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Nonadiabatic topological transfer in a nanomechanical phononic lattice
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Topologically protected boundary transport is a promising route to realize robust quantum manipulation
between distant nodes. Conventional topological transports require a long transmission time to meet adiabatic
evolution, which unfortunately becomes a significant obstacle for practical quantum systems with decoherence.
Here, we report a fast and robust phonon transfer by breaking this adiabatic limitation in a one-dimensional
nanomechanical topological interface lattice. The high-fidelity nonadiabatic topological transfer (NTT) can
be predicted accurately via the localized mode and bulk levels. A dynamical method is then put forward to
characterize the nonadiabatic oscillation of the NTT according to the chiral symmetry, and the oscillation of
the instantaneous adiabaticity is measured by the phonon population on the even nanomechanical resonators.
Furthermore, we confirm the robustness under various noises and the scalability of the NTT. Our results open the
door to accelerating topological transport, which is valuable for developing fast and robust quantum information
transfer protocols.
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I. INTRODUCTION

Transferring particles or states between distant nodes in
a network is of fundamental importance in many areas of
physics and engineering, including scalable quantum in-
formation processing [1–3]. Topological localized boundary
modes provide an excellent carrier for transferring particles
or quantum resources and have been introduced to design
robust transfer passages in recent years [4–23]. Various adi-
abatic topological transfer (ATT) protocols [11–21] based on
the one-dimensional Su-Schrieffer-Heeger (SSH) model [24]
have been proposed. In these protocols, as shown in Fig. 1(a),
the initial particle or quantum state follows the gap-protected
localized mode |φ0〉 from one end transfer to the other via
slowly varying the Hamiltonian in time. However, the fidelity
of these ATTs will be harmed when the transfer process under-
goes inevitable dissipations in a practical environment. Hence,
an ideal topological transport requires not only robustness
against local defects but also as fast as possible, especially
for potential applications in quantum systems with finite life-
times.

Different from ATTs, we notice that the transfer scheme
“analogy to a big spin” [25–27] utilizes multilevel coherent
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dynamics and takes a shorter time in lattice transports. How-
ever, due to the requirement of precise ratios in neighboring
couplings, the “analogy to a big spin” transfer is sensitive to
system imperfection. Inspired by the above, a natural question
is whether one can use the advantage of coherent dynamics in
multilevels to realize a fast topological transport.

Here, we propose a nonadiabatic topological transfer
(NTT) protocol by combining the merits of multilevel co-
herent dynamics and spatial adiabatic passages. This fast
and robust transfer is demonstrated in a phononic topo-
logical interface lattice, implemented through an array of
nanomechanical resonators with real-time modulated para-
metric couplings. The process can be viewed as a hybrid ATT,
during which the excited population is not irreversibly leaked
but coherently oscillates between the topological zero-energy
mode and engineered bulk states, schematically depicted in
Fig. 1(b). Recently, by carefully designing the dispersion re-
lation and utilizing nonadiabatic transitions, three-step and
three-step up accelerated topological protocols were proposed
in theory [14]. In this paper, we design a topological interface
model with fully flat energy levels in a phononic lattice and
obtain near-unit transfer fidelities with much shorter durations
without entering the adiabatic regime in the experiment. These
high-fidelity nonadiabatic transports can be predicted analyti-
cally by the flat topological structures.

To further characterize such a nonadiabatic process,
we theoretically propose and experimentally verify a
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FIG. 1. Topological transfer mechanism. (a) A conventional
topological transfer from the initial state |L〉 = |100 · · · 00〉 to the
target state |R〉 = |00 · · · 001〉 adiabatically follows the midgap zero-
energy mode |φ0〉. (b) A NTT with high fidelity is realized by
breaking the adiabatic assumption. Nonadiabatic energy level tran-
sitions (dashed lines) between the zero-energy mode and the bulk
levels are used to shorten the time consumption (Tc � T ) and keep
a near-unit transfer fidelity. Red balls stand for the probability distri-
bution on instantaneous levels.

dynamical method to measure the population on the topo-
logical zero-energy mode, i.e., instantaneous adiabaticity, by

taking advantage of the chiral symmetry of the system. The
instantaneous adiabaticity oscillates periodically as if a spin
processing in magnetic fields, unambiguously revealing the
coherent and nonadiabatic features experimentally. Finally,
we demonstrate the robustness and scalability of high-fidelity
NTTs.

