpose, we consider a small quantum system with a finite
number of fermionic degrees of freedom {dσ , d†

σ ′ } = δσ,σ ′ ,
where the label σ may include both spin and orbital degrees
of freedom, and described by a local Hamiltonian HI , in the
present case:

HI [{dσ , d†
σ }] =

∑
σ

εσ d†
σ dσ + HU [{dσ , d†

σ }], (1)

FIG. 1. Cartoon of the setup: a dissipative quantum impurity
model consisting of a local fermionic level (i.e., an interacting dot
with Hamiltonian HI ) coupled to a fermionic bath HB through the
hybridization HIB and exposed to dissipative Markovian processes
with jump operators Lμ, L†

μ.

where HU [{dσ , d†
σ }] contains the many-body interactions,

which at this stage are not necessary diagonal in the spin
or orbital degrees of freedom. These quantum levels are
coupled to one or more noninteracting baths, i.e., described
by a free fermions Hamiltonian HB = ∑

k,σ εkc†
k,σ ck,σ with

fermionic bath operators ck,σ , c†
k,σ . In order to simplify, we

only consider a linear coupling with the bath, described by
the Hamiltonian HIB:

HIB =
∑
k,σ

(Vk,σ d†
σ ck,σ + H.c.), (2)

thus, a generic quantum impurity model is described by the
following Hamiltonian:

H = HI + HB + HIB. (3)

In addition to the local interactions described by HU , we are
interested in a situation where the impurity is exposed to local
dissipative processes, that we assume to be Markovian and
modelled by a Lindblad master equation [4]. This dissipative
processes originate from some fast Markovian environment,
whose microscopic degrees of freedom are not under our
control and so can be traced out from the start. This has to be
contrasted with the quantum bath described by the fermions
ck,σ , c†

k,σ which play a key role in the many-body physics of
the quantum impurity. As a result of this local dissipation,
the entire system (quantum bath plus quantum impurity) is
described by a density matrix ρ(t ) which evolves in time
according to the Lindblad equation

∂tρ(t ) = −i[H, ρ(t )] +
∑

μ

Lμρ(t )L†
μ − 1

2
{L†

μLμ, ρ(t )},

(4)

where H is the impurity plus bath Hamiltonian in Eq. (3) and
we have denoted Lμ, L†

μ the jump operators for the impurity
system only, that is to say they are written only in functions of
the operators dσ , d†

σ . A sketch of the setup we are considering
in this work is provided in Fig. 1.

Since we are interested in the nonequilibrium dynamics we
want to determine the time evolution of the density matrix ρ(t )
starting from an initial configuration given by ρ(0). For this
one, in principle, we could prepare our system in a thermal
state, then drive the system out of equilibrium, in this case
the initial density matrix can be determined by the Boltzmann
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distribution at a temperature β−1. In this paper, we assume to
start from a decoupled situation, where the fermionic bath is in
thermal equilibrium at temperature T = 0, while the impurity
is prepared in a given initial density matrix ρI (0). The initial
density matrix for the whole system then factorize:

ρ(0) = ρI (0) ⊗ ρB(0), (5)

where ρB(0) is a thermal density matrix for the fermions
in the bath while ρI (0) depends on the initial preparation
for the impurity and will be specified later. Then we let the
entire system evolve under the action of the Lindblad master
equation (4). We note that in principle an initial state with
finite impurity-bath correlations could be also implemented
within diagrammatic Monte Carlo, by adding a third branch
(imaginary-time axis) on the real-time contour, as done in the
unitary case [54].

In this work, we will be mainly interested in properties of
the impurity which can be computed from the reduced impu-
rity density matrix, obtained after tracing out the fermionic
degrees of freedom of the quantum bath.

A. Vectorization and tilde space

In this section, we setup the theoretical framework we will
use to study nonequilibrium dynamics in dissipative quantum
impurity models, in particular to obtain the hybridization ex-
pansion that will be sampled through diagrammatic Monte
Carlo. As a first step we discuss how to reformulate the
Linbdlad master equation, which is an equation for the density
matrix written in terms of a Linbdlad superoperator, in terms
of a nonunitary evolution for a vector state which represents
a purification of the density matrix and lives in an enlarged
Hilbert space. This formalism, sometime referred to as vector-
ization, third-quantization [69], superfermion representation
[44,63–66], or thermofield [70,71] depending on the commu-
nities [72,73], will make the development of the hybridization
expansion and of the DiagMC algorithm rather natural as we
are going to see in Sec. III. The advantage of the vectorization
formalism is that the superoperator structure usually needed
to treat Lindbladian problems and the associated hybridization
expansion is now encoded by doubling the local Hilbert space
and working with an additional quantum number, similar to
an orbital degrees of freedom in conventional diagrammatic
Monte Carlo. As a by product the diagrammatic expansion
will be formulated on a single real-time contour, rather than
on the Keldysh one, the additional label keeping track of
the information on whether operators are on the upper/lower
branch of the contour.

As a warmup we start describing the vectorization for a
single site fermionic problem, which could describe, for ex-
ample, the isolated impurity. The Hilbert space is spanned by
the orthonormal Fock basis |n〉, with n = 0, 1 and in this space
the identity operator is written as

I =
∑

n

|n〉〈n|. (6)

In this basis any operator, including the density matrix ρ,
reads

O =
∑
n,m

On,m|n〉〈m|. (7)

Now, we want to duplicate the physical Hilbert space H and
purify the density matrix. We introduce therefore an auxiliary
tilde space H̃ with orthonormal basis |ñ〉, where we can also
introduce the identity

Ĩ =
∑

n

|ñ〉〈ñ| . (8)

We can then define fermionic operators in the new Hilbert
space, respectively {cn, c†

n}n in the Hilbert space H and
{c̃n, c̃†

n}n in H̃, satisfying the usual algebra:

{cα, c†
β} = δα,β {c̃α, c̃†

β} = δα,β (9)

and with all the other anticommutators equal to zero. The key
step is now to vectorize the identity operator, introducing the
left vacuum [44,63] (or vectorized identity)

|I〉 =
∑

n

(−i)n|n〉 ⊗ |ñ〉. (10)

The vectorized identity is particularly useful as it allows to
write any operator, in terms of a vector, for example, if we can
write:

|O〉 = O|I〉 = O ⊗ Ĩ|I〉. (11)

In particular, the vectorized density matrix reads

|ρ〉 = ρ|I〉. (12)

In the vectorization formalism, we can evaluate the average of
an operator over the density matrix ρ(t ) as

〈O(t )〉 = Tr{ρ(t )O} =〈I|O|ρ(t )〉. (13)

Since we are interested in the dynamics of the impurity
density matrix, we have to write the Lindblad in the super-
fermions representation and then write the formal solution of
the Lindblad master equation.

