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Graph theoretic analysis of three-terminal quantum dot thermocouples:
Onsager relations and spin-thermoelectric effects
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We introduce a simplified model for a three-terminal quantum thermocouple consisting of two strongly
coupled quantum dots. To elucidate spin-dependent Seebeck and Peltier effects, we employ a microscopic Hamil-
tonian and map the Lindblad master equation onto a quantum transition network, capturing the key working
principles for both reciprocal effects. Our analysis reveals quantum thermodynamic networks encompassing
both Coulomb interaction and spin-flipping processes, lead to the emergence of spin-thermolectric effects.
Using algebraic graph theory, we recover the phenomenological law of irreversible thermodynamics from the
stochastic version of the entropy production rate expressed in terms of cycle flux and cycle forces. Remarkably,
Onsager reciprocity and Kelvin relation for transport coefficients find their premises in the properties of cycle flux
trajectories within the quantum transition network. This underscores the universal generality of thermodynamic
principles across classical and quantum realms, despite their fundamentally different basis from classical laws
of irreversible thermodynamics relying on local equilibrium assumptions.
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I. INTRODUCTION

Thermoelectric devices have garnered significant attention
owing to the continual demand for innovative and effective
approaches to temperature sensors, heat pumps, and energy
conversion [1–7]. This interest is rooted in the phenomenon
of thermoelectricity, where a temperature gradient induces
an electric current (Seebeck effect), and a potential gradient
induces a heat current (Peltier effect). From a thermodynamic
point of view, a nonequilibrium system experiences a distinct
set of generalized thermodynamic forces, arising from its
simultaneous couplings with different reservoirs [8,9]. The
system’s response to these external thermodynamic forces is
reflected in a corresponding set of generalized thermodynamic
fluxes. The concept has been well investigated in classical
irreversible thermodynamics, with Onsager’s groundbreaking
work on the reciprocity principle of thermoelectric phenom-
ena [10–12]. Traditionally, thermocouples consisting of two
different metal wires, are used to observe such reciprocal
effects. Only in recent times, experimental research on mag-
netic metals and insulators, have experienced the emergence
of the spin Seebeck effect (SSE), wherein a spin current is
generated in response to a thermal gradient [13–15], and con-
versely, the spin Peltier effect (SPE), involves a spin voltage
producing a thermal current [16–18]. The above findings have
ignited renewed enthusiasm among researchers to grasp the
fundamental aspects of spin caloritronics [19–22] and ex-
plore practical applications such as waste heat recovery and
on-chip refrigeration for future nanoelectronics. As a result,
there is a considerable interest in understanding the quan-
tum thermodynamics of nanoscale thermoelectrics through
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theoretical modelings [23–30] and experimental setups in-
volving quantum dot (QD) nanostructures, nanowires, and
two-dimensional materials [31–37].

The quantized energy levels and strong on-site Coulomb
interactions among QDs, make them excellent candidates for
thermoelectric applications [28–30,38–42] and various other
nanoscale thermal devices [43–47]. While the discrete QD
spectrum can be fine-tuned via external gate voltages and
offers energy-selective transport, the strong Coulombic inter-
action between electrons on capacitively coupled QDs can
facilitate the transfer of precise amounts of energy from the
heat reservoirs. However, the use of QDs as working sub-
stances for quantum thermodynamic devices, characterized by
a limited number of quantum states, necessitates a completely
new understanding of these devices [29]. The typical ther-
malization length being larger than the nanoscale dimension
forces these systems to behave in a highly nontrivial manner,
and their transport properties cannot be adequately described
by the usual Boltzmann transport equation [48], which pri-
marily relies on the local equilibrium assumptions.

On the contrary, the Lindblad master equation, formulated
in terms of the density matrix, is used as the preferred tool for
examining the thermodynamic properties of the open quantum
systems [47,49–55]. Though it is quite effective in accurately
calculating the steady-state currents amid nonequilibrium
conditions, it does not reveal any information about the op-
erational principles and the nature of the transport coefficients
involved in complex quantum systems. In contrast, network
theory in recent years has emerged as a powerful instru-
ment for comprehending nonequilibrium quantum systems
[30,56]. In this framework, dissipative quantum dynamics can
be represented as a weighted network featuring nodes and
edges [57]. Here, vertices (nodes) signify quantum states, and
edges denote nonequilibrium transitions from one quantum
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state to another, with positive flux rates. Network theory has
been applied for many years to explore complex biological
phenomena and chemical reactions [58–61]. However, recent
work by Wang et al. [30] has drawn huge attention by uti-
lizing network theory to understand the principle working
mechanism of quantum thermal devices. The present authors
have extended the technique further to molecular systems to
unravel hidden electron transfer pathways in solar cells under
strong nonequilibrium conditions [56].

In this paper, we leverage the advantages of network theory
to elucidate the operational principles of spin-thermoelectric
effects within a three-terminal quantum setup, closely resem-
bling classical thermocouples. We demonstrate how spin and
energy currents, obtained from the quantum master equa-
tion, are linked to the thermodynamic forces, manifesting
spin-Seebeck and spin-Peltier, as thermodynamic crossef-
fects. Close parallelisms between the microscopic and the
macroscopic description of the nonequilibrium system are es-
tablished via cycle force and cycle fluxes within a basic graph
and thermodynamic forces and fluxes of phenomenological
laws. The central concept being used here is an expression
of the entropy production rate within the framework of the
algebraic graph.

The present work is organized as follows. In Sec. II,
we introduce the basic model of the quantum thermocouple
and present the microscopic description using the Lindblad
master equation and quantum kinetic Pauli master equation.
We elaborate the basic framework of network theory in the
context of spin-thermoelectric effects in Sec. III and recover
the phenomenological law of irreversible thermodynamics
and Onsager’s reciprocity in terms of network cycle flux
and forces. Operational principles of both spin-Seebeck and
spin-Peltier effects are presented in Sec. IV and finally, we
conclude in Sec. V.

II. MICROSCOPIC MODEL AND QUANTUM
MASTER EQUATION

The basic model of a quantum thermocouple consists
of two strongly coupled quantum dots (QDs) via Coulomb
interaction. The lower quantum dot, denoted as QDl , is si-
multaneously coupled with a spinful free-electron reservoir
(on the left) and a magnon bath (on the right), both main-
tained at an equal temperature (T0), as depicted in Fig. 1.
The upper quantum dot, QDu, is only coupled with a spinless
free-electron reservoir, acting as a junction like in a classical
thermocouple (Fig. 1: top inset). The spinful free-electron
reservoir comprises spin-polarized electrons with both spin-
up (↑) and spin-down (↓) orientations [30,62]. In contrast, the
spinless free-electron reservoir in the middle consists of elec-
trons without any distinct spin orientation, and the magnon
bath at the right is responsible for inducing spin-flipping of
the QDl electrons [27,30,62,63]. It facilitates the generation of
spin current by creating two spin channels propagating in op-
posite directions, carrying an equal amount of charge current.
The spin being an angular momentum, the situation produces
a pure spin current without any charge current (Fig. 1: bottom
inset).

Though two-terminal setups are commonly used to ana-
lyze thermoelectricity at the nano-scale, they pose practical

FIG. 1. (Inset) Schematic diagram of the classical thermocouple
and an illustration of spin current generation. Schematic diagram of a
three-terminal Coulomb-coupled QD thermocouple. The lower quan-
tum dot (QDl ) is coupled to the left reservoir, i.e., a spinful reservoir
(in green) and the right reservoir (in blue), i.e., a magnon bath. Both
terminals are kept at equal temperatures and serve as cold ends. The
upper quantum dot (QDu) is coupled to the middle reservoir (in red)
i.e. a spinless electron reservoir. Here, heat is transferred from the
middle reservoir which acts as a junction (hot end) and the spin
current is across the lower two terminals, analogous to the open ends
of a thermocouple.

challenges in decoupling the heat reservoirs from the electri-
cal circuits [44,64]. By spatially separating the heat reservoir
(upper terminal) from the conductor circuit (lower two ter-
minals), the three-terminal model allows us to independently
control the direction of spin current using external gate
voltages, without affecting the heat current direction. Thus
the three-terminal quantum dot model presented here bears
a striking similarity to a classical thermocouple, manifest-
ing both the spin-Seebeck and spin-Peltier effects (SSE and
SPE) within a single setting. In SSE, a spin current emerges
under the influence of a temperature gradient (δT ), while
SPE occurs with the application of a spin bias voltage at
the lower terminals, resembling the open ends of a con-
ventional thermocouple. Notably, the difference between the
statistical properties of the magnon (bosonic) and electron
(fermionic) reservoirs plays a crucial role in generating spin-
thermoelectric effects. This distinction can be attributed to
the role of dissimilar metal wires in a classical thermocou-
ple, highlighting its significance within the present quantum
framework.

From a practical point of view, we emphasize that a sim-
ilar three-terminal setup without any spin consideration has
already been experimentally realized by Thierschmann et al.
[44], as a nanoscale thermoelectric energy harvester. The de-
vice was fabricated from a GaAs/AlGaAs wafer that contains
a two-dimensional electron gas (2DEG). Annealed Au/Ge
pads were incorporated into the electronic reservoirs to es-
tablish reliable electrical connections with the 2DEG. Similar
setups can potentially demonstrate spin-thermoelectric effects
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within a junction system between a magnetic material and a
conductor. Generally, a ferrimagnetic insulator like yttrium
iron garnet (YIG) and a paramagnetic metal like Pt, are used
for this purpose due to their thermally excited dynamics of
localized magnetic moments [22]. Furthermore, the circuit
QED magneto-spectroscopic technique can be used to realize
spinful states in a double quantum dot [65], and the spin bias
voltage could be measured using the Hanle method [66], or
be converted into an electric voltage through the inverse Hall
effect [67].