II. TOPOLOGICAL INTERFACE LATTICE

As shown in Fig. 2(a), we design and realize a one-
dimensional phononic SSH lattice with 2N + 1 harmonic
oscillators. There are two nanomechanical resonators per unit
cell. The intracell (intercell) hopping Vn (Wn) of the nth unit
cell is controlled by parametric voltages Vac = Vpk cos[(ω2n −
ω2n+1)t] (ωi is the eigenfrequency of the ith resonator) and
the fixed Vdc via Bias-Tees [17,28], see Fig. 2(b). Unlike the
standard SSH model’s uniform and alternate interactions, the
intracell and intercell hoppings of the topological model we
consider here are spatially inhomogeneous and temporally
modulated [Fig. 2(c)]. It is noted that the inhomogeneous
hoppings of this topological interface lattice are derived from
the two-mode Jaynes-Cummings model (see Appendix A).
According to the relation Vn > Wn and Vn < Wn of each cell
at any moment, the lattice can be divided into two segments
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FIG. 2. Phononic implementation of the dynamic topological interface lattice. (a) The dynamic SSH interface lattice with 2N + 1 harmonic
oscillators. A zero-energy topological defect mode |φ0〉 is localized on the domain wall (DW), where the intercell hopping Wn is equal to the
intracell hopping Vn+1. (b) A unit cell of the phononic lattice includes two doubly clamped nanomechanical resonators. The fundamental mode
of each resonator is vibrational along the x axis. Couplings of adjacent resonators are controlled by parametric voltages Vac = Vpk cos[(ωi −
ωi+1)t] together with stationary dc voltages via Bias-Tees. (c) The hoppings Vn and Wn are spatially distributed according to square-root laws
and are temporally modulated by g1 = g sin(πt/2T ) and g2 = gcos(πt/2T ). (d) The localized mode |φ0〉 follows that the moving DW is an
ATT. The gray line indicates the mean position of the mode |φ0〉. Dots mark the position of the DW, where Wn = Vn+1. We take N = 20 in
(c) and (d). (e) Simulation (left) and experiment (right) of the eigenenergy spectrum of the dynamic SSH interface model in the phononic
lattice with N = 3 and g = 2π × 63.5 Hz. The experimental result is obtained from the response spectra of seven nanomechanical resonators.
(f) The coherent dynamics of NTTs can be simplified to a three-level model consisting of |φ0〉 and |φ±1〉 with the energy correction � and the
nonadiabatic transition κ .
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with distinct topological phases, and there is a domain wall
(DW) at the interface Wn = Vn+1 [29]. Therefore, the above
phononic lattice is termed the dynamic SSH interface model,
and its Hamiltonian reads

Ĥ (t ) =
N∑

n=1

[Vnâ†
2n−1â2n + Wnâ†

2nâ2n+1 + H.c.], (1)

where â†
n (ân) is the creation (annihilation) operator of

the nth phononic cavity, hoppings Vn = √
N − n + 1g1 and

Wn = √
ng2 with temporal factors g1 = g sin(πt/2T ), g2 =

gcos(πt/2T ), and g is a constant.
Owing to the bulk-boundary correspondence, there is a

zero-energy mode |φ0〉 localized at the DW. With real-time
modulations, the localized mode |φ0〉 accompanied by the
DW moves from the leftmost site |L〉 = |100 · · · 00〉 to the
rightmost site |R〉 = |00 · · · 001〉 under a period T [Fig. 2(d)],
forming an ATT. However, according to the description in
Fig. 1(a), the adiabatic following |φ0〉 requires a very long
transport duration T .

III. HIGH-FIDELITY NTTS

To highlight the nonadiabatic transition, it is convenient
to expand a system state |ψ〉 = ∑

n cn|φn〉 based on instan-
taneous eigenstates |φn〉 with eigenenergies En. The evolution
of the system is therefore governed by [30]

∂t cn = −iEncn −
∑
m �=n

cmκn,m, (2)

where κn,m = −κ∗
m,n = 〈φn|∂t H |φm〉/(Em − En) is the nonadi-

abatic transition rate between levels |φn〉 and |φm〉.
The nonadiabatic transition between instantaneous eigen-

modes can be greatly simplified by the square-root hopping
inhomogeneity. This lattice has a fully gapped flat-level struc-
ture with time-independent eigenenergies E±n = ±√

ng (n =
0, 1, . . . , N). In Fig. 2(e), we verify this flat-level structure
and its square-root scaling by using seven nanomechanical
resonators with real-time modulated parametric couplings,
which correspond to a dynamic SSH interface model with
N = 3. Specifically, we set g = 2π × 63.5 Hz in the experi-
ment. Seven frequency response spectra of all resonators are
measured and normalized for each moment. The measured
energy bands are an average result of these normalized spectra
(see Appendix D).