B. Vectorization of the Lindbladian

We can apply the superfermion formalism to the case
of the master equation for a dissipative quantum impurity
model, i.e., to Eq. (4). To this extent, we introduce the
Hilbert spaces H and its doubled tilde-version H̃ and dupli-
cate all the degrees of freedom in the problem, namely the
impurity and the bath fermions, and introduce the associated
creation/annihilation operators dσ , d̃σ and ck,σ , c̃k,σ and their
Hermitian conjugate. In terms of these degrees of freedom,
we can rewrite the Linblad master equation as a nonunitary
Schrodinger type of equation [44,63]

∂t |ρ〉 = L|ρ〉,
where the Lindbladian L has now two contributions

L = L0 + LIB (14)

the first one L0 is the free Lindbladian for the dissipative
impurity and the bath, and the second one LIB is the coupling
term between the two subspaces. By using the super-fermions
rules [44,71] (dσ |I〉 = −id̃†

σ |I〉 and d†
σ |I〉 = −id̃σ |I〉) and

since we consider only the dissipation on the impurity degrees
of freedom, we can formally write the impurity Lindbladian
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L0 as

L0 = −i(HI + HB − H̃I − H̃B)

+
∑

μ

(
sLμ

LμL̃μ − 1

2
L†

μLμ − 1

2
L̃†

μL̃μ

)
, (15)

where sLμ
is an extra sign depending on the fermionic (sLμ

=
−i) or bosonic (sLμ

= 1) nature of the jumps operator. For
the second contribution to Eq. (14), the impurity-bath Lind-
bladian, we can write it in compact form by introducing the
following fields:


σ =
∑

k

Vk

(
ck,σ

c̃†
k,σ

)
�σ =

(
dσ

d̃†
σ

)
, (16)

which group together the operators living in the space H and
H̃. Using these fields, we can write the system-bath term in a
more compact way:

LIB = −i
∑
σα

(

̄α

σ�α
σ + �̄α

σ 
α
σ

)
, (17)

where we have introduced a label α = 0, 1 which denotes
the Hilbert space H or H̃ (dσ = �α=0

σ and d̃†
σ = �α=1

σ ). At
this point, we can write the formal solution of the vectorized
master equation as

|ρ(t )〉 = Tt exp

(∫ t

0
L(s)ds

)
|ρ(0)〉, (18)

where we have introduced the time ordering operator Tt in the
superfermions representation. Unlike the standard Keldysh
time-ordering, here the time ordering is defined as

tα > t̄β =
{

t > t̄ if α = β ∈ H, H̃
α ∈ H β ∈ H̃ . (19)

This ordering allows to define a time-ordering operator Tt

such that two operators, ψ1 and ψ2, being ψ a creation or
annihilation fermionic operator living in the H(H̃) Hilbert
space, anticommute under time ordering:

Ttψ1(tα )ψ2(tβ ) =
{

ψ1(tα )ψ2(tβ ) if tα > tβ

−ψ2(tβ )ψ1(tα ) otherwise
. (20)

Equation (18) represents the starting point to perform the
hybridization expansion, namely an expansion order by order
in the system-bath coupling LIB, as we will discuss in the next
section.

III. HYBRIDIZATION EXPANSION

In this section, we derive for completeness the hybridiza-
tion expansion in the vectorized formulation of our dissipative
quantum impurity model. This type of expansion was first
derived for dissipative impurities using the superoperator for-
malism in Ref. [31].

As in the standard hybridization expansion [54] the start-
ing point is to write down the trace of density matrix as a
dynamical partition function Z = Tr[ρ(t )]. In the vectorized
formalism, this amount to evaluate 〈I|ρ(t )〉. Using the formal
solution of the vectorized master equation, Eq. (18), that we

write in the interaction picture with respect to the free Lind-
bladian L0, we obtain

〈I|ρ(t )〉 = 〈I|eL0tTt exp

(∫ t

0
dτLIB(τ )

)
|ρ(0)〉. (21)

Then, we Taylor expand the time-ordered exponential in
power of the impurity-bath hybridization, LIB,

〈I|ρ(t )〉 = 〈I|eL0t
∑

n

1

n!

∫ t

0

n∏
i

dtiTt [LIB(t1)

· · ·LIB(tn)]|ρ(0)〉 (22)

and take the average over the bath and the impurity degrees
of freedom, using the fact that the initial state |ρ(0)〉 is fac-
torized. Since the Lindladian LIB is bilinear in terms of the
bath and impurity operators, it comes directly that only the
even terms contribute to the expansion. Using Eq. (17) for the
system-bath Lindbladian and by factoring the bath operators,
we can obtain the hyrbdiziation expansion as

〈I|ρ(t )〉 =
∑

n

(−i)n

(n!)2

∫ t

0

n∏
i=1

dtidt̄i
∑
{σ,σ̄ }

∑
{α,ᾱ}

× 〈I|Tt
[
eLI t�α1

σ1
(t1)�̄ᾱ1

σ̄1
(t̄1) · · · �̄ᾱn

σ̄n
(t̄n)

]|ρI (0)〉
× Detσ

[{
�αᾱ

σ

}]
Detσ̄

[{
�αᾱ

σ̄

}]
. (23)

In the expression above, the impurity operators are evolved
under the local Lindbladian LI , i.e.,

�(t ) = e−LI t�eLI t . (24)

For what concerns the bath degrees of freedom, we have used
the Wick theorem since we consider a noninteracting bath, and
have introduced the bath hybridization function defined as

�αᾱ
σ σ̄ (t, t̄ ) = −i〈IB|Tt

[

̄α

σ (t )
ᾱ
σ̄ (t̄ )

]|ρB(0)〉. (25)

We note that in the case of interest here the hybridization
between impurity and bath is diagonal in the spin index,
therefore the hybridization function above can be written as
a matrix

�σ (t, t̄ ) =
(

�00
σ (t, t̄ ) �01

σ (t, t̄ )

�10
σ (t, t̄ ) �11

σ (t, t̄ )

)
, (26)

where the different components refer to the structure of the
Hilbert space H or H̃. We will give explicit expressions for
these functions in Appendix A.

Trace over the impurity degrees of freedom

As we have shown in the previous section, for each order
n in the hybridization expansion, the trace over the impurity
degrees of freedom involve 2n operators evaluated at a time
t by the bare impurity Lindbladian LI . It is therefore quite
natural to rewrite all the operator in the diagonal basis of LI ,
in order to reduce the computational cost and also to look at
the symmetries of the system. So, we denoted {|rμ〉, |lμ〉}μ
respectively the right and left eigenvectors such that

LI |rμ〉 = λμ|rμ〉 and 〈lμ|LI = 〈lμ|λ∗
μ, (27)

where λμ is the associated eigenvalue, which in the case
of a Lindbladian evolution is a complex number, with a
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real part that can be nonzero. In fact, the imaginary part of
the eigenvalues give the coherent part for the dynamics and
the real part gives rise to the dissipative dynamics. More-
over, even in a nonunitary dynamics, the set of eigenvectors
form an orthonormal basis, with an associate closure relation
given by

I =
∑

μ

|rμ〉〈lμ| with 〈lμ|rν〉 = δμ,ν (28)

by using the orthoganality and the spectral properties of LI ,
we can rewrite the local (impurity) evolution operator as

eLI t =
∑

μ

eλμt |rμ〉〈lμ|. (29)

Concerning the impurity part of the hybridization expan-
sion, we can insert closure relation in order to rewrite all the
operators in the basis of LI .

