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Topological quantum chains protected by dipolar and other modulated symmetries
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We investigate the physics of one-dimensional symmetry-protected topological (SPT) phases protected by
symmetries whose symmetry generators exhibit spatial modulation. We focus in particular on phases protected
by symmetries with linear (i.e., dipolar), quadratic, and exponential modulations. We present a simple recipe
for constructing modulated SPT models by generalizing the concept of decorated domain walls to spatially
modulated symmetry defects, and develop several tools for characterizing and classifying modulated SPT phases.
A salient feature of modulated symmetries is that they are generically only present for open chains, and are
broken upon the imposition of periodic boundary conditions. Nevertheless, we show that SPT order is present
even with periodic boundary conditions, a phenomenon we understand within the context of an object we dub a
“bundle symmetry.” In addition, we show that modulated SPT phases can avoid a certain no-go theorem, leading
to an unusual algebraic structure in their matrix product state descriptions.
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I. INTRODUCTION

Symmetries and patterns of quantum entanglement are
two of the major features that characterize different quantum
phases of matter. This is most succinctly illustrated in the
case of symmetry-protected topological (SPT) phases, where
global symmetries can stabilize certain patterns of short-range
entanglement. The zoology of SPT phases protected by dif-
ferent types of symmetries has been carefully categorized
over the years [1–31]. In particular, [30,32] have analyzed
SPT phases protected by L-cycle symmetries in which the
protecting symmetry operators periodically vary over L sites
[31].

In another vein, it has been understood that multipole con-
servation prohibits the free motion of charge and limits the
overall phase space of the dynamics, leading to new types
of quantum ground states [33–49] and unusual dynamical
properties, including robust ergodicity breaking [50,51] and
anomalous hydrodynamics [52–60]. These systems have also
begun to be studied experimentally, where dipole symmetry,
the simplest type of multipolar conservation law, arises in ex-
periments involving ultracold atoms placed in strongly tilted
optical lattices [61–64].

These symmetries arise in systems that conserve both a
global charge and various multipole moments thereof. This
work is devoted to developing an understanding of short-range
entangled phases of matter protected by multipole and expo-
nential symmetries. Much of our intuition in this regard comes
from studying an exactly solvable model we introduce, where
ZN monopole and ZN dipole symmetries lead to a different
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type of SPT order dubbed the dipolar SPT. Despite this model
bearing some resemblance to the ordinary ZN cluster state
[9,65–67], we show that there is no unitary which maps be-
tween the two models and their protecting symmetry groups.

The dipolar SPT phase is in fact only one example in a
much broader class of modulated SPT phases, several ex-
amples of which we introduce and study in detail. These
phases are protected by global symmetries whose generators
are modulated in space, the unusual physics of which is still
under active investigation [59,68,69]. The trick that allows us
to do this is the decorated domain wall scheme [20] which
we exploit to construct exactly solvable SPT models protected
by quadrupolar and exponential charge symmetries [70–72].
Although formally the symmetry operators protecting this
kind of SPT phase can be cyclic in space [30,32] (“L-cyclic”
according to [31]), we show that cyclicity is not a necessary
ingredient in defining the modulated SPT order.

An interesting feature of modulated symmetries is that
their symmetry generators in general may not be consistently
defined in systems with periodic boundary conditions. This
fact raises the question of whether or not their associated
symmetry-protected phases are robustly defined in such situa-
tions. We show that despite the absence of a global symmetry
operator, such SPT phases are still well defined. We do this by
introducing the notion of a bundle symmetry, a concept more
general than a conventional global symmetry. The modulated
SPT phases we study in this work are consequently protected
by bundle symmetries, rather than the usual global symme-
tries. The bundle character of the protecting symmetry has not
appeared in previous works on SPT classification, but marks
the key characteristic of the modulated SPT.

The paper is organized as follows. In Sec. II we review the
standard ZN cluster state SPT in one dimension. In Sec. III we
introduce the dipolar SPT through an exactly solvable model
and its ground-state exact wave function, and construct its
fractionalized edge modes, string operators, and matrix prod-
uct state (MPS) representation. The stability of the dipolar
SPT phase under the symmetry-preserving perturbations is
checked numerically. The inequivalence of the dipolar SPT to
the usual ZN cluster state is carefully discussed. In Secs. IV
and V, we extend our analysis of dipole-protected SPT phases
to phases protected by quadrupolar symmetry and a type of
exponentially modulated symmetry, respectively. We end with
a summary and perspective in Sec. VI.

II. REVIEW OF CONVENTIONAL ZN × ZN SPT PHASES

In this section, we review the basic properties of one-
dimensional (1D) SPT phases protected by a conventional
onsite ZN × ZN symmetry. This review will serve as prepa-
ration for discussing the charge multipole-conserving SPT
models to follow; readers already familiar with the details may
skip to Sec. III.

A. The ZN cluster model

The ZN cluster model in 1D is a well-known example of an
SPT phase with ZN × ZN global symmetry, originally intro-
duced for N = 2 [9,20,65] and later generalized to arbitrary
N [66,67]. We consider a chain with an N-dimensional onsite

Hilbert space, whose basis vectors we write as |g〉, g ∈ ZN .
We will write the Hamiltonian HC of the cluster state as

HC = −
∑

j

(b2 j−1 + b2 j + H.c.),

b2 j−1 = Z†
2 j−2X2 j−1Z2 j,

b2 j = Z2 j−1X2 jZ
†
2 j+1, (2.1)

where we have defined the generalized Pauli operators
X ≡ ∑

g |g + 1〉〈g| (with g + 1 taken mod N) and Z ≡∑
g ωg|g〉〈g|, with ω ≡ e2π i/N . Note that the b j’s are mutually

commuting stabilizers. This property makes analyzing the
physics of HC extremely simple.

The model possesses two ZN global symmetries Q1, Q2

supported on even and odd sites of the chain, respectively:

Q1 =
∏

j

X2 j−1, Q2 =
∏

j

X2 j, (2.2)

with QN
1 = QN

2 = 1. We refer to these symmetries as monopo-
lar symmetries, to be distinguished from dipolar and other
modulated symmetries introduced in later sections. Monopo-
lar symmetries are distinguished by being generated by
“uniform” operators, which act the same way in each two-site
unit cell of the lattice. This means that translation through two
lattice sites, i.e., one unit cell, commutes with both Q1, Q2.

The ground state |�C〉 can be obtained by finding a wave
function that is stabilized by each of the aj . This can be done
by writing

|�C〉 ∝
∑

g∈(ZN )⊗L

ω
∑

j g2 j (g2 j−1−g2 j+1 )|g〉, (2.3)

where |g〉 ≡ |g1, . . . , gL〉 (gi ∈ ZN ) for a lattice of length
L. Defining the state |+〉 ≡ 1√

N

∑
g |g〉, we can write a uni-

tary which prepares |�C〉 from a product state as |�C〉 =
UC |+〉⊗L, where

UC =
L/2∏
n=1

CZ2n−1,2n × CZ†
2n,2n+1. (2.4)

In this notation, which will be employed throughout this work,
COmn denotes a conditional two-qudit unitary gate which acts
as Og on qudit n if qudit m is in the state |g〉. Explicitly,

COmn = 1

N

N∑
α=1

N∑
β=1

ω−αβZα
mOβ

n , (2.5)

which implies CZmn |gmgn〉 = ωgmgn |gmgn〉.
To check that UC as defined above indeed produces |�C〉,

one can employ the following readily verified transforma-
tions:

U†
CX2 j−1UC = Z2 j−2X2 j−1Z†

2 j,

U†
CX2 jUC = Z†

2 j−1X2 jZ2 j+1. (2.6)

Under this unitary transformation, the cluster Hamiltonian on
a periodic chain of even-length L changes to

U†
CHCUC = −

L∑
j=1

(Xj + X †
j ). (2.7)
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The state |+〉⊗L is obviously the ground state of Xj + X †
j for

all j, hence, |�C〉 = UC |+〉⊗L is the ground state of HC .