In such a flat-level design, the only nonzero nonadiabatic
transition rates between the topological zero-energy mode and
the bulk modes are κ0,±1 = ±κ = ±√

Nπ/(2
√

2T ) [31–33].
The resultant simplified three-level Hamiltonian is

Ĥeff = E ′
±1|φ±1〉〈φ±1| + [±iκ|φ±1〉〈φ0| + H.c.], (3)

with schematic diagram shown in Fig. 2(f). The eigenen-
ergies of levels |φ±1〉 is corrected as E ′

±1 = E±1 ∓ �, with
� = 7(N − 1)π2/(8T 2g) being the energy shift induced by
higher-order nonadiabatic transitions (see Appendix A). Then,
the population oscillation between |φ0〉 and |φ±1〉 is governed
by the pulse area,

A(N, T ) = 	T, (4)

which is similar to a spin-1 particle driven by a microwave
pulse with a pulse duration T and a precession frequency
	 =

√
2κ2 + (g − �)2. According to the area theorem [34],

the critical transport duration Tc is obtained when the pulse
area A is an even multiple of π . Therefore, we can obtain
high-fidelity NTTs by setting the critical duration Tc.

To demonstrate the fast topological passages, we carry out
phonon transfer under the parameters N = 3 and g = 2π ×
63.5 Hz. Figure 3(a) displays the numerical and experimental
results of the transfer fidelity as a function of the transport
duration

F (T ) = |〈R|ψ (T )〉|2 = ∣∣〈R|T̂ e−i
∫ T

0 dτ Ĥ (τ )
∣∣L〉|2, (5)

where |R〉 = |7〉 = |0000001〉 is the target state, |L〉 = |1〉 =
|1000000〉 is the initial state, and T̂ is the time-ordering oper-
ator.

In the experiment, the initial state of the topological
phononic lattice is created by exciting the first resonator at
its phononic frequency, and initial coherent excitations are
described by the vibration amplitude. We stress that the dis-
sipation of all resonators can be regarded as a global factor
and eliminated by vibration amplitude normalization [28,35].
Therefore, the evolution of normalized vibration amplitudes is
determined by the conservative Hamiltonian Ĥ (t ). Figure 3(e)
shows the experimental result of the normalized vibration
intensities for the NTT with Tc = 33.7 ms. The experimen-
tal result agrees with the numerical simulation of the single
phonon probability distribution plotted in Fig. 3(f). In the
same way, we study other NTTs in the phononic lattice. The
experimental data of the transfer fidelity in Fig. 3(a) is given
by the normalized vibration intensity of the seventh resonator.
The error bar of each transfer fidelity is obtained by 200
repetitions. The black dashed line is the analytical result of the
three-level approximation. It is clear that the transfer fidelity
of NTTs with critical duration Tc can reach a unit which is far
away from the adiabatic region.

IV. INSTANTANEOUS ADIABATICITY

To further evaluate these NTTs, we compute and measure
the population on the zero-energy mode to quantify the instan-
taneous adiabaticity P0(t ) = |〈φ0(t )|ψ (t )〉|2 = |c0(t )|2 during
the transport process. Figures 3(b)–3(d) illustrates three typi-
cal NTTs with pulse areas A = 2π , 3π , and 4π , respectively.
For the high-fidelity NTTs (Tc = 19.8 ms and Tc = 33.7 ms)
with even multiples of π of pulse areas, the oscillation of
instantaneous adiabaticity unambiguously indicates that the
population converges to the zero-energy mode at the end of
transfers, leading to local maxima in Fig. 3(a). In contrast,
the transport process with the 3π pulse area [Fig. 3(c)] has
a local minimum of the transfer fidelity since the coherent
population exchange between |φ0〉 and |φ±1〉 is maximized at
the end, which is demonstrated by P0 as well as the calculated
population evolution of P±1(t ) = |c±1(t )|2.

