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Time evolution of entanglement entropy after quenches in two-dimensional free fermion systems:
A dimensional reduction treatment
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We study the time evolution of the Rényi entanglement entropies following a quantum quench in a two-
dimensional (2D) free fermion system. By employing dimensional reduction, we effectively transform the 2D
problem into decoupled chains, a technique applicable when the system exhibits translational invariance in one
direction. Various initial configurations are examined, revealing that the behavior of entanglement entropies
can often be explained by adapting the one-dimensional quasiparticle picture. However, intriguingly, for specific
initial states the entanglement entropy saturates to a finite value without the reduced density matrix converging to
a stationary state. We discuss the conditions necessary for a stationary state to exist and delve into the necessary
modifications to the quasiparticle picture when such a state is absent.
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I. INTRODUCTION

One of the most fundamental problems connecting quan-
tum and statistical physics is how a statistical ensemble
emerges in a closed many-body quantum system that evolves
unitarily [1–3]. The common wisdom is that entanglement
generates nonlocal correlations unique to quantum systems
that spread throughout the system by unitary evolution: the
resulting reduced density matrix for a local subsystem relaxes
to a statistical ensemble such as the Gibbs ensemble [4–8]
or, in the case of integrable systems, a generalized Gibbs
ensemble (GGE) [9–15]. As a result, the expectation values of
all the local observables in the subsystem coincide with those
predicted by the corresponding statistical ensemble at large
times. Given that the (von Neumann) entanglement entropy
quantifies the amount of entanglement between the subsystem
and the rest of the system [16–18], understanding its behavior
in a unitary evolution is important to clarify how entanglement
spreads and how thermodynamics arises in isolated quantum
systems.

A popular and tractable setup to investigate the unitary
evolution of a quantum many-body system is the quantum
quench: the system is initially prepared in a nonequilib-
rium pure state |ψ0〉 and then it is let to evolve in time
with a postquench Hamiltonian H , |ψ (t )〉 = e−itH |ψ0〉. In
recent years, this protocol has been investigated not only
theoretically but also experimentally thanks to remarkable
developments in cold-atom and ion-trap systems [19–28].

The quench dynamics of the entanglement entropy in
one-dimensional systems has been extensively studied in the
literature. It has been found that it linearly increases in
time and eventually saturates to a constant [29]; the latter
can be identified with the thermodynamic entropy of the
(generalized) Gibbs ensemble that describes locally the sys-
tem at large times [30,31]. For integrable systems, this

behavior is explained by the quasiparticle picture [29]
in which the entanglement growth is due to the propa-
gation of pairs of entangled quasiparticles. This picture
has been validated for one-dimensional free [32–39] and
interacting integrable systems [31,40–44] and generalized
to different contexts [45–68] and quantities [69–92] (see
also the reviews [93,94]). The same qualitative behavior
for the time evolution of the entanglement entropy has
been found in generic nonintegrable and chaotic interact-
ing models with no quasiparticles (see, e.g., [95–102]). For
many years, there has been a prevailing belief that the
microscopic mechanism for the entanglement growth is fun-
damentally different in integrable and chaotic systems; only
recently a unifying picture emerged in the space-time du-
ality approach [86]. The Rényi entanglement entropies are
a natural and important generalization of von Neumann
one, not only because they help to calculate the former via
the replica trick [103,104], but also because they carry further
relevant information about the system and are measurable in
cold-atom and ion-trap experiments [27,28,105–110]. While
the quasiparticle picture captures the evolution of the Rényi
entropies for free systems [32,42], it breaks down for interact-
ing integrable models [86].

In higher dimensions d � 2, the entanglement entropy
in equilibrium has been largely investigated (see, e.g.,
Refs. [111–130]); on the contrary its time evolution after a
quantum quench has received little attention, mainly in field
theory context [131–136]. For this reason, here we study
the quench dynamics of Rényi entanglement entropies in a
two-dimensional (2D) free fermion system. In particular, we
apply a dimensional reduction approach, which was intro-
duced in Ref. [137] and then has been applied to study, e.g.,
the (symmetry-resolved) entanglement entropy at equilibrium
[126,129]. For a finite 2D system, periodic in both direc-
tions, this approach works as follows. The initial configuration

2469-9950/2024/109(12)/125122(22) 125122-1 ©2024 American Physical Society

https://orcid.org/0000-0002-4562-893X
https://orcid.org/0000-0001-5062-2332
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.125122&domain=pdf&date_stamp=2024-03-14
https://doi.org/10.1103/PhysRevB.109.125122


YAMASHIKA, ARES, AND CALABRESE PHYSICAL REVIEW B 109, 125122 (2024)

A

B

FIG. 1. Schematic representation of the two-dimensional system
that we study and of the subsystem A considered.

should be translationally invariant (non-necessarily one-site
shift invariant as we shall see) along one of the axes. Next
we should choose as subsystem a periodic strip in this direc-
tion, as shown in Fig. 1. We can then decompose the Rényi
entanglement entropies into the sum of the single-interval
entanglement entropies of decoupled one-dimensional (1D)
systems, for which exact results are known. We apply this
strategy to calculate analytically the time evolution of the
Rényi entanglement entropies for several particular initial
configurations. We will see that our results can be explained in
terms of a direct adaptation of the 1D quasiparticle picture, ex-
cept for one particular initial configuration. The reason of such
a mismatch is that the reduced density matrix does not attain a
stationary value, even if its entanglement entropy does tend to
a constant value. We then discuss the general conditions under
which there is no stationary state in our 2D setting. From this
observation, we deduce how the quasiparticle picture has to be
modified to describe the behavior of the entropy in the absence
of a stationary state.

The paper is organized as follows. In Sec. II, we intro-
duce the setup and some basic quantities, including the Rényi
entanglement entropy. In Sec. III, we describe the dimen-
sional reduction approach. In Sec. IV, we apply it to obtain
analytically the behavior of the entropies in quenches from
several initial configurations. In Sec. V, we give a physical
interpretation of the results obtained in the previous section in
terms of the quasiparticle picture. In Sec. VI, we analyze the
conditions for the existence of a stationary state and discuss
how the quasiparticle picture modifies in that case. We finally
draw our conclusions and present some outlooks in Sec. VII.
We also include several Appendixes, where we derive some of
the results presented in the main text.

II. SETUP AND SUMMARY OF RESULTS

We consider free fermions on a 2D square lattice with
isotropic hopping between nearest-neighbor sites. The system
is described by the Hamiltonian

H = −1

2

∑
〈i,i′〉

a†
i ai′ + H.c., (1)

where i = (ix, iy) is a vector identifying a site of the lattice,
〈i, i′〉 stands for the nearest neighbors, and ai = aix,iy (a†

i =
a†

ix,iy
) is the annihilation (creation) operator of the fermion on

the ith site. We assume that the system size Lx (Ly) along the
x (y) axis is even and that periodic boundary conditions are
imposed along both directions.

Moving to Fourier modes

ãq = ãqx,qy = 1√
LxLy

∑
i

e−iq·iai, (2)

with quasimomenta qx = 0, 2π/Lx, . . . , 2π (Lx − 1)/Lx and
qy = 0, 2π/Ly, . . . , 2π (Ly − 1)/Ly, the Hamiltonian (1) is di-
agonalized as

H =
∑

q

εqã†
qãq, (3)

where the single-particle dispersion is εq = − cos qx − cos qy.
We consider the quantum quench described by the time-

evolved state |ψ (t )〉 = e−itH |ψ0〉 with an initial configuration
|ψ0〉 that is not an eigenstate of the Hamiltonian (1). We take
as a subsystem A a periodic strip of length �, as depicted in
Fig. 1. That is, subsystem A is the set of sites i satisfying ix ∈
[0, � − 1]. The state of A is described by the reduced density
matrix

ρA(t ) = TrB(|ψ (t )〉〈ψ (t )|), (4)

where TrB denotes the trace over the subsystem B. The Rényi
entanglement entropy,

Sn(ρA) = 1

1 − n
log Tr

(
ρn

A

)
, (5)

measures the degree of entanglement between subsystems A
and B. In the limit n → 1, it gives the von Neumann entangle-
ment entropy,

S1(ρA) = lim
n→1

Sn(ρA) = −Tr(ρA log ρA). (6)

Hereafter, we write Sn(ρA) as Sn unless explicitly stated.
In this paper, we consider initial states |ψ0〉 that satisfy

Wick theorem. Therefore, since the postquench Hamiltonian
is a quadratic fermionic operator, the time-evolved reduced
density matrix ρA(t ) is Gaussian and it is fully characterized
by the two-point correlation matrix restricted to subsystem A
[138],

�i,i′ (t ) = 2〈ψ (t )|a†
i ai′ |ψ (t )〉 − δi,i′ , (7)

where ai = (a†
i , ai) and i, i′ ∈ A. � is a matrix of dimension

2VA × 2VA, and VA is the size of the subsystem A, VA = �Ly.
Using the standard algebra of Gaussian operators, the entan-
glement entropy can be expressed in terms of the two-point
correlation matrix � as [33]

Sn = 1

2(1 − n)
Tr log

[(
I + �

2

)n

+
(

I − �

2

)n]
, (8)

where I is the 2VA × 2VA identity matrix. For finite VA, we
can compute the trace in Eq. (8) and obtain the exact value
of the entanglement entropy by numerically diagonalizing the
two-point correlation matrix �. We will use this method as
a benchmark of the analytic results obtained in the following
sections.

To perform analytical calculations, it is useful to write the
right-hand side of Eq. (8) as a Taylor series in the moments
Tr[�m]. To this end, we introduce the function hn(x):

hn(x) = 1

1 − n
log

[(
1 + x

2

)n

+
(

1 − x

2

)n]
. (9)
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TABLE I. Summary of the particular initial states that we consider in Sec. IV and the corresponding time evolution of the Rényi
entanglement entropy in the periodic strip of dimensions � × Ly of Fig. 1 after a quench to the Hamiltonian (1) in the ballistic regime �, t → ∞
with t/� fixed. The function hn(x) is defined in Eq. (9) and vx (qx ) is the quasiparticle velocity in the x direction, vx (qx ) = ∂qx εq. A schematic
representation of the initial configurations can be found in Fig. 2.