B. String-order parameters, edge modes,
and entanglement spectrum

String-order operators [73,74] characterizing the SPT na-
ture of the ZN cluster model can be constructed as a product
of stabilizers of the cluster Hamiltonian over odd and even
sites, respectively:

SQ1 = b2 j+1b2 j+3 . . . b2 j+2m−1

= Z†
2 j

(
m∏

n=1

X2 j+2n−1

)
Z2 j+2m,

SQ2 = b2 jb2 j+2 . . . b2 j+2m−2

= Z2 j−1

(
m∏

n=1

X2 j+2n−2

)
Z†

2 j+2m−1. (2.8)

The subscripts on S indicate which of the global symme-
tries is associated with the particular string-order parameter.
One can view them as measuring the “monopole” corre-
lations (Z†

2 jZ2 j+2m or Z2 j−1Z†
2 j+2m−1) intertwined with the

string order given by the product of X between the two
monopoles. Note that the string operator constructed from
the product of odd-site stabilizers has monopoles at the even
sites (Z†

2 j and Z2 j+2m), and vice versa. The expectation values
of both string-order parameters are strictly equal to one for
the cluster ground states (2.3), and are generically1 nonzero
for ground states of models related to HC by symmetry-
preserving perturbations which do not close the bulk
gap.

For an open chain of even length L, the unitary transforma-
tion UC becomes

UC =
L/2∏
n=1

CZ2n−1,2n ×
L/2−1∏

n=1

CZ†
2n,2n+1. (2.9)

(There is a similar unitary for an open chain of odd length.)
This unitary transformation results in (2.7) with j = 1 and
j = L terms missing. The two edge states |g1〉, |gL〉 are thus
left arbitrary, reflecting the dangling degrees of freedom at
the edges of an SPT chain [75,76]. The existence of dangling
states is related to an important feature of the SPT phase,
viz., symmetry fractionalization at the chain edges [6,7]. Since
operators from j = 1, L are missing in (2.7), (X1, Z1) and
(XL, ZL ) are the obvious candidates for edge operators. In the
original basis they become

UCX1U†
C = X1Z2 ≡ L1,

UCZ1U†
C = Z1 ≡ L2,

1Any particular choice of string order can vanish in a measure zero
case; however, for any point in the SPT phase there always exists
a choice of charged end-point operator such that the string order is
nonzero [74].

UCXLU†
C = ZL−1XL ≡ R1,

UCZLU†
C = ZL ≡ R2. (2.10)

These operators satisfy the algebra

L1L2 = ω−1L2L1, R1R2 = ω−1R2R1, (2.11)

and commute with the open-chain cluster Hamiltonian,
thereby generating the (N × N)-fold degenerate ground states.
When acting on the ground states |�C〉, the symmetry op-
erators can be decomposed into the products of these edge
operators

Q1|�C〉 = L1R†
2|�C〉,

Q2|�C〉 = L†
2R1|�C〉. (2.12)

Because of (2.11), the global symmetries are realized projec-
tively on the edges.

Another characteristic of a nontrivial one-dimensional SPT
phase is the degeneracy in the entanglement spectrum [5]. The
reduced density matrix of the ground state (2.3) on a finite
region A consisting of sites 1 � j � l is

ρA = UA

⎛
⎝ ∑

g,h∈(ZN )⊗�

δg1,h1δg�,h�
|g〉〈h|

⎞
⎠U†

A, (2.13)

where h = {h1, h2, . . . , h�} and UA is a product of the pair-
wise unitary similar to (2.9), tailored to the region A. The
eigenvectors of ρA all have zero eigenvalues except for the
N2 eigenvectors

|ψh1,h�
〉 = UA

⎛
⎝ ∑

h2,...,h�−1

|h〉
⎞
⎠ (2.14)

which have eigenvalue 1/N2 and are parametrized by h1, h� ∈
ZN . This N2 degeneracy in the entanglement spectrum is
related to the N2 ground-state degeneracy on an open chain.

To summarize, the ground state of the cluster Hamiltonian
is an example of topological paramagnetic state, preserving
the ZN × ZN symmetries of the Hamiltonian and displaying
short-range entanglement as well as symmetry fractionaliza-
tion at the edges. In the decorated domain wall picture of
SPT phases [20], the ground state can be visualized as being
obtained from the proliferation of domain walls (created with
the operators Z†

2 j−2Z2 j and Z2 j−1Z†
2 j+1) decorated with a ZN

charge contributed by the X operators appearing in the bj .

C. No-go theorem

Thus far we have reviewed known properties of the cluster
model. One can argue that one particular property is un-
avoidable, namely, that for N > 2 the cluster model is not
translation invariant. This is notable since the dipolar ZN ×
ZN SPT model which we introduce in the next section is, in
fact, translation invariant.

In the remainder of this section, we make the above claim
precise by proving the following theorem:

Theorem 1. Let |ϕ〉 be any translation-invariant short-
range entangled state which is symmetric under Q1 and Q2

[Eq. (2.2)]. Then |ϕ〉 is in the following ZN × ZN SPT class
with respect to Q1, Q2:
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(i) If N is odd, then |ϕ〉 is in the trivial SPT phase.
(ii) If N is even, then |ϕ〉 is trivial or in the class [N/2] ∈

H2(ZN × ZN ,U (1)) = ZN .
We note that a constructive example of the nontrivial SPT

phase mentioned for even N is H = −∑
j (Z

N/2
j−1XjZ

N/2
j+1 +

H.c.) which has a translation-invariant ground state |�C〉 ∝∑
g∈(ZN )⊗L (−1)

∑
j g j g j+1 |g〉 [66]. This is in a phase distinct

from the cluster model defined in Eq. (2.1), which corresponds
to [1] ∈ H2(ZN × ZN , U(1)) = ZN in the group cohomology
classification [4–8]. For instance, the former model only has
a twofold protected edge degeneracy, in contrast to the N-fold
degenerate edge of the cluster model in Eq. (2.1).

To prove the above theorem, we use that since |ϕ〉 is a
short-range entangled symmetric state, there exists [74] an
exponentially localized operator On (with support2 on m � n)
such that the string operator

S2n = . . . X2n−5X2n−3X2n−1O2n (2.15)

leaves the ground state invariant, i.e., S2n |ϕ〉 ∝ |ϕ〉.
The SPT class [k] ∈ H2(ZN × ZN , U(1)) is encoded in∏

X †
n On

∏
Xn = ωkOn. The fixed-point cluster model has

On = Zn, giving k = 1, indeed corresponding to the root SPT
phase [1] ∈ H2(ZN × ZN , U(1)).

By translation symmetry, we know the ground state must
also be invariant under

S2n+1 = . . . X2n−4X2n−2X2nO2n+1. (2.16)

By multiplying these two string operators, we obtain that the
ground state is invariant under

. . . X2n−4X2n−3X2n−2X2n−1(Q†
2O2nQ2O2n+1), (2.17)

i.e., this is a semi-infinite string of
∏

X with end-point op-
erator Q†

2O2nQ2O2n+1. The charge of this end-point operator
under

∏
j Xj is clearly ω2k . If 2k 
= 0 mod N , then this would

mean that we have a nontrivial SPT phase protected by the ZN

symmetry generated by
∏

j Xj . However, H2(ZN , U(1)) = 0,
and thus 2k = 0 mod N . This proves the above theorem.

III. DIPOLAR SPT

A. The dipolar SPT model

We now introduce a model with ZN × ZN SPT order where
one of the ZN symmetries will be dipolar in character. The
other ZN symmetry will be monopolar in nature (viz., will
have generators which act identically on each unit cell), and
will be referred to in the following as the charge symmetry.

Like the conventional cluster state introduced in the previ-
ous section, the dipolar SPT is a ZN spin model defined on a
1D chain. On an infinite chain, the charge (Q) and dipole (D)
symmetries are defined as

Q =
∏

j

Xj, D =
∏

j

(Xj )
j . (3.1)

Thinking of Xj as the charge operator at the site j, we see that
D measures the dipole moment of the charge distribution. A

2One might naively expect support also on m > n, but this can be
avoided by using Schmidt decomposition arguments as in Ref. [74].

clear way of illustrating the modulated nature of D is to look at
how it behaves under translations. Let T be the operator that
translates through one unit cell (which for us will be a single
site). We then have the following algebra:

T −1QT = Q, T −1DT = QD. (3.2)

This algebra can be taken as the definition of a dipole symme-
try.