The total Hamiltonian of the entire three-terminal setup is
thus given by

H = HS + HB + HI,

HS =
∑

σ={↑,↓}
εlσ nlσ + εunu +

∑
σ={↑,↓}

Ununlσ , (1)

HB = HL + HM + HR,

=
∑
σ,k

(εLσk − μLσ )b†
LσkbLσk

+
∑

k

(εMk − μM)b†
MkbMk +

∑
q

εRqa†
RqaRq, (2)

HI = HIL + HIM + HIR,

= h̄
∑
σ,k

(tLkb†
Lσkdlσ + t∗

Lkd†
lσ bLσk )

+ h̄
∑

k

(tMkb†
Mkdu + t∗

Mkd†
u bMk )

+ h̄
∑

q

(gRqa†
Rqd†

l↑dl↓ + g∗
Rqd†

l↓dl↑aRq). (3)

Equation (1) represents the total system Hamiltonian of the
two Coulomb-coupled QDs, where U describes the long-
range positive Coulomb repulsion energy that permits energy
exchange but forbids any particle exchange between the
QDs. The operator nlσ = d†

lσ dlσ is the number operator for
QDl , with eigenstates |φl〉 = {|0〉, |↑〉, |↓〉} and corresponding
eigenenergies 0, εl↑ and εl↓, respectively, where d†

lσ (dlσ )
denotes the electron creation (annihilation) operator with a
single particle energy level εlσ , obeying anticommutation
relation {dlσ , d†

lσ ′ } = δσσ ′ ; σ being the spin orientation of
the electrons. Similarly, nu = d†

u du is the number operator
for QDu, with eigenstates |φu〉 = {|0〉, |1〉} and corresponding
eigenenergies 0 and εu, respectively, where, d†

u (du) represents
the electron creation (annihilation) operator for QDu, with a
single particle energy level of εu, satisfying the anticommuta-
tion relation {du, d†

u } = 1.
Equation (2) describes the total bath Hamiltonian HB,

wherein HL, HM and HR are the respective Hamiltonians for
the left (L), middle (M), and right (R) reservoirs. The oper-
ators b†

Lσk (b†
Mk) and bLσk (bMk) represent the creation and

annihilation operators of electrons for the L and M baths,
where, εLσk and μLσ stand for the energy and chemical po-
tential of electrons corresponding to the spinful fermionic
reservoir (L), with k being the continuous wave number (mo-
mentum) and σ denotes the electron spin. The difference
between the chemical potentials μL↓ and μL↑ is given by the
spin bias voltage, i.e., �μS = μL↓ − μL↑. On the other hand,

εMk and μM refer to the energy and chemical potential of
electrons without any specific spin orientation for the spinless
fermionic reservoir (M). For the magnon bath (R), a†

Rq and
aRq are the bosonic creation and annihilation operators with
the energy εRq and momentum q respectively.

Equation (3) provides the total system-reservoir interac-
tion Hamiltonian HI, where HIα (α = L, M, R) represents the
interaction between the system and the α-th reservoir. Here
the QDl (QDu) is tunnel-coupled to the L and M reservoir
with the tunneling amplitudes tL(M), allowing both particle and
energy exchange with the QDs, while QDl is simultaneously
coupled to a magnon bath which flips only one spin at a time.
Under strong coupling, the eigenstates of HS are determined
by the tensor product of the number operator’s eigenbasis
|φuφl〉 of the coupled QD system. For convenience, the six
microstates of the coupled system {|0〉, |1〉} ⊗ {|0〉, |↑〉, |↓〉},
are labeled by |1〉 = |00〉, |2〉 = |10〉, |3〉 = |0↑〉, |4〉 = |0↓〉,
|5〉 = |1↑〉, |6〉 = |1↓〉 and their corresponding eigenener-
gies (εi, i = 1, 2, . . . , 6) are given by ε1 = 0, ε2 = εu, ε3 =
εl↑, ε4 = εl↓, ε5 = εu + εl↑ + U and ε6 = εu + εl↓ + U, re-
spectively. There are in total nine allowed transitions: The
transitions |1〉 ↔ |3〉, |1〉 ↔ |4〉, |2〉 ↔ |5〉 and |2〉 ↔ |6〉 are
driven by the reservoir L, while the transitions |1〉 ↔ |2〉,
|3〉 ↔ |5〉 and |4〉 ↔ |6〉 are induced by the reservoir M, and
the transitions |3〉 ↔ |4〉 and |5〉 ↔ |6〉 are triggered by the
bath R.

To calculate the thermal spin (JS) and energy current (JE)
under the SSE and SPE, we first derive the Lindblad quantum
master equation of the reduced density matrix ρ for the cou-
pled QDs system under the Born-Markov and Secular (BMS)
approximation [49,55,56,68] (see Appendix A)

dρ

dt
= LL[ρ] +LR[ρ] +LM[ρ]. (4)

Here Lα (α = L, R, M) is the Lindbladian due to the interac-
tion of the quantum system with its αth reservoir. The explicit
form of the superoperator L is given in terms of dissipater

D(C)[ρ] = CρC† − 1
2 {ρ,C†C}, C ∈ {dlσ , du, d†

l↑dl↓},
(5)

as follows:

LL[ρ] =
∑

σ={↑,↓}
LLσ [ρ],

LLσ [ρ] =
∑
{εLσ }

γL[ f (εLσ , μLσ , TL)D(d†
lσ )[ρ]

+ (1 − f (εLσ , μLσ , TL))D(dlσ )[ρ]], (6)

LM[ρ] =
∑
{εM}

γM[ f (εM, μM, TM)D(d†
u )[ρ]

+ (1 − f (εM, μM, TM))D(du)[ρ]], (7)

LR[ρ] =
∑
{εR}

γR[n(εR, TR)D(d†
l↓dl↑)[ρ]

+ (1 + n(εR, TR ))D(d†
l↑dl↓)[ρ]]. (8)

Note that we have implemented the strong coupling formalism
to derive the interaction picture master equation presented
above [47,69]. Here, the strong coupling refers to the
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interaction between the two QDs, while the system-reservoir
coupling is assumed to be weak, allowing for the safe imple-
mentation of the BMS approximation. In Eqs. (6)–(8), all γ

values stand for the bare tunneling rates associated with indi-
vidual processes and depend on the system-reservoir coupling
strength through the respective bath spectral function. Lastly,
f (ε, μ, T ) = [e(ε−μ)/kBT + 1]−1 and n(ε, T ) = [eε/kBT − 1]−1

are respectively the Fermi-Dirac (FD) and Bose-Einstein (BE)
distribution functions with the positive transition energy ε,
chemical potential μ and temperature T associated with the
thermal reservoir, where kB is the Boltzmann constant. Since
the Hamiltonian HS in Eq. (1) is diagonal in the number state
eigenbasis of the coupled QDs system, the reduced density
matrix ρ of the above Lindblad master equation effectively
decouples the diagonal and off-diagonal matrix elements in
the eigenbasis of HS [47]. The diagonal elements of the den-
sity matrix ρ signify the occupation probabilities of each
microstate and the time evolution is given by

dP1

dt
= J12 + J13 + J14, (9)

dP2

dt
= J21 + J25 + J26, (10)

dP3

dt
= J31 + J34 + J35, (11)

dP4

dt
= J41 + J43 + J46, (12)

dP5

dt
= J52 + J53 + J56, (13)

dP6

dt
= J62 + J64 + J65. (14)

Here Jij stands for the net transition rate from state |j〉 to |i〉
which is given by

Jij = kijPj − kjiPi, (15)

Jij = −Jji, i, j = 1, 2, . . . , 6, (16)

where Pi = 〈i|ρ|i〉 is the population of the i-th eiegenstate and
kji (k|j〉←|i〉) gives the transition probability from microstate |i〉
to microstate |j〉. The rate expressions kji for all transitions in
terms of γ and the distribution functions can be summarized
as follows:

k31 = γL f (εl↑, μL↑, TL),

k13 = γL[1 − f (εl↑, μL↑, TL)],

k41 = γL f (εl↓, μL↓, TL),

k14 = γL[1 − f (εl↓, μL↓, TL)],

k52 = γL f (εl↑ + U, μL↑, TL),

k25 = γL[1 − f (εl↑ + U, μL↑, TL)],

k62 = γL f (εl↓ + U, μL↓, TL),

k26 = γL[1 − f (εl↓ + U, μL↓, TL)],

k21 = γM f (εu, μM, TM),

k12 = γM[1 − f (εu, μM, TM)],

k53 = k64 = γM f (εu + U, μM, TM),

k35 = k46 = γM[1 − f (εu + U, μM, TM)],

k43 = k65 = γRn(εl↓ − εl↑, TR),

k34 = k56 = γR[1 + n(εl↓ − εl↑, TR )]. (17)

Combining Eqs. (9)–(14) with Eq. (15), it is evident that
the evolution equations for the microscopic probabilities ex-
hibit linearity with respect to the populations {Pi}. As a result,
we can cast these equations in the following compact form:

dPi

dt
=

6∑
j=1

Jij =
6∑

j=1

kijPj − kjiPi; i �= j, (18)

where
∑6

i=1 Pi = 1. Equation (18) is known as the quantum
kinetic Pauli master equation which is “classical” in looking
but quantum mechanical in content through the transition
probabilities {kij}, determined by the Fermi golden rule within
BMS approximation and the statistical properties of the re-
spective quantum baths [70,71]. To obtain the steady-state
solution P̄i of Eq. (18), one has to solve the system of linear
equations, satisfying the conditions 0 � P̄i � 1 and

∑
i P̄i = 1.