Initial state Rényi entanglement entropy

Collinear Mott insulator state (Sec. IV A) Sn � Ly log(2)
∫ 2π

0

dqx

2π
min (�, 2t |vx (qx )|)

Mott insulator state (Sec. IV B) Sn � Ly log(2)
∫ 2π

0

dqx

2π
min (�, 2t |vx (qx )|)

Collinear dimer state (Sec. IV C) Sn � Ly

∫ 2π

0

dqx

2π
hn(cos qx ) min (�, 2t |vx (qx )|)

Staggered dimer state (Sec. IV D) Sn � Ly

∫ 2π

0

dqx

2π
hn(cos qx ) min (�, 2t |vx (qx )|)

Diagonal dimer state (Sec. IV E) Sn �
∑

qy

∫ 2π

0

dqx

2π
hn[cos(qx + qy )] min (�, 2t |vx (qx )|)

Crossed dimer state (Sec. IV F) Sn = Ly

∫ 2π

0

dqx

2π
hn(cos qx ) min (�, 2t |vx (qx )|)

Partially filled product state I (Sec. IV G 1) Sn � Ly

∫ 2π

0

dqx

2π
hn(cos 
qx ) min (�, 2t |vx (qx )|)

Partially filled product state II (Sec. IV G 2) Sn �
∑

qy

hn(cos 
qy )
∫ 2π

0

dqx

2π
min (�, 2t |vx (qx )|)

This function can be expanded as

hn(x) =
∞∑

m=0

an(2m)x2m, (10)

and, therefore, Eq. (8) can be rewritten in the form

Sn = 1

2

∞∑
m=0

an(2m)Tr(�2m). (11)

As we will see in the next sections, the precise form of the
coefficients an(2m) is never needed and hence will not be
reported.

In what follows, we will study the Rényi entanglement
entropies in a periodic strip after a quench to the Hamiltonian
(1) from the initial Gaussian configurations of Table I. In that
table, we report the exact analytic expressions that we obtain
for the entanglement entropy in each quench in the ballistic
regime t, � → ∞ with t/� fixed. In Sec. III, we describe
the dimensional reduction method that we apply in Sec. IV
to derive these results. In Secs. V and VI, we discuss their
physical interpretation in terms of the quasiparticle picture.

III. DIMENSIONAL REDUCTION

In this section, we present the dimensional reduction ap-
proach that we will employ in Sec. IV to calculate analytically
the time evolution of the Rényi entanglement entropy in differ-
ent quantum quenches. The treatment is generically valid for
initial states |ψ0〉 that are invariant under k-site translations
in the y direction, with k being a factor of Ly. For clarity, we
present first the case k = 1 and after we generalize straight-
forwardly to arbitrary k.

A. One-site shift-invariant states in the transverse direction

We start considering the case when the initial state |ψ0〉
is translationally invariant in the y direction. Since the
Hamiltonian (1) preserves the translational symmetry, the
time-evolved state |ψ (t )〉 is also invariant.

Given the geometry of the subsystem A considered, it is
useful to take the Fourier transform only along the y direction
by introducing the fermionic operators in a mixed space-
momentum basis

cix,qy = 1√
Ly

∑
iy

e−iqyiy aix,iy , (12)

which is the core of the dimensional reduction method. The
two-point correlation function � can be written as

�(ix, jy ),(i′x, j′y ) = 1

Ly

Ly−1∑
ny=0

ei
2πny

Ly
( jy− j′y )(�qy )ix,i′x , (13)

where �qy is the 2� × 2� two-point correlation matrix in
the mixed space-momentum representation and the sum of
qy = 2πny/Ly runs on the Ly allowed transverse modes. As a
consequence, modulo the Fourier transform which is a unitary
operation, we have the decomposition

� �
Ly−1⊕
ny=0

�qy , (14)

and so the entanglement entropy admits the decomposition in
Ly-independent terms

Sn =
Ly−1∑
ny=0

Sn(�qy ), (15)
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where we denoted by Sn(�qy ) the Rényi entropy of the
Gaussian state of a 1D chain with correlation matrix �qy .
Notice that the decomposition (15) is valid for arbitrary values
of Lx and Ly, not necessarily in the thermodynamic limit.

B. k-site shift-invariant states in the transverse direction

Let us now assume that the initial state |ψ0〉 is invariant
under k-site translations in the y direction with k being a factor
of Ly. Once again, since the Hamiltonian (1) preserves the
translational symmetry, the time-evolved state |ψ (t )〉 is also
invariant under k-site translations. This property is inherited
by the two-point correlation matrix �(t ) (7), and its entries
satisfy

�(ix,iy+mk),(i′x,i′y+mk) = �(ix,iy ),(i′x,i′y ), ∀ m ∈ Z. (16)

Therefore, it is convenient to decompose the index in the y
direction as iy = k jy + p, with jy = 0, . . . , Ly/k − 1 and p =
0, . . . , k − 1, and then rearrange the entries of �(t ) in k × k
blocks of the form

�(ix, jy ),(i′x, j′y )(t ) = 2〈ψ (t )|
a†
ix, jy 
ai′x, j′y |ψ (t )〉 − δix,i′x δ jy, j′y , (17)

where 
aix, jy = (aix,k jy , aix,k jy+1, . . . , aix,k jy+k−1), with ix ∈ A.
Once again, we take the Fourier transform only along the y

direction using Eq. (12). The two-point correlation function �

can be then written as

�(ix, jy ),(i′x, j′y ) = k

Ly

Ly
k −1∑

ny=0

ei
2πkny

Ly
( jy− j′y )(G (k)

qy
)ix,i′x , (18)

where (
G (k)

qy

)
ix,i′x

= U
(
�(k)

qy

)
ix,i′x

U †. (19)

Here U is a unitary matrix with entries Upp′ = ei2π ( p
Ly

+ pp′
k )

/
√

k
and (�(k)

qy
)ix,i′x is the 2k� × 2k� two-point correlation matrix in

the mixed space-momentum representation whose entries are
rearranged in k × k blocks as(

�(k)
qy

)
ix,i′x

= 2〈ψ (t )|
c†
ix,qy


ci′x,qy |ψ (t )〉 − δix,i′x , (20)

where qy = 2πny

Ly
and


cix,qy = (
cix,qy cix,qy+ 2π

k
. . . cix,qy+ 2π (k−1)

k

)
(21)

with cix,qy = (c†
ix,qy

, cix,−qy ).
Given Eq. (18), the matrix � takes the form

� = k

Ly

Ly
k −1∑

ny=0

G (k)
qy

⊗ Tqy , (22)

where we have introduced the matrices (Tqy ) jy j′y = eikqy ( jy− j′y ).
These matrices mutually commute and can be diagonalized
simultaneously by

Vjy, j′y = 1√
k

ei2π jy j′y/k (23)

such that (V TqyV
†) jy, j′y = kδqy, jyδqy, j′y . As a consequence, we

have the decomposition

(I ⊗ V )�(I ⊗ V †) =
Ly
k −1⊕

ny=0

G (k)
qy

, (24)

showing that the two-point correlation matrix � is block diag-
onal in the qy transverse momentum sectors. Plugging Eq. (24)
into Eq. (8), and taking into account that G (k)

qy
and (�(k)

qy
) are

related by a unitary transformation (19), we finally obtain

Sn =
Ly
k −1∑

ny=0

Sn
(
�(k)

qy

) = 1

2

Ly
k −1∑

ny=0

∞∑
m=0

an(2m)Tr
[(

�(k)
qy

)2m]
. (25)

Accordingly, the entanglement entropy in our 2D system is the
sum of the single-interval entanglement entropies of Ly/k one-
dimensional fermionic chains, each univocally characterized
by the correlation matrices �(k)

qy
.

IV. EXAMPLES

In this section, using the dimensional reduction approach
described in Sec. III and invoking results for 1D systems, we
calculate the entanglement entropy in quantum quenches from
several initial states. In particular, we analytically derive its
exact behavior in the ballistic regime in which t, � → ∞ with
t/� fixed, taking the thermodynamic limit in the longitudinal
direction Lx → ∞, with the transverse one Ly finite. Here,
we only present the results of the calculations, while their
physical interpretation will be discussed in Sec. V.

For the concrete initial configurations that we will consider,
the time evolution of the entanglement entropy can be cal-
culated using Eq. (25). The latter requires the knowledge of
the matrix �(k)

qy
defined in Eq. (20), which involves the mixed

space-momentum correlations 〈c†
ix,qy

ci′x,q′
y
〉 and 〈cix,qy ci′x,q′

y
〉.

Their time evolution can be easily computed employing the
Heisenberg picture since the momentum modes ãq that di-
agonalize the postquench Hamiltonian (1) evolve trivially in
time as ãq(t ) = e−itεq ãq. Therefore, taking the partial Fourier
transform in the x direction, we have

〈ψ (t )|c†
ix,qy

ci′x,q′
y
|ψ (t )〉

= 1

Lx

∑
qx,q′

x

e−i(qxix−q′
x i′x )eit (εq−εq′ )〈ψ0|ã†

qãq′ |ψ0〉 (26)

and

〈ψ (t )|cix,qy ci′x,q′
y
|ψ (t )〉

= 1

Lx

∑
qx,q′

x

ei(qxix+q′
x i′x )e−it (εq+εq′ )〈ψ0|ãqãq′ |ψ0〉. (27)

Writing now the operators ãq and ã†
q in terms of the real space

ones ai and a†
i , we find

〈ψ (t )|c†
ix,qy

ci′x,q′
y
|ψ (t )〉 = 1

L2
x Ly

∑
qx,q′

x

∑
j,j′

e−i(qxix−q′
x i′x )

× eit (εq−εq′ )ei(q·j−q′ ·j′ )〈ψ0|a†
j aj′ |ψ0〉

(28)
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(a) (b) (c)

(d) (e) (f)

FIG. 2. Schematic representations of the states that we consider
as initial configurations for the quantum quenches. They are (a) the
collinear Mott state, (b) the Mott state, (c) the collinear dimer state,
(d) the staggered dimer state, (e) the diagonal dimer state, and
(f) the crossed dimer state. The black and white dots represent the
occupied and empty sites, respectively. The blue ellipses represent
singlet pairs.

and

〈ψ (t )|cix,qy ci′x,q′
y
|ψ (t )〉

= 1

L2
x Ly

∑
qx,q′

x

∑
j,j′

ei(qxix+q′
x i′x )

× e−it (εq+εq′ )e−i(q·j−q′ ·j′ )〈ψ0|ajaj′ |ψ0〉. (29)

Equations (28) and (29) recast the time evolution of the corre-
lators 〈c†

ix,qy
ci′x,q′

y
〉, 〈cix,qy ci′x,q′

y
〉, and, consequently of the matrix

�(k)
qy

, in terms of the t = 0 correlators 〈a†
j aj′ 〉 and 〈ajaj′ 〉.

A. Collinear Mott insulator state

We start with the quantum quench from the collinear Mott
insulator state, which is defined as

|CM〉 =
Lx
2 −1∏
ix=0

Ly−1∏
iy=0

a†
2ix,iy

|0〉, (30)

where |0〉 is the space vacuum state; i.e., ai|0〉 = 0 for all
i. We schematically represent this configuration in Fig. 2(a).
The collinear Mott insulator state (30) is a product state and,
therefore, the entanglement entropy for any bipartition is zero.