Trimp[· · · ] = 〈I|[eLI t�α1
σ1

(t1)�̄ᾱ1
σ̄1

(t̄1) · · · �̄ᾱn
σ̄n

(t̄n)
]|ρI (0)〉

= 〈I|
⎛
⎝∑

μ,μ′
Aμ,μ′ ({t})|rμ〉〈lμ′ |

⎞
⎠|ρI (0)〉, (30)

where we have introduced the matrix A, given by

A({t}) =
∑

μ1,···μn

[eλμ(t−t1 )]
(
�α1

σ1

)
μ,μ1

· · · (�̄αn
σn

)
μn,μ′[e

λμ′ t̄n ],

(31)

where (�α′
1

σ ′
1
)μ,μ′ denoted the matrix component of the spinor

in the diagonal basis:(
�

α′
1

σ ′
1

)
μ,μ′ = 〈lμ|�α′

1
σ ′

1
|rμ′ 〉, (32)

where the sum runs over those sectors which are compatible
with the operator sequence.

Note that the evaluation of the trace factor thus involves
the multiplication of matrices whose size is equal to the
size of the Hilbert space of HI . Since the dimension of
the Hilbert space grows exponentially with the number of
spin/orbitals, the calculation of the trace factor becomes the
computational bottleneck of the simulation, and the matrix
formalism is therefore restricted to a relatively small number
of spin/orbitals. In practice, we can take to account the sym-
metries of the Lindbladian in order to restrict the diagrams
space, and for some specific case we can write a analytic
expression for the trace over the impurity degrees of freedom.

IV. DIAGRAMMATIC MONTE CARLO

Diagrammatic Monte Carlo (DiagMC) is a numerical algo-
rithm for sampling infinite series of multiples integrals, such
as those arising in any perturbative expansion [68,74]. Often
this expansion admits a diagrammatic representation, even
in out-of-equilibrium situations. One then performs a Monte
Carlo sampling of the resulting space of diagrams to evaluate
physical quantities.

As it can be immediately read out from Eq. (23) in the pre-
vious section, the dynamical evolution of the density matrix

FIG. 2. An example of configuration C for the second order of the
hybridization expansion. The diagram in the top(bottom) panel, cor-
responding to crossing and noncrossing lines, are combined together
in a determinant structure. We note the expansion is formulated on a
single collapsed real-time contour, with an extra index α taking into
account whether a given vertex belong to the Hilbert space H or H̃.

can be written as a weighted sum over configuration C

〈I|ρ(t )〉 = 〈I|V (t )|ρ(0)〉 =
∑
C

W (C), (33)

where a given configuration C contains, for each flavor σ ,
a total of 2kσ vertices occurring at times {tσ

i , t̄σ
i } with i =

1, . . . kσ . Half of these vertices represent an impurity creation
operator d†

σ or d̃†
σ , and the other half represent an impurity

annihilation operator dσ or d̃σ , both of them being evolved
in time with the local Lindbladian LI . All the operators are
stored in such a way to always preserve global time ordering
along the contour, a typical configuration reads

C =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ = {↑,↓}
kσ = 0, 1, · · · ,∞(
t̄σ
1 , ᾱσ

1

)
; · · · ;

(
t̄σ
kσ

, ᾱσ
kσ

)
(
tσ
1 , ασ

1

)
; · · · ;

(
tσ
kσ

, ασ
kσ

) . (34)

For each configuration (see Fig. 2), we defined the Monte
Carlo weight directly from the hybridization expansion in
Eq. (23), as

W[C] = sign[C]Det[C]Trimp[C], (35)

where sign[C] includes all the signs (phases) coming from the
evolution as well as from the time ordering, while the trace
over the impurity degrees of freedom reads

Trimp[C] = 〈I|D1(t1)D2(t2) · · · D2n(t2n)|ρI (0)〉, (36)

where D denoted an impurity operator with some spin/orbital
index σ and living in a Hilbert space H(H̃). The knowledge
of the weight W[C] allows in principle to compute any ob-
servable acting on the impurity degrees of freedom. In fact,
starting from Eq. (37), we can in principle rewrite the hy-
bridization expansion and obtain

〈O(t )〉 =
∑

C O(C)W[C]∑
C W[C]

, (37)

where the estimator of local operator has been defined as

O(C) = 〈I|OD1(t1)D2(t2) · · · D2n(t2n)|ρ(0)〉
〈I|D1(t1)D2(t2) · · · D2n(t2n)|ρ(0)〉 . (38)
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Once the real-time average of a local operator is written like
this, it would be natural to sample it using a Monte Carlo
method, namely generating a random walk in the configu-
ration space which visit configurations C with probability
P(C) = W[C]/

∑
C′ W[C ′].

One of the challenges of implementing the real-time Di-
agMC is that the weight W[C] is in general a complex number.
In the specific case of the hybridization expansion, the com-
plex value of the weight is due not only to the “i-factors”
coming from the real time evolution but also to the fact the
bath part and the contour bath defined previously is a complex
function of it’s time arguments. In order to circumvent this
problem, we sample the absolute value of the weight |W[C]|,
while including the phase of the configuration η(C) defined as

η(C) = W[C]

|W[C]| (39)

in the Monte Carlo estimator. In other words, we can rewrite
Eq. (37) as

〈O(t )〉 =
∑

C O(C)η(C)|W[C]|∑
C η(C)|W[C]| = 〈Oη〉MC

〈η〉MC
, (40)

where we have introduced the Monte Carlo average 〈X 〉MC =∑
C X (C)P(C) with respect to a well defined (positive) prob-

ability measure P(C) = |W[C]|/∑
C′ |W[C ′]|. This approach,

despite its simplicity, becomes problematic when the average
phase goes to zero, as in this case the accuracy of the algo-
rithm deteriorates as errors become exponentially large with
time. As we will see later on, the presence of local dissi-
pation improves the convergence properties of the DiagMC
algorithm.

METROPOLIS algorithm

A standard approach to generate configurations with a
given probability P(C) = |W[C]|/∑

C′ |W[C ′]| is to build up
a Markov chain [75], i.e., a stochastic process which describes
the evolution of the probability to visit configuration C after n
steps, denoted as P(C, n). The way to describe a Markov chain
is to introduce the conditional probability R[C → C ′] to be in
the configuration C ′ at step n + 1 being in the configuration C
at step n. This quantity allows us to define the master equation,
the recursive equation that expresses P(C ′, n + 1) in function
of the previous step:

P(C ′, n + 1) =
∑
C

R[C → C ′]P(C, n). (41)

In order to reach the desired probability P(C), after waiting
a proper equilibration time, the matrix R[C → C ′] must sat-
isfies two constraints. The first one is the ergodicity of the
matrix and the second one is that the matrix must satisfy the
detailed balance condition. Ergodicity ensures that we can
reach any configuration C from any other configuration C ′,
after a finite number of steps. This means that all the space
of the configuration can be visit during the simulation. While
detailed balance means that for any configuration C and C ′, the
following relation must be verified

R[C → C ′]P(C) = R[C ′ → C]P(C ′), (42)

where P(C) is the probability distribution we want to sample
through the Markov chain. One way to generate configura-
tions which satisfies the detailed balance condition is to use
the METROPOLIS algorithm [75]. The basic idea is, starting
from a initial configuration C we propose to visit a new con-
figuration C ′ with a certain transition probability T (C → C ′),
this probability depends on how we propose the new con-
figuration which in principle it can be independent of the
physical system. Then, this new configuration is accepted or
rejected according to the probability A(C → C ′), so in this
context the conditional probability R[C → C ′] to move in the
configuration C ′ starting from C is given by

R[C → C ′] = A(C → C ′)T (C → C ′). (43)

Concerning the acceptance probability A(C → C ′), the
METROPOLIS algorithm is based on the following relation

A(C → C ′) = min

[
1,

P(C ′)T (C ′ → C)

P(C)T (C → C ′)

]
, (44)

which satisfies the detailed balance condition. While this
previous description of the algorithm is generic and model
independent, it is interesting to detail how in practice we
can compute the acceptance probability and what type of
transition probability has to be used, since these two quantities
can strongly affect the performance and the reliability of the
Monte Carlo algorithm.