With the help of Eq. (18) and the rate coefficients calculated
from the above microscopic picture [cf. (17)], it is possible
to evaluate the steady-state spin and energy currents in terms
of the net transition rates [cf. Eq. (15)] between the system
microstates, where {Pi} get replaced by the steady-state pop-
ulations {P̄i}. Following the definition of the spin and energy
currents mentioned in Appendix A, we obtain the mathemati-
cal expression of the steady-state spin current JS which flows
from left to right, as

JS = 1
2 (Tr{d†

l↓dl↓LL↓[ρ]} − Tr{d†
l↑dl↑LL↑[ρ]}),

= J34 + J56 = (k34P̄4 − k43P̄3) + (k56P̄6 − k65P̄5), (19)

and the steady-state energy (heat) current JE, through the
middle reservoir is given by

JE = Tr{LM[ρ]HS} = U(J53 + J64)

= U[(k53P̄3 − k35P̄5) + (k64P̄4 − k46P̄6)]. (20)

Equation (20) immediately implies that a finite energy current
always requires a finite Coulomb interaction energy. However,
obtaining the exact analytical solutions for JS, JE in terms of
steady-state populations [Eqs. (19) and (20)] by solving the
linear master equation [Eq. (18)] is by no means a trivial task.
Secondly, while, one may in principle use exact Eqs. (19)
and (20) to numerically compute the steady-state spin and
energy currents, it does not provide any physical insight into
the underlying transport mechanisms leading to SSE and SPE.
Nor does it explain how the macroscopic spin and energy
currents are related to the thermodynamic forces that give rise
to spin-thermoelectric effects as a manifestation of thermody-
namic crosseffects.

An alternative yet effective method is to calculate alge-
braic expressions for steady-state currents through a network
or mathematical graph theory [72,73]. This also allows
us to understand the operational principles of QD-based
spin-thermoelectric effects quite easily. In this method,
one first constructs a basic graph G as a diagrammatic
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representation of the right-hand side of Eq. (18). To extract
the principal mechanism from complex transport behaviors,
one then decomposes the quantum transition network into
cycle trajectories, collects the cycle fluxes using algebraic
graph theory, and selects the top-ranked cycle fluxes, i.e., the
cycle trajectories with the highest probabilities [30]. In the
following section, we illustrate this method in the context of
the present problem and establish the connection between the
microscopic descriptions of the nonequilibrium system via the
basic graph and the macroscopic description of thermolectric
phenomena in terms of thermodynamic forces and fluxes,
including the celebrated Onsager and Kelvin relations [8]. The
key concept throughout the entire formalism is the expression
of entropy production rate in the framework of graph theory
[9,57].

III. NETWORK THEORY AND RECIPROCITY RELATION

The network or graph theory found its first application in
electricity, with Kirchhoff making a pioneering contribution
to the understanding of electrical circuits as nonequilibrium
systems involving electric current and potential. Since then,
graph theory has expanded its horizons and produced a flurry
of inspiring early works by Hill, Kohler, Vollmerhaus, King,
and Altman [58,59,74], particularly on biophysical and bio-
chemical systems. A vast body of literature is available on
this subject [60,61,75–77]; still, Schnakenberg’s 1976 review
is considered a seminal contribution to this field [57].

A. Quantum transition network and cycle flux analysis

As an extension of network theory to quantum systems,
the notable work of Wang et al. [30] is worth mentioning.
They have recently demonstrated that the dissipative quan-
tum dynamics of nonequilibrium transport can be mapped
onto networks of quantum state transitions, where nodes or
vertices correspond to quantum states, and the connecting
lines or edges between two quantum states represent their
allowed transitions. In the present case, the diagrammatic
representation of the quantum transport processes under the
nonequilibrium condition is shown in Fig. 2 in the form of
a basic graph (G), where each node or vertex represents a
quantum state {|i〉} along with its associated (microscopic)
occupation probability {Pi}. The transition between adjacent
quantum states |i〉 and |j〉 are depicted by edges. The steady-
state population P̄i can then be calculated as

P̄i = �i

�
, with 0 � P̄i � 1 and

∑
i

P̄i = 1; (21)

where �i represents the sum of the weight of the spanning
trees rooted on the |i〉-th state and � is defined as the sum of
the weights of the spanning trees rooted on every individual
state {|i〉}, i.e.

∑
i �i. In the literature, the above method

is known as Kirchhoff’s theorem [57,78]. According to this
theorem, a spanning tree is a subgraph of G which includes
all the vertices with the minimum number of edges that are
always connected but have no circuits (cyclic sequence of
edges or cycle trajectory). To construct a spanning tree, one

FIG. 2. Schematic diagram of the basic graph (G). Subcycles
{C1,C5,C8,C9,C10}, sharing the common edge (|3〉 ↔ |4〉) are used
to calculate edge flux J43 [cf. Eq. (24)].

should remove ν = e − v + 1 number of edges of the basic
graph G, where e and v are the numbers of edges and vertices
in G [57]. As a result, all possible spanning trees contain an
equal number of vertices and edges.

Under the nonequilibrium condition, each edge represents
a transport process and the rate of these transport processes is
determined by the net transition rate or edge flux. The steady-
state edge flux from a state |j〉 and |i〉 is defined as

Jij = kijP̄j − kjiP̄i, (22)

where each edge denotes a pair of transitions with the tran-
sition probabilities kij (from |j〉 to |i〉) and kji (from |i〉 to
|j〉) [57,75]. Measuring edge currents in a graph or network
is a challenging task, yet, techniques like scanning tunneling
microscopy (STM) can provide insights into edge currents for
fabricated nanoscale systems [79]. Typically, a basic graph G

is comprised of numerous undirected subcycles (C), and each
of these subcycles represents a pair of two one-directional
circuits (Fig. 2), namely, C+ (counterclockwise) and C−
(clockwise) [59]. Since the circuits are formed by the cyclic
sequence of edges within G, the edge flux can be defined in
terms of the circuit fluxes [57], as

Jij =
∑
C
Sij(C)(J+

C − J−
C ) =

∑
C
Sij(C)JC. (23)

Here JC = J+
C − J−

C denotes the net cycle flux wherein J+
C and

J−
C are the circuit fluxes correspond to circuits C+ and C−

respectively, with the prefactor Sij(C) = 0,±1. Sij(C) = 0 if
C+ and C− does not contain the edge |j〉 → |i〉; Sij(C) = +1
if the orientation of C+ (C−) is along (opposite) to edge
|j〉 → |i〉 and Sij(C) = −1 if the orientation of C+ (C−) is
opposite (along) to edge |j〉 → |i〉. For example, the edge flux
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J43 (J|4〉←|3〉) in the basic graph G, can be expressed in terms
of the circuit fluxes (Fig. 2) as

J43 = J+
C1

− J−
C1

− J+
C5

+ J−
C5

+ J+
C8

− J−
C8

− J+
C9

+ J−
C9

− J+
C10

+ J−
C10

. (24)

The name “circuit” was initially introduced by Kohler and
Vollmerhaus [59] and also termed a “one-way cycle” by
Hill [80]. However, we prefer to use the term “circuit” or
“cycle trajectory” to avoid confusion with the usual “cycle.”
Hill and Chen provided the physical interpretation for circuit
fluxes [58], revealing that these fluxes signify the ‘frequency’
(or rate) of circuit completions along a particular cycle tra-
jectory. To be specific, the circuit flux associated with a
one-directional cycle trajectory C± is given by

J±
C = ±

C
�C

�
. (25)

Here, ±
C denotes the weight factor which is determined

by the product of the transition rates along the circuit C±.
For example, the clockwise cycle trajectory C−

1 (|1〉 → |4〉 →
|3〉 → |1〉) (Fig. 2) has the weight factor −

C1
= k13k34k41,

where, �C represents the sum of the weight of the spanning
trees rooted on cycle C and � = ∑

i �i. Now, there are a total
of 22 paired cycle trajectories, or 11 subcycles, for our basic

graph G, which are as follows:

C1 : |1〉 ↔ |3〉 ↔ |4〉 ↔ |1〉,
C2 : |2〉 ↔ |5〉 ↔ |6〉 ↔ |2〉,
C3 : |1〉 ↔ |3〉 ↔ |5〉 ↔ |2〉 ↔ |1〉,
C4 : |1〉 ↔ |3〉 ↔ |5〉 ↔ |6〉 ↔ |2〉 ↔ |1〉,
C5 : |1〉 ↔ |4〉 ↔ |3〉 ↔ |5〉 ↔ |2〉 ↔ |1〉,
C6 : |1〉 ↔ |4〉 ↔ |6〉 ↔ |2〉 ↔ |1〉,
C7 : |1〉 ↔ |4〉 ↔ |6〉 ↔ |5〉 ↔ |2〉 ↔ |1〉,
C8 : |1〉 ↔ |3〉 ↔ |4〉 ↔ |6〉 ↔ |2〉 ↔ |1〉,
C9 : |3〉 ↔ |5〉 ↔ |6〉 ↔ |4〉 ↔ |3〉,
C10 : |2〉 ↔ |6〉 ↔ |4〉 ↔ |3〉 ↔ |5〉 ↔ |2〉,
C11 : |1〉 ↔ |3〉 ↔ |5〉 ↔ |6〉 ↔ |4〉 ↔ |1〉. (26)

Hence, enumerating a large number of spanning trees rooted
at each individual state, as well as for cycles, poses a
formidable challenge. This difficulty becomes more pro-
nounced with the increasing size of the basic graph. To
bypass this problem, we utilize the generalized matrix-tree
theorem from algebraic graph [30,56] by rewriting the master
equation in the following form [81]: Ṗ = −MP, where P =
{P1, P2, P3, P4, P5, P6} is a column matrix and M is a square
matrix, given by

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

k21 + k31 + k41 −k12 −k13 −k14 0 0
−k21 k12 + k52 + k62 0 0 −k25 −k26
−k31 0 k13 + k43 + k53 −k34 −k35 0
−k41 0 −k43 k14 + k34 + k64 0 −k46

0 −k52 −k53 0 k25 + k35 + k65 −k56
0 −k62 0 −k64 −k65 k26 + k46 + k56

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (27)

Equation (27) is known as the Laplacian or transition matrix
of the weighted graph G. Furthermore, in accordance with
the matrix tree theorem, it is possible to compute both the
numerator and denominator of Eqs. (21) and (25) as the de-
terminants of the reduced transition matrix. For instance, �i

is related to M[i, i] which can be obtained by removing the
i-th row and column of the Laplacian matrix M. Similarly, �C
is identical to the det(M[C,C]), obtained by deleting rows
and columns belonging to cycle C of the transition matrix
M. This directly leads to a simple algebraic expression of the
steady-state population