According to Eq. (25), since the state (30) is invariant under
single-site translations in the y direction, the entanglement
entropy after the quench can be calculated from the correlation
matrix �(1)

qy
. The entries of this matrix [see Eq. (20)] are given

by the correlators 〈c†
ix,qy

ci′x,q′
y
〉 and 〈cix,qy ci′x,q′

y
〉, whose time

evolution can be obtained with Eqs. (28) and (29) in terms
of 〈a†

j aj′ 〉 and 〈ajaj′ 〉 for the initial state, which in this case
read as

〈CM|a†
j aj′ |CM〉 = δj,j′

2
[1 + (−1) jx ] (31)

and

〈CM|ajaj′ |CM〉 = 0. (32)

Note that the pairing correlation functions such as
〈cix,qy ci′x,−qy〉 vanish because the state (30) has a definite
number of excitations.

Plugging Eqs. (31) and (32) in (28) and (29), respectively,
we obtain

(�(1)
qy

)ix,i′x (t ) =
(−Ci′x,ix (t ) 0

0 Cix,i′x (t )

)
, (33)

where Cix,i′x (t ) is the 1D correlation matrix after the quench
to the tight-binding fermionic chain from the Néel state (see,
e.g., [80]). In the thermodynamic limit Lx → ∞, it reads as

Cix,i′x (t ) = (−1)i′x

∫ 2π

0

dqx

2π
e−iqx (ix−i′x )−2it cos qx . (34)

Plugging Eq. (33) into (25) with k = 1, we obtain

Sn =
Ly−1∑
ny=0

Sn(C) = LySn(C). (35)

The asymptotic form of the 1D entanglement entropy with
correlation matrix (34) in the ballistic regime is known [80]

Sn(C) � log(2)
∫ 2π

0

dqx

2π
min (�, 2t |vx(qx )|), (36)

where vx(qx ) = ∂qx εq = sin qx is the fermion velocity in the
x direction and, by �, we always mean equal in the ther-
modynamic and ballistic limits. Hence, for the 2D model we
obtain that

Sn(t ) � Ly log(2)
∫ 2π

0

dqx

2π
min (�, 2t |vx(qx )|). (37)

The expression above shows that the entanglement entropy
linearly increases in time for t < �/ max(2vx ) = �/2, while
for t 
 �/2 it saturates to a constant value

lim
t→∞ Sn � VA log(2). (38)

In Fig. 3, we report the time evolution of the entanglement
entropy for the quench from the collinear Mott insulator state.
The curve is the analytic result (37), which agrees well with
the exact numerical data obtained using Eq. (8).

B. Mott insulator state

We now consider the quantum quench from the Mott insu-
lator state, which is defined as

|M〉 =
∏

ix+iy=even

a†
i |0〉. (39)

This state is represented schematically in Fig. 2(b). As in
the case of the collinear Mott insulator state discussed in
Sec. IV A, this configuration is also a product state and, there-
fore, the entanglement entropy at t = 0 is zero.

Since the Mott insulator state is invariant under two-site
translations in the y direction, the entanglement entropy after
the quench can be obtained by applying Eq. (25) once we have
determined the time evolution of the correlation matrix �(2)

qy
.
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0 1 2 3 4

t/�

0

2

4

6

S
n
/�

� = 100, n = 1

� = 150, n = 1

� = 200, n = 1

� = 100, n = 2

� = 150, n = 2

� = 200, n = 2

FIG. 3. Time evolution of the Rényi entanglement entropy in the
quantum quench from the collinear Mott insulator and Mott insulator
states. The solid line is the analytic result in Eq. (37). The symbols
are the exact value of the entropy obtained numerically using Eq. (8).
We take Ly = 10.

Using Eqs. (28) and (29), we only need the two-point spatial
correlations in the initial configuration to calculate it. For the
Mott insulator state,

〈M|a†
j aj′ |M〉 = δj,j′

2
[1 + (−1) jx+ jy ] (40)

and

〈M|ajaj′ |M〉 = 0. (41)

If we insert them in Eqs. (28) and (29), respectively, we obtain
that the matrix �(2)

qy
is(

�(2)
qy

)
ix,i′x

(t ) = Ueit cos qyσz⊗σz

×
(−Ci′x,ix (t ) 0

0 Cix,i′x (t )

)
⊗ σx

× e−it cos qyσz⊗σzU −1, (42)

where the matrix C is the same as in Eq. (33), σμ are the Pauli
matrices, and U = I/2 + ∑

μ=x,y,z σμ ⊗ σμ/2. In the thermo-
dynamic limit Lx → ∞, C is given by Eq. (34). Plugging
this result into Eq. (25) with k = 2 and using Trσ 2m

x = 2, we
obtain

Sn = LySn(C), (43)

which coincides with the expression found in Eq. (35) for
the collinear Mott insulator state (30). The matrix C is the
same in the Mott insulator and in the collinear Mott insulator
states, both at finite size Lx and when we take Lx → ∞, and
therefore the entanglement entropy presents exactly the same
time evolution in both quenches and for this reason we do not
report any numerical test.

C. Collinear dimer state

Let us now analyze the quantum quench from the collinear
dimer state,

|CD〉 =
Lx
2 −1∏
ix=0

Ly−1∏
iy=0

a†
2ix,iy

− a†
2ix+1,iy√

2
|0〉, (44)

which is represented in Fig. 2(c). Unlike the previous exam-
ples, this configuration is not a product state for each site, but
the (2ix, iy)th and (2ix + 1, iy)th pairs of sites are entangled by
the singlet pairing. However, since these singlet pairs do not
cross the boundaries of the subsystem considered (because we
choose � to be even and its end points to be also end points of
singlets), we have that the entanglement entropy is zero before
the quench.

The collinear dimer state (44) has one-site translational
symmetry in the y direction. Since it is invariant under two-site
translations in the x direction, it is convenient to rearrange
the entries of the correlation matrix �(1)

qy
, which enters in the

computation of the entropy (25), as

(
�(1)

qy

)
ix,i′x

= 2

〈(
c†

2ix,qy

c†
2ix+1,qy

)
(c2i′x,qy c2i′x+1,qy )

〉
− δix,i′x I4, (45)

with ix, i′x ∈ [0, �/2 − 1]. The correlators in �(1)
qy

can be calcu-
lated using Eqs. (28) and (29) with

〈CD|a†
j aj′ |CD〉 = 1

2
δj,j′ − 1

4
δ jy, j′yδ jx±1, j′x ± (−1) jx

4
δ jy, j′yδ jx±1, j′x

and

〈CD|ajaj′ |CD〉 = 0. (46)

In this way, once we have properly organized all the entries of
�(1)

qy
, we find that it takes the form

(
�(1)

qy

)
ix,i′x

= U

(
−T D

i′x,ix
0

0 T D
ix,i′x

)
U †, (47)

where U = I4/2 + ∑
μ=x,y,z σμ ⊗ σμ/2 is a 4×4 unitary ma-

trix and T D is equal to the 1D two-point correlation matrix
of the quench to the tight-binding fermionic chain from the
dimer state (see, e.g., Ref. [80]). In the thermodynamic limit
Lx → ∞, T D is a block Toeplitz matrix

T D
ix,i′x

=
∫ 2π

0

dqx

2π
e−2iqx (ix−i′x )gD(qx ), (48)

generated by the 2×2 symbol gD(qx ),

gD(qx ) = eiσz
qx
2 (σ− sin qxe−2it cos qx − σx cos qx )e−iσz

qx
2 ,

(49)

with σ± = σy ± iσz.
Plugging Eq. (47) into (25), we obtain

Sn = LySn(T D). (50)

In the ballistic regime, the asymptotic form of entropy Sn(T D)
is known and reads as [80]

Sn(T D) �
∫ 2π

0

dqx

2π
hn(cos qx ) min (�, 2t |vx(qx )|), (51)

providing that the Rényi entanglement entropy after the
quench in 2D behaves as

Sn � Ly

∫ 2π

0

dqx

2π
hn(cos qx ) min (�, 2t |vx(qx )|). (52)
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FIG. 4. Rényi entanglement entropy as a function of t/� in a
quench from the collinear dimer state for n → 1 and n = 2 and
different subsystem lengths �. The solid lines correspond to the
analytic prediction obtained in Eq. (52). The dashed lines indicate
the saturation value (53). The symbols are the exact numerical value
of the entropies calculated employing Eq. (8). We take Ly = 10.

Therefore, the entanglement entropy increases linearly in time
for t < �/2, while it approaches the constant value

lim
t→∞ Sn � VA

∫ 2π

0

dqx

2π
hn(cos qx ) (53)

at large times t 
 �/2.
In Fig. 4, we check the validity of the analytic result (52).

We plot it for n → 1 and n = 2, as a function of time (solid
curves) and we compare with the exact numerical value com-
puted using Eq. (8).

D. Staggered dimer state

We now investigate a modification of the previous initial
configuration, the staggered dimer state, which is defined as

|SD〉 =
∏

ix+iy=even

a†
ix,iy

− a†
ix+1,iy√

2
|0〉 (54)

and illustrated in Fig. 2(d). In this case, there are Ly singlet
pairs crossing the boundary of the subsystem and, conse-
quently, the initial entanglement entropy is Sn = Ly log(2) at
t = 0. This initial offset is subleading (and hence negligible)
in the ballistic limit because it does not scale with the volume
VA = �Ly.

The staggered dimer state (54) is invariant under two-site
translations in the y direction, i.e., k = 2. Since it is also
invariant under two-site translations in the x direction, it is
convenient to rearrange the entries of the matrix �(2)

qy
as

(
�(2)

qy

)
ix,i′x

= 2

〈(

c†

2ix,qy


c†
2ix+1,qy

)
(
c2i′x,qy 
c2i′x+1,qy )

〉
− δix,i′x I8, (55)

with ix, i′x ∈ [0, �/2 − 1]. The definition of 
cix,qy is given in
Eq. (21). The entries of �(2)

qy
can be calculated by plugging the

initial state correlators

〈SD|a†
j aj′ |SD〉 = δj,j′

2
− 1

4
δ jy, j′yδ jx±1, j′x

± (−1) jx+ jy

4
δ jy, j′yδ jx±1, jx , (56)

and 〈SD|ajaj′ |SD〉 = 0, into Eqs. (28) and (29). Then we find
that �(2)

qy
is of the form

(
�(2)

qy

)
ix,i′x

= U

(−(
T SD

qy+π

)
i′x,ix

0

0
(
T SD

qy

)
ix,i′x

)
U †, (57)

where U is an 8×8 unitary matrix whose elements are given
by Ui j = δ2i−1, j + δ2i−8, j and, in the thermodynamic limit
Lx → ∞, T SD

qy
is a block Toeplitz matrix

(Tqy )SD
ix,i′x

=
∫ 2π

0

dqx

2π
e−2iqx (ix−i′x )gSD

qy
(qx ), (58)

with 4×4 symbol

gSD
qy

(qx ) = −(e−iσzt cos qy ⊗ eiσz
qx
2 )

× (I ⊗ σx cos qx + σx ⊗ σ+e−2it cos qx )

× (eiσzt cos qy ⊗ e−iσz
qx
2 ). (59)

In the ballistic limit, the asymptotic form of the moments
Tr [(�(2)

qy
)
2m

] with Eq. (57) can be obtained by an analogous
procedure used in Ref. [80] to derive Eq. (51). A tedious but
straightforward calculation leads to the final result

Tr
[(

�(2)
qy

)2m] � 4� − 4
∫ 2π

0

dqx

2π

× [1 − (cos qx )2m] min (�, 2t |vx(qx )|). (60)

Plugging it into Eq. (25) with k = 2, we arrive at

Sn � Ly

∫ 2π

0

dqx

2π
hn(cos qx ) min (�, 2t |vx(qx )|). (61)

This expression is equal to Eq. (52) for the collinear dimer
state. This coincidence only occurs in the limit Lx → ∞, for
finite Lx the entanglement entropy in these two quenches is
different. We check the validity of the analytical prediction
(61) in Fig. 5. It shows that, for n → 1 and n = 2, Eq. (61)
agrees well with the exact results obtained by evaluating nu-
merically Eq. (8).