By taking advantage of the chiral symmetry of Ĥ (t ), we
measure the instantaneous adiabaticity (see Appendix E) ac-
cording to

P0(t ) ≈ 1 − 2

τc

∫ τc

0
dτPeven(τ ; t ), (6)
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FIG. 3. Nonadiabatic topological transfer. (a) The fidelity is a function of the transfer duration. The red line is acquired from the numerical
simulation of the time-dependent Schrödinger equation. The experimental data (red points) are obtained by the normalized vibration intensity
of the nanomechanical resonator R7. The three-level approximation (dashed line) predicts NTTs. (b)–(d) The instantaneous adiabaticity P0 =
|〈φ0|ψ〉|2 of three NTTs with T = 19.8 ms, 26.0 ms, and 33.7 ms, respectively. The experimental points are measured by the dynamical method
[Eq. (6)]. For comparison, we numerically compute the population of the eigenmodes Pi (i = 0, ±1) in lines. All error bars in (a)–(d) represent
the statistical confidence of one standard deviation. (e) Experimental result of the normalized vibration intensities of the seven nanomechanical
resonators for the high-fidelity NTT with Tc = 33.7 ms. (f) Numerical simulation of the single phonon probability distribution under the same
conditions as (e).

where a characteristic time τc = π/g and Peven(τ ; t ) =∑N
n=1 |〈2n|e−iĤ (t )τ |ψ (t )〉|2 is the total probability distribu-

tion on even sites for the state |ψ (t )〉 evolving for an
extra time τ under the fixed Hamiltonian at the mo-
ment t . Taking the assumption that the population of the
modes |φ±n〉 (n � 2) are negligible, Peven(τ ; t ) ≈ (|c1|2 +
|c−1|2)/2 − Re[c∗

1c−1 exp(2igτ )] gives the population of
|φ±1〉 after integrating out the cross term (Appendix E). In
other words, Eq. (6) reveals a dynamical method to measure
the instantaneous adiabaticity. In the experiment, we keep all
time-dependent couplings unchanged at one moment and then
measure the vibration amplitudes in the next τc = 7.9 ms.
The probability distribution on even sites is acquired from the
normalized vibration intensity of the resonators R2, R4 and R6.
As shown in Figs. 3(b)–3(d), our experimental results (blue
points) match the numerical results (blue lines) derived from
the single phonon transfer very well.

V. ROBUSTNESS AND SCALABILITY

Since nonadiabatic tunnelings break the gap protection,
there is a natural question of whether these high-fidelity NTTs
are still robust. In the experiment, we deliberately add two
types of impulse noises with strength �noise into adjacent
couplings for the NTT with Tc = 33.7 ms. For type-I noises,
1 ms square-wave pulses are applied on all interactions at the
moment t = 0.5Tc. We test the transfer fidelity under different
noise strengths �noise and present the experimental data (blue
points) in Fig. 4(a). Another type of impulse noise (type-II
noise) appears at different moments of the six couplings, and
the transfer fidelity is shown by green points in Fig. 4(b). In
addition to impulse noises, the transfer fidelity is numerically

studied under white noises in Appendix F. Our results dis-
tinctly demonstrate that the high-fidelity NTT is still robust
against these noises on control voltages.

Figure 4(c) shows the numerical result of NTTs for dif-
ferent site numbers. These fast topological passages match
the prediction (black dashed lines) according to the pulse
area of the three-level approximation. It is clear that these
high-fidelity NTTs exist stably where the pulse area A =
2π, 4π, 6π, and so on.
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VI. SUMMARY AND DISCUSSION

We demonstrate a scalable, fast, and robust NTT protocol
in a nanomechanical phononic lattice. The core of this fast
topological transfer protocol is using the nonadiabatic tran-
sitions between the zero-energy mode and bulk levels. This
scheme only relies on the experimentally accessible nearest-
neighbor couplings in lattices and it does not require any
additional interactions in the topological model [36]. Due to
the fully flat-level structure of the dynamic SSH interface
lattice, the high-fidelity NTTs can be predicted accurately.
In addition, the symmetry-based dynamical method is pro-
posed to characterize the instantaneous adiabaticity without
complicated state tomography, which can be generalized to
other topological transfer protocols with chiral symmetry
[15,18,19]. Moreover, compared with conventional ATTs, the
transfer time of NTTs is significantly reduced, which is essen-
tial for applications in quantum systems with finite lifetimes.
Our experiment breaks the previously assumed adiabaticity
in topological transports and takes a step toward exploring
fast and robust transfer schemes for both classical excitations
[10,18,37–39] and quantum resources such as spin [40], cor-
relation [41,42], and entanglement [43–45].
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APPENDIX A: MAPPING AND SOLVING
THE SSH INTERFACE MODEL

The SSH interface model in the main text can be one-to-
one mapped from a two-mode Jaynes-Cumming model [31]
[see Fig. 5(a)], describing the coherent interaction between
a two-level atom and two cavities. With the rotating wave
approximation and the assumption that the cavity frequencies
are on-resonant with the transition frequency of the atom, the
Hamiltonian of the two-mode JC model is