P̄i = det(M[i; i])∑
i det(M[i; i])

, (28)

and the one-directional circuit flux associated with circuits C±
in the following form:

J±
C = ±

C
det(M[C;C])∑

i det(M[i; i])
, (29)

where
∑

i det(M[i; i]) = �. As an example, the sum of
the weights of spanning trees rooted on cycle C3 in
terms of the reduced determinant of the original Lapla-

cian matrix M is obtained by deleting rows and columns
i(1,2,3,5) ∈ C3 (Fig. 3). So, the principle minor M[C3,C3]
or M[1, 3, 5, 2; 1, 3, 5, 2] and its determinant takes the form
of

M[C3,C3] =
[

k14 + k34 + k64 −k46
−k64 k26 + k46 + k56

]
(30)

and

det(M[C3,C3]) = k14k26 + k14k46 + k14k56 + k34k26

+ k34k46 + k34k56 + k26k64 + k56k64,

(31)

respectively. Equation (31) contains a sum of eight terms,
indicating that there are eight possible spanning trees rooted
on cycle C3. Each term represents the weight of a spanning
tree in which all the weighted edges are directed towards the
cycle C3 (Fig. 3). Finally, from Eq. (29), it is clear that we can
calculate the circuit fluxes J±

C for each stochastic cycle trajec-
tory with the orientation either clockwise or counterclockwise
and efficiently rank out the top-ranked circuit fluxes. Next,
we will show how the microscopic details of cycle and circuit
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FIG. 3. Spanning trees rooted on cycle C3 (shaded region) of the
basic graph.

fluxes help us understand the SSE and SPE, connecting spin
and energy currents to macroscopic thermodynamic forces in
the phenomenological laws of irreversible thermodynamics.

B. Onsager relation

The first step on our way from a microscopic to a macro-
scopic description is to establish an expression for entropy
production rate, the key quantity in understanding any irre-
versible processes [9,57]. To start with, we consider the von
Neumann entropy

S = −kB

∑
i

Pi ln Pi, (32)

in the framework of our discrete-state quantum transition net-
work, characterized by its microscopic probability {Pi}. Thus
the time evolution of S is given by

dS
dt

= −kB

∑
i

dPi

dt
ln Pi. (33)

With the help of the quantum kinetic Pauli master equa-
tion (18), one can rewrite Eq. (33) as

dS
dt

= 1

2
kB

∑
i,j

Jij ln

(
Pj

Pi

)
. (34)

Now, following Schnakenberg’s suggestion [57], we split
Eq. (34) into two parts,

dS
dt

= �̇(t ) + σ̇ (t ), (35)

where we identify the first term �̇(t ) as the entropy flux rate

�̇(t ) = −1

2
kB

∑
i,j

Jij ln

(
kij

kji

)
, (36)

which arises from the interaction between the system and
its surroundings. The second term σ̇ (t ) is the total entropy
production rate

σ̇ (t ) = 1

2
kB

∑
i,j

(kijPj − kjiPi) ln

(
kijPj

kjiPi

)
. (37)

Equations (37) may appear a little artificial at first glance,
and a natural question to be raised at this point is whether

Eq. (37) has anything to do with the entropy production of the
phenomenological irreversible thermodynamics, which needs
be expressed as a bilinear form of the macroscopic thermody-
namic forces and fluxes. It must be emphasized that neither
Ṡ in Eq. (35) nor �̇ in Eq. (36) are necessarily positive, but
only σ̇ (t ) � 0, since it takes a form (a − b) ln(a/b) � 0 [cf.
Eq. (37)]. This is indeed true since the total entropy produc-
tion rate (σ̇ ) of any system must be always positive [9,57].
Thus it turns out that Eq. (37) satisfies the basic criteria for
the entropy production rate. Under the steady-state condition,
there is no change in the entropy of the system which implies
[9,57]

σ̇ = −�̇(t ) = 1

2
kB

∑
i,j

(kijP̄j − kjiP̄i) ln

(
kij

kji

)
. (38)

Using Eqs. (22) and (23), one may rewrite the above equa-
tion in terms of the circuit and cycle fluxes as [57],

σ̇ = kB

∑
C

(J+
C A

+
C + J−

C A
−
C )

= kB

∑
C

(J+
C − J−

C )A+
C = kB

∑
C

JCXC, (39)

where XC = A+
C = ln(+

C /−
C ) = −A−

C is called the cycle
affinity. For a given cycle C, it measures the imbalance or
asymmetry between the transition rates along two opposite
cycle trajectories C± and hence qualifies as a thermodynamic
force [82]. This is because, when XC = 0, it implies JC = 0,
resulting in equal circuit fluxes in both directions, i.e., J+

C =
J−
C . Equation (39), expressed in terms of cycle fluxes and cycle

forces, can thus be regarded as a microscopic or stochastic
version of the phenomenological Onsager relation [9].

Moreover, we find from Eq. (29) that the ratio of J±
C is

equal to the ratio of weight factors ±
C for each cycle, which,

in turn, is determined by the ratio of the product of the tran-
sitions rates along circuits C± and can be computed in terms
of externally controllable, macroscopic physical quantities T0,
δT and �μS, as follows (see Appendix B):

J+
C1

J−
C1

= +
C1

−
C1

= e−�μS/kBT0 , (40)

J+
C2

J−
C2

= +
C2

−
C2

= e−�μS/kBT0 , (41)

J+
C3

J−
C3

= +
C3

−
C3

= eUδT /kBT0(T0+δT ), (42)

J+
C4

J−
C4

= +
C4

−
C4

= eUδT /kBT0(T0+δT )e−�μS/kBT0 , (43)

J+
C5

J−
C5

= +
C5

−
C5

= eUδT /kBT0(T0+δT )e�μS/kBT0 , (44)

J+
C6

J−
C6

= +
C6

−
C6

= eUδT /kBT0(T0+δT ), (45)

J+
C7

J−
C7

= +
C7

−
C7

= eUδT /kBT0(T0+δT )e�μS/kBT0 , (46)
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J+
C8

J−
C8

= +
C8

−
C8

= eUδT /kBT0(T0+δT )e−�μS/kBT0 , (47)

J+
C9

J−
C9

= +
C9

−
C9

= 1, (48)

J+
C10

J−
C10

= +
C10

−
C10

= e�μS/kBT0 , (49)

J+
C11

J−
C11

= +
C11

−
C11

= e−�μS/kBT0 , (50)

In order to derive Eqs. (40)–(50), one makes use of Eq. (17),
where the explicit form of the distribution functions are gov-
erned by the quantum statistical properties of the respective
thermal reservoirs (see Appendix B for details). The advan-
tages in writing the above set of equations as a ratio of the
circuits fluxes rely on the fact that if the external biases �μS

and δT are zero on the right-hand side of Eqs. (40)–(50), then
regardless of the magnitudes the circuit fluxes, correspond-
ing cycle can not contribute the spin and energy currents.
Therefore one can infer the cycle fluxes associated with the
subcycles {C1,C2,C10,C11} are controlled by the spin bias
voltage �μS and hence can only contribute to the spin current
JS. Whereas the net cycle fluxes associated with the subcycles
C3 and C6 are dependent only on the temperature gradient δT
and thereby contributing solely to the energy current JE. Note
that U term is only associated with δT , and not �μs. This
observation implies that a nonzero Coulomb interaction U is
always necessary for a finite energy current, as indicated in
conjunction with Eq. (20). However, there are few subcycles
{C4,C5,C7,C8} and their conjugate fluxes are governed by
both δT as well as �μS and therefore can contribute to both
JS and JE. Indeed, these are the four cycles that are responsible
for the spin-thermoelectric crosseffects of SSE and SPE as
we will demonstrate in Sec. IV. Note that the net cycle flux
associated withC9 is identically zero because the circuit fluxes
in both directions (clockwise and counterclockwise) are equal
as evident from Eq. (48). As a result, we can use Eq. (23)
to rewrite macroscopic spin and energy current expressions
[Eqs. (19) and (20)] in terms of the microscopic circuit and
cycle fluxes as follows:

JS = −(
J+
C1

− J−
C1

) − (
J+
C2

− J−
C2

) − (
J+
C4

− J−
C4

)
+ (

J+
C5

− J−
C5

) + (
J+
C7

− J−
C7

) − (
J+
C8

− J−
C8

)
+ (

J+
C10

− J−
C10

) − (
J+
C11

− J−
C11

)
(51)

= −JC1 − JC2 − JC4 + JC5 + JC7 − JC8

+ JC10 − JC11 , (52)

JE = U
[(

J+
C3

− J−
C3

) + (
J+
C4

− J−
C4

) + (
J+
C5

− J−
C5

)
+ (

J+
C6

− J−
C6

) + (
J+
C7

− J−
C7

) + (
J+
C8

− J−
C8

)]
(53)

= U
[
JC3 + JC4 + JC5 + JC6 + JC7 + JC8

]
. (54)

Similar to Eqs. (19) and (20), the above set of equations are
the most general ones, however, the latter has an advan-
tage over the previous set of equations. Eqs. (53) and (54)
can be expressed in terms of macroscopic forces, facilitat-
ing the connection between SSE and SPE as a manifestation

of thermodynamic crosseffects. In order to identify the
phenomenological forces, we substitute Eqs. (40)–(50) into
Eq. (39), to write the entropy production rate as a sum over the
associated thermodynamic forces and fluxes as (Appendix B)

σ̇ = U
[
JC3 + JC4 + JC5 + JC6 + JC7 + JC8

] δT

T0(T0 + δT )

− [
JC1 + JC2 + JC4 − JC5 − JC7 + JC8 − JC10 + JC11

]�μS

T0

= JE

[
1

T0
− 1

(T0 + δT )

]
+ JS

[
μL↓
T0

− μL↑
T0

]