E. Diagonal dimer state

We next take as initial configuration the diagonal dimer
state

|DD〉 =
Lx
2 −1∏
ix=0

Ly−1∏
iy=0

a†
2ix,iy

− a†
2ix+1,iy+1√
2

|0〉. (62)

An illustration of it can be found in Fig. 2(e).
The diagonal dimer state is invariant under one-site trans-

lations in the y direction and under two-site translations in the
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FIG. 5. Rényi entanglement entropy as a function of t/� in a
quench starting from the staggered dimer state for n → 1 and n = 2
and different subsystem lengths �. The solid lines correspond to the
analytical prediction obtained in Eq. (61). The dashed lines indicate
the saturation values (53). The symbols are the exact numerical value
of the entropies calculated employing Eq. (8). We take Ly = 10.

x direction. Therefore, we rearrange the entries of �(1)
qy

as we
have done in Eq. (45). The two-point spatial correlations in
the initial state are in this case

〈DD|a†
j aj′ |DD〉 = δj,j′

2
− 1

4
δ jx±1, j′x δ jy±1, j′y

∓ (−1) jx

4
δ jx±1, j′x δ jy±1, j′y , (63)

and 〈DD|ajaj′ |DD〉 = 0. Inserting them in Eqs. (28) and (29),
we find that the matrix �(1)

qy
can be written as

(
�(1)

qy

)
ix,i′x

= U

(−(
T DD

qy

)
i′x,ix

0

0
(
T DD

−qy

)
ix,i′x

)
U †, (64)

where U = I4/2 − ∑
μ=x,y,z σμ ⊗ σμ/2. In the thermody-

namic limit Lx → ∞, T DD
qy

is the block Toeplitz matrix

(
T DD

qy

)
ix,i′x

=
∫ 2π

0

dqx

2π
e−2iqx (ix−i′x )gDD

qy
(qx ), (65)

with symbol

gDD
±qy

(qx ) = −ei qx
2 σz [σx cos(qx + qy)

+ e−2it cos qx σ+ sin(qx + qy)]e−i qx
2 σz . (66)

The calculation of the moments Tr [(�(1)
qy

)
2m

] with Eq. (64) in
the ballistic limit is analogous to the computation of Eq. (51).
We find

Tr
[(

�(1)
qy

)2m] � 2� − 2
∫ 2π

0

dqx

2π
{1 − [cos(qx + qy)]2m}

× min (�, 2t |vx(qx )|). (67)
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FIG. 6. Time evolution of the Rényi entanglement entropy tak-
ing as initial configuration the diagonal dimer state. We consider
different Rényi indices n and subsystem sizes �. The solid lines
represent the analytic expression in Eq. (68). The symbols are the
exact numerical entropy computed with Eq. (8). The dashed lines
correspond to the saturation value predicted in Eq. (69). We set
Ly = 10.

Substituting it into Eq. (25) with k = 1, we obtain that the
entanglement entropy behaves as

Sn �
∑

qy

∫ 2π

0

dqx

2π
hn[cos(qx + qy)] min (�, 2t |vx(qx )|).

(68)

Note that, unlike the previous cases, the contribution to the
entropy of each mode qy is different. At large times, t 
 �/2,
the entropy saturates to

lim
t→∞ Sn � �

∑
qy

∫ 2π

0

dqx

2π
hn[cos(qx + qy)]. (69)

In Fig. 6, we analyze the entanglement entropy in the quantum
quench from the diagonal dimer state. We obtain an excellent
agreement between the analytic result of Eq. (68) and the
numerical values computed using Eq. (8).

F. Crossed dimer state

Here we consider the quantum quench starting from the
crossed dimer state

|C〉 =
Lx
2 −1∏
ix=0

Ly
2 −1∏
iy=0

1

2
(a†

2ix,2iy
− a†

2ix+1,2iy+1)

× (a†
2ix+1,2iy

− a†
2ix,2iy+1)|0〉, (70)

which is schematically illustrated in Fig. 2(f). Since this
configuration is invariant under two-site translations in the
y direction, the entanglement entropy after the quench can
be calculated by evaluating the moments Tr [(�(2)

qy
)
2m

]. To
adapt the computation to the two-site translation symme-
try in the x direction, we rearrange the entries of �(2)

qy

as in Eq. (55). This matrix can be calculated employing
Eqs. (28) and (29) with the initial state two-point spatial
correlators 〈a†

j aj′ 〉 and 〈ajaj′ 〉. For the crossed dimer state, the
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latter read as

〈C|a†
j aj′ |C〉 = δj,j′

2
− 1

8
(δ jx+1, j′x δ jy+1, j′y + δ jx−1, j′x δ jy−1, j′y + δ jx−1, j′x δ jy+1, j′y + δ jx+1, j′x δ jy−1, j′y )

− (−1) jx

8
(δ jx+1, j′x δ jy+1, j′y − δ jx−1, j′x δ jy−1, j′y − δ jx−1, j′x δ jy+1, j′y + δ jx+1, j′x δ jy−1, j′y )

− (−1) jy

8
(δ jx+1, j′x δ jy+1, j′y − δ jx−1, j′x δ jy−1, j′y + δ jx−1, j′x δ jy+1, j′y − δ jx+1, j′x δ jy−1, j′y )

− (−1) jx+ jy

8
(δ jx+1, j′x δ jy+1, j′y + δ jx−1, j′x δ jy−1, j′y − δ jx−1, j′x δ jy+1, j′y − δ jx+1, j′x δ jy−1, j′y ), (71)

and 〈C|aiai′ |C〉 = 0. We then obtain that �(2)
qy

is of the form(
�(2)

qy

)
ix,i′x

= Ueitσz⊗σz⊗I cos qy

×
(−m̂(qy) ⊗ T C

i′x,ix
0

0 m̂(qy) ⊗ T C
ix,i′x

)

× e−itσz⊗σz⊗I cos qyU †, (72)

where Ui j = δ2i−1, j + δ2i−8, j . The matrix m̂qy is defined as

m̂qy = −σz cos qy + σy sin qy, (73)

and, in the thermodynamic limit Lx → ∞, T C reads as

T C
ix,i′x

=
∫ 2π

0

dqx

2π
e−2i(ix−i′x )gC(qx ). (74)

Here the symbol gC(qx ) is given by

gC(qx ) = ei qx
2 σz (σx cos qx + σ+ sin qxe−2it cos qx )e−i qx

2 σz .

(75)

Since the trace of the tensor product of two matrices is
the product of the traces of the matrices, the moments
Tr [(�(2)

qy
)
2m

] in the present case are given by

Tr
[(

�(2)
qy

)2m] = 2 Tr
[
m̂2m

qy

]
Tr[(T C)2m]. (76)

By simple algebra, one finds Tr[m̂2m
qy

] = 2 while, by employ-
ing the stationary phase method of Ref. [139], one can also
obtain the asymptotic form of Tr[(T C)2m] in the ballistic limit

Tr[(T C)2m] � � −
∫ 2π

0

dqx

2π
[1 − (cos qx )2m]

× min (�, 2t |vx(qx )|). (77)

Therefore, putting the previous results together, the moments
of the matrix (72) are

Tr
[(

�(2)
qy

)2m] � 4� − 4
∫ 2π

0

dqx

2π
[1 − (cos qx )2m]

× min (�, 2t |vx(qx )|) (78)

and, plugging them in Eq. (25) with k = 2, we finally find that

Sn = Ly

∫ 2π

0

dqx

2π
hn(cos qx ) min (�, 2t |vx (qx )|). (79)

In particular, the stationary value of the entanglement entropy
at large times t 
 �/2 is

lim
t→∞ Sn � VA

∫ 2π

0

dqx

2π
hn(cos qx ). (80)

In Fig. 7, we plot the entanglement entropy in the quantum
quench starting from the crossed dimer state. It shows that the
analytic expression obtained in Eq. (79) agrees well with the
exact result obtained numerically with Eq. (8).

G. Partially filled product state

So far, we have considered initial states with a defined
number of particles, i.e., eigenstates of the particle-number
operator Q = ∑

i a†
i ai. Let us now study quenches from con-

figurations that break this U(1) symmetry.
We can construct them using as building block the 1D

product state

|θ〉iy =
Lx−1∏
ix=0

(
sin

θ

2
+ cos

θ

2
a†

i

)
|0〉iy , (81)
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FIG. 7. Rényi entanglement entropy as a function of t/� in a
quench from the crossed dimer state for Rényi indices n → 1 and
n = 2 and different subsystem sizes �. The solid lines represent the
analytic expression obtained in Eq. (79) while the symbols are the
exact value of the entropies calculated numerically using Eq. (8).
The dashed lines are the saturation values at large times given by
Eq. (80). The dotted and dashed-dotted lines are the predictions of
the quasiparticle picture in Eq. (115) for n → 1 and 2, respectively
(see the discussion in the next section for the explanation of the
disagreement). In all the cases, we take Ly = 10.
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where |0〉iy = ⊗Lx−1
ix=0 |0〉i with |0〉i being the local vacuum

state for the ith site (in 1D spin language this is a tilted ferro-
magnetic state). The angle θ ∈ [0, π ) controls the probability
of finding a particle at the site i and, therefore, tunes how
much the particle-number symmetry is broken [88]. At θ = 0
(π ), the state (81) is fully occupied (empty) and it preserves
this U(1) symmetry, whereas it breaks it for θ �= 0, π ; in
particular, the symmetry is maximally broken at θ = π/2.