With periodic boundary conditions, the definition of dipole
symmetry becomes a subtle but interesting affair that we dis-
cuss in depth in Sec. III D. Until then, we will only consider
either infinite chains or chains with open boundary conditions.

As we did in our review of the conventional cluster state,
we will begin our discussion of SPT physics by writing an ex-
actly solvable model protected by Q and D. The Hamiltonian
we will focus on is

HD = −
∑

j

(a j + a†
j ),

a j = Zj−1(Z†
j XjZ

†
j )Zj+1, (3.3)

where we add the parentheses to emphasize that aj is a three-
body term. As one can check, HD is a stabilizer Hamiltonian
with aN

j = 1 and [a j, a j′ ] = 0, so that the ground state |�D〉 of
HD satisfies a j |�D〉 = |�D〉 for all j. The explicit expression
for |�D〉 is

|�D〉 ∝ UD

⎛
⎝∑

g

|g〉
⎞
⎠,

UD|g〉 = ω
∑

j g j (g j+1−g j )|g〉. (3.4)

Using the conditional-gate notation of Eq. (2.5), we can write
UD = ∏

n CZn,n+1 (CZn,n)†.3 The model Hamiltonian HD and
the ground state |ψD〉 are both translationally invariant and
well defined for any system size. On the other hand, there
are subtleties in the symmetry of the Hamiltonian for periodic
boundary conditions when the system size L 
= 0 mod N , as
will be discussed carefully in Sec. III D.

As one can see from (3.3), the stabilizers of the dipolar
SPT model are constructed by decorating the charge operator
Xj by Zj−1Z†

j on one side and Z†
j Z j+1 on the other. Since

Zj−1Z†
j and Z†

j Z j+1 carry opposite dipole charges under D, we

can view Zj−1Z†
j · Z†

j Z j+1 as measuring the dipole-antidipole
charge, or as describing the domain wall of dipoles. Such a
dipolar domain wall decorates the “charge”Xj (this is charge
with respect to Q, not D) and gives rise to the dipolar SPT
model.

For completeness of presentation, we show how to rewrite
the dipolar SPT Hamiltonian in the parafermion representa-
tion in Appendix A.

3Note that Eq. (2.5) is well defined for n = m if On commutes with
Zn. The CZn,n operation acting on a single-qudit state |gn〉 yields ωg2

n ,
as desired.
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B. String-order parameters and entanglement spectrum

When placed on an infinite chain, the dipolar SPT order
can be detected by the string-order parameters

SQ = a ja j+1 . . . a j+m−1

= Zj−1Z†
j

(
m∏

n=1

Xj+n−1

)
Z†

j+m−1Zj+m,

SD = a ja
2
j+1 . . . am

j+m−1

= ω−(m2+m)/2Zj−1

(
m∏

n=1

X n
j+n−1

)
Z†

j+m−1(Z†
j+m−1Zj+m)m.

(3.5)

The string operator SQ for the monopole symmetry is dressed
with dipoles and antidipoles (created by Z†

j Z j+1 and its con-
jugate) at its end points, while the string operator SD for the
dipole symmetry is dressed with monopoles (viz., excitations
charged under Q) at its edges, together with a dipole operator
(Z†

j+m−1Zj+m)m whose dipole moment depends on the length
of the string modulo N .

Another way to detect the dipolar SPT on an infinite chain
is to look for degeneracy in the entanglement spectrum. Con-
sider a finite region A consisting of sites 1 � j � l on an
infinite chain. The reduced density matrix of the ground state
(3.4) on A is

ρA = UA

⎛
⎝ ∑

g,h∈(ZN )⊗�

δg1,h1δg�,h�
|g〉〈h|

⎞
⎠U†

A, (3.6)

where g = {g1, . . . , gl} and UA is the unitary that acts as

UA|g〉 = ω
∑l−1

j=1 g j g j+1−
∑L

j=1 g2
j |g〉. (3.7)

The reduced density matrix has N2 eigenvectors with a
nonzero eigenvalue of 1/N2, given by

|ψh1,hl 〉 = UA

⎛
⎝ ∑

h2,...,hl−1∈ZN

|h〉
⎞
⎠ (3.8)

parametrized by h1, hl ∈ ZN . The entanglement entropy is
then given by 2 log N independent of the subsystem size l ,
revealing the short-ranged entanglement of the ground state.
Upon turning away from this special point the entanglement
entropy will change, but the N-fold degeneracy will remain
(as we confirm numerically in Sec. III H). This follows from
symmetry fractionalization, which we will now explain in
more detail from the lens of physical edge modes.

C. Edge modes

We now place the dipolar SPT Hamiltonian on an open
chain 1 � j � L of length L. The dipolar symmetry operator
D is well defined for the entire section of the open chain. Let
the unitary UD on the open chain be

UD|g〉 = ω
∑L−1

j=1 g j g j+1−
∑L−1

j=2 g2
j |g〉. (3.9)

For j = 2, . . . , L − 1, one can easily prove the identities

U†
DXjUD = Z†

j−1ZjXjZ jZ
†
j+1,

U†
DajUD = Xj, (3.10)

and use them to show

U†
DHDUD = −

L−1∑
j=2

(Xj + X †
j ). (3.11)

The two end sites j = 1, L do not appear in the transformed
Hamiltonian for an open chain, implying that (X1, Z1) and
(XL, ZL ) are the edge operators spanning the zero-energy sub-
spaces. In the original basis, they become

UDX1U†
D = X1Z2,

UDZ1U†
D = Z1,

UDXLU†
D = ZL−1XL,

UDZLU†
D = ZL. (3.12)

All the operators on the right-hand side commute with HD and
span the N-fold degenerate subspace at each edge.

An alternative way to arrive at the edge operators is to
concatenate all the stabilizers a2 . . . aL−1 for an open chain
of length L, which gives

L−1∏
j=2

a j = (Z1Z†
2 X †

1 )Q(X †
L ZLZ†

L−1) = 1, (3.13)

the identity to 1 arising from acting on the ground state.
This means the charge symmetry operator Q fractionalizes to
LQRQ where

LQ = X1Z†
1 Z2, RQ = ZL−1Z†

LXL. (3.14)

A similar consideration for
∏L−1

j=2 (a j ) j yields the fractional-
ization of dipole operator D = ω−(L+1)(L−2)/2LDRD where

LD = X1(Z†
1 )2Z2 ∼ LQZ†

1 ,

RD = (ZL−1)L(Z†
L )L−1(XL )L ∼ (RQ)LZL. (3.15)

Here, ∼ means that the left- and the right-hand sides are equiv-
alent up to a phase. The edge operators we have constructed
span the full space N-fold degenerate edge states by virtue of
the algebra

LQLD = ωLDLQ,

RQRD = ω−1RDRQ, (3.16)

and their commutativity with the Hamiltonian HD. The frac-
tionalized charge operators LQ,RQ contain the dipoles Z†Z ,
while the fractionalized dipole operators LD,RD contain
charges Z . Such symmetry fractionalization is a robust fea-
ture, in the sense that it cannot be undone while preserving the
finite gap of the system [6,7]; this projective boundary action
thus protects edge modes in the entire SPT phase.

D. Periodic chains and bundle symmetries

In the discussion so far we have restricted our attention to
infinite or open chains. With periodic boundary conditions
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(PBC), the nature of the dipole symmetry becomes more
subtle. On a periodic chain of length L, the global dipole
operator D is consistent with PBC Xj+L = Xj only when L is
divisible by N , so that X j+L

j = X j
j . When L is not a multiple

of N , D itself is no longer a symmetry; the remaining global
symmetry is instead generated by Dk , where k = N/gcd(L, N )
is the smallest integer such that (X k )L = 1 [38]. As a result,
the global symmetry group is no longer ZN × ZN , but rather
ZN × Zgcd(L,N ). In the most extreme case of coprime L, N ,
i.e., gcd(L, N ) = 1, the dipole symmetry is absent altogether.

This raises the following question: Can the SPT phase
change, or even disappear entirely, when we work with pe-
riodic boundary conditions? On the one hand, with PBC the
global symmetry group protecting the SPT phase is certainly
affected by the choice of L. On the other hand, the ground
state |�D〉 and its associated string order are well defined for
all L, even for a periodic chain. Furthermore, it is intuitively
clear that features of reduced density matrices, such as the
entanglement spectrum degeneracy, should be identical with
both infinite and periodic boundary conditions. This is related
to the fact that while for general L the dipole generator D can
fail to commute with H , it fails to commute in a very mild
way, with D not commuting with H at only a single location in
space. Moreover, the apparent position of this noncommuting
location can be arbitrarily shifted by multiplying D by integer
powers of Q, which is itself a symmetry! Thus, we may say
that D is a symmetry when one looks at any local patch of
space, but that there is a topological obstruction when we try
to globally define D.

The discussion above brings to mind mathematical for-
mulations of gauge theories, where fields are defined locally
on different patches of the manifold, and transition functions
on patch overlaps define how fields on different patches are
related to one another. To develop vocabulary allowing us to
talk about this type of situation in a more precise way, we will
refer to the “symmetry” that arises in this context as a bundle
symmetry. It is the presence of a bundle symmetry, rather than
a global symmetry per se, which protects the existence of the
SPT order studied in this work. We thus may refer to these
phases as “bundle-symmetry-protected topological phases”.

The general construction we consider for dipolar bundle
symmetries is illustrated in Fig. 1. Consider a length-L chain
with PBC. To define the dipolar bundle symmetry, we divide
the chain into a collection of patches Aα , where we take each
Aα as well as each nonempty overlap Aα ∩ Aβ to be exten-
sively large. On each patch Aα we define a dipole operator

Dα =
∏
j∈Aα

U j+nα

j , (3.17)

where j = 0 corresponds to the site on the leftmost edge of
Aα and nα is an arbitrary integer. For each pair of overlapping
patches Aα, Aβ, we allow transition functions

Qαβ = (D†
αDβ )|Aα∩Aβ

. (3.18)

From the definition of the Dα we see that Qαβ = (Q|Aα∩Aβ
)nαβ ,

where the integer nαβ is determined by nα, nβ and the distance
between the end points of Aα, Aβ . A three-patch decomposi-
tion of a chain with the associated Dα, Qαβ is illustrated in
Fig. 1(b).

FIG. 1. Illustration of a ZN dipolar bundle symmetry on a length-
L chain with periodic boundary conditions (a) on a chain with r =
(L mod N ) 
= 0, the dipole operator D = ∏

j U j
j cannot be consis-

tently defined on the entire chain. The blue lines indicate the power
of Uj applied at a given position on the chain (x axis). The operator
is a global symmetry only when the powers at adjacent sites differ by
±1 mod N . (b) A dipole symmetry bundle is defined by splitting the
spatial manifold into contractible patches Aα and defining a dipole
operator Dα = ∏

j∈Aα
U j+nα on each patch. On overlaps between

patches the Dα differ by “transition functions” Qαβ equal to powers
of the charge generator Q.

A generic local Hamiltonian is considered symmetric un-
der the dipole bundle symmetry if the Hamiltonian supported
on the patch Aα commutes with the dipole operator Dα . Note
that each Dα is itself not a symmetry of the full dipole-
conserving Hamiltonian since it will fail to commute with
those terms in the Hamiltonian which are localized to ∂Aα .
As the truncated Hamiltonian is symmetric with respect to
each Dα , it is also necessarily symmetric with the transition
function Qαβ .

To figure out if each Dα can be extended to a genuine
global symmetry of the full Hamiltonian, we need to look for
a dipole operator supported on a single patch that covers the
full system. It is equivalent to finding a global section of the
dipole bundle symmetry, i.e., a set of patches and integers
nα which “trivialize the bundle,” viz., which are such that
Qαβ = 1 for each pair of intersecting patches Aα, Aβ . In the
present example, it is easy to see that this is possible iff L
mod N = 0. However, such a global section is not necessary
to have a notion of nontrivial SPT phases. For example, the
notion of symmetry fractionalization [6,7], where applying
the symmetry on a large-but-finite region leads to anomalous
symmetry actions at the boundary of said region, carries over
to symmetry bundles without global sections, where it is still
able to protect entanglement degeneracies and string-order
parameters. Indeed, our dipole SPT model is such an example!

The concept of a bundle symmetry extends beyond just
dipole symmetry, and in Appendix B we give a more detailed
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treatment of how bundle symmetries can be defined. This
framework includes a broader class of modulated bundle sym-
metries such as the quadrupolar and exponentially modulated
examples studied below. In the future it could be interesting
to explore the topology of bundle symmetries in more detail
by, e.g., constructing examples in higher dimensions with
magnetic monopolelike topologies. Some fundamental ques-
tions worth investigating are whether such bundle symmetries
can be spontaneously broken, or gauged, or even arise as an
emergent low-energy property, all of which are familiar and
important for usual symmetries.

E. Relation to cluster SPT model

So far we have seen two models both protected by ZN ×
ZN symmetry. The first is the conventional cluster SPT model
reviewed in Sec. II, and the second is the dipolar SPT model
introduced above. They are protected by two charge symme-
tries [Eq. (2.2)] or by one charge and one dipole symmetries
[Eq. (3.1)].

For N = 2, these models are the same up to an overall sign
since when N = 2 we have aj = Zj−1ZjXjZ jZ j+1 = −b j . A
natural question is what, if any, is the relation between these
two types of SPT stabilizer models when N > 2? We have two
key results to answer this question: a no-go result (Theorem
2) and a constructive one (Theorem 3).

Theorem 2. If N > 2, there does not exist a unitary trans-
formation which maps HD and its protecting symmetry group
(generated by Q and D) to HC and its protecting symmetry
group (generated by Q1 and Q2).

This result has several practical implications. For example,
it means that a perturbed Hamiltonian HD + λH ′ respecting Q
and D can not be mapped to a perturbed cluster model HC +
λH ′′ respecting Q1 and Q2. This implies that, say, studying
the criticality of phase transitions of such dipolar SPT phases
cannot be reduced to the study of critical cluster chains.

The above theorem is a simple consequence of the al-
gebraic relations between the symmetry generators and the
Hamiltonian terms. In particular, note that Q = ∏

j a j and
D ∝ ∏

j (a j ) j (on an infinite chain for simplicity), where a j

is the Hamiltonian term defined in Eq. (3.3). In contrast,
the symmetries of the cluster model are Qn = ∏

j b2 j+n (for
n = 1, 2), where bj is defined in Eq. (2.1). Hence, any uni-
tary transformation which maps a j to bkj (or its Hermitian

conjugate) cannot at the same time map, say, D ∝ ∏
j a j

j to
Q1 = ∏

j b2 j−1 (if N > 2).
Note that the above result does not preclude the existence

of unitary transformations which map HD to HC . Indeed, re-
call that we already wrote finite-depth unitary circuits UD,UC

which map HC and HD to the same trivial Hamiltonian
−∑

j (Xj + X †
j ) in (2.7) and (3.10). Hence, by concatenation

U = UDU
†
C, (3.19)

we have U†a jU = b j and U†HDU = HC mapping between HC

and HD. Moreover, unlike the individual unitaries UC and UD,
this composite unitary is a tensor product between two-site
unit cells, which implies that properties such as entanglement

spectrum degeneracy are invariant under U . Indeed,4

U =
∏

n

(CZ2n,2n+1)2 ×
∏

m

(CZm,m )†. (3.20)

However, in line with the above theorem, this unitary does
not map the protecting symmetries (Q, D) into (Q1, Q2). In
particular, this implies that U cannot be used to map the study
of symmetric deformations of these models. For instance, it
does not map the trivial dipolar SPT model H0 = −∑

j (Xj +
X †

j ) to the trivial monopolar SPT model (which would have
the same Hamiltonian) but instead to

U†H0U = −
∑

j

[Z2 jX2 jZ2 j (Z
†
2 j+1)2

+ (Z†
2 j )

2Z2 j+1X2 j+1Z2 j+1 + H.c.]. (3.21)

While this model respects total charge symmetry, it indeed
does not commute with Q1 or Q2. Hence, studying the in-
terpolation from our dipolar SPT model HD to the trivial
Hamiltonian H0 (which we study in Sec. III H) does not cor-
respond to some previously studied perturbation of the cluster
model (for N > 2).

Since the above unitary transformation from the dipole
SPT chain HD to the monopole SPT chain HC does not map the
dipole symmetry D to one of the sublattice charge symmetries,
it raises the following question: What does it map to? We find
the answer is

U†D U ∝ D ×
∏

j

(Z2 j−1Z†
2 j )

2 ∝
∏

j

(b j )
j . (3.22)

Indeed, this commutes with the cluster SPT model HC , and by
virtue of the above mapping we discover that HC is not just a
nontrival SPT model for the usual Q1, Q2 symmetry but also
for total charge Q and the “dipolar” symmetry shown on the
right-hand side of (3.22).

Our second key result in this subsection shows that by
forgetting about energetics and focusing on the ground states,
there does exist a mapping, which is albeit rather subtle:

Theorem 3. There exists a unitary transformation which
maps

(i) the ground state of HD to the ground state of HC

(ii) the symmetry generators Q and D to Q1Q†
2 and Q1,

respectively.
Moreover, such a unitary can be chosen to be a tensor

product, but for N > 2 it must have a unit cell of size at least
l ≡ l cm(2, N ).

The fact that such a unitary can be chosen to be a tensor
product unitary implies it does not change the SPT prop-
erties (e.g., entanglement degeneracies) between these unit
cells. However, the fact that the unit cell grows linearly with
N illustrates that identifying the wave functions requires a
considerable restructuring of the degrees of freedom. This
minimal size of the unit cell follows from the fact that the
symmetries satisfy different algebras with the translation op-
erator unless the translation is by a multiple of l .

4If one desires a unitary which is a tensor product between unit
cells {(2n − 1, 2n)} one can instead use UDUCT where T is complex
conjugation in the {|g〉} basis.
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FIG. 2. Transformation between dipolar and cluster models. As proven in the main text, there cannot exist any unitary transformation
which maps the cluster model HC and its protecting symmetries Q1, Q2 to the dipolar SPT model HD and its symmetries Q, D. However, there
does exist a unitary V which maps the ground states and protecting symmetries to one another. Moreover, this unitary is a tensor product
between unit cells of size lcm(N, 2). We show it for the case N = 8, where the gray region highlights the unit cell. The red gates are CZm,n and
blue gates are CXm,n; finally, Rn |gn〉 := CZ†

n,n |gn〉 = ω−gngn |gn〉 is a well-defined single-qudit gate.

We now construct the unitary claimed in Theorem 3. For
notational convenience, we just define the unitary for the unit
cell of l qudits; the global unitary is then a tensor product over
unit cells. This unitary consists of three layers V = V3V2V1,
which are defined as follows:

V1 =
l/2∏
n=1

CZ†
2n−1,2n

l/2−1∏
n=1

CZ2n,2n+1,

V2 =
l/2∏
n=1

CX2n−1,2n(CX2n,2n−1)2n−2CX2n−1,2n,

V3 =
l−1∏
n=1

CZn,n+1

l∏
n=1

CZ†
n,n. (3.23)

We visually represent the circuit in Fig. 2 for the case N =
8. A direct computation shows that it maps the stabilizers as
follows:

Vb2 j−1V† = (a2 j−1)2 j−1(a2 j )
2 j,

Vb2 jV† = (a2 j−1)2 j−2(a2 j )
2 j−1. (3.24)

From this, we directly see it maps the ground states to one
another5 since these are characterized by a j |ψD〉 = |ψD〉 and
b j |ψC〉 = |ψC〉. Moreover, it maps the symmetries as follows:

VQ1V† =
∏

j

Vb2 j−1V† =
∏

j

a j
j = D,

VQ2V† =
∏

j

Vb2 jV† =
∏

j

a†
j

∏
j

a j
j = Q†D. (3.25)

5This follows from (i) V clearly maps the ground-state subspace of
HD to that of HC , (ii) both ground-state spaces are isomorphic (e.g.,
unique ground state on periodic boundary conditions), and (iii) V is
a unitary map.

We have thus confirmed the properties claimed in Theorem 3.
We stress again that this unitary does not map the respective
Hamiltonians. Indeed,

VHCV† = −
∑

j

∑
p=0,1

(
a2 j−1−p

2 j−1 a2 j−p
2 j + H.c.

)
. (3.26)

Although this fails to be translation invariant and has quite
different energetics to HD, we directly see it does share the
same ground state as HD.

F. Other dipolar SPT phases

So far we have discussed the SPT phase in which the
charge operator X is decorated with operators that carry
unit dipole moment. The remaining dipolar SPT phases
are obtained by decorating the charge operator with oper-
ators possessing dipole moments of η ∈ ZN . The stabilizer
Hamiltonian for a given value of η is obtained through an
appropriate modification of the stabilizers aj as

Hη = −
∑

j

(
a(η)

j + [
a(η)

j

]†)
,

a(η)
j = (Zj−1Z†

j )ηXj (Z
†
j Z j+1)η. (3.27)

Its ground state is

|�η〉 = U (η)
D

⎛
⎝∑

g

|g〉
⎞
⎠,

U (η)
D |g〉 = ωη

∑
j (g j g j+1−g2

j )|g〉. (3.28)

To prove this, it suffices to show (U (η)
D )†a(η)

j U (η)
D = Xj . The

global symmetries of Hη are still given by Q and D of (3.1).
The fractionalized symmetry operators at the edges are

now given by

L(η)
Q = X1(Z†

1 Z2)η,

R(η)
Q = (ZL−1Z†

L )ηXL,
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L(η)
D = X1(Z†

1 )2ηZη

2 ,

R(η)
D = (ZL−1)ηL(Z†

L )η(L−1)(XL )L. (3.29)

Note L(η)
D ∼ L(η)

Q (Z†
1 )η and R(η)

D ∼ (R(η)
Q )L(ZL )η. The edge

algebra then becomes

L(η)
Q L(η)

D = ωηL(η)
D L(η)

Q ,

R(η)
Q R(η)

D = ω−ηR(η)
D R(η)

Q . (3.30)

This edge algebra enforces the minimal number of protected
edge modes to be

dη ≡ N/ gcd(N, η). (3.31)

The Hamiltonian written in (3.27), however, has N degen-
erate states per edge, as it transforms to −∑L−1

j=2 (Xj + X †
j )

under U (η)
D . The degeneracy can be lifted to be the minimal

allowed value dη by adding the following edge terms:

�H = −
[(
L(η)

Q

)dη + (
R(η)

Q

)dη + H.c.
]

(3.32)

which commute with the stablizers a(η)
j and preserve the

dipole symmetry [note that (L(η)
Q )dη = X dη

1 and (R(η)
Q )dη =

X dη

L ]. A simple way to see how the degeneracy lifting occurs
is to work in the ground-state basis |nL, nR〉, nL,R ∈ ZN where
L(η)

Q and R(η)
Q are diagonalized with quantum numbers ωnL

and ωnR , respectively. With the �H , the energy levels will
split to −2 cos[2πnLdη/N] − 2 cos[2πnRdη/N] and the new
ground states have nL,R divisible by N/dη. This leaves behind
a dη-fold degeneracy per edge.

G. MPS representation

The ground states of 1D SPT phases, being weakly
entangled, admit compact matrix product state (MPS) rep-
resentations [77–79]. In the study of conventional 1D SPT
phases, the MPS formalism has the merit of making the sym-
metry fractionalization pattern and nature of the degenerate
edge modes quite explicit, and was one of the approaches
used to originally define and classify such phases [8,11]. In
this section we will see how MPS techniques can similarly be
used to understand and classify dipolar SPTs.

1. General dipole symmetries

Before specializing to the context of the ZN dipole symme-
try as studied above, we first consider a general internal charge
symmetry group G and its associated dipole symmetry group
GD. For a given g ∈ G, we let the associated actions by G and
GD be represented in terms of tensor products of single-site
unitaries as

UQ(g) =
L∏

j=1

Uj (g), UD(g) =
L∏

j=1

(Uj (g)) j, (3.33)

respectively. Note that the same onsite unitary Uj (g) appears
in both of the global symmetry operators.

Consider a weakly entangled translation-invariant wave
function |�〉, with |�〉 transforming trivially under G and
GD: UQ(g)|�〉 = eiγQ (g)|�〉, UD(g)|�〉 = eiγD (g)|�〉 for some

phases γQ(g), γD(g). The state |�〉, being weakly entangled
and translation invariant, can be expressed in MPS form as

|�〉 =
∑

a∈ZL
N

Tr[BAa1 . . . AaL ] |a〉 , (3.34)

where we have assumed an N-dimensional onsite Hilbert
space labeled by a ∈ ZN instead of g as in previous sections to
avoid notational overlap with the group element g. The matrix
B fixes the boundary conditions of the MPS, with B = 1 for
the periodic boundary conditions and B = |ψR〉 〈ψL| for an
open-chain MPS whose virtual indices are fixed as |ψL/R〉 on
the left and right ends. Due to the bulk G invariance of |�〉,
the fundamental theorem of MPS [78,79] mandates that the
tensors Aa obey∑

b∈ZN

[U (g)]abAb = eiθgV (g)†AaV (g) (3.35)

for some set of unitary matrices V (g) and phases eiθg . For
notational convenience we will omit eiθg below. Graphically,
(3.35) reads as

(3.36)

The condition (3.35) then dictates that the dipolar action on
|�〉 be

UD(g) |�〉 =
∑

a∈ZL
N

Tr[BV (g)†Aa1 . . .V (g)†AaLV (g)L] |g〉 ,

(3.37)

in effect replacing the action of UD(g) on physical indices
by the transformation of MPS tensors Aa → V (g)†Aa. In par-
ticular, the virtual action of GD is entirely fixed by that of
G itself. It is then interesting to understand how a mixed
anomaly between G and GD can arise even in the absence of
a self-anomaly for G, as is the case in the G = ZN examples
studied above.

From (3.37), we see that the requirement that |�〉 be bulk
GD invariant imposes the nontrivial restriction that (3.34) be
invariant under insertion of V (g)† on every virtual bond of the
MPS. In turn, this can be rephrased as the requirement that for
all g ∈ G,

V (g)†Aa = eiφgV ′(g)†AgV ′(g) (3.38)

holds for some set of unitaries V ′(g) and phases eiφg . Again
omitting the phases, this equation can be written graphically
as

(3.39)

While the relation (3.35) applies to all MPS tensors repre-
senting a translation-symmetric state, the other relation (3.38)
arises from both the charge and the dipole symmetries being
represented by utilizing the same onsite unitary Uj (g) as in
(3.33).

In conventional SPT phases, it is the V (g)’s that form a
projective representation of G with V (g)V (h) = ω(g, h)V (gh)
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for some cohomology class ω ∈ H2(G,U (1)), and lead to
fractionalization. In the dipole SPT phases, for a general finite
Abelian group G, GD, the projectivity arises from the nontriv-
ial commutation relations between the V (g) and the V ′(g):

V (g)V ′(g)V (g)†V ′(g)† 
= 1. (3.40)

With V (g) and V ′(g) in place for a given Aa, the action of the
symmetries UQ(g),UD(g) on an open chain of length L with
B = |ψR〉〈ψL| results in |ψL/R〉 transforming according to the
operators

LQ(g) = V (g), RQ(g) = V (g), (3.41)

LD(g) = V ′(g), RD(g) = V ′(g)V L(g),

e.g., |ψL〉 → V (g)|ψL〉 under UQ(g).
Let us define the operators UL(g),UR(g) by∑

b

[UL(g)]abAb = V (g)†Aa,

∑
b

[UR(g)]abAb = AaV (g), (3.42)

so that the onsite symmetry action factorizes as UQ(g) =
UL(g)UR(g). Similarly, let us also define U ′

L(g),U ′
R(g) by∑

b

[U ′
L(g)]abAb = V ′(g)†Aa,

∑
b

[U ′
R(g)]abAb = AaV ′(g). (3.43)

Using them, the string operators for the G and GD symmetries
can be constructed by decorating symmetry operators on a
finite interval by appropriate factors of UL/R(g) at the edges
as

SQ(g) = UR(g) j

(
m−1∏
n=1

UQ(g) j+n

)
UL(g) j+m,

SD(g) = U ′
R(g) j

(
m−1∏
n=1

(UQ(g) j+n) j+n

)
U ′

L(g) j+m(UL(g) j+m) j+m.

The UL,UR and U ′
L,U ′

R operators are placed in such a way that
the actions of both string operators on the MPS wave function
(3.34) are an identity operation.

2. ZN dipole symmetry

Having discussed the general structure of the virtual sym-
metry action in a dipolar SPT, we now return to the specific
case of G = ZN that has been the focus of our attention above.
The notation |g〉 is accordingly restored to label Hilbert space
basis vectors. To rewrite the dipolar SPT state (3.4) in an MPS
representation, it is helpful to define the following matrices:

R ≡
∑
g∈ZN

ω−g2 |g〉〈g|,

Wη ≡
∑

g,h∈ZN

ωηgh|g〉〈h|, (3.44)

where again η ∈ ZN labels different dipolar SPT phases. One
can show that they satisfy the algebra

XR = RZXZ, ZR = RZ,

WηZη = X †Wη, WηX = ZηWη. (3.45)

One recognizes Wη as the matrix that implements the η-
twisted discrete Fourier transform. Note that Wη is unitary
only when dη = N [i.e., gcd(N, η) = 1, see (3.31)], in which
case it squares to charge conjugation: W 2

η = C ≡ ∑
g |g〉〈−g|.

MPS tensors for the ground-state wave function (3.28) can
then be written as

Ag
η = ω−ηg2

Wη|g〉〈g|. (3.46)

In terms of tensor diagrams, we have

. (3.47)

Using the identities in (3.45) as well as

, (3.48)

One can check that the MPS tensor satisfies the identity

[X ]ghAh
η = (XZη )†Ag

η(XZη ). (3.49)

Comparing it to the fundamental MPS theorem of (3.35), the
fractionalization of the charge symmetry is implemented by

Vη ≡ XZη (3.50)

in the dipolar SPT model.
We now determine the matrix V ′

η which fixes how the
dipole symmetry fractionalizes. This can be done by using the
identity

X †Ag
ηZ−η = Ag

η, (3.51)

which is easily proved using (3.45). This identity can be
rewritten as

(XZη )†Ag
η = (Zη )†Ag

ηZη, (3.52)

which tells us that V ′ = Zη. The commutation relations be-
tween

V = XZη, V ′ = Zη

then reproduce the edge mode algebra derived earlier in
(3.30).

We now discuss the edge degeneracy when the system is
placed on an open chain so that B = |ψR〉〈ψL|. When dη = N ,
the action generated by V,V ′ forms an irreducible projective
representation of ZN × ZN . Such irreps always have dimen-
sion N , and the edge mode degeneracy cannot be reduced
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FIG. 3. Stability and phase transition of Z3 dipolar SPT model. We interpolate from the dipolar SPT model to the trivial Hamiltonian.
(a) The ground-state energy density signals a first-order transition at λ = 0.5. (b) We see that in the entire SPT phase, the entanglement
spectrum is (at least) threefold degenerate, whereas in the trivial phase certain entanglement levels are unique. At the first-order point λ = 0.5,
we show the results obtained for the twofold degenerate ground state: the SPT state (red) and the trivial state (black). (c) The topological
string-order parameter is nonzero in the SPT phase, and discontinuously jumps to zero when tuning across the first-order transition into the
trivial phase. (d) The numerically obtained quantized SPT invariant developed in Sec. III G confirms the predicted property V ′V (V ′)†V † =
ω1 in the SPT phase and V ′V (V ′)†V † = 1 in the trivial phase; in the numerics we compute V,V ′ explicitly by diagonalizing the transfer
matrix.

below N . When dη < N , however, the story is different.6 In
this case, both V,V ′ commute with X dη . This means that
without violating either charge or dipole symmetries, we can
insert projectors onto the +1 eigenspace of X dη on both the
leftmost and rightmost virtual legs of the MPS (which fix
the boundary conditions). More explicitly, we may replace
the matrix B which fixes the boundary conditions by �ηB�η,
where

�η = 1

gcd(N, η)

gcd(N,η)∑
n=1

X ndη . (3.53)

Since dim Im �η = dη, we recover the edge degeneracy of dη

as argued for above on the grounds of the relations obeyed by
the string operators.

H. Stability analysis

Thus far, we have analytically shown that the dipolar
SPT model HD has symmetry-protected features such as en-
tanglement degeneracies and string order. Here we briefly
demonstrate and confirm this stability via a numerical analysis
of a perturbed Hamiltonian and its quantum phase transition.

As a minimal example, we consider the addition of the
Zeeman term:

H = (1 − λ)HD − λ
∑

i

(Xi + X †
i ), (3.54)

and study the evolution of the ground state while increasing
λ. Note that λ = 0 is the solvable SPT point, and λ = 1 is a
trivial product state. This model exhibits a ZT

2 duality: by con-
jugating the Hamiltonian with the unitary map UD developed
in (3.4) and subsequently performing complex conjugation in
the |g〉 basis, we effectively map λ → 1 − λ. Hence, if there is
a direct transition between the SPT and trivial phase, it must

6Note that in this case, the nonunitarity of Wη means that the MPS
is not injective after blocking two sites. More detailed discussions
of how the representation theory and MPS tensors work out, in this
case, can be found in [80] and Appendix H of [81]. For the present
purposes, a full discussion of these issues would take us too far afield.

occur at the self-dual point λ = 1
2 . Alternatively, there can be

an intermediate phase.
We analyze the ground states of Eq. (3.54) with N = 3

using the infinite density matrix renormalization group
(iDMRG) [82,83] method in the open-source TENPY python
library [84]. This allows us to directly obtain the ground-
state wave function in the limit of an infinitely long chain,
described by a translation-invariant matrix product state. Op-
erationally, we fix a bond dimension χ associated with this
MPS, and we find that for χ = 100 all physical quantities we
consider converge. The results are shown in Fig. 3.

The ground-state energy density in Fig. 3(a) is the first
indication that there is indeed a direct transition at λ = 1

2 ,
and the kink suggests it is first order. This is confirmed in the
entanglement spectrum [Fig. 3(b)] where we see the robust
threefold degeneracy for each level as predicted by the SPT
phase, up to λ = 1

2 . At this self-dual point, iDMRG finds
two ground states, consistent with a first-order transition. This
second state connects to the region λ � 1

2 , where its entangle-
ment smoothly transitions into the product state at λ = 1. This
first-order transition between the SPT and trivial phase is also
consistent with Fig. 3(c), where we find a discontinuous jump
of the string-order parameter at λ = 1

2 . Finally, since our state
is translation invariant and numerically described by a matrix
product state, we can also calculate the quantized invariant
introduced in Sec. III G. This quantization condition is very
well captured by the numerical solution in Fig. 3(d).

IV. QUADRUPOLAR SPT

The dipole symmetry considered in the previous section is
the simplest type of modulated symmetry, where the modu-
lation is linear in space. In this section we consider the next
simplest case where the modulation is a quadratic function,
corresponding to the conservation of quadrupole moment.

Recall that the conventional ZN cluster model is con-
structed by dressing the operator Xj with monopoles through
the operator Z†

j−1Zj+1 or Zj−1Z†
j+1. Similarly, the ZN dipo-

lar SPT model is constructed by dressing Xj by the dipolar
domain wall operator Zj−1Z†

j Z†
j Z j+1. Following this guiding

principle, an exactly soluble model with quadrupolar SPT
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order can be constructed as

HQu = −
∑

j

(a2 j−1 + a2 j + H.c.),

a2 j−1 = Z2 j−4Z−3
2 j−2X2 j−1Z3

2 jZ
−1
2 j+2,

a2 j = Z−1
2 j−3Z3

2 j−1X2 jZ
−3
2 j+1Z2 j+3. (4.1)

(We use the roman symbol “Qu” to refer to all things
quadrupolar.) This a stabilizer Hamiltonian with two indepen-
dent quadrupole symmetries acting on the odd and even sites

Qu1 =
∏

j

(X2 j−1) j2
, Qu2 =

∏
j

(X2 j )
j2
. (4.2)

The symmetry operators are indeed modulated quadratically
with the spatial index j. Additionally, the model commutes
with two monopole charge symmetries supported on the odd
and the even sites separately, viz., the operators Q1 and Q2

given in (2.2). Finally, the model possesses both even- and
odd-site dipole symmetries7

D1 =
∏

j

(X2 j−1) j, D2 =
∏

j

(X2 j )
j . (4.3)

We defined the stabilizers of HQu to be supported on seven
sites since this was the smallest support for which commut-
ing stabilizers with the desired symmetry properties could be
found.

Let T be the operator which translates through one unit cell
(two sites), and we find the following algebra:

T −1Qu1,2T = Q1,2D2
1,2Qu1,2,

T −1D1,2T = Q1,2D1,2. (4.4)

This algebra can be taken as the definition of a quadrupole
symmetry. One can see that Q1,2D1,2 plays the role of a
transition function connecting Qu1,2’s defined on overlapping
segments of the lattice. The quadrupolar symmetry operators
can thus also be understood as bundle symmetries, as dis-
cussed in Sec. III D.

The decorated domain wall picture applies nicely to the
quadrupolar SPT model. For the odd-site-centered stabilizer
a2 j−1 in (4.1) we have the charge operator X2 j−1 dressed by a
quadrupole-antiquadrupole pair, written schematically as

[(1)2 j−4, (−2)2 j−2, (1)2 j], [(−1)2 j−2, (2)2 j, (−1)2 j+2],
(4.5)

where the numbers in parentheses mean the charges at a given
site, and the subscripts are the coordinates. Accordingly, the
first (second) bracket in the above represents a quadrupole
(antiquadrupole). For the even-site-centered stabilizer a2 j the
quadrupole and the antiquadrupole positions are switched:

[(−1)2 j−3, (2)2 j−1, (−1)2 j+1], [(1)2 j−1, (−2)2 j+1, (1)2 j+3].
(4.6)

The decorated domain wall picture also explains why the
quadrupolar SPT model is defined with a two-site unit cell,

7Any translation-invariant model with quadrupole symmetry auto-
matically also possesses dipole and monopole symmetries.

akin to the conventional ZN cluster model, rather than a one-
site unit cell. A fully translation-invariant model respecting a
single ZN quadrupole symmetry can be written by invoking
the domain wall picture, and leads to a four-site Hamilto-
nian H = −∑

j (Zj−2Z−3
j−1XjZ3

j Z−1
j+1 + H.c.). One can easily

check, however, that the terms in the Hamiltonian do not
commute with each other and thus do not assemble into a
stabilizer Hamiltonian.

The ground-state wave function for HQu on a periodic chain
of even length L is

|�Qu〉 = UQu

⎛
⎝∑

g

|g〉
⎞
⎠,

UQu|g〉 = ω
∑

j g2 j−1(3g2 j−3g2 j−2+g2 j−4−g2 j+2 )|g〉
= ω

∑
j g2 j (3g2 j−1−3g2 j+1+g2 j+3−g2 j−3 )|g〉. (4.7)

For completeness, we give the phase factor for the wave func-
tion in the case of an open chain of even length L:

ωg2(3g1−3g3+g5 )

× ωg4(3g3−3g5+g7−g1 )+···+gL−4(3gL−5−3gL−3+gL−1−gL−7 )

× ωgL−2(3gL−3−3gL−1−gL−5 )+gL (3gL−1−gL−3 )

= ωg1(3g2−g4 )+g3(3g4−3g2−g6 )+g5(3g6−3g4+g2−g8 )+···

× ωgL−3(3gL−2−3gL−4+gL−6−gL )+gL−1(3gL−3gL−2+gL−4 ). (4.8)

A similar expression can be found for a ground state on an
open chain of odd length.

String-order parameters of the quadrupolar SPT model
(4.1) are constructed according to the by-now familiar pro-
cedure. For the monopolar symmetries Q1,2, we obtain

SQ1 = a2 j+1 . . . a2 j+2m−1

= V2 j

(
m∏

n=1

X2 j+2n−1

)
V −1

2 j+2m,

SQ2 = a2 j . . . a2 j+2m−2

= V −1
2 j−1

(
m∏

n=1

X2 j+2n−2

)
V2 j+2m−1, (4.9)

where Vj = Zj−2Z−2
j Z j+2. For the dipole and quadrupole sym-

metries, we find

SD1 = a2 j+1a2
2 j+3 . . . am

2 j+2m−1

= W2 j

(
m∏

n=1

X n
2 j+2n−1

)
W −1

2 j+2mV −m
2 j+2m,

SD2 = a2 ja
2
2 j+2 . . . am

2 j+2m−2

= W −1
2 j−1

(
m∏

n=1

X n
2 j+2n−2

)
W2 j+2m−1V

m
2 j+2m−1,

SQu1
= a2 j+1a4

2 j+3 . . . am2

2 j+2m−1

= V2 j

(
m∏

n=1

X n2

2 j+2n−1

)
V−1

2 j+2mW −2m
2 j+2mV −m2

2 j+2m,
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SQu2
= a2 ja

4
2 j+2 . . . am2

2 j+2m−2

= V−1
2 j−1

(
m∏

n=1

X n2

2 j+2n−2

)
V2 j+2m−1W

2m
2 j+2m−1V

m2

2 j+2m−1,

(4.10)

where Wj = Zj−2Z−1
j , V j = Zj−2Zj .

From (4.9) and (4.10) one observes that the product of
monopolar, dipolar, and quadrupolar operators (terms inside
the parentheses) are flanked by quadrupolar, dipolar, and
monopolar charges (terms on either side of the parentheses).
This kind of structure is present in the conventional ZN cluster
model where, as in (2.8), the product of even- (odd-) site
symmetry operators are flanked by the charges at odd (even)
sites. For the dipolar SPT model, the monopolar (dipolar)
symmetry operators are flanked by dipoles (monopoles), as
seen in (3.5).

We now place the Hamiltonian (4.1) on an open chain and
study the degenerate edge modes that arise due to the SPT
order. Due to the extended nature of the stabilizers a2 j−1, a2 j ,
the model defined on an open chain of length L has a1, a2, a3

as well as aL−2, aL−1, aL missing. On such an open chain, we
thus expect three degenerate ZN modes on each edge. When
acting on the ground state, these charges are equivalent to
products of edge operators, e.g., Q1|�Qu〉 = LQ1RQ1 |�Qu〉.
For even length L = 2�, all the edge operators are
listed as

LQ1 = V −1
4 X1X3, RQ1 = VL−2XL−1,

LQ2 = V3X2, RQ2 = V −1
L−3XL−2XL,

LD1 = W −1
4 V −2

4 X1X 2
3 , RD1 = WL−2V

�−1
L−2 X �

L−1,

LD2 = W3V3X2,

RD2 = W −1
L−3V

−�+2
L−3 X �−1

L−2 X �
L ,

LQu1
= V−1

4 W −4
4 V −4

4 X1X 4
3 ,

RQu1
= VL−2W

2�−2
L−2 V (�−1)2

L−2 X �2

L−1,

LQu2
= V3W

2
3 V3X2,

RQu2
= V−1

L−3W
−2�+4

L−3 V −(�−2)2

L−3 X (�−1)2

L−2 X �2

L .

They obey the following algebra:

LQ1LQu2
= ω−2LQu2

LQ1 , RQ1RQu2
= ω2RQu2

RQ1 ,

LD1LD2 = ωLD2LD1 , RD1RD2 = ω−1RD2RD1 ,

LQu1
LQu2

= ω−1LQu2
LQu1

, RQu1
RQu2

= ω−1RQu2
RQu1

,

and

LQu1
LQ2 = ω−2LQ2LQu1

, RQu1
RQ2 = ω2RQ2RQu1

,

LQu1
LD2 = ωLD2LQu1

, RQu1
RD2 = ω−1RD2RQu1

,

LD1LQu2
= ω−1LQu2

LD1 , RD1RQu2
= ωRQu2

RD1 ,

where trivial commutation relations have been omitted. We
can pair up the left edge operators to form three independent

Heisenberg algebras as

LD1LD2 = ωLD2LD1 ,

LQ1 (LQu2
LD2 ) = ω−2(LQu2

LD2 )LQ1 ,(
LQu1

L−1
D1

)
LQ2 = ω−2LQ2

(
LQu1

L−1
D1

)
. (4.11)

Similarly, the right edge operators can be paired up to form
three independent Heisenberg algebras. These algebras en-
force a minimal ground-state degeneracy of NK2 per edge,
where K = N/gcd(N, 2).

In an apparent contraction, the Hamiltonian HQu in (4.1)
has N3 degenerate zero modes on each edge, which is equal
to NK2 only if N is odd. This can be seen by calculating
U†

QuHQuUQu, which produces a trivial paramagnetic Hamilto-
nian which contains no terms acting within three lattice sites
of each edge.

The extra zero modes that appear in HQu when N is even
are, however, due to an accidental degeneracy, and are not
topologically protected. To understand this, we first note that
the algebra of operators acting on the space spanned by the N3

zero modes of HQ is generated by the operators

UQuX1U†
Qu = X1Z3

2 Z−1
4 ,

UQuX2U†
Qu = X2Z3

1 Z−3
3 Z5,

UQuX3U†
Qu = X3Z−3

2 Z3
4 Z−1

6 (4.12)

together with the UQuZjU†
Qu = Zj for j = 1, 2, 3, which can

be derived using the phase factors in (4.8) for even L. The
three operators obtained in (4.12) mutually commute, and to-
gether with the Zj generate the three independent Heisenberg
algebras which produce the N3 degeneracy.

Using the expressions for these operators, we see that this
degeneracy can be reduced to the minimal value NK2 by
adding to HQu the following edge Hamiltonian:

�H = −(
LK

Q1
+ LK

Q2
+ RK

Q1
+ RK

Q2
+ H.c.

)
, (4.13)

which commutes with HQu and all of the six symmetry gener-
ators. This lifting of the accidental edge degeneracy is similar
to the discussions around (3.32) for dipolar SPT.

In conclusion, we have constructed an exactly solvable
quadrupolar SPT model, written its ground states and string
operators, and discussed its edge fractionalization. Construc-
tion of higher-order multipole SPT models following the
strategy pursued here is also possible, and we leave a system-
atic investigation of their properties to future work.

V. EXPONENTIAL SPT

The dipole and quadrupole symmetries of the previous sec-
tions constitute some of the simplest examples of modulated
symmetries [59]. In this section, we consider a more exotic
case, where the modulation is by an exponential function of
position.

To set the stage, we review the modified quantum clock
model proposed in [70], which has Hamiltonian

H = −
∑

j

(
Z−a

j Z j+1 + H.c.
)
, (5.1)
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with integer a > 1 (a = 1 being the ordinary N-state clock
model). The relevant symmetry operator is

E =
∏

j

(Xj )
a j

, (5.2)

which reduces to an ordinary monopolar charge operator
Q when a = 1 mod N . For a mod N 
= 0, 1, each Xj ef-
fectively creates a position-dependent charge a j that grows
exponentially (mod N) with distance along the chain. Note
that this model differs from the dipole and quadrupole models
studied above in that it possesses only a single conservation
law.

Here we propose an SPT model protected by this kind of
exponential symmetry. The commuting projector model we
consider is

HE = −
∑

j

(a2 j−1 + a2 j + H.c.),

a2 j−1 = Z†
2 j−2X2 j−1(Z2 j )

a,

a2 j = (Z2 j−1)aX2 jZ
†
2 j+1. (5.3)

Note that HE reduces to the usual ZN cluster Hamiltonian
in (2.1) when a = 1 mod N , and shares the same two-site
translational symmetry. The decorated domain wall picture
still applies to the exponential SPT model above, with the
understanding that the charges in the domain wall operators