The transition probability T (C → C ′) is determined ac-
cording to the types of moves to implement. In the case of
interest, we implement two classes of local moves, character-
ized by their way of exploring the space of configuration.

The first one, allows us to change the number of vertex in
a given channel σ by unity �kσ = ±1. These moves amount
to add or remove a vertex (one creation and one annihilation
fermionic operator) in a given channel σ and at randomly
chosen time. In principle, only these two moves are necessary
to ensure the ergodicity of the matrix R. Indeed, it is obvi-
ous that using these two basic updates any configuration can
be reached after a finite number of steps, which guarantees
the METROPOLIS algorithm to visit configurations according
to the probability P(C). However, although the ergodicity is
respected, these two moves do not guarantee the efficiency and
the speed-up of the Monte Carlo sampling. Indeed, exploring
the space of configurations with a fixed number of vertex is
relatively inefficient and requires drastically increasing the
number of Monte Carlo steps. For this purpose, it is interesting
to implement the second class of moves, which explore the
configuration space at a fixed number of vertex in a given
channel σ (�kσ = 0) such as for example shifting a fermionic
operator (annihilation or creation operator). In practice, we
can also implement other kind of moves, which are more
specific, for example some moves in which more than two
operators are added/removed/shifted. This types of moves be-
come revelant when dealing with off-diagonal baths or when
dealing with two or more particles dissipation process. Global
moves are also fundamental in the case of multiorbital dissipa-
tion process. In fact, the choice of moves is determined by the
structure of the Lindbladian and of the non-Markovian bath.

From the point of view of the computational scaling of the
algorithm the key quantity is the acceptance ratio A(C → C ′)
which needs to be evaluated at each Monte Carlo step. As we
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can see from the definition of the weight W (C) in Eq. (35),
we have to evaluate the ratio of two determinants and the ratio
of the trace over the impurities degrees of freedom. For the
ratio of determinants fast updates routines are available [68],
which allows us to find a analytical expression and then makes
this operation rather efficient, scaling polynomially with the
number of vertex. On the other hand concerning the trace
over the impurities degrees of freedom, this usually scales
exponentially with the size of the local Hilbert space since one
has to rewrite the operators in the basis of local eigenstates of
the Lindbladian and store the whole chain of matrix products
from left to right (and vice versa). However in some specific
case, the symmetries of the Lindbladian allows us to use
some segment representation (see next section) and so find
a analytic expression for the trace over the impurity degrees
of freedom, this is the case of the impurity models without
exchange or hopping terms.

In the next section, we describe the first application of the
DiagMC algorithm to the Anderson impurity model in pres-
ence of dephasing. We will first discuss its performances, then
benchmark it against the exactly solvable dissipative resonant
level model and finally present the results in the interacting
case.

V. RESULTS: ANDERSON IMPURITY MODEL
WITH DEPHASING

In this section, we apply our DiagMC algorithm to study
the nonequilibrium dynamics of the Anderson impurity model
(AIM) coupled to a dephasing bath. We consider therefore a
single spinful impurity with local Hamiltonian and local jump
operator given respectively by

HI =
∑

σ

εd d†
σ dσ + Un↑n↓ and Lσ = √

γσ nσ , (45)

which both enter the Lindblad master equation given in
Eq. (4). Concerning the fermions describing the non-
Markovian bath, we assumed a noninteracting bath coupled to
the impurity via an energy-dependant hybridization function
�(ε) defined as

�(ε) =
∑

k

|Vk|2δ(ε − εk ) = V 2ρ(ε), (46)

where Vk is assumed independent of the momentum for sim-
plicity and ρ(ε) is the conduction density of state, which at
first approach we consider the flat band limit, namely a flat
band of width 2W:

ρ(ε) = ρ0�(|ε − W |) . (47)

Although simplistic this state density encodes the main prop-
erties of a metallic conduction bath, with a finite bandwidth
and a finite weight at the Fermi level. In this case, the hy-
bridization function which describes the coupling between the
bath and the impurity becomes energy independent, �(ε) ≡
�. In the following, we take � as our unit of energy. Unless
stated otherwise, we consider the fermionic bath to be in
equilibrium at zero temperature.

Let us briefly discuss some notable limit of this model.
First, in absence of any dephasing the real-time dynamics of

the AIM has been studied in detail with different methods
[39,43,54]. Here the spin impurity dynamics is controlled
by the emergent Kondo scale TK ∼ e−U/� while charge dy-
namics is faster and controlled by higher energy scales, such
as U, �. In presence of dephasing but no electron-electron
interaction, i.e., U = 0, the model reduces to a dissipative
resonant level model (dRLM) which can be still solved exactly
using Keldysh techniques [34] (see Appendix B). Finally, as
we are going to discuss below, in absence of impurity-bath
hybridization, Vk = 0, the local occupation of the impurity
remains constant, even though the system acquires a finite
lifetime given by the dephasing γ . In the remaining of this
section, we first discuss some aspect of the algorithm in par-
ticular the structure of the DiagMC configurations and the
performances and convergence properties. Then we present
some benchmark results for the dRLM and finally presents
our results for the fully interacting Anderson model.

A. DiagMC: Generalized segment picture

In Sec. IV, we discussed the general structure of DiagMC
configurations, considering all possible vertex types, without
taking account the symmetries of the problem. In practice,
part of the vertex can induce a zero contribution when we
calculate the trace over the impurity degrees of freedom, the
symmetries constrains the space of all the configuration to a
subspace where we have only the nonzero contribution.

For open quantum systems described by a Lindbladian one
can distinguish between weak and strong symmetries [76]. In
particular, whenever an operator commutes with the impurity
Hamiltonian and with all jump operators than we can associate
to it a strong symmetry which reflects in a block diagonal
structure of the Lindbladian. In the case of the Anderson
impurity with depahsing, we have that

[HI , nσ ] = [Lσ , nσ ] = [L†
σ , nσ ] = 0. (48)

In other words, we can say that the impurity Lindbladian
commutes with the density nσ . This strong symmetry for the
Lindbladian of the impurity means that the evolution through
this Lindbladian preserves the number of particles on the
impurity. We can therefore perform the trace on the impurity
degrees of freedom, since the Lindbladian LI commutes with
the occupation number operator of each orbital, the evolution
operator eLI t is diagonal in the Fock space. This allows to
simplify the evaluation of the local trace and also to identify
in a simple way the configurations with nonzero weight. As
in the equilibrium case [68], we can use a segment repre-
sentation and write a analytical expression for the trace over
the impurity degrees of freedom. In this representation, we
represent the time evolution of the impurity by collections
of segments, which each segments represent time intervals in
which an electron with a given spin resides on the impurity.