HJC = (g1â1 + g2â2)†σ− + H.c., (A1)

where σ− = | ↓〉〈↑ | is the raising operator of a two-level
atom with | ↑〉 being the atomic excited state and | ↓〉 being
the atomic ground state, â†

i (i = 1, 2) is the creation operator
of the ith cavity and g j is the vacuum Rabi frequency be-
tween the atom and the cavity, respectively. Since the total
excitation number N = p + n1 + n2 is conserved (p = 1 for

FIG. 5. Two-mode Jaynes-Cummings model. (a) Schematics of
the two-mode Jaynes-Cummings model. (b) The Fock-state lattice
(N = 3) of the Hamiltonian Eq. (A1). Each yellow shaded area indi-
cates a Fock state {| ↑ or ↓, n1, n2〉}, where red (blue) balls indicate
the photons in each cavity, respectively.

the atomic excited state, p = 0 for the atomic ground state,
and ni is the photon number in the ith cavity), we can study
the Hamiltonian in the subspace with different excitation
numbers N separately, which consists of 2N + 1 Fock states
{|↑ or ↓, n1, n2〉}.

For a better understanding, we explicitly depict all the Fock
states of the N = 3 subspace in Fig. 5(b). When the atom is
in excited state (p = 1), there are three Fock states for two
photons in two cavities, i.e., |↑, 2, 0〉, | ↑, 1, 1〉, and |↑, 0, 2〉.
When the atom is in the atomic ground state (p = 0), three
photons form four Fock states as |↓, 3, 0〉, |↓, 2, 1〉, |↓, 1, 2〉,
and |↓, 0, 3〉. In the basis of the Fock states, the nonzero
matrix elements of HJC are

〈↑, n1, n2|HJC | ↓, n1 + 1, n2〉 =
√

n1 + 1g1,

〈↑, n1, n2|HJC | ↓, n1, n2 + 1〉 =
√

n2 + 1g2.
(A2)

It means that the Fock states are coupled alternatively to
form a one-dimensional lattice in the Hilbert subspace. The
featured square-root factors are attributed to the bosonic na-
ture âi|ni〉 = √

ni|ni − 1〉. By mapping each Fock state to a
nanomechanical resonator and engineer the hopping strength
according to Eq. (A2), we obtain the phononic lattice in the
main text.

With the mapping, we are ready to solve the eigenen-
ergy, eigenmodes as well as the nonadiabatic transition of the
phononic lattice in the picture of JC model. The two-mode JC
model can be rewritten as

HJC = gb̂†σ− + H.c., (A3)

where b̂† = g1/gâ†
1 + g2/gâ†

2 is the collective bright mode,
accompanied by the collective dark mode d̂† = g2/gâ†

1 −
g1/gâ†

2, and g =
√

g2
1 + g2

2. It provides an equivalent Fock-
state basis to describe each subspace in the collective modes,
| ↑ or ↓, nb, nd〉c, with nb being the photon number in the
collective bright mode and nd being the photon number in the
collective dark mode. The nonzero matrix element of HJC in
the collective mode |...〉c:

c〈↑, nb, nd |HJC | ↓, nb + 1, nd〉c =
√

nb + 1g. (A4)

125123-5



TIAN, CAI, ZHANG, ZHANG, DUAN, AND ZHOU PHYSICAL REVIEW B 109, 125123 (2024)

We notice that the 2N + 1 matrix contains N 2 × 2 blocks and
an uncoupled zero-energy dark state, i.e., the transfer channel

|φ0〉 ≡ | ↓, 0, N〉c

= (d̂†)N

√
N!

| ↓, 0, 0〉c

= 1√
N!

(
g2

g
â†

1 − g1

g
â†

2

)N

| ↓, 0, 0〉

=
N∑

n=0

√
N!

(N − n)!n!

(
g2

g

)N−n(
− g1

g

)n

| ↓, N − n, n〉

mapping−−−−→
N∑

n=0

j2n+1|2n + 1〉, (A5)

where jn is the phonon probability distribution on the n-th
resonator. By diagonalizing the 2 × 2 blocks, we can also
obtain the eigenstates |φ±n〉 (n = 1, 2, ...N),

|φ±n〉 = 1√
2

(| ↑, n − 1, N − n〉c ± | ↓, n, N − n〉c), (A6)

with eigenenergy E±n = ±√
ng. The nonadiabatic transition

is obtained by calculating the matrix element of

∂H

∂t
= π

2T
(g2â1 − g1â2)†σ− + H.c.