= JEXE + JSXS, (55)

where XE and XS are identified as conjugate forces cor-
responding to the energy current JE, and spin current JS,
respectively. If we compare Eqs. (39) and (55), we observe
that in both cases, the entropy production rate σ̇ is the product
of the fluxes and forces: In Eq. (39), σ̇ is in terms of the
microscopic fluxes (JC) and its conjugate forces (XC), i.e.,
cycle affinities whereas in Eq. (55), σ̇ is in terms of the
macroscopic fluxes (like the flow of spin and energy current)
and the associated phenomenological forces (XE and XS).
This is one of our central results, showcasing the recovery of
the phenomenological thermodynamic law of entropy produc-
tion in terms of generalized thermodynamic forces and fluxes
derived from the microscopic dynamical framework of the
master equation employing network cycle flux and forces. For
small external bias δT and �μS, we can simplify Eq. (55) in
the following form:

σ̇ ≈ JE

(
δT

T0
2

)
+ JS

(
�μS

T0

)
, (56)

which is in accordance with the linear dependence of the
entropy production rate on the relevant thermodynamic forces.
Similarly, the spin and the energy currents within the linear
response regime can be approximated as follows:

JS ≈ U
(−J−

C4
+ J+

C5
+ J−

C7
− J+

C8

)( δT

kBT0
2

)
+ (

J−
C1

+ J−
C2

+ J−
C4

+ J+
C5

+ J−
C7

+ J+
C8

+ J−
C10

+ J−
C11

)(�μS

kBT0

)
, (57)

JE ≈ U2
(
J−
C3

+ J−
C4

+ J+
C5

+ J−
C6

+ J−
C7

+ J+
C8

)( δT

kBT0
2

)

+ U
(−J−

C4
+ J+

C5
+ J−

C7
− J+

C8

)(�μS

kBT0

)
. (58)

Comparing Eqs. (57) and (58) with the phenomenological
linear law of irreversible thermodynamics

Jph
S = LSE

(
δT

kBT0
2

)
+ LSS

(
�μS

kBT0

)
, (59)

Jph
E = LEE

(
δT

kBT0
2

)
+ LES

(
�μS

kBT0

)
, (60)
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we identify the Onsager transport coefficients (L′ss) in terms
of the microscopic circuit fluxes obtained from the network
theory

LSE = U
(−J−

C4
+ J+

C5
+ J−

C7
− J+

C8

) ≡ LES, (61)

LSS = (
J−
C1

+ J−
C2

+ J−
C4

+ J+
C5

+ J−
C7

+ J+
C8

+ J−
C10

+ J−
C11

)
, (62)

LEE = U2
(
J−
C3

+ J−
C4

+ J+
C5

+ J−
C6

+ J−
C7

+ J+
C8

)
. (63)

Equation (61) encapsulates the essence of the Onsager reci-
procity relation. Here we derive this relation by applying the
quantum kinetic Pauli master equation within the framework
of network theory. It reveals that the BMS quantum master
equation is not a mere description of the dissipative dynam-
ics of the open quantum system; rather, it reproduces the
reciprocity relation of the linear law of irreversible thermo-
dynamics, which obeys due to the time-reversal symmetry of
the stationary fluctuations. Here instead, it follows from the
properties of the network circuit fluxes between the forward
(counterclockwise) and reverse (clockwise) cycle trajectories.

Now, our aim is to establish the relationship between the
coefficients of the spin-Seebeck and the spin-Peltier effects.
Under the zero spin current condition, i.e., JS = 0, we obtain
from Eq. (59)

LSE

(
δT

kBT0
2

)
+ LSS

(
�μS

kBT0

)
= 0,

or, κ ≡
(

�μS

δT

)
JS=0

= − 1

T0

(
LSE

LSS

)
(64)

κ = − U

T0
(−J−

C4
+ J+

C5
+ J−

C7
− J+

C8
)/(J−

C1
+ J−

C2

+ J−
C4

+ J+
C5

+ J−
C7

+ J+
C8

+ J−
C10

+ J−
C11

). (65)

Here κ = (�μS/δT )JS=0 is the spin-Seebeck coefficient or
spin-thermoelectric power, defined as the change in the spin
bias voltage per unit change of temperature. Similarly, we may
define the spin-Peltier coefficient as

ϑ = −
(

JE

JS

)
δT =0

= −LES

LSS
, (66)

= −U(−J−
C4

+ J+
C5

+ J−
C7

− J+
C8

)/(J−
C1

+ J−
C2

+ J−
C4

+ J+
C5

+ J−
C7

+ J+
C8

+ J−
C10

+ J−
C11

). (67)

On the face of it, both Eqs. (64) and (66), appear exactly
the same as their classical counterparts, although their basis
is completely different in classical and quantum cases. Using
Eqs. (65) and (67), we immediately conclude that the classic
Kelvin relation

T0

(
�μS

δT

)
JS=0

= −
(

JE

JS

)
δT =0

= −LES

LSS
= −LSE

LSS
,

or T0κ = ϑ, (68)

equally holds for quantum thermocouples, connecting the two
thermoelectric effects, namely SSE and SPE. This is the hall-
mark of thermodynamics with its universal generality. The
generality prevails in the sense that all the thermodynamic
relations retain their forms in both classical and quantum

settings, with the only variation being in specific expressions
that are used to articulate them.

The superiority of graph theory lies in its ability to
provide a clear and comprehensive understanding of the fun-
damental mechanisms underlying spin-thermoelectric effects,
which can otherwise be a daunting task to infer from transi-
tion states alone. For instance, it is immediately clear from
Eqs. (40)–(50), which cycles are only contributing in JE

or JS and which cycles are responsible for the thermody-
namic crosseffects. The connection between the stochastic
description of nonequilibrium systems in terms of cycle fluxes
and cycle forces, and the macroscopic depiction of thermo-
electric phenomena characterized by thermodynamic forces
and fluxes, demands further attention. This synthesis results
in the retrieval of the classic Onsager and Kelvin relations
in the most intriguing way. Such integration facilitates the
transition from a microscopic perspective to a macroscopic
phenomenon, thereby enhancing our understanding and al-
lowing us to explore the intricate interplay between various
factors contributing to spin-thermoelectric effects, as dis-
cussed below.

IV. OPERATIONAL PRINCIPLES

To this end, we delve into the operational principles under-
lying the spin-Seebeck and spin-Peltier effects.

A. Spin-Seebeck effect

We observe the SSE when there is no spin bias voltage
�μS = 0, and a spin current is generated due to a temperature
difference δT between the upper and the lower terminals of
the device. For �μS = 0, Eq. (51) reduces to

JS = −(
J+
C4

− J−
C4

) + (
J+
C5

− J−
C5

) + (
J+
C7

− J−
C7

) − (
J+
C8

− J−
C8

)
= −JC4 + JC5 + JC7 − JC8 , (69)

while the JE is still governed by Eq. (54). As a result, we
identify that cycle fluxes corresponding to subcycles C3, C4,
C5, C6, C7, and C8 contribute to JE, while C4, C5, C7, and
C8 facilitate JS. All the contributing cycle fluxes, energy,
and spin currents, in dimensionless units, along with all six
microstate populations, are plotted in Fig. 4 with respect to
the dimensionless temperature gradient δT . Although all six
cycles assist JE, the primary contribution comes from C3,
classified as the highest-rank cycle with a nonzero contribu-
tion. In contrast, all the cycles appearing in JS have equal
magnitudes but are lower in rank compared to C3 [Fig. 4(a)].
Consequently, the dimensionless spin current JS observed in
the SSE, which is a linear combination of the four contributing
cycles, is two orders of magnitude less than the dimensionless
energy current JE [Figs. 4(b) and 4(c)]. This is a typical feature
of SSE, where a weak spin current is generated due to the
temperature difference between the hot and cold terminals of
the device. The numerical results plotted in Figs. 4(b) and
4(c), in a way, verify this assertion. Upon setting �μS = 0
in Eqs. (57) and (58), approximate expressions for JS and JE

in the linear response regime are reduced to

JS ≈ LSE

(
δT

kBT0
2

)
(70)
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FIG. 4. Spin-Seebeck effect: All contributing (a) cycle fluxes
(b) populations (c) spin and (d) energy currents are plotted against
dimensionless thermal energy kBδT/h̄γ . The parameters used are as
follows: γL = γM = γR = γ , U = 0.8h̄γ , kBT0 = 4h̄γ , εl↓ = 4.5h̄γ ,
εl↑ = 0.5h̄γ , εu = 3h̄γ , and μL↓ = μL↑ = 0, and μM = 0.

and

JE ≈ LEE

(
δT

kBT0
2

)
, (71)

respectively, where LSE and LEE are given by Eqs. (61) and
(63), respectively. We observe that Eqs. (70) and (71) closely
follow the general Eqs. (69) and (54) [solid lines in Figs. 4(b)
and 4(c)], but they start to deviate (dash-dot lines) for large
values of the temperature gradient. This is because Eqs. (51)–
(55) are exact expressions in terms of circuit and cycle fluxes
under linear response regime; whereas, Eqs. (56)–(58) are
approximated ones, satisfying phenomenological law of ir-
reversible thermodynamics in its standard form, where we
are approximating the energy force XE = δT/T0(T0 + δT ),
by replacing with δT/T 2

0 . Hence, there is close agreement
between the two results for smaller δT , but the difference
increases for larger δT .

Finally, we note that cycles (C4, C5, C7, and C8) involving
spin-flip processes contribute to JS. For example, consider the
dynamic steps of C+

4 : starting from the most populated state
|00〉 as shown in Fig. 4(d), the system sequentially transi-
tions to |0↑〉 (where one spin-up electron tunnels from the
left reservoir into the lower QD), then to |1↑〉 (where one
electron tunnels from the middle reservoir into the upper QD).
The third step involves a spin-flip process |1↑〉 → |1↓〉 by
absorbing one magnon supplied by the right reservoir. Sub-
sequently, one spin-up electron tunnels into the left reservoir
(|1↓〉 → |10〉), and finally, the system returns to its initial state
|00〉 by releasing one electron to the middle reservoir. Thus,
at the end of the full cycle, an integer spin-1 is transferred
from the left spinful electron reservoir to the right magnon
bath. Similarly, the clockwise circuit C−

4 represents the reverse
process, and both cycle trajectories additively contribute to
the spin current expression [Eq. (69)] in the SSE. The same

FIG. 5. Spin-Peltier effect. All contributing (a) cycle fluxes,
(b) populations, (c) spin, and (d) energy currents are plotted
against dimensionless thermal energy �μS/h̄γ . The parameters
used are as follows: γL = γM = γR = γ , U = 0.8h̄γ , kBT0 = 4h̄γ ,
εl↓ = 4.5h̄γ , εl↑ = 0.5h̄γ , εu = 3h̄γ , and μL↑ = 2.5h̄γ , μL↓ =
μL↑ + �μS, δT = 0, and μM = 0.

holds true for other contributing cycle trajectories mentioned
in Eq. (69).