In Fig. 3, we have illustrated an example of such a seg-
ment representation for the Anderson impurity model with
dephasing.

Using this segment representation, we can compute in
closed form the trace over the impurity configuration that
enters the hybridization expansion, see Eq. (23). In particular
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FIG. 3. Segment representation of the impurity trace in hy-
bridization expansion of the single orbital Anderson model with
Dephasing. Upper line: spin up orbital, lower line, spin down orbital.
blue line: orbital in the space H occupied, red line: orbital in the
space H̃ occupied. Shaded areas: regions where both up and down
orbitals are filled, so the impurity is doubly occupied. The length
of the shaded area enters into an overall weighting factor for the
potential energy.

one can show that this reads

TrImp[· · · ] = 〈I|Tt
{
e−LI t�

ᾱσ
1

σ

(
t̄σ
1

)
�̄

ασ
1

σ

(
tσ
1

) · · · �̄ασ
kσ

σ

(
tσ
kσ

)}|ρI (0)〉
= sei(

∑
σ εd[lσ −l̃σ ]+U[Oσ σ̄ −Õσ σ̄ ])−∑

σ γσWσ + γσ
2 [lσ +l̃σ ],

(49)

where we have introduced the following quantities:
(1) lσ : total length of segments in spin σ and for the

Hilbert Space H;
(2) l̃σ : total length of segments in spin σ and for the

Hilbert Space H̃;
(3) Oσ,σ̄ :total overlap between segment of flavor σ and σ̄

for the space H;
(4) Õσ,σ̄ : total overlap between segment of flavor σ and σ̄

for the space H̃;
(5) Wσ : total overlap between segment of same flavor σ

but living in different Hilbert space.
In Eq. (49), s is a extra sign, coming from two contribu-

tions: the first one is the time ordering operator and the second
one from the different permutation of the fermionic operator
in order to get the natural ordering of the basis. The knowledge
of this analytical expression for the local trace greatly simplify
the DiagMC algorithm.

B. Performance of the algorithm

In order to analyze the performance of DiagMC in presence
of dissipation, we will consider two mains quantities, namely
the probability distribution of perturbative orders (kinks, or
vertex) in the diagrammatic expansion and the average sign
of the Monte Carlo weight, both being precise measures of
the efficiency of the algorithm and for the determination of
error bar. In all this section, we consider as initial condition
an impurity which is initially empty ρI (0) = |0〉〈0|.

1. Statistics of kinks

As we have shown in the previous section, DiagMC allows
to stochastically sample the expansion of the trace of the
density matrix in power of the impurity-bath coupling. The
main idea of Monte Carlo algorithm is to perform a random
walk in the diagrams space. Thus during the simulation it is
natural to verify the stability of the algorithm by looking at
the statistics of the different perturbative order, namely the
probability distribution to visit a Monte Carlo configuration

FIG. 4. Statistic of the kinks (vertex) k sampled during the sim-
ulation. Top panel shows the probability distribution of different
perturbative orders k in function of the dephasing for a fixed mea-
suring time t. While the bottom panel, is the scaling of the average
number of kinks with maximum time t for different values of dephas-
ing γσ . The plots are obtained for a empty initial state ρI (0) = |0〉〈0|
and for T = 0 and W = 2�.

with k vertex in the spin channel σ . The respective probability
is defined as

Pσ (k) =
∑

C |W (C)|δ(kσ (C) − k)∑
C |W (C)| , (50)

where kσ (C) is the number of vertex with σ in the configura-
tion C. In Fig. 4, we have plotted an example of the behavior of
this probability distribution for different values of measuring
time t and dephasing γσ . As in the unitary case, all histograms
of Pσ (k) are peaked around an average value k̄σ , with an
exponentially small probability for higher perturbative order.
However, Fig. 4 confirms that all orders contributed and are
included, so DiagMC calculation is an unbiased result which
does not truncate at any finite perturbative order the hybridiza-
tion expansion but rather perform an exact resummation of all
the perturbative orders. Importantly, we note in Fig. 4 that the
effect of dephasing is to shift the hystogram towards the low
diagram-order sector. This means that for a fixed measuring
time t the hybridization expansion converges faster, i.e., with
a smaller number of diagrams, in presence of dissipation than
in the purely unitary case. We note that a similar effect occurs
in the imaginary-time hybridization expansion algorithm [68],
upon increasing the local interaction and it is one of the
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reasons of its success. We can understand this decreasing of
the perturbative order by looking at eigenvalues of the local
lindbladian LI which can be written in general as

λ = Re(λ) + iIm(λ). (51)

For the Anderson impurity model with dephasing the asso-
ciated eigenvectors have the following form {|n, m̃〉}n,m, i.e.,
they are diagonal in Fock space of both Hilbert spaces H, H̃.
In the segment representation, only the segment U[t,t̄] with the
same number of particle in the space H and H̃ for a given spin
σ are not affected by the dissipation. For the other segments
where we have a state of the form |n, m̃〉n �=m, the trace over the
impurity degrees of freedom gives

TrImp[· · · ]U[t,t̄]
∝ eRe(λ)(t̄−t )eiIm(λ)(t̄−t ). (52)

Since Re(λ) < 0, the dissipation then decrease the probability
of sampling the vertex with a nonzero real part eigenvalue. In
this respect, the effect of the dissipation is to constraint the
sampling to a subspace of diagrams. In particular, in the strong
dissipative regime only the state with Re(λ) = 0 contribute
to the dynamics, we can then write an effective model by
projecting the Lindbladian onto its states.

In order to quantify the impact of dephasing on the statis-
tics of diagrams order, it is interesting to look at the average
perturbative order k̄σ . In the bottom panel of Fig. 4, we plot k̄σ

as a function of time t for different value of the dephasing γσ

and for a initial empty impurity state. We note an almost linear
scaling with time with a slope which, as expected, decreases
as the value of dephasing is increased, i.e., the effect of the
markovian dissipation is to reduce the number of kinks and so
the scaling with the time. In fact, since in the strong dissipative
regime the space of diagrams are reduced to a subspace, it can
then be interesting to modify the probabilities of sampling in
the algorithm of METROPOLIS in order to favour the diagrams
with a nonzero probability of sampling. Thus, to summarize
the scaling of the average number of diagrams for our real-
time DiagMC reads

k̄σ = Ct (53)

with C a constant which depends of γσ , but which is inde-
pendent of other local energy scales. Both in the unitary case
and in presence of markovian dissipation, the coefficient C
strongly depends on the bandwidth W and �. Note that even
with the dissipation accessing long timescale in the regime
W � �, becomes difficult with this approach. Overall the
results of this section shows that Markovian dissipation such
as dephasing is beneficial for the convergence properties of
DiagMC and can help reach longer timescales compared to
the unitary case.