= πg

2T
d̂†σ− + H.c., (A7)

with the nonzero elements

κ0,±1 = 〈φ0|∂t H |φ±1〉
E±1 − E0

= ±
√

Nπ

2
√

2T
,

κn,±(n+1) = 〈φn|∂t H |φ±(n+1)〉
E±(n+1) − En

=
√

N − nπ

4T (±√
n + 1 − √

n)
,

κ−n,±(n+1) = 〈φ−n|∂t H |φ±(n+1)〉
E±(n+1) − E−n

=
√

N − nπ

4T (±√
n + 1 + √

n)
.

(A8)

APPENDIX B: THREE-LEVEL APPROXIMATION

To study the nonadiabatic dynamics, we treat the levels
|φ0〉 and |φ±1〉 as the system and all the other (2N − 2)
eigenstates as the environment. The nonzero elements of the
nonadiabatic coupling between the system and environment
are

κ1,±2 = ±√
N − 1π

4T (±√
2 − 1)

,

κ−1,±2 = ±√
N − 1π

4T (±√
2 + 1)

,

(B1)

The nonadiabatic transition introduces an energy correction
to the level |φ±1〉 as E ′

±1 = E±1 + δE±1 with the uncorrected

ꞷi+1ꞷi
ꞷ

ꞷp = ꞷi - ꞷi+1
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FIG. 6. Sample and parametric couplings. (a) Schematic of para-
metric couplings. (b) A false-color scanning electron micrograph
of the doubly clamped nanomechanical resonators array. The fun-
damental mode of each resonator is vibrational along the x axis.
(c) The linear relationship between ac voltage amplitude Vpk and ef-
fective coupling Ji of neighboring nanomechanical resonators under
Vdc = 9.5 V. The six slopes βi are determined by fitting experimental
data.

eigenenergies E±n = ±√
ng and

δE1 = |κ1,2|2
E1 − E2

+ |κ1,−2|2
E1 − E−2

= −�,

δE−1 = |κ−1,2|2
E−1 − E2

+ |κ−1,−2|2
E−1 − E−2

= �.

(B2)

In such a three-level approximation, the evolution of |ψ〉 =
c0|φ0〉 + c1|φ1〉 + c−1|φ−1〉 is governed by the dynamic equa-
tions:

i
d

dt

⎛
⎝ c1

c0

c−1

⎞
⎠ =

⎛
⎝g − � iκ 0

−iκ 0 iκ
0 −iκ � − g

⎞
⎠

⎛
⎝ c1

c0

c−1

⎞
⎠. (B3)

The physics is the same as a spin-1 particle with spin matri-
ces {Sx, Sy, Sz} driven by a magnetic field {0,−√

2κ, g − �},
which is described by the Hamiltonian

Hspin-1 = (g − �)Sz −
√

2κSy. (B4)

Based on the boundary conditions c0(t = 0) = 1 and c±1(t =
0) = 0, we obtain

P0(t ) = |c0|2 = [(g − �)2 + 2κ2 cos(	t )]2/	4, (B5)

which reaches local maxima when 	Tc is an even multiple of
π with the spin precession frequency 	 =

√
2κ2 + (g − �)2.

APPENDIX C: EXPERIMENTAL SETUP

A false-color scanning electron micrograph of the dou-
bly clamped nanomechanical resonator array is shown in
Fig. 6(b). The size of each doubly clamped resonator is
240 µm long, 5 µm wide, and 100 nm thick. The space of adja-
cent nanomechanical resonators is about 600 nm. The sample
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TABLE I. First-order vibrational modes of the nanomechanical
resonators (77 K and 3.3 × 10−8 mbar). These parameters were
measured before applying Vdc.

Resonators i Frequency ωi/2π (kHz) Bandwidth γi/2π (Hz)

1 748.367 11.3
2 739.464 11.5
3 725.260 11.0
4 737.842 12.3
5 740.331 11.3
6 734.532 11.4
7 748.971 11.2

was placed in a vacuum chamber with 3.3 × 10−8 mbar at
the liquid-nitrogen temperature. The inevitable fabrication
errors lead to a minor difference in phononic frequencies,
which provides a chance to realize interactions between these
nanomechanical resonators via the parametric coupling il-
lustrated in Fig. 6(a). In particular, as shown in Fig 2(b),
we add a parametric voltage Vac = Vpk cos(ωpt ) and a dc
voltage Vdc = 9.5 V in a side of the ith resonator by a Bias-
Tee. The other side of the ith resonator is in series with a
high resistance to generate potential differences with adjacent
nanomechanical resonators. By controlling the electrostatic
parametric frequency ωp and the amplitude Vpk, we can re-
alize tunable couplings of adjacent resonators at different
sites. Similar details of the nanomechanical device and the
experimental circuits were introduced elsewhere [28,35]. In
this experiment, we utilize seven first-order vibrational modes
of these neighboring resonators to carry out the dynamically
modulated SSH interface lattice with N = 3. Their frequen-
cies and damping parameters are listed in Table I. Table II and
Fig. 6(c) display the six linear relations between the ac voltage
amplitude Vpk and the effective coupling of the nanomechani-
cal resonator array.