B. Spin-Peltier effect

We observe the SPE in a scenario when δT = 0 and an
energy current is generated due to a nonzero spin bias voltage.
Putting δT = 0 in Eq (54), we obtain

JE = U
[(

J+
C4

− J−
C4

) + (
J+
C5

− J−
C5

) + (
J+
C7

− J−
C7

)
+(

J+
C8

− J−
C8

)]
(72)

= U[JC4 + JC5 + JC7 + JC8 ], (73)

and the same Eq. (51) can be used to calculate JS. As a
result, cycle fluxes corresponding to cycles C1, C2, C4, C5,
C7, C8, C10, and C11 attribute to the spin current, while only
four cycles C4, C5, C7, and C8 contribute to the energy cur-
rent. All supporting cycle fluxes, spin and energy currents
in dimensionless units, and the population of each eigen-
state are plotted in Fig. 5 against the dimensionless spin bias
voltage �μS. In this case, the major contribution to JS is
coming from cycle C1 which is classified as the top-ranked
cycle with a nonzero contribution. On the other hand, all
the cycles contributing to JE are lower ranked cycles relative
to C1 with comparable magnitudes [Fig. 5(a)]. As a result,
the dimensionless energy current JE in SPE, is two orders
of magnitude smaller than the dimensionless spin current JS

[Figs. 5(b) and 5(c)]. This is a characteristic of SPE, where
a weak thermal current is generated due to the spin bias
voltage applied across the two ends of the cold terminals.
The situation is exactly the reverse of that of SSE and the
numerical results plotted in Figs. 5(b) and 5(c), agree with
this observation. This simply indicates that the current conju-
gate to its thermodynamic forces is always greater than the
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currents corresponding to the other thermodynamic forces.
Upon substituting δT = 0 in Eqs. (57) and (58), approximate
expressions for JE and JS in the linear response regime take the
form of

JE ≈ LES

(
�μS

kBT0

)
(74)

and

JS ≈ LSS

(
�μS

kBT0

)
, (75)

where LES and LSS are given by Eqs. (61) and (62), respec-
tively. Note that Eq. (75) closely follow the solid line [cf. (51)]
in Fig. 5(b), while the energy current JE deviates gradually
from the solid line for higher �μS [Fig. 5(c)]. This is because,
Eqs. (57) and (58) obey the Onsager reciprocity, fulfilling
LSE = LES. As a consequence, the JE expression in Eq. (74)
is influenced more than the spin current expression [Eq. (75)],
upon approximating energy force XE by δT/T 2

0 in Eqs. (57)
and (58).

Finally, we note that in both Figs. 4(d) and 5(d), the
change in the populations exhibits little variation with respect
to δT and �μs, suggesting a linear response of operation
close to equilibrium. Had it been operated far from equi-
librium, as recently explored in molecular photocells [56]
driven by solar radiations, it would have resulted in popu-
lation inversions and other interesting effects. As mentioned
earlier, each cycle C represents two paired circuits, i.e., C+
and C−. In Fig. 5(a), JC < 0 implies that the flux correspond-
ing to the counterclockwise circuit C+ (J+

C ) is less than the
flux corresponding to clockwise circuit C− (J−

C ). Finally, we
emphasize that it is the same set of four cycles (C4, C5,
C7, and C8) that not only produces a weak spin current in
SSE but also accounts for generating a weak energy current
in SPE.

C. SSE and SPE: As thermodynamic crosseffect

In Sec. III B, we have identified cycles C1, C2, C10, C11,
which can contribute solely to the spin current and not to
energy current. Conversely, cycles C3, C6 are found to con-
tribute exclusively to the energy current and not to the spin
current. Meanwhile, cycles C4, C5, C7, C8 have the quality
to contribute to both energy as well as spin currents [Fig. 6].
To gain a deeper understanding, it is essential to analyze the
complete topology of the network. Notably, we observe that
all cycles contributing to JS must involve a spin-flip process,
either |0↑〉 ↔ |0↓〉 or |1↑〉 ↔ |1↓〉, corresponding to the
edges |3〉 ↔ |4〉 or |5〉 ↔ |6〉, respectively. Similarly, cycles
contributing to JE must include the edges |3〉 ↔ |5〉 (|0↑〉 ↔
|1↑〉) or |4〉 ↔ |6〉 (|0↓〉 ↔ |1↓〉), enabling Coulomb inter-
action between the upper and lower dots. This insight sheds
light on why the expressions for spin and energy currents,
derived from the master equation, take their particular forms
[cf. Eqs. (19) and (20)]. At this juncture, it is imperative to
underscore that cycles C1, C2, C9, C10, and C11 share the
edge |3〉 ↔ |4〉 or |5〉 ↔ |6〉, yet they do not contribute to
the spin current in the SSE due to zero cycle affinity. This
results from the fact that the circuit fluxes associated with the
cycle trajectories (C+ and C−) are identical in both directions,

FIG. 6. Schematic diagram of four subcycles {C4,C5,C7,C8}
which are truly responsible for the spin-thermolectric crosseffect of
SSE and SPE. Special edges are marked in orange.

yielding a zero cycle flux. The same holds true for the SPE
with cycles C3, C6, and C9 in the absence of a spin bias
voltage, despite having the required edges. Intriguingly, cycle
C9 possesses both spin-flip and Coulomb-interaction edges
(Fig. 2), yet it yields zero cycle fluxes due to its zero cycle
affinity. Therefore the asymmetry in cycle affinity emerges as
the primary thermodynamic driving force and the foremost
criterion for obtaining a nonzero cycle flux. Conversely, cy-
cles C4, C5, C7, C8 exhibit nonzero cycle affinity either in
the absence of a temperature bias (SPE) or in the absence
of a spin bias voltage (SSE). Consequently, these four cy-
cles stand as the sole contributors to both SSE and SPE,
featuring finite spin and energy currents. This is attributed
to their possession of both the spin-flip edge (|3〉 ↔ |4〉 or
|5〉 ↔ |6〉) and the Coulomb-interaction edge (|3〉 ↔ |5〉 or
|4〉 ↔ |6〉). To summarize, we affirm that C4, C5, C7, C8

stand as the four pivotal cycles solely responsible for
materializing the thermodynamic crosseffect in the form of
the spin-thermoelectric effect within our simple minimal
model of the quantum thermocouple. The consequences of the
interference effect between these major contributing cycles
open intriguing avenues, and future research directions could
delve into the impact of quantum coherence and entanglement
effect [83,84] on the device performance from the perspective
of the network theory.

V. CONCLUSIONS

The key findings of our present analysis are outlined
as follows. (i) We present a simple model of a quantum
thermocouple that exhibits spin-caloritronic effects based on
three-terminal ultra-strong Coulomb-coupled quantum dots.
In contrast to four-terminal models, this minimal model
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mimics both spin-dependent Seebeck and Peltier effects in
complete analogy to classical thermocouples, used to describe
thermoelectric effects. In the quantum case, distinct statistical
properties of the thermal reservoirs play a role akin to dis-
similar metals in traditional thermocouples. (ii) We find out
that the expressions for spin and energy currents, derived from
the Lindblad master equation, completely agree with network
theoretical results. However, the quantum kinetic Pauli master
equation serves as the basis for constructing the thermody-
namic network, encompassing joint system microstates and
associated transition rates. This is in stark contrast to classical
network theory, where microstates often result from coarse-
graining procedures. Here instead, they naturally emerge as
eigenstates of the coupled quantum systems, derived from
the microscopic Hamiltonian description of the composite
quantum system. (iii) Benefiting from the generalized ma-
trix tree theorem of the algebraic graph, we not only unveil
the fundamental operational principles behind spin-Seebeck
and spin-Peltier effects but also confirm the applicability of
well-known thermodynamic relations in nanothermoelectric
devices. The validity of Onsager reciprocity and Kelvin rela-
tions for thermoelectric coefficients underscore the universal
generality of thermodynamic principles in both classical and
quantum realms. In the present case, the above relations stem
from the characteristic properties of forward and backward cy-
cle flux trajectories of the quantum thermodynamic network.
This is fundamentally different from the phenomenological

classical laws of irreversible thermodynamics that hinge on
local equilibrium assumptions. (iv) In this context, we stress
the importance of network cycle flux, and cycle affinity in es-
tablishing the macroscopic spin and energy currents in terms
of stochastic cycle currents. Cycle affinity, expressed as a
ratio of transition rates between forward and backward cycle
trajectories, emerges as a fundamental driving force behind
nonzero cycle fluxes. Then, the cycle flux ranking scheme
powered by the microscopic or stochastic version of the en-
tropy production rate, sheds light on the origin of weak spin
and energy currents in spin-Seebeck and Peltier effects, re-
spectively. (v) Finally, we identify four nonintersecting cycles
that are responsible for manifesting both reciprocal effects
of spin-thermoelectricity within our simple minimal model.
Characterized by special edges involving the spin-flip process
and Coulomb interaction between interacting quantum dots,
these cycles pave the way for underpinning the fundamental
working principles of quantum thermocouples.
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APPENDIX A: DERIVATION OF THE LINDBLAD QUANTUM MASTER EQUATION