The state (81) does not satisfy Wick theorem and, there-
fore, its reduced density matrix is not Gaussian and we cannot
calculate the entanglement entropy from the two-point corre-
lation matrix using Eq. (8). However, the cat version of (81),

|PF〉iy = 1√
2 + 2(cos θ )Lx

(|θ〉iy − |−θ〉iy ), (82)

does satisfy Wick theorem and its reduced density matrix is
Gaussian, as explicitly shown, e.g., in Ref. [89].

From the 1D state |PF〉iy , we can construct two different
initial configurations in the two-dimensional square lattice,
for which the entanglement entropy evolves differently af-
ter a quench to H . We study them separately in the next
subsections.

1. Partially filled product state I

Let us first consider the state

|PFI〉 =
Ly−1⊗
iy=0

|PF〉iy , (83)

where |PF〉iy is defined in Eq. (81). Since (83) is invariant
under one-site translations in the y direction, we can employ
Eq. (25) with k = 1 to calculate the evolution of the entangle-
ment entropy after the quench. The entries of the correlation
matrix �(1)

qy
that enters in such equation can be determined

using Eqs. (28) and (29) with the initial values of the two-
point spatial correlators. In this case, given the product state
structure of the initial configuration (83), we have

〈PFI|a†
i ai′ |PFI〉 = iy〈PF|a†

ix,iy
ai′x,iy |PF〉iyδiy,i′y (84)

and

〈PFI|aiai′ |PFI〉 = iy〈PF|aix,iy ai′x,iy |PF〉iyδiy,i′y . (85)

The correlators for the 1D state |PF〉iy have been calculated in,
e.g., Ref. [88]. Using them here, we have

〈PFI|a†
i ai′ |PFI〉 = δix,i′x δiy,i′y

2
− δiy,i′y

2Lx

∑
qx

e−iqx (ix−i′x ) cos 
qx

(86)

and

〈PFI|aiai′ |PFI〉 = − iδiy,i′y

2Lx

∑
qx

e−iqx (ix−i′x ) sin 
qx , (87)

with

cos 
qx = 2| cos θ | − cos qx(1 + cos2 θ )

1 + cos2 θ − 2| cos θ | cos qx
, (88)

sin 
qx = sin2 θ sin qx

1 + cos2 θ − 2| cos θ | cos qx
. (89)

Inserting them in Eqs. (28) and (29) and taking the limit Lx →
∞, we find that �(1)

qy
is a block Toeplitz matrix

(
�(1)

qy

)
ix,i′x

=
∫ 2π

0

dqx

2π
e−iqx (ix−i′x )gPF

qy
(qx ), (90)

generated by the 2×2 symbol gPF
qy

(qx ):

gPF
qy

(qx ) = σz cos 
qx + σye−2itεqσz sin 
qx . (91)

The moments Tr [(�(1)
qy

)
2m

] of a block Toeplitz matrix can be
calculated by applying directly the stationary phase method of
Ref. [139]. In our case, we get

Tr
[
�2m

qy

] � 2� − 2
∫ 2π

0

dqx

2π
[1 − (cos 
qx )2m]

× min (�, 2t |vx(qx )|). (92)

Plugging it into Eq. (25) with k = 1, we finally obtain that

Sn � Ly

∫ 2π

0

dqx

2π
hn(cos 
qx ) min (�, 2t |vx(qx )|). (93)

In this case, the entropy converges at large times t 
 �/2 to
the value

lim
t→∞ Sn � VA

∫ 2π

0

dqx

2π
hn(cos 
qx ). (94)

In Fig. 8(a), we plot the time evolution of the entanglement
entropy after the quench from the state |PFI〉 for different val-
ues of the angle θ and the Rényi index n. We find that Eq. (93)
agrees well with the numerical value of the entropy calculated
with Eq. (8). In Fig. 8(b), we represent the stationary value of
the entropy given by Eq. (94) as a function of the initial angle
θ . It can be seen that the entanglement entropy monotonically
increases as θ increases until θ = π/2, the angle at which the
initial state (83) maximally breaks the U(1) particle-number
symmetry. This maximum value for the von Neumann entropy
is Smax

1 = VA[2 log(2) − 1].

2. Partially filled product state II

From the 1D state (81), we can also construct the configu-
ration

|PFII〉 =
Lx−1⊗
ix=0

|PF〉ix . (95)

The difference compared to state (83) is that this is a product
state in the x direction while the other was in the y direction.
Since the native 1D state (82) is a cat and not a product
state, the two definitions are inequivalent. This state |PFII〉 is
invariant under one-site translations in the y and x directions.
Since it is a product state along the x direction its two-point
spatial correlation functions satisfy

〈PFII|a†
i ai′ |PFII〉 = ix〈PF|a†

ix,i′y
aix,i′y |PF〉ix δix,i′x (96)

and

〈PFII|aiai′ |PFII〉 = ix〈PF|aix,iy aix,i′y |PF〉ix δiy,i′x . (97)

As we did in the other partially filled product state, we can
apply the results of Ref. [88] for the correlations of the 1D
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FIG. 8. (a) Time evolution of the Rényi entanglement entropy
after a quench from the state |PFI〉, considering different angles θ

for the initial configuration and Rényi indices n. The solid lines
correspond to the analytic prediction found in Eq. (93). The symbols
are the exact values computed numerically with Eq. (8). (b) Satura-
tion value at large times of the Rényi entanglement entropy given in
Eq. (94) as a function of the initial angle θ for different Rényi indices
n. In all cases, we set � = 200 and Ly = 10.

state |PF〉ix . Then we have

〈PFII|a†
i ai′ |PFII〉 = δix,i′x δiy,i′y

2
− δix,i′x

2Ly

∑
qy

e−iqy (iy−i′y ) cos 
qy

(98)

and

〈PFII|aiai′ |PFII〉 = − iδix,i′x

2Ly

∑
qy

e−iqy (iy−i′y ) sin 
qy . (99)

Inserting these correlators in Eqs. (28) and (29) and taking the
thermodynamic limit Lx → ∞, the matrix �(1)

qy
that gives the

entanglement entropy (25) is block Toeplitz,

(
�(1)

qy

)
ix,i′x

=
∫ 2π

0

dqx

2π
e−iqx (ix−i′x )gPF

qx
(qy), (100)

in which the symbol is the same as in Eq. (91) but exchanging
the moments qx and qy.

As in the previous examples, in the ballistic limit, the
asymptotic form of the moments Tr [(�(1)

qy
)
2m

] for Eq. (100)
can be obtained by applying the stationary phase method for
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lim t→
∞

S
n
/

FIG. 9. (a) Rényi entanglement entropy as a function of t/� after
a quench from the state |PFII〉. We take several angles θ in the initial
state and Rényi indices n → 1 and n = 2. The solid lines are the
analytic expression derived in Eq. (102) while the symbols represent
the exact result obtained numerically employing Eq. (8). (b) We
represent the saturation value at large times of Rényi entanglement
entropy predicted in Eq. (103) versus the initial angle θ . In all cases,
we fix � = 200 and Ly = 10.

block Toeplitz matrices of Ref. [139]. Here we find

Tr
[(

�(1)
qy

)2m] � 2� − 2[1 − (cos 
qy )2m]

×
∫ 2π

0

dqx

2π
min (�, 2t |vx(qx )|). (101)

Applying this result in Eq. (25) with k = 1, we get that the
entanglement entropy evolves in time after the quench as

Sn �
∑

qy

hn(cos 
qy )
∫ 2π

0

dqx

2π
min (�, 2t |vx(qx )|), (102)

and saturates to

lim
t→∞ Sn = �

∑
qy

hn(cos 
qy ) (103)

at large times t 
 �/2.
Figure 9(a) shows the entanglement entropy of the time-

evolved state |PFII(t )〉, comparing the analytic result of
Eq. (102) (solid lines) with the exact value (symbols) obtained
numerically with Eq. (8) for several initial angles θ and Rényi
index n. In Fig. 9(b), we plot the saturation value of the
entanglement entropy found in Eq. (103) as a function of θ .
We can see that, as in the case of the state |PFI〉, the saturation
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value is maximum at θ = π/2 (at least for n = 1, 2), at which
the particle-number symmetry is maximally broken at t = 0,
although it is not in general monotonic in θ . Figure 9(b)
also shows that, for n = ∞, the Rényi entanglement entropy
presents a nonanalytic behavior as a function of θ . In this
limit, the Rényi entanglement entropy is given by the largest
eigenvalue λmax of the reduced density matrix ρA such that
S∞ = − log λmax. Therefore, the nonanalytic points indicate
that there is a level crossing between the two largest eigenval-
ues of the reduced density matrix at those values of θ . These
nonanalyticities disappear when Ly is sufficiently large.

V. QUASIPARTICLE PICTURE

In this section, we discuss the physical interpretation of the
results of the previous section in terms of the quasiparticle
picture, originally developed for one-dimensional integrable
systems [29,31].

The idea of the quasiparticle picture is the following: in one
dimension the quench generates uniformly pairs of entangled
quasiparticles that propagate ballistically in opposite direc-
tions with opposite momenta. Therefore, the entanglement at
time t after the quench is proportional to the number of pairs
of entangled quasiparticles that are shared by subsystem A and
its complement B:

Sn =
∫ 2π

0

dq

2π
sn(q) min (�, 2|v(q)|t ), (104)

where v(q) is the velocity of the quasiparticle with momentum
q and sn(q) its contribution to the entanglement. The function
min (�, 2|v(q)|t ) counts the quasiparticles that are shared by
subsystem A and its complement at time t .

However, in d > 1 as in this paper, the multiplet structure
of the quasiparticles is generically much more complicated
than simple pairs and their counting is far from trivial. Fortu-
nately, the dimensional reduction comes in our help, leading
to extremely simple results. Indeed, since the Rényi entan-
glement entropy can be decomposed in the single-interval
entanglement entropies of decoupled 1D chains, we can
directly apply the quasiparticle picture in each decoupled
chain, which are labeled by the transverse momentum qy =
2πny/Ly. Therefore, after the quench, in the ny-chain pairs
of entangled excitations propagate with momentum ±qx and
velocity vx(qx ) = ∂qx εq. If we denote the contribution to the
entanglement entropy of each pair of entangled modes as
sn(q) and sum over all the decoupled chains the result (104),
then we expect

Sn =
Ly
k −1∑

ny=0

∫ 2π

0

dqx

2π
sn(q) min (�, 2|vx(qx )|t ). (105)

Equation (105) predicts that the entanglement entropy in-
creases linearly for t < �/2 and tends to a constant at large
times t 
 �/2; this is the qualitative behavior that we have
found in all the examples studied in Sec. IV.