APPENDIX D: ENERGY BAND STRUCTURE

In frames rotating at ωi, the phonon-number-preserving
Hamiltonian of seven coupled nanomechanical resonators
reads

Ĥeff (t ) =
6∑

i=1

Ji(t )(â†
i âi+1 + âiâ

†
i+1), (D1)

where â†
i (âi) is the creation (annihilation) operator of the ith

phononic mode. Since all dissipations γi are nearly identical
and the maximum value of T (γi − γ j )/2π < 1 for any trans-
fer duration T in experiment, the normalized measurement
results could characterizes this conservative Hamiltonian. As
described in the main text, the dynamic SSH interface lattice

TABLE II. Linear coefficient βi between voltage V i,i+1
pk and ef-

fective coupling Ji.

i 1 2 3 4 5 6

βi (mV/Hz) 5.78 7.90 6.88 4.32 6.44 5.32
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FIG. 7. Band structures. Experiment (a) and simulation (b) of
frequency response curves of the seven nanomechanical resonators
at the moment t = 0.6T . The coupling constant g = 2π × 63.5 Hz.

is implemented by applying real-time varying parametric volt-
ages according to the time-dependent couplings in Eq. (1) and
the coefficient βi in Table II.

We measured the band structure in Fig. 2(e) to confirm the
topological phononic lattice. Taking Fig. 7(a) as an example,
we measure the frequency response spectrums of the seven
resonators by lock-in amplifiers under the six adjacent cou-
plings Ji(t ) at t = 0.6T . The mechanical density of state at this
moment can be further obtained by cumulating the normalized
response spectra. For comparison, we also simulate the re-
sponse spectra by using parameters of these nanomechanical
resonators and show the results in Fig. 7(b).

APPENDIX E: CHIRAL SYMMETRY AND
INSTANTANEOUS ADIABATICITY

Like the normal 1D SSH model [29], the chiral operator
of the topological interface lattice with 2N + 1 sites can be
defined as

�̂ = P̂o − P̂e, (E1)

where P̂o = ∑N
n=0 |2n + 1〉〈2n + 1| and P̂e = ∑N

n=1 |2n〉〈2n|
are the two orthogonal sublattice projectors and they satisfy
the relation

P̂o + P̂e = Î, P̂o · P̂e = 0. (E2)

Here Î is the identity operator. The chiral operator also fulfils
�̂†�̂ = �̂2 = Î.

For the dynamic SSH interface lattice, the chiral symmetry
persists because

�̂Ĥ �̂† = −Ĥ (E3)
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FIG. 8. Instantaneous adiabaticity and experimental measure-
ments. (a) The instantaneous adiabaticity P0(t ) of various transfer
durations T . The solid lines stand for the numerical results
from P0(t ) = |〈φ0(t )|ψ (t )〉|2. The dashed lines are obtained from
the dynamical method of Eq. (E13) with τc = 7.9 ms. (b) The
schematic of experimental sequences of parametric voltages V i j

ac (t ) =
V i j

pk (t ) cos[(ωi − ω j )t] for measuring the instantaneous adiabaticity.

The dashed outline indicates the time-varying amplitude V i j
pk (t ).

always does for any moment of the Hamiltonian Ĥ (t ) in the
main text. It gives rise to the symmetric energy spectrum, i.e.,
there must be another eigenenergy −En for any eigenenergy
En of Ĥ (t ). In addition, the corresponding eigenstate |φ±n〉 of
E±n obeys |φ±n〉 = �̂|φ∓n〉 for En �= 0. Due to the chiral sym-
metry, the topological zero-energy state |φ0〉 of the topological
lattice only supports the odd sublattice.