The total Hamiltonian of the overall three-terminal setup is given by

H = HS + HB + HI, (A1)

where HS, HB, and HI are the total Hamiltonian of the system, bath, and system-bath interaction, respectively. The interaction
Hamiltonian HI is defined as HI = HIL + HIM + HIR, wherein HIL(R) denotes the interaction of the lower quantum dot (QDl ) with
the left (right) bath and HIM represents the interaction of the upper quantum dot (QDu) with the middle bath. The interaction
Hamiltonian HIα (α = L, M, R) for each αth bath is given by [30,56]

HIL = HIL↑ + HIL↓, HIL↑ = h̄
∑

k

(tLkb†
L↑kdl↑ + t∗

Lkd†
l↑bL↑k ), HIL↓ = h̄

∑
k

(tLkb†
L↓kdl↓ + t∗

Lkd†
l↓bL↓k ),

HIM = h̄
∑

k

(tMkb†
Mkdu + t∗

Mkd†
u bMk ), HIR = h̄

∑
q

(
gRqa†

Rqd†
l↑dl↓ + g∗

Rqd†
l↓dl↑aRq

)
. (A2)

To formulate the master equation, we begin with the derivation by considering the von Neumann equation applied to the total
density matrix ρT of the combined system and reservoirs in the interaction picture, as given in Ref. [49],

dρT

dt
= − i

h̄
[HI(t ), ρT(t )]. (A3)

Integrating Eq. (A3) and tracing out the bath degrees of freedom, the master equation in terms of the reduced density matrix ρ

of the coupled quantum dot system under the Born-Markov approximation can be written as [49]

dρ(t )

dt
= − 1

h̄2 TrB

∫ ∞

0
ds[HI(t ), [HI(t − s), ρT(t )]]. (A4)

In Eq. (A4), ρ(t ) = TrB{ρT} ≡ TrB{ρ(t ) ⊗ ρB} where ρB = ρL↑ ⊗ ρL↓ ⊗ ρM ⊗ ρR, and TrB ≡ TrL↑,L↓,M,R stands for the trace
over each bath degrees of freedom. As a result, we can rewrite Eq. (A4) as [47,55,56]

dρ(t )

dt
= − 1

h̄2 TrL↑,L↓,M,R

∫ ∞

0
ds[HI(t ), [HI(t − s), ρ(t ) ⊗ ρL↑ ⊗ ρL↓ ⊗ ρM ⊗ ρR]]. (A5)
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Using the following relations [47,56],

TrL↑(bL↑k (t )ρL↑) = 0 = TrL↑(b†
L↑k (t )ρL↑), TrL↓(bL↓k (t )ρL↓) = 0 = TrL↓(b†

L↓k (t )ρL↓), (A6)

TrM(bMk (t )ρM) = 0 = TrM(b†
Mk (t )ρM), TrR(aRq(t )ρR) = 0 = TrR

(
a†

Rq(t )ρR
)
, (A7)

one can simplify Eq. (A5) as [47,55,56]

dρ(t )

dt
= − 1

h̄2

∑
β

TrL↑,L↓,M,R

∫ ∞

0
ds[HIβ (t ), [HIβ (t − s), ρ(t ) ⊗ ρL↑ ⊗ ρL↓ ⊗ ρM ⊗ ρR]], β = L↑, L↓, M, R. (A8)

Now, we use system operators in the interaction picture as

di(t ) = eiHSt/h̄die
−iHSt/h̄ =

∑
{εji}

e−iεjit/h̄di,

d†
i (t ) = eiHSt/h̄d†

i e−iHSt/h̄ =
∑
{εji}

eiεjit/h̄d†
i , i = l↑, l↓, u, (A9)

where εji = εj − εi > 0 is the energy required for the transition between state |i〉 and |j〉 driven by their respective bath. Similarly,
one can write the expressions for the bath operators in the interaction picture. With all these given prescriptions, we have
simplified the Eq. (A8), resulting in the Lindblad form of the quantum master equation as follows:

dρ

dt
= LL↑[ρ] +LL↓[ρ] +LM[ρ] +LR[ρ], (A10)

The explicit forms of the Lindblad super operator L in the above equation are given by

LL↑[ρ] =
∑
{εL↑}

γL
[

f (εL↑, μL↑, TL)
(
d†

l↑(εL↑)ρdl↑(εL↑) − 1
2 {dl↑(εL↑)d†

l↑(εL↑), ρ})

+ (1 − f (εL↑, μL↑, TL))
(
dl↑(εL↑)ρd†

l↑(εL↑) − 1
2 {d†

l↑(εL↑)dl↑(εL↑), ρ})], (A11)

LL↓[ρ] =
∑
{εL↓}

γL
[

f (εL↓, μL↓, TL)
(
d†

l↓(εL↓)ρdl↓(εL↓) − 1
2 {dl↓(εL↓)d†

l↓(εL↓), ρ})

+ (1 − f (εL↓, μL↓, TL))
(
dl↓(εL↓)ρd†

l↓(εL↓) − 1
2 {d†

l↓(εL↓)dl↓(εL↓), ρ})], (A12)

LM[ρ] =
∑
{εM}

γM
[

f (εM, μM, TL)
(
d†

u (εM)ρdu(εM) − 1
2 {du(εM)d†

u (εM), ρ})
+ (1 − f (εM, μM, TM))

(
du(εM)ρd†

u (εM) − 1
2 {d†

u (εM)du(εM), ρ})], (A13)

LR[ρ] =
∑
{εR}

γR
[
n(εR, TR )

(
V †

l (εR)ρVl (εR) − 1
2 {Vl (εR)V †

l (εR), ρ})

+ (n(εR, TR) + 1)
(
Vl (εR)ρV †

l (εR) − 1
2 {V †

l (εR)Vl (εR), ρ})], (A14)

where the operators Vl = d†
l↑dl↓ and V †

l = d†
l↓dl↑ are responsible for the transition between spin-up (↑) and spin-down (↓) states.

The transition rates corresponding to their respective bath are characterized by the various γ ′s. The explicit form of all γ ′s in
terms of system-bath coupling constants can be calculated by Fermi’s golden rule, as γL = 2π h̄

∑
k |tLk|2δ(ε − εLσk ), where σ =

{↑,↓}, γM = 2π h̄
∑

k |tMk|2δ(ε − εMk ), and γR = 2π h̄
∑

q |gRq|2δ(ε − εRq) [56]. The functions f (ε, μ, T ) = [e(ε−μ)/kBT + 1]−1

is the Fermi-Dirac distribution function corresponding to the left (L) and middle (M) bath with the transition energy ε,
chemical potential μ, and equilibrium bath temperature T . Similarly, the function n(ε, T ) = [eε/kBT − 1]−1 is the Bose-Einstein
distribution function corresponding to the right (R) bath with the transition energy ε and reservoir temperature T . The distribution
functions are defined as the bath correlation functions and can be calculated as 〈b†b〉 = TrLσ (M)(b†bρLσ (M)) = fLσ (M) and 〈bb†〉 =
TrLσ (M)(bb†ρLσ (M)) = 1 − fLσ (M) for the left (middle) bath and 〈a†a〉 = TrR(a†aρR) = nR, 〈aa†〉 = TrR(aa†ρR) = 1 + nR for
the right bath [56]. The operators b and b† follow anticommutation relation whereas the operators a and a† follow commutation
relation, and kB is the Boltzmann constant. The energies needed for the transitions which are driven by the left and middle
baths are εL↑ = {ε31, ε52}, εL↓ = {ε41, ε62}, and εM = {ε21, ε53, ε64} respectively, while the energies required for the transitions
triggered by the right bath are εR = {ε43, ε65}. Note that one can express the various system creation and annihilation operators

125124-13



GUPT, GHOSH, AND GHOSH PHYSICAL REVIEW B 109, 125124 (2024)

and their combinations in the following forms |i〉〈j| (i �= j, i, j = 1, 2, 3, 4, 5, 6), which are given by

d†
l↑ = |3〉〈1| + |5〉〈2|, dl↑ = |1〉〈3| + |2〉〈5|,

d†
l↓ = |4〉〈1| + |6〉〈2|, dl↓ = |1〉〈4| + |2〉〈6|,

d†
u = |2〉〈1| + |5〉〈3| + |6〉〈4|, du = |1〉〈2| + |3〉〈5| + |4〉〈6|,

V †
l = d†

l↓dl↑ = |4〉〈3| + |6〉〈5|, Vl = d†
l↑dl↓ = |3〉〈4| + |5〉〈6|. (A15)

Finally, Eqs. (9) to (14) in the main text can be derived with the help of Eqs. (A10)–(A15) in the following manner. For example,

dP1

dt
= 〈1|dρ

dt
|1〉 = 〈1|LL↑[ρ]|1〉 + 〈1|LL↓[ρ]|1〉 + 〈1|LM[ρ]|1〉 + 〈1|LR[ρ]|1〉, (A16)

where the terms

〈1|LL↑[ρ]|1〉 = γL f (ε31, μL↑, TL)
(− 1

2 〈1|1〉〈1|ρ|1〉 − 1
2 〈1|ρ|1〉〈1|1〉) + γL(1 − f (ε31, μL↑, TL))(〈1|1〉〈3|ρ|3〉〈1|1〉)

= γL(1 − f (ε31, μL↑, TL))P3 − γL f (ε31, μL↑, TL)P1 = k13P3 − k31P1 ≡ J13, (A17)

〈1|LL↓[ρ]|1〉 = γL f (ε41, μL↓, TL)
(− 1

2 〈1|1〉〈1|ρ|1〉 − 1
2 〈1|ρ|1〉〈1|1〉) + γL(1 − f (ε41, μL↓, TL))(〈1|1〉〈4|ρ|4〉〈1|1〉)

= γL(1 − f (ε41, μL↓, TL))P4 − γL f (ε41, μL↓, TL)P1 = k14P4 − k41P1 ≡ J14, (A18)

〈1|LM[ρ]|1〉 = γL f (ε21, μL↓, TL)
(− 1

2 〈1|1〉〈1|ρ|1〉 − 1
2 〈1|ρ|1〉〈1|1〉) + γL(1 − f (ε21, μL↓, TL))(〈1|1〉〈2|ρ|2〉〈1|1〉)