To obtain quantitative predictions from Eq. (105), we
have to determine a specific expression of sn(q). For one-
dimensional free fermion systems, as proposed in Ref. [31]
for generic integrable systems, the analogous function sn(q)
can be read off from the limit t → ∞, in which the reduced

density matrix ρA(t ) is expected to relax to a GGE. We can
apply the same idea here. In particular, for the 2D free fermion
model (1), one may expect that the infinite-time limit of ρA(t )
exists and it is described by a GGE, i.e.,

lim
t→∞ ρA(t ) = TrB(ρGGE) ≡ ρGGE

A . (106)

As in one dimension [140], since the postquench Hamiltonian
is diagonal in terms of the modes ã†

q and ãq, the GGE can
be written in terms of the the conserved mode occupation
numbers n̂q = ã†

qãq as

ρGGE = e− ∑
q λq n̂q

Tr(e−∑
q λq n̂q )

, (107)

where the Lagrange multipliers λq are determined by the
expectation value of n̂q,

Tr(n̂qρ
GGE) = 〈ψ0|n̂q|ψ0〉 ≡ nq. (108)

We stress that this is valid under the quite general assump-
tion that non-Abelian charges like

∑
j (−1) jc jc j+m are not

activated by the initial state; their activation would lead to an
altered dynamics [89,141].

If the reduced density matrix ρA(t ) relaxes to the GGE as
in Eq. (106), then the Rényi entanglement entropy for ρA(t )
at large times must be equal to the entropy of the statistical
ensemble ρGGE

A ,

lim
t→∞ Sn(ρA(t )) = Sn

(
ρGGE

A

)
. (109)

We can deduce the specific form of sn(q) from the above
equation as follows. For a large subsystem with volume VA,
Sn(ρGGE

A ) is proportional to VA because it is an extensive ther-
modynamic quantity. Hence, the entropy Sn(ρGGE

A ) is given
by the volume of subsystem A times the density of the Rényi
entropy evaluated in the GGE of Eq. (107). That is,

Sn
(
ρGGE

A

) = VA

LxLy
Sn

(
ρGGE

)

= �

Ly−1∑
ny=0

∫ 2π

0

dqx

2π
hn(2nq − 1), (110)

where the function hn(x) is defined in Eq. (9). In the second
line, we have taken the thermodynamic limit Lx → ∞ to
derive it. On the other hand, if we take the large-time limit
t → ∞ in Eq. (105), we obtain

lim
t→∞ Sn(ρA) = �

Ly/k−1∑
ny=0

∫ 2π

0

dqx

2π
sn(q). (111)

Comparing Eqs. (110) and (111) and naturally group-
ing together the chains with equal ny modulo k, we can
conclude that

sn(q) =
k−1∑
j=0

hn(2nqx,qy+ 2π j
k

− 1). (112)

Finally, plugging this result into Eq. (105), we find

Sn =
Ly−1∑
ny=0

∫ 2π

0

dqx

2π
hn(2nq − 1) min (�, 2t |vx(qx )|). (113)
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We emphasize that this prediction assumes the thermody-
namic limit in the x direction, but the value of Ly is an arbitrary
integer, also as small as 1 or 2.

The quasiparticle formula (113) coincides with the ana-
lytic expressions found for most of the particular initial states
investigated in Sec. IV. For example, the mode occupation
number for the collinear Mott insulator state (30) is nq = 1

2
and, substituting it in Eq. (113), we find Eq. (37). Also, the oc-
cupation number for the Mott insulator state (39) is nq = 1

2 . In
a similar way, it is straightforward to check that the prediction
of the quasiparticle picture (113) reproduces the analytic ex-
pressions for the entanglement entropy obtained in Eqs. (52)
(collinear and staggered dimer states), (68) (diagonal dimer
state), (93) (partially filled product state I), and (102) (partially
filled product state II).

The coincidence at large times between the Rényi entangle-
ment entropies of ρA(t ) and of the corresponding GGE is not
a sufficient condition to prove that ρA(t ) relaxes to the latter.
However, the results presented in this paper straightforwardly
demonstrate that, for all the initial states for which the quasi-
particle picture (113) works, the spatial two-point correlation
functions converge to the corresponding GGE value in the
large-time limit. Since ρA(t ) is Gaussian, it is univocally de-
termined by the two-point correlation matrix in A. Therefore,
the GGE’s ability to capture the large-time behavior of the
spatial two-point correlators implies (i) that it fully describes
the stationary state of the subsystem and (ii) the validity of
Eq. (106).

However, the situation is different for the crossed dimer
state discussed in Sec. IV F. In this case, the mode occupation
number is

nq = 〈C|n̂q|C〉 = 1 − cos qx cos qy

2
(114)

and, if we plug it in the quasiparticle prediction (113), then we
obtain

Sn =
Ly−1∑
ny=0

∫ 2π

0

dqx

2π
hn(cos qx cos qy) min (�, 2t |vx(qx )|),

(115)

which does not match the correct result in Eq. (79), as also
shown in Fig. 7.

Comparing Eqs. (79) and (115), it is clear that the reason
why the quasiparticle picture breaks down is that the iden-
tification (112) does not hold. Since this identity has been
derived assuming Eq. (109), the mismatch means that, in this
particular quench, the reduced density matrix ρA(t ) does not
tend to ρGGE

A at t → ∞. In the following section, we will
discern the reason why this occurs.

VI. EXISTENCE OF STATIONARY STATE

In the previous section, we have found that the prediction
of the quasiparticle picture (113) does not match the correct
result (79) for the crossed dimer state. We claimed that the
reason for this disagreement is that the reduced density matrix
ρA(t ) does not relax to the GGE ρGGE

A at large times. In
this section, we show that, in two-dimensional free fermionic
systems, the reduced density matrix ρA(t ) does not tend to a

stationary state after quenches from certain particular initial
configurations, including the crossed dimer state. Further-
more, we derive a criterion which allows us to know whether
the stationary state exists or not for a given initial state and
how the quasiparticle picture must be modified in its absence.

A. Absence of stationary state

To show that ρA(t ) does not relax to a stationary state
for particular initial states, we start by decomposing the
postquench Hamiltonian (1) as

H = HX + HY , (116)

where

HX =
Ly−1∑
iy=0

HX
iy

= −1

2

Ly−1∑
iy=0

Lx−1∑
ix=0

a†
ix+1,iy

aix,iy + H.c., (117)

and

HY =
Lx−1∑
ix=0

HY
ix

= −1

2

Lx−1∑
ix=0

Ly−1∑
iy=0

a†
ix,iy+1aix,iy + H.c.. (118)

As clear from the above equations, the terms HX and HY

only contain fermion hoppings in the x and y direction,
respectively.

Observe that, in terms of the Fourier modes (2), HX and
HY are diagonal,

HX = −
∑

q

cos qxã†
qãq, (119)

HY = −
∑

q

cos qyã†
qãq, (120)

and, therefore, they commute with each other. This allows us
to write the time-evolved state |ψ (t )〉 as

|ψ (t )〉 = e−itHY |ψX (t )〉, (121)

where |ψX (t )〉 = e−itHX |ψ0〉 is the time-evolved state after a
quantum quench with a Hamiltonian in which the fermion
hopping is allowed only in the x direction (i.e., Ly copies of
1D chains). Accordingly, the reduced density matrix ρA(t ) can
be written as

ρA(t ) = TrB(e−itHY |ψX (t )〉〈ψX (t )|eitHY
). (122)

Given its definition in Eq. (118), we have [HY
ix , HY

i′x
] = 0;

then the time-evolution operator e−itHY
in Eq. (122) can be

decomposed into two operators that, respectively, act only on
the subsystems A and B as

e−itHY = UA(t )UB(t ) (123)
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FIG. 10. Schematic representation of time evolution of the re-
duced density matrix ρX,A(t ), introduced in Eq. (126), after quenches
from the Mott insulator state (upper panel) and the crossed dimer
state (lower panel).

with

UA(t ) =
�−1∏
ix=0

e−itHY
ix , UB(t ) =

Lx−1∏
ix=�

e−itHY
ix . (124)

Note that UA acts only on subsystem A and hence it can be
taken out the partial trace TrB. Therefore, we can rewrite
Eq. (122) as

ρA(t ) = UA(t )ρX,A(t )U †
A (t ), (125)

where

ρX,A(t ) = TrB|ψX (t )〉〈ψX (t )|. (126)

Note that, in the latter expression, UB and U †
B cancel each

other in the partial trace TrB due to the cyclic property. From
Eq. (125), we conclude that, when [UA(t ), ρX,A(∞)] �= 0, the
limit limt→∞ ρA(t ) does not exist, i.e., there is no stationary
state.

B. Condition for the existence of stationary state

Having established that the existence of a stationary state
is related to the vanishing of the commutator [UA, ρX,A(∞)],
the next natural step is to determine under which conditions
this commutator is not zero. In Appendix A, we prove the
following. If we assume that ρX,A(t ) relaxes to a stationary
state, i.e., limt→∞ ρX,A(t ) exists, then the stationary state of
ρA(t ) exists if and only if ρX,A(t ) restores the translational
symmetry in the y direction for large times, that is

TA( lim
t→∞ ρX,A(t ))T −1

A = lim
t→∞ ρX,A(t ), (127)

where TA is the translation operator in the y-direction action
on subsystem A.

This result allows us to know whether the stationary state
exists or not from ρX,A. For example, in Fig. 10, we schemat-
ically represent the time evolution of ρX,A(t ) in quenches
starting from the Mott insulator and the crossed dimer states.
In the case of the Mott insulator state, after a long time, the
hopping in the x direction makes the distribution of fermions
uniform for every iyth row, and the translational symmetry in

the y direction is restored. Hence, the stationary state exists
according to the result announced before. On the other hand,
for the crossed dimer state, since the hopping in the x direction
does not change the amount of entanglement between each
row, after long times, the entanglement between 2iyth and
(2iy + 1)th rows in the initial state remains, while no entan-
glement appears between (2iy − 1)th and 2iyth rows. This
means that ρX,A for the crossed dimer state never restores
the translational symmetry in the y direction. Therefore, the
reduced density matrix ρA(t ) does not relax to a stationary
state in this case.

In general, as we show in Appendix B, the density matrix
ρX,A(t ) restores the translational invariance in the y direction
at large times, i.e., Eq. (127) is satisfied, if and only if

〈ψ0|ã†
qx,qy

ãqx,q′
y
|ψ0〉 = 0 ∀ qx, qy �= q′

y. (128)

Therefore, we can conclude that ρA(t ) relaxes to a stationary
state at large times if and only if the initial state satisfies
Eq. (128). In fact, one can check that such correlator is always
zero for all the initial states discussed in Sec. IV except for the
crossed dimer state, for which we have

〈C|ã†
qx,qy

ãqx,qy+π |C〉 = − i

2
cos qx sin qy. (129)

C. Entanglement entropy in the absence of stationary state:
The crossed dimer state

Although, as we have just seen, there is not a stationary
state in a quench from the crossed dimer state, in Sec. IV we
showed that the entanglement entropy saturates to a constant
value at large times. This behavior can be explained as fol-
lows. According to Eq. (125), the reduced density matrices
ρA(t ) and ρX,A(t ) are related by a unitary transformation. This
means that their entropies are equal,

Sn(ρA(t )) = Sn(ρX,A(t )). (130)

Therefore, this identity implies that, if ρXA(t ) relaxes to a
stationary state, then the entropy tends to a constant value at
large times, even if the limit limt→∞ ρA(t ) does not exist.