2. Average sign

Another important quantity to monitor during the simula-
tion is the average phase of the Monte Carlo configurations.
Indeed, the relation between the physical quantities and the
MC phase is given by Eq. (40), a vanishing average sign
turns into very large error bars on Monte Carlo averages that
makes the simulation unstable and then restricts the regimes
accessible by DiagMC. In the real-time DiagMC, the average
phase of the MonteCarlo configurations is defined according

FIG. 5. Average phase as a function of time t for different de-
phasing γσ in the regime W = 2�, the dephasing being the same for
each spin channel. We clearly see an exponential decay on a scale of
time all the larger as the dissipation is important.

to the complex nature of the MC weights,

〈η(t )〉 =
∑

C η(C)|W (C)|∑
C |W (C)| (54)

In Fig. 5, we plot the average phase as a function of time,
for different values of the dissipation. We see that, consis-
tently with the decrease of the average perturbative order, the
average sign decays to zero in a slower fashion in presence
of strong dissipation. This result, which is one of the impor-
tant one of this work, implies that longer timescales can be
reached within our DiagMC algorithm at fixed computational
resources as compared to the purely unitary evolution algo-
rithm.

C. Benchmark: Dissipative resonant level model

We start by considering the noninteracting case with U =
0, the so called dissipative resonant level model (dRLM),
which allows for an exact solution in the unitary and dis-
sipative case by using standard Keldysh techniques (see
Appendix B and Ref. [34]). As a result this model can be
used in order to benchmark the DiagMC algorithm and also
in order to understand the effect of the Markovian dissipation.
We consider for concreteness the case of symmetric spin de-
phasing γ↑ = γ↓ and start from an empty initial state of the
impurity ρI (0) = |0〉〈0|.

In Fig. 6, we plot the real-time dynamics of the impurity
density nσ (t ) for different values of dephasing (bottom panel)
and impurity energy level (top panel). We note that spin
symmetry is preserved through the time evolution, therefore
nσ (t ) = n↑(t ) = n↓(t ). The comparison between the DiagMC
results and the exact solution shows an excellent agreement at
short times, with the Keldysh results remaining well within
the error bars at long timescales where the sign problem
becomes more severe. The agreement is particularly good for
large dephasing (see right panel) where as discussed our algo-
rithm is more efficient. Overall we see that the effect of a finite
energy level introduces oscillations in the dynamics of the
impurity, which are nevertheless well captured by DiagMC.
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FIG. 6. Dynamics of the dissipative resonant level model for
differents values of dephasing (bottom) and of the impurity energy
level εd (top). The solid line correspond to the exact solution obtained
by the standard Keldysh methods. All the results are obtained in the
regime W = 2�.

D. Charge and spin dynamics of the dissipative AIM

We now move to the interacting Anderson impurity with
dephasing and discuss the dynamics of charge and spin impu-
rity as a function of different system parameters. We consider
an initial condition with a single occupied, spin up impurity
fermion, for simplicity, and discuss the role of the initial
condition later on. Throughout this section we take εd = 0.

1. Effect of dephasing

We start discussing the dynamics in the strong interacting
regime, U = 10�. In Fig. 7, we plot the dynamics of the
impurity density and impurity spin as a function of time for
increasing value of the dephasing. In absence of dephasing,
i.e., within the unitary AIM, we expect the initially polarized
spin to hybridize with the bath and decay and also the charge
on the dot to delocalize in the bath until an equilibrium value
is reached (note that here we are not at particle-hole symmetry
even for γσ = 0, since εd �= −U/2). In presence of dephasing
this remains true, however we observe immediately an inter-
esting and counter-intuitive effect, namely upon increasing the
dephasing rate the charge dynamics slow down significantly
(see top panel) and the system remains frozen close to the ini-
tial state. This effect is particularly pronounced for the charge
sector but is also visible on the spin dynamics (bottom panel):
the initially prepared polarized spin decays in time with a
slower rate in presence of a large dissipation. We interpret
this result as a signature of the Zeno effect [14,24,29,77–
79], where strong monitoring of a dot population leads to a
freezing of the state. We note (not shown) that this behavior

FIG. 7. Charge and spin impurity dynamics in the strong interac-
tion limit, U/� = 10, for different values of the dephasing.

emerges also for moderate values of the local interaction U ∼
�, suggesting its origin comes from a many-body effect due to
the interplay between impurity-bath hybridization and strong
dephasing. This result is also in line with what discussed in the
previous section, namely that dephasing reduces the average
number of diagrams sampled, i.e., makes the system close to
the atomic limit.

2. Strong dephasing limit and role of interaction

We now consider the regime of strong dephasing γσ = 60�

and study the charge and spin dynamics for different values of
interaction U/�. In Fig. 8, we plot again the impurity density
and the impurity spin starting from spin-up polarized state.
We first of all note how in this regime our DiagMC algorithm
is able to reach timescales of order t� ∼ 3, while retaining
very small error bars. This substantial increase with respect to
the basic version of the hybridization algorithm [54], which
is usually limited to t� < 1, is due to the role played by the
dephasing. From these results, we see clearly that increasing
the interaction has the effect of slow down the dynamics
of the impurity spin. We can understand this behavior from
what is known about the unitary Anderson impurity model, in
particular a slow down of the impurity spin dynamics is a sig-
nature of the onset of the Kondo effect. An interesting effect
is observed however in the impurity density which remains
almost constant for weak interaction while start decaying for
large U . We can understand this effect as the coupling with the
fermionic bath induce some residual losses on the impurity,
whose charge would otherwise be constant due to the Zeno
effect and which however displays a slow decay.
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FIG. 8. Charge and spin impurity dynamics in the strong dephas-
ing limit, γσ /� = 60, for different values of the interaction.

3. Dynamics of doublons

We now move our attention to the dynamics of doublons
and discuss how this is affected by the presence of dephasing.
In particular, we consider an initial state of the impurity con-
taining a doubly occupied site and study the time evolution
after a quench of the bath coupling, in presence of dephasing.
In this case, we have therefore to modify the initial condition,
which implies some differences in the algorithm as discussed
previously. In Fig. 9, we plot the dynamics of doublon frac-
tion at fixed interaction changing the dephasing (top panel)
and fixed dephasing while changing the interaction (bottom
panel). In both cases, the initially prepared doublon decay
with time, with a decay rate that increases with both inter-
action and dephasing. The first effect is the well known result
related to the lifetime of a doublon in the strong interacting
regime. The second one can be again be interpreted as the
onset of the Zeno effect. We note however that, as compared
to the total density (see Fig. 7) which remains practically
constant for large dephasing here the doublon fraction still
decays with time.

E. Asymmetric dephasing

Until now we have considered the case in which the de-
phasing acts equally on the two spin species of impurity
fermions. We now discuss the case of spin-dependent dephas-
ing γ↑ �= γ↓. Specifically we fix γ↓/� = 4 and change the
value of γ↑. In Fig. 10, we plot the dynamics of charge, spin
and doublon fraction upon increasing γ↑ at weak (top) and
strong (bottom) interaction U/�.