= γL(1 − f (ε21, μL↓, TL))P2 − γL f (ε21, μL↓, TL)P1 = k12P2 − k21P1 ≡ J12, (A19)

〈1|LR[ρ]|1〉 = 0. (A20)

Similarly, one can derive time evolution equations for the population of the other ith states. Under the steady state, dPi/dt = 0
(i = 1,2, . . . ,6), and we have

dP1

dt
= (k13P3 − k31P1) + (k14P4 − k41P1) + (k12P2 − k21P1) = J13 + J14 + J12 = 0, (A21)

dP2

dt
= (k25P5 − k52P2) + (k26P6 − k62P2) + (k21P1 − k12P2) = J25 + J26 + J21 = 0, (A22)

dP3

dt
= (k31P1 − k13P3) + (k35P5 − k53P3) + (k34P4 − k43P3) = J31 + J35 + J34 = 0, (A23)

dP4

dt
= (k41P1 − k14P4) + (k46P6 − k64P4) + (k43P3 − k34P4) = J41 + J46 + J43 = 0, (A24)

dP5

dt
= (k52P2 − k25P5) + (k53P3 − k35P5) + (k56P6 − k65P5) = J52 + J53 + J56 = 0, (A25)

dP6

dt
= (k62P2 − k26P6) + (k64P4 − k46P6) + (k65P5 − k56P6) = J62 + J64 + J65 = 0. (A26)

In the present case, there is no particle exchange between the quantum dots, implying no particle current due to the middle
reservoir. So, the steady-state energy (heat) current through the middle reservoir within the Born-Markov-Secular (BMS) master
equation can be defined as [30,47]

JE = JM
E = Tr{LM[ρ]HS}, (A27)

where the system Hamiltonian HS has the following form, HS = ∑
i εi|i〉〈i|, with εi being the energy of the ith state. Using

Eq. (A27), the expression for tJE can be calculated as

JE = ε21J21 + ε53J53 + ε64J64. (A28)
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At the steady state, one may verify J12 = −J21 = J53 + J64. As a result, Eq. (A28) reduce to Eq. (20) of the main text:

JE = εu(−J12) + (εu + U)J53 + (εu + U)J64,

= −εuJ12 + (εu + U)(J53 + J64),

= U(J53 + J64). (A29)

Similarly, the steady-state spin current due to the left and right reservoirs can be defined as [30]:

JL
S = 1

2 (Tr{d†
l↓dl↓LL↓[ρ]} − Tr{d†

l↑dl↑LL↑[ρ]}), (A30)

JR
S = Tr{V †

l VlLR[ρ]}. (A31)

Now, using Eq. (A15), one can derive the expressions for JL
S and JR

S from Eqs. (A30) and (A31) in the follwing forms:

JL
S = 1

2 [(J41 + J62) − (J31 + J52)], (A32)

JR
S = J43 + J65. (A33)

In the steady state, J41 + J62 = −(J31 + J52) = J34 + J56. As a result, we get Eq.(19) of the main text as the steady-state spin
current

JS = JL
S = 1

2 [(J41 + J62) + (J41 + J62)]

= J41 + J62 = J34 + J56 (A34)

= −(J43 + J65) = −JR
S . (A35)

APPENDIX B: DERIVATION OF THE ENTROPY PRODUCTION RATE

From Eq. (38), the steady-state entropy production rate can be written as follows [9,57]:

σ̇ = 1

2
kB

∑
i,j

Jij ln

(
kij

kij

)

= 1

2
kB

[
J31 ln

(
k31
k13

)
+ J13 ln

(
k13
k31

)
+ J41 ln

(
k41
k14

)
+ J14 ln

(
k14
k41

)
+ J43 ln

(
k43
k34

)
+ J34 ln

(
k34
k43

)
+ · · · .

]
(B1)

As we have mentioned in the main text Jij = −Jji for all i and j (i �= j), so σ̇ will be equal to

σ̇ = kB

[
J31 ln

(
k31
k13

)
+ J41 ln

(
k41
k14

)
+ J43 ln

(
k43
k34

)
+ J21 ln

(
k21
k12

)
+ J52 ln

(
k52
k25

)
+ J64 ln

(
k64
k46

)
+ · · ·

]

= kB

[(
J+
C1

− J−
C1

+ J+
C3

− J−
C3

+ J+
C4

− J−
C4

+ J+
C8

− J−
C8

+ J+
C11

− J−
C11

)
ln

(
k31
k13

)
+ (−J+

C1
+ J−

C1
+ J+

C5
− J−

C5
+ J+

C6
− J−

C6

+ J+
C7

− J−
C7

− J+
C11

+ J−
C11

)
ln

(
k41
k14

)
+ (

J+
C1

− J−
C1

− J+
C5

+ J−
C5

+ J+
C8

− J−
C8

− J+
C9

− J−
C9

− J+
C10

+ J−
C10

)
ln

(
k43
k34

)

+ (−J+
C3

+ J−
C3

− J+
C4

+ J−
C4

− J+
C5

+ J−
C5

− J+
C6

+ J−
C6

− J+
C7

+ J−
C7

− J+
C8

+ J−
C8

)
ln

(
k21
k12

)
+ · · ·

⎤
⎦

= kB

[
J+
C1

ln

(
k14k43k31
k13k34k41

)
− J−

C1
ln

(
k14k43k31
k13k34k41

)
+ · · ·

]
= kB

[
J+
C1

ln

(
+
C1

−
C1

)
− J−

C1
ln

(
+
C1

−
C1

)
+ · · ·

]

= kB
(
J+
C1

− J−
C1

)
ln

(
+
C1

−
C1

)
+ · · ·

= kB

∑
C

JCXC, where JC = (J+
C − J−

C ) and XC = ln

(
+
C

−
C

)
. (B2)

The ratio of ±
C is equal to the ratio of J±

C for each cycle trajectory. These ratios are

J+
C1

J−
C1

= +
C1

−
C1

= k43k31k14
k13k34k41

= e−�μS/kBT0 ≈
(

1 − �μS

kBT0

)
, (B3)
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J+
C2

J−
C2

= +
C2

−
C2

= k26k65k52
k25k56k62

= e−�μS/kBT0 ≈
(

1 − �μS

kBT0

)
, (B4)

J+
C3

J−
C3

= +
C3

−
C3

= k12k25k53k31
k13k35k52k21

= eUδT /kBT0(T0+δT ) ≈
(

1 + UδT

kBT0
2

)
, (B5)

J+
C4

J−
C4

= +
C4

−
C4

= k12k26k65k53k31
k13k35k56k62k21

= eUδT /kBT0(T0+δT )e−�μS/kBT0 ≈
(

1 + UδT

kBT0
2 − �μS

kBT0

)
, (B6)

J+
C5

J−
C5

= +
C5

−
C5

= k12k25k53k34k41
k14k43k35k52k21

= eUδT /kBT0(T0+δT )e�μS/kBT0 ≈
(

1 + UδT

kBT0
2 + �μS

kBT0

)
, (B7)

J+
C6

J−
C6

= +
C6

−
C6

= k12k26k64k41
k14k46k62k21

= eUδT /kBT0(T0+δT ) ≈
(

1 + UδT

kBT0
2

)
, (B8)

J+
C7

J−
C7

= +
C7

−
C7

= k12k25k56k64k41
k14k46k65k52k21

= eUδT /kBT0(T0+δT )e�μS/kBT0 ≈
(

1 + UδT

kBT0
2 + �μS

kBT0

)
, (B9)

J+
C8

J−
C8

= +
C8

−
C8

= k12k26k64k43k31
k13k34k46k62k21

= eUδT /kBT0(T0+δT )e−�μS/kBT0 ≈
(

1 + UδT

kBT0
2 − �μS

kBT0

)
, (B10)

J+
C9

J−
C9

= +
C9

−
C9

= k34k46k65k53
k35k56k64k43

= 1, (B11)

J+
C10

J−
C10

= +
C10

−
C10

= k25k53k34k46k62
k26k64k43k35k52

= e�μS/kBT0 ≈
(

1 + �μS

kBT0

)
, (B12)

J+
C11

J−
C11

= +
C11

−
C11

= k14k46k65k53k31
k13k35k56k64k41

= e−�μS/kBT0 ≈
(

1 − �μS

kBT0

)
. (B13)

Using Eqs.(B3)–(B13) into Eq. (B2) yields

σ̇ = JC1 ln

(
+
C1

−
C1

)
+ JC2 ln

(
+
C2

−
C2

)
+ JC3 ln

(
+
C3

−
C3

)
+ JC4 ln

(
+
C4

−
C4

)
+ JC5 ln

(
+
C5

−
C5

)
+ · · ·

= JC1

(
−�μS

kBT0

)
+ JC2

(
−�μS

kBT0

)
+ JC3

(
− UδT

kBT0(T0 + δT )

)
+ JC4

(
UδT

kBT0(T0 + δT )
− �μS

kBT0

)

+ JC5

(
UδT

kBT0(T0 + δT )
+ �μS

kBT0

)
+ JC6

(
− UδT

kBT0(T0 + δT )

)
+ · · ·

= U
[
JC3 + JC4 + JC5 + JC6 + JC7 + JC8

] δT

T0(T0 + δT )
+ [−JC1 − JC2 − JC4 + JC5 + JC7 − JC8 + JC10 − JC11

]�μS

T0

= JE

[
1

T0
− 1

(T0 + δT )

]
+ JS

[
μL↓
T0

− μL↑
T0

]
, (B14)

where we identify the expressions of the macroscopic energy and spin currents in terms of microscopic cycle fluxes

JE = U
[
JC3 + JC4 + JC5 + JC6 + JC7 + JC8

]
, (B15)

JS = [−JC1 − JC2 − JC4 + JC5 + JC7 − JC8 + JC10 − JC11

]
, (B16)

which are equivalent to Eqs. (54) and (52) of the main text.
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