The missing point is to determine the stationary value of
the entropy in the absence of stationary state for ρA(t ). We
have shown that, if [UA, ρX,A(∞)] = 0, then both ρA(t ) and
ρX,A(t ) relax to the same stationary state, which is described
by a GGE that can be built either from the local conserved
charges of H = HX + HY or of HX . However, the set of
conserved charges of HX is not equal to that of the total
Hamiltonian H . Therefore, if ρA(t ) tends to a stationary state,
only the charges shared by HX and H can be activated. On
the contrary, if there is not stationary state for ρA(t ), it exists
the possibility that charges only conserved by HX can be
activated. In such cases, the entanglement entropies derived
from the GGEs associated to H and HX are different, and
the correct stationary value of the entanglement entropy is
given by the latter. This explains why the quasiparticle picture
discussed in Sec. V does not work for the crossed dimer state,
for which ρA(t ) does not relax as we have already shown.

In fact, for this initial state, we find that, to obtain the
saturation value of Eq. (80) at large times, the correct GGE
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should be built with the following conserved charges:

n̂±
qx,iy

≡ 1√
2

(d†
qx,2iy

± d†
qx,2iy+1)(dqx,2iy ± dqx,2iy+1), (131)

where qx = 0, . . . , 2π (Lx − 1)/Lx, iy = 0, . . . , Ly/2 − 1, and
d̂qx,iy is the partial Fourier transform of the fermionic ai with
respect to the x direction

dqx,iy ≡ 1√
Lx

Lx−1∑
ix=0

e−iqxix ai. (132)

By simple algebra, one finds that {n̂±
qx,iy

} commute with

HX while they do not commute with the total Hamiltonian
H = HX + HY .

In the same way as in Eq. (110), we can calculate the
entropy of a GGE built with the charges {n±

qx,yi
}. In the ther-

modynamic limit Lx → ∞, it is

Sn = �

Ly
2 −1∑
iy=0

∫ 2π

0

dqx

2π
[hn(2n+

qx,iy
− 1) + hn(2n−

qx,iy
− 1)],

(133)

where we have introduced n±
qx,iy

= 〈ψ0|n̂±
qx,iy

|ψ0〉. In particu-
lar, for the crossed dimer state, we obtain

n±
qx,iy

= 〈C|n̂±
qx,iy

|C〉 = 1 ± cos qx

2
. (134)

Plugging it into Eq. (133), we indeed recover the large-time
limit of the evolution from the crossed dimer state in Eq. (80).
At this point, Eq. (79) for the finite-time evolution is recovered
by a straightforward application of the quasiparticle picture.

In Appendix C, we consider a quench from another initial
configuration in which ρA(t ) does not relax to a stationary
state and show that, also in this case, the large-time behavior
of the entanglement entropy is captured by a GGE built with
from the charges of HX instead of H .

VII. CONCLUSIONS

To summarize, we studied the time evolution of the
entanglement entropy following quantum quenches in a
translationally invariant 2D free fermion lattice. We have con-
sidered different initial Gaussian configurations that present
a periodic pattern in both directions of the system. By ap-
plying dimensional reduction and exploiting the well-known
results for 1D free fermionic chains, we analytically deter-
mined the exact behavior of the Rényi entanglement entropies
after the quench. We found that, for most of the initial states,
the standard quasiparticle picture developed for 1D systems
can be readily adapted to correctly explain the evolution
of the entropy. Instead, for one particular initial state, the
quasiparticle picture does not generalize straightforwardly be-
cause the Rényi entanglement entropies saturate to a value
different from the one predicted by the GGE built with the
local conserved charges of the postquench Hamiltonian. We
traced back the origin of this disagreement to the absence
of a stationary limit for the reduced density matrix. Starting
from this observation, we deduced that the correct stationary
entanglement entropy for this initial state is given by the GGE

constructed with the local conserved charges of a Hamiltonian
with only hoppings in the longitudinal direction. We also ob-
tained the general conditions for the existence of the stationary
limit of the reduced density matrix, which are related to the
restoration of the translational symmetry in the transverse
direction at large times.

The dimensional reduction approach employed here can
be easily generalized to study the time evolution in two-
dimensional free fermionic systems of other quantities for
which there are exact results in one dimension. These
include the entanglement negativity [71–74], charge fluctu-
ations [82,142], symmetry-resolved entanglement entropies
[79–83], and the recently introduced entanglement asymmetry
[88–90,143]. The latter measures how much a symmetry is
broken in a subsystem, and has been employed to observe
a quantum version [88] of the Mpemba effect [144–147].
A relevant question is whether this effect may also occur
in higher dimensions and under what conditions it hap-
pens. Another easy but interesting generalization would be
to use dimensional reduction to study quench problems in
2D free-bosonic models to contrast with existing field theory
literature [134].

Note added. Recently, we became aware of the parallel
work [148], where also the entanglement entropy of 2D free
fermion systems is studied. However, in this paper the dimen-
sional reduction is not used and the emphasis is more on the
shape on the entangling region rather than on the different
initial states.
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APPENDIX A: PROOF OF THE CONDITION OF EQ. (127)
FOR THE EXISTENCE OF STATIONARY STATE

In this Appendix, we prove that reduced density matrix
ρA(t ) relaxes to a stationary state if and only if Eq. (127)
holds. In other words, the goal of the Appendix is to prove that
the following two propositions are necessary and sufficient
conditions for each other:

Proposition 1. The limit

lim
t→∞ ρA(t )

exists.
Proposition 2. For large times, ρX,A(t ) in Eq. (126) re-

stores the translational symmetry in the y direction, i.e., the
following equation holds:

TAρX,A(∞)T −1
A = ρX,A(∞).

To this end, we make the following assumptions:
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Assumption 1. ρX,A(t ) relaxes to the GGE associated to
HX [cf. Eq. (117)] at large time, i.e.,

lim
t→∞ ρX,A(t ) = ρGGE

X,A . (A1)

Assumption 2. If the stationary state for ρA(t ) exists, then

lim
t→∞ ρA(t ) = ρGGE

A , (A2)

where ρGGE
A is the GGE built from the conserved charges

of H .
Note that we can use Assumption 2 only when Proposition

1 is true.
To prove Proposition 1 ⇐⇒ Proposition 2, we first show

that Proposition 1 is true if and only if the following proposi-
tion is true:

Proposition 3. ρX,A(t ) converges to ρGGE
A for large

times, i.e.,

ρGGE
X,A = ρGGE

A .

Proposition 3 �⇒ Proposition 1 can be shown as follows:
from Eq. (125),

lim
t→∞ ρA(t ) = lim

t→∞UA(t )ρA,X (t )U †
A (t ). (A3)

Assumption 1 and Proposition 3 allow us to replace ρA,X in
the above equation with ρGGE

A , which reads as

lim
t→∞ ρA(t ) = lim

t→∞UA(t )ρGGE
A UA(t )† = ρGGE

A . (A4)

Here we have used [UA(t ), ρGGE
A ] = 0 in the last equality. The

above equation clearly shows that

Proposition 3 �⇒ Proposition 1. (A5)

Proposition 1 �⇒ Proposition 3 can also be shown in a
similar way: from Eq. (125),

lim
t→∞ ρX,A(t ) = lim

t→∞U †
A (t )ρA(t )UA(t ). (A6)

Proposition 1 and Assumption 2 allow us to replace ρA in the
above equation with ρGGE

A , which results in

lim
t→∞ ρX,A(t ) = lim

t→∞U †
A (t )ρGGE

A UA(t ) = ρGGE
A . (A7)

Here we again used [UA(t ), ρGGE
A ] = 0 in the last equality.

From the previous equation, we can conclude that

Proposition 1 �⇒ Proposition 3. (A8)

Equations (A5) and (A8) imply

Proposition 1 ⇐⇒ Proposition 3. (A9)

By (A9), proving Proposition 1 ⇐⇒ Proposition 2 is equiva-
lent to show Proposition 2 ⇐⇒ Proposition 3. Let us therefore
prove the latter.

Proposition 3 �⇒ Proposition 2 can be shown as follows:
from Proposition 3, we obtain

TAρGGE
X,A T −1

A = TAρGGE
A T −1

A (A10)

= TrB
[
TAρGGET −1

A

]
. (A11)

Inserting the identity T −1
B TB in TrB in the above equation and

using the cyclic property of trace, we obtain

TAρGGE
X,A T −1

A = TrB
[
TBTAρGGET −1

A T −1
B

]
. (A12)

According to Eq. (107), ρGGE is invariant under translations
in the y direction, namely,

TBTAρGGET −1
A T −1

B = ρGGE. (A13)

Substituting it into Eq. (A12), we obtain

TAρGGE
X,A T −1

A = ρGGE
A (A14)

and using Proposition 3

TAρGGE
X,A T −1

A = ρGGE
X,A . (A15)

The above equation shows that

Proposition 3 �⇒ Proposition 2. (A16)

Proposition 2 �⇒ Proposition 3 can be shown as follows:
Without loss of generality, ρGGE

X,A can be expressed as

ρGGE
X,A = e−HA

TrA(e−HA )
, (A17)

where HA is the entanglement Hamiltonian which is given
by [138]

HA =
∑
i,i′∈A

Ki,i′a
†
i ai′ , (A18)

with K being a VA × VA Hermitian matrix. Therefore, Propo-
sition 2 is equivalent to stating that the entanglement
Hamiltonian HA is invariant under translations in the y direc-
tion, i.e.,

Proposition 2 ⇐⇒ TAHAT −1
A = HA. (A19)

This implies that we can decompose HA in the transverse
momentum sectors by taking the partial Fourier transform
(12) in the y direction,

HA =
∑

qy

�−1∑
ix,i′x=0

[K (qy)]ix,i′x c
†
ix,qy

ci′x,qy , (A20)

where K (qy) is a � × � Hermitian matrix. On the other hand,
if we express the matrix UA(t ), defined in Eq. (124), in the
mixed space-momentum basis,

UA(t ) = e−it
∑�−1

ix=0

∑
qy

cos qyc†
ix ,qy

cix ,qy , (A21)

we find that

UA(t )cix,qyU
†
A (t ) = cix,qy e

−it cos qy . (A22)

Combining this result with Eq. (A20), we obtain

UA(t )HAU †
A (t ) = HA. (A23)

Therefore, applying this identity in Eq. (A17),

UA(t )ρGGE
A,X U †

A (t ) = ρGGE
A,X . (A24)

Thus, if we take the limit

lim
t→∞ ρA(t ) = lim

t→∞UA(t )ρX,A(t )U †
A (t ), (A25)

we apply Assumption 1,

lim
t→∞ ρA(t ) = lim

t→∞UA(t )ρGGE
X,A U †

A (t ), (A26)
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and Eq. (A24), we obtain

lim
t→∞ ρA(t ) = ρGGE

X,A . (A27)

Equation (A27) shows that, if ρX,A restores the transverse
translational symmetry at large times, then ρA(t ) relaxes to
a stationary state, i.e., Proposition 1 holds. Since we can use
Assumption 2 when Proposition 1 holds, we can replace the
left-hand side of Eq. (A27) with ρGGE

A and

ρGGE
A = ρGGE

X,A . (A28)

Therefore, Proposition 2 �⇒ Proposition 3. This ends the
proof of

Proposition 2 ⇐⇒ Proposition 3. (A29)

From (A9) and (A29), we have finally proved that

Proposition 1 ⇐⇒ Proposition 2. (A30)

APPENDIX B: PROOF OF THE CONDITION (128)
FOR THE RESTORATION OF TRANSLATIONAL

INVARIANCE IN THE y DIRECTION

In this Appendix, we show that ρX,A(t ) restores the
translation symmetry in the y direction at large times, i.e.,
Proposition 2 is true, if and only if Eq. (128) is satisfied.