We first focus on the charge dynamics of the impurity
(top left panel). At weak interactions U = 0.5�, we observe

FIG. 9. Doublon dynamics starting from a full impurity, for
different values of dephasing (top) at fixed interaction U/� = 10
and at fixed dephasing (bottom) γσ /� = 20 and different values of
interaction.

a nonmonotonous dynamics for the impurity density which
increases at short times, reaches a maximum and then decay.
For large asymmetry in the dephasing, i.e., when only one
of the two spin species is strongly dissipative, this result in
an increase of particle density, which is otherwise absent in
the Zeno phase for symmetric dephasing. The maximum in
the impurity density seems to be controlled by the interaction
and indeed moves towards short times and smaller values
upon increasing U/� (bottom left panel). The dynamics of
doublons (top/bottom right panels) on the other hand is much
less affected by the asymmetry in the dephasing. We see for
small interactions a large production of doublons, while upon
increasing U/� we see the emergence of coherent oscillations.
Finally, the spin dynamics (top/bottom central panel) shows a
rather interesting effect, namely that increasing the dephasing
rate for the up spin results in a slow down of the dynamics at
short time with the formation of a well defined magnetization
plateau for very large γ↑.

At longer timescales, the dynamics seems to escape from
this plateau and continue decaying towards zero magnetiza-
tion. For weak interactions on the other hand, there is no
sign of the plateau at short times, yet the dynamics seems to
reach a steady state where the impurity is still polarized. This
can be understood since the asymmetric dephasing breaks the
spin-rotation symmetry of the Anderson impurity model.

F. Dynamics of entanglement entropy

In addition to the charge and spin dynamics, we can com-
pute the dynamics of the impurity entropy, which corresponds
to the entanglement entropy after tracing out the fermionic
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FIG. 10. Charge dynamics of impurity density (left), spin dynamics (middle), and doublon fraction (right) in the asymmetric dephasing
case, with γ↓/� = 4 and U/� = 0.5, 10 from top to bottom panels.

bath We emphasize therefore that the state of the system is
mixed to begin with, due to the dephasing, therefore the en-
tropy of entanglement also takes contribution from the thermal
entropy. To compute the entanglement entropy, we reconstruct
the impurity density matrix

ρ(t ) =
∑

ab

ρab(t )|a, b〉〈a, b|

by sampling each individual matrix element ρab(t ) and recon-
struct the entropy from S(ρ) = −Tr(ρlnρ). In Fig. 11, we plot
the dynamics of the entanglement entropy for different values
of the interaction at fixed large dephasing (top panel). We
see that strong correlations on the impurity slows down the
growth of entropy at short time. Similar effect is obtained by
tuning the dephasing asymmetry at fixed interaction (bottom
panel), where we see signatures of the magnetization plateau
observed in the spin dynamics shown in Fig. 10.

VI. CONCLUSION

In this work, we have extended the diagrammatic Monte
Carlo hybridization expansion algorithm to study the real-time
dynamics of dissipative quantum impurity models, where the
impurity is coupled to local Markovian dissipative processes
(involving different impurity degrees of freedom) as well as to
a fermionic bath. We formulate the hybridization expansion
using the vectorization (or thermofield) formalism in which
all the degrees of freedom are doubled to account for the
correct structure of the density matrix (analog to upper and
lower Keldysh contour in the conventional DiagMC [55]). In
this picture the local Markovian dissipation is incorporated
as dissipative interaction for the impurity degrees of freedom,
thus entering the atomic limit around which the hybridization
expansion is performed. With respect to the standard DiagMC,
the main difference arises due to the fact that the theory is
formulated on a single (collapsed) real-time contour where
each impurity operator carries an extra quantum number (for

the duplicated tilde Hilbert space). While our results are
fairly general, independent on the specific form of the local
Hamiltonian and local dissipator, we apply our algorithm to
the Anderson impurity model with local dephasing. From
the point of view of the algorithm, we show that dissipation
helps the convergence of the DiagMC and alleviates the sign
problem, thus allowing to reach longer timescales than for the

FIG. 11. Dynamics of entanglement entropy for different val-
ues of the interaction (at fixed dephasing γσ /� = 40 (top)
and different values of dephasing asymmetry (bottom) (at fixed
interaction U/� = 10).
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unitary case. After benchmarking our method with an exactly
solvable case we discuss how dephasing affects charge and
spin dynamics of the Anderson impurity. We further discuss
the case of asymmetric dephasing between spin up and spin
down, which gives rise to an interesting dynamics for the
impurity magnetization showing metastable plateau. In the
future, our algorithm can be further extended, implementing
for examples the inchworm algorithm [58] and can be used as
impurity solver for dynamical mean-field theory [38].
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APPENDIX A: STRUCTURE
OF THE HYBRIDIZATION FUNCTION

In the hybridization expansion representation, the bath is
completely characterized by the hybridization functions �αᾱ

σ,σ̄ ,
this function encodes the effect of the bath on the impurity
degrees of freedom. In the case of the Anderson model, the
coupling between the bath and the impurity degrees of free-
dom do not hybridize the spin channel, so we only have to
consider the diagonal hybridization functions in spin, which
are defined by

�αᾱ
σ (τ, τ̄ ) = −i〈IB|Tt

[

̄α

σ (τ )
ᾱ
σ (τ̄ )

]|ρB(0)〉, (A1)

where both time arguments τ and τ̄ live on a single-real time
contour and the operators 
̄α

σ ,
ᾱ
σ have been defined in the

main text, see Eq. (16). To evaluate the hybridization function
one needs to compute the Green’s function of the fermion in
the bath

Gα,ᾱ
k,σ

(τ, τ̄ ) = −i〈IB|Tt
[

α

k,σ (τ )
̄ᾱ
k,σ (τ̄ )

]|ρB(0)〉, (A2)

where the average is taken overt the initial density matrix of
the bath ρB(0)

ρ0,B = e−βHB

Z
(A3)

with bath Hamiltonian HB given by

HB =
∑
k,σ

εk,σ c†
k,σ ck,σ . (A4)

The time ordering operator Tt entering the definition of the
Green’s function orders the operators according to their time
and the Hilbert space they belong to.

For the time evolution of the bath operators (creation and
annihilation operators) it is defined as usual with the Lindbla-
dian of the Bath LB = −i(HB − H̃B):


σ (τ ) = e−LBτ
σ eLBτ . (A5)

Depending on the position of the time arguments τ and τ̄

along the single contour and their Hilbert space label α, the

hybridization function acquires a matrix structure

�σ (τ, τ̄ ) =
(

�00
σ (τ, τ̄ ) �01

σ (τ, τ̄ )

�10
σ (τ, τ̄ ) �11

σ (τ, τ̄ )

)
. (A6)

From this we recognize a certain similarity with the Keldysh
structure of the hybridization function in the conventional Di-
agMC [54], as we will discuss more in detail below. Moreover,
we note that since we consider a time independent quantum
impurity model, with a bath which is in thermal equilibrium,
all the components of the hybridization function only depend
on the time differences τ − τ̄ . Below we give the explicit
expressions for the hybridization function entering the matrix
representation above.