Next, we consider the evolution of the initial state |L〉 under
the Hamiltonian Ĥ (t ). At the moment t , the instantaneous
state |ψ (t )〉 = T̂ e−i

∫ t
0 dτ Ĥ (τ )|L〉 can be expressed as

|ψ (t )〉 = c0|φ0(t )〉 +
N∑

m=1

(cm|φm(t )〉 + c−m|φ−m(t )〉), (E4)

where |φ0(t )〉 and |φ±m(t )〉 are the instantaneous eigenstates
of Ĥ (t ). Therefore, the probability of the sublattice projector
P̂e is

Peven(t ) = 〈ψ (t )|P̂e|ψ (t )〉. (E5)

By utilizing the relation P̂e = 1
2 (Î − �̂) and |φm〉 = �̂|φ−m〉,

Eq. (E5) can be simplified as

Peven(t ) = 1

2

N∑
m=1

(|cm|2 + |c−m|2 − 2Re[c∗
mc−m]). (E6)

If the state |ψ (t )〉 further evolves an extra time τ at the
fixed Hamiltonian Ĥ (t ), the state |ϕ(τ ; t )〉 = e−iĤ (t )τ |ψ (t )〉
can be expressed as

|ϕ(τ ; t )〉 =
N∑

m=1

(
cme−iEmτ |φm(t )〉 + c−meiEmτ |φ−m(t )〉)

+ c0|φ0(t )〉, (E7)

and the probability on the even sublattice reads

Peven(τ ; t ) = 〈ϕ(τ ; t )|P̂e|ϕ(τ ; t )〉

= 1

2

N∑
m=1

(|cm|2 + |c−m|2) −
N∑

m=1

Re
[
c∗

mc−me2iEmτ
]
.

(E8)

In the same way, we can get the probability on the odd
sublattice:

Podd(τ ; t ) = |c0|2 + 1

2

N∑
m=1

(|cm|2 + |c−m|2)

+
N∑

m=1

Re
[
c∗

mc−me2iEmτ
]
. (E9)

Because the tunneling of nonadiabatic topological pas-
sages principally occurs at the energy levels E0 and E±1, the

(a) (b)
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FIG. 9. Robustness against white noises. The fidelity of the fast
nonadiabatic topological transfer with Tc = 33.7 ms under Gaussian
white noises with diverse strengths. For each standard deviation σ ,
random noises were chosen from 500 groups to calculate the transfer
fidelity numerically.
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probabilities of Eqs. (E8) and (E9) can be simplified in a
three-level condition, i.e.,

Peven(τ ; t ) ≈ 1
2 (|c1|2 + |c−1|2) − Re

[
c∗

1c−1e2iE1τ
]
, (E10)

Podd(τ ; t ) ≈ 1
2 (|c1|2 + |c−1|2) + |c0|2 + Re

[
c∗

1c−1e2iE1τ
]
.

(E11)

Hence, the instantaneous adiabaticity P0(t ) = |c0|2 can be
measured by a dynamical method of the population on even
sites because of

P0(t ) ≈ 1 − 2

τc

∫ τc

0
dτPeven(τ ; t ), (E12)

where τc = π/E1 = π/g is the characteristic time.
Figure 8(a) compares the numerical results (solid lines)

from P0(t ) = |〈φ0(t )|ψ (t )〉|2 with the simulations (dashed
lines) according to the dynamical method

P0(t ) ≈ 1 − 2

τc

∫ τc

0
dτ

N∑
n=1

|〈2n|ϕ(τ ; t )〉|2 (E13)

for different transfer durations T with N = 3 and τc = 7.9 ms.
To measure the instantaneous adiabaticity P0(t ) of different

nonadiabatic topological passages, we design and apply the
parametric voltage sequences in the experiment. As shown in
Fig. 8(b), the dynamically modulated parametric voltages V i j

ac

are fixed at any moment t and persist τc = 7.9 ms. According
to the summation of normalized vibration intensities on the
even resonators during this period τc, the instantaneous adia-
baticity is calculated by Eq. (E13).

APPENDIX F: ROBUSTNESS AGAINST WHITE NOISES

In the experiment, two types of impulse noises are chosen
to test the transfer fidelity of the fast NTT with Tc = 33.7 ms.
As shown in Fig. 9, we also numerically check the robustness
of this fast transfer passage under Gaussian white noises. In
particular, we add random noises on each real-time modulated
coupling (i.e., Wn and Vn) of the dynamic SSH interface lattice
in the time domain. Every set of the random noise on each
coupling obeys a Gaussian distribution N (0, σ 2). We choose
500 groups for each standard deviation σ . It is clear that the
nonadiabatic transfer keeps near-unit fidelity, even the stan-
dard deviation σ = 0.8g.
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