As mentioned in Appendix A, Proposition 2 is equivalent
to saying that the stationary state limt→∞ ρA,X (t ) = ρGGE

X,A is
block diagonal in the qy momentum sectors. Thus, we can
verify whether Proposition 2 is satisfied or not by calculating
the mixed space-momentum correlator

C
qy,q′

y

ix,i′x
(t ) = TrA(ρX,A(t )c†

ix,qy
ci′x,q′

y
). (B1)

Given Assumption 1, it is clear that C
qy,q′

y

ix,i′x
(∞) = 0 ∀ ix, i′x ∈

A, qy �= q′
y if and only if ρGGE

X,A is block diagonal in the qy

momentum sectors. Thus, in the following, we prove that

C
qy,q′

y

ix,i′x
(∞) = 0 if and only if Eq. (128) holds.

Using Assumption 1 and performing the Fourier transform

in the x direction, we can rewrite C
qy,q′

y

ix,i′x
(∞) as

C
qy,q′

y

ix,i′x
(∞) = 1

Lx

∑
qx,q′

x

e−iqxix+iq′
x i′x Tr

(
ρGGE

X ã†
qãq′

)
. (B2)

We recall that ρGGE
X is a GGE built with conserved charges of

HX , which is diagonalized as

HX =
∑

qx

∑
iy

cos qxd†
qx,iy

dqx,iy (B3)

=
∑

qx

∑
μ

cos qxα
†
qx,μ

αqx,μ, (B4)

where αqx,μ = ∑
iy

[U (qx )]μ,iy dqx,iy with U (qx ) being a Ly ×
Ly unitary matrix. Therefore, without loss of generality, the
conserved charges of HX are given by Q̂qx,μ = α†

qx,μ
αqx,μ and

hence ρGGE
X can be written as

ρGGE
X = e− ∑

qx ,μ λqx ,μQ̂qx ,μ

Tr(e− ∑
qx ,μ λqx ,μQ̂qx ,μ )

. (B5)

Even without knowing explicitly the form of U (qx ), the pre-
vious equation shows that ρGGE

X has a block-diagonal form in
the qx momentum sectors. This implies that

Tr
(
ρGGE

X ã†
qãq′

) = δqx,q′
x
Tr

(
ρGGE

X ã†
qx,qy

ãqx,q′
y

)
. (B6)

Plugging it into Eq. (B2), we obtain

C
qy,q′

y

ix,i′x
(∞) = 1

Lx

∑
qx

e−iqx (ix−i′x )Tr
(
ρGGE

X ã†
qx,qy

ãqx,q′
y

)
. (B7)

Since the charges ã†
qx,qy

ãqx,q′
y

are conserved by HX ,

Tr
(
ρGGE

X ã†
qx,qy

ãqx,q′
y

) = 〈ψ0|ã†
qx,qy

ãqx,q′
y
|ψ0〉 (B8)

and, substituting it into Eq. (B7), we arrive at

C
qy,q′

y

ix,i′x
(∞) = 1

Lx

∑
qx

e−iqx (ix−i′x )〈ψ0|ã†
qx,qy

ãqx,q′
y
|ψ0〉. (B9)

From this expression, we find that C
qy,q′

y

ix,i′x
(∞) = 0 if and

only if

〈ψ0|ã†
qx,qy

ãqx,q′
y
|ψ0〉 = 0 ∀ qx, qy �= q′

y. (B10)

APPENDIX C: INHOMOGENEOUS PARTIALLY
FILLED PRODUCT STATE

In this Appendix, we analyze another example of a quench
in which ρA(t ) does not relax to a stationary state, and thus the
standard quasiparticle picture must be modified (see Sec. VI).
Specifically, we consider the quantum quench from the inho-
mogeneous partially filled product state

|IPF〉 =
Lx−1∏
iy=0

|IPF〉iy , (C1)

where |IPF〉iy is similar to the 1D cat state of Eq. (82) but now
the angle θ that controls the occupation probability depends
on the coordinate iy,

|IPF〉iy = 1√
2 + 2(cos θiy )Lx

(|θiy〉 − |−θiy〉). (C2)

When θiy = θ for all iy, |IPF〉 is the the partially filled product
state I discussed in Sec. IV G 1.

Evaluating the correlator of Eq. (128) in the state |IPF〉,
we have

〈IPF|ã†
qx,qy

ãqx,q′
y
|IPF〉

= 1

2Ly

∑
iy

ei(qy−q′
y )iy (1 − cos 
qx,iy ), (C3)

where cos 
qx,iy is obtained by replacing θ in Eq. (88) with
θiy . If θiy is independent of iy, which corresponds to the case
in Sec. IV G 1, this correlator vanishes for all qx and qy �= q′

y.
In that case, according to the results in Sec. VI B, ρA(t ) re-
laxes to a stationary state and the prediction of the standard
quasiparticle picture (113) works. On the other hand, when θiy
depends on iy, the correlator of Eq. (C3) is in general nonzero,
and Eq. (128) is not satisfied. This implies that it does not exist
a stationary state for ρA(t ).
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When θiy depends on iy, the state |IPF〉 has no transla-
tional symmetry in the y direction, hence, we cannot apply
the dimensional reduction approach of Sec. III. Instead, when
the initial state is the product state for each iyth row as in
Eq. (C1), we can calculate the Rényi entanglement entropy
without using the dimensional reduction as follows. Let us
decompose the time-evolution Hamiltonian as in Eq. (116).
Since the operator e−itHX

has no dynamics in the y direction,
it preserves the initial product structure for each iyth row.
Therefore, the reduced density matrix ρX,A(t ), introduced in
Eq. (126), and obtained in this case from the state e−itHX |IPF〉,
is of the form

ρX,A(t ) =
Ly−1⊗
iy=0

ρX,A,iy (t ), (C4)

where

ρX,A,iy (t ) = TrB,iy

(
e−itHX

iy |IPF〉iy〈IPF|eitHX
iy
)
, (C5)

and TrB,iy is the partial trace over the sites of the subsystem B
in the iyth row. Since ρA(t ) and ρX,A(t ) are related by the uni-
tary transformation (125), we have Sn(ρA(t )) = Sn(ρX,A(t )).
Therefore, if we further take into account that the Rényi en-
tanglement entropy is additive in the tensor product,

Sn(ρA) = Sn(ρX,A) =
Ly−1∑
iy=0

Sn(ρX,A,iy ). (C6)

Since ρX,A,iy is nothing but the reduced density matrix of the
partially filled product state I of Sec. IV G 1 with Ly = 1,
the asymptotic form of Sn(ρX,A,iy ) in the space-time scaling
limit can be obtained by just setting Ly = 1 in Eq. (93). It
reads as

Sn(ρX,A,iy ) �
∫ 2π

0

dqx

2π
hn(cos 
qx,iy ) min (�, 2t |vx(qx )|).

(C7)

Plugging the above equation into Eq. (C6) yields

Sn �
Ly−1∑
iy=0

∫ 2π

0

dqx

2π
hn(cos 
qx,iy ) min (�, 2t |vx(qx )|). (C8)

Accordingly, the saturation value of the Rényi entanglement
entropy is

lim
t→∞ Sn = �

Ly−1∑
iy=0

∫ 2π

0

dqx

2π
hn(cos 
qx,iy ). (C9)

On the other hand, applying the standard quasiparticle picture
of Sec. V to the state |IPF〉, i.e., Eq. (113) with the expectation
value of the conserved charges (C3), we find

Sn � Ly

∫ 2π

0

dqx

2π
hn

⎛
⎝L−1

y

Ly−1∑
iy=0

cos 
qx,iy

⎞
⎠

× min (�, 2t |vx(qx )|). (C10)
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FIG. 11. Time evolution of the Rényi entanglement entropy af-
ter a quench from the inhomogeneous partially filled product state,
taking as inhomogeneous angles θiy = 2π iy/Ly for the initial con-
figuration and Rényi indices n → 1 and n = 2. The solid lines
correspond to the analytic prediction found in Eq. (C8). The sym-
bols are the exact values of the entropy computed numerically with
Eq. (8). The dashed lines are the large-time saturation value predicted
in Eq. (C8). The dotted and dashed-dotted lines are the predictions of
the standard quasiparticle picture in Eq. (C10) for n → 1 and n = 2,
respectively. In all cases, we take Ly = 10.

In Fig. 11, we plot as a function of time the Rényi en-
tanglement entropies in the quench from the inhomogeneous
partially filled product state with the inhomogeneous angle
θiy = 2π iy/Ly. The plot shows that the expression of Eq. (C8)
(solid lines) agrees well with the exact values (symbols) of the
entropies obtained by numerically with Eq. (8), whereas the
prediction of the quasiparticle picture in Eq. (C10) (dashed
curves) does not match the correct result.

This discrepancy means that, as in the case of the crossed
dimer state, the entanglement entropies derived from the
GGEs associated with H and HX are different, and the cor-
rect one is the latter. In the present case, one finds that the
GGE that reproduces the saturation value of the entanglement
entropy in Eq. (C9) is built with the charges

n̂qx,iy = d†
qx,iy

dqx,iy , (C11)

which commute with HX but not with H .
Repeating the derivation of Eq. (110) for the current case,

we find that the entropy of the GGE built with {n̂qx,iy} is

Sn =
Ly−1∑
iy=0

∫ 2π

0

dqx

2π
hn(2nqx,iy − 1), (C12)

where nqx,iy = 〈ψ0|n̂qx,iy |ψ0〉. For the state |IPF〉, this expecta-
tion value is

nqx,iy = 1 − cos 
qx,iy

2
. (C13)

Plugging it into Eq. (C12), we indeed obtain Eq. (C9).
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