1. Diagonal Sector

We first consider the case when both operators 
/
̄ live
on the same Hilbert Space H/H̃. In this case, the contour time
ordering Tt acts as the real time-ordering operator,

Tt [

α (τ )
α (τ̄ )] =

{

α (τ )
α (τ̄ ) τ > τ̄

−
α (τ̄ )
α (τ ) else
(A7)

where the two operators are living in the same Hilbert space
H/H̃. By using the expression of the spinor described in the
main text, the bath Green’s function can be expressed as

G00
k,σ (τ, τ̄ ) = −i�(τ − τ̄ )〈ck,σ (τ )c†

k,σ (τ̄ )〉
+ i�(τ̄ − τ )〈c†

k,σ (τ̄ )ck,σ (τ )〉, (A8)

where we recognize the usual Keldysh time-ordered Green
function defines as GC

k,σ (τ, τ̄ ) = −i〈Tt [ck,σ (τ )c†
k,σ

(τ̄ )]〉. As
for the second diagonal component where the two operators
are living in the H̃ Hilbert space,

G11
k,σ (τ, τ̄ ) = −i�(τ − τ̄ )〈c̃†

k,σ (τ )c̃k,σ (τ̄ )〉
+ i�(τ̄ − τ )〈c̃k,σ (τ̄ )c̃†

k,σ (τ )〉 (A9)

annihilation and creation operators in the tilde space can be
expressed in terms of the physical operators by using the
superfermion relation,

ck,σ |IB〉 = −ic̃†
k,σ |IB〉,

c†
k,σ |IB〉 = −ic̃kσ |IB〉, (A10)

which lead to the following relation:

G11
kσ (τ, τ̄ ) = −GC̃

kσ (τ, τ̄ ), (A11)

where GC̃
kσ (τ, τ̄ ) is the antitime-ordered Green function for

the bath degrees of freedom.

2. Mixed sector

We now consider the case in which the two operators are
living in different Hilbert space, this one correspond to the
off diagonal (α �= ᾱ) component of the hybridization function.
Contrarily to the previous case, in the mixed sector the time
ordering operator acts as

Tt [
(τ )
̃(τ̄ )] = 
(τ )
̃(τ̄ ),

Tt [
̃(τ̄ )
(τ )] = −
(τ )
̃(τ̄ ). (A12)
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In the same spirit of the diagonal component of the Hy-
bridization function, we can write the Green’s function in the
Keldysh formalism as

iG01
k,σ (τ, τ̄ ) = G<

kσ (τ, τ̄ ) and iG10
k,σ (τ, τ̄ ) = G>

kσ (τ, τ̄ ),

(A13)

where G<(>)
kσ are the lesser (greater) Green’s functions. With

regard to the hybridization functions we obtain the standard
result used also in the Keldysh formalism

�01
σ (τ, τ̄ ) =

∫
dε(1 − nF (ε))�σ (ε)e−iε(τ−τ̄ ) (A14)

and

�10
σ (τ, τ̄ ) = −

∫
dεnF (ε)�σ (ε)e−iε(τ−τ̄ ), (A15)

where nF (ε) is the Fermi distribution and �(ε) the energy-
dependent hybridization for the channel σ , given by

�σ (ε) =
∑

k

|Vkσ |2δ(ε − εkσ ). (A16)

Finally, we obtain the two diagonal component �00
σ /�1

σ of the
hybridization function, which reduce to the off-diagonal ones
depending, namely,

�00
σ (τ, τ̄ ) = i�(τ − τ̄ )�10

σ (τ, τ̄ ) + i�(τ̄ − τ )�01
σ (τ, τ̄ )

(A17)

and

�11
σ (τ, τ̄ ) = −i�(τ − τ̄ )�01

σ (τ, τ̄ ) − i�(τ̄ − τ )�10
σ (τ, τ̄ ).

(A18)

APPENDIX B: DISSIPATIVE RESONANT-LEVEL MODEL

In this Appendix, we briefly discuss the Keldysh solution
of the dissipative resonant level model (dRLM), that we use
to benchmark the DiagMC algorithm. This corresponds to the
U = 0 limit of the Anderson impurity discussed in the main
text. In absence of interaction, the Hamiltonian is quadratic
in all the fermionic degrees of freedom. The dephasing on
the other hand introduces a dissipative interacting vertex,
which however does not prevent to compute exactly certain
quantities, in particular the single particle Green’s functions.
There are two ways to proceed to obtain the exact dynamics
of the model. The first one is to look at the stochastic version
of the Lindblad master equation, corresponding to a unitary
unravelling [34], in which the problem remains quadratic and
averages over the noise can be taken exactly. The second
one we follow in this paper is to write down the Dyson

equation for the Green’s function, starting from the Lindbla-
dian. In particular, we define the contour-time ordered Green’s
function

Dσ (τ, τ ′) = −i〈TCdσ (τ )dσ (τ ′)〉, (B1)

where TC is the standard Keldysh time ordering operator. Even
in the presence of the Markovian dissipation, the retarded
component of this Green’s function satisfies a closed equa-
tion of motion which reads in frequency domain:

DR
σ (ω) = DR

0,σ (ω)

1 − �R
σ (ω)DR

σ (ω)
, (B2)

where �R
σ (ω) is the retarded self-energy for the spin channel

σ . In fact, since we are interesting in the simplest resonant
level model without any coupling between the spin channel,
we can treat each channel of spin independently. For a given
spin channel, the retarded self-energy reads

�R
σ (ω) = −i

γσ

2
+

∑
k

|Vk|2GR
0,σk(ω). (B3)

The first contribution to the self-energy is the dephasing term,
which is frequency independent and does not couple to the
bath degrees of freedom. The second contribution is just the
usual bath hybridization contribution, where Gσ

0,k(τ, τ ′) =
−i〈TCckσ (τ )c†

kσ (τ ′)〉0 denotes the bare bath Green’s function.
By using the Langreth rules [80], we can write the lesser
Green’s function D<

σ (τ, τ ′) = i〈d†
σ (τ ′)dσ (τ )〉 as

D< = (1 + Dr�r )D<
0 (1 + �aDa) + Dr�<Da (B4)

where the constraint given by the initial condition is encoded
in D<

0 . Concerning the lesser self-energy �<, as in the re-
tarded case, we can decompose it into two contributions:

�<(τ, τ ′) = �<
B (τ, τ ′) + �<

Deph(τ, τ ′) (B5)

the bath hybridization contribution �<
B and dephasing part

�<
Deph given by

�<
Deph(τ, τ ′) = γσ D<(τ, τ )δ(τ − τ ′) (B6)

the instantaneous nature of dephasing self-energy is due to
the fact that in the Lindblad master equation we assume a
Markovian environment with no memory and with a typical
relaxation time that is negligible compared to the other relax-
ation times of the system. Solving the Dyson equation for the
retarded Green’s function and then for the lesser component
we can directly compute the dynamics of the impurity density,
nσ (τ ) = −iD<

σ (τ, τ ) which we use to benchmark the DiagMC
algorithm in the main text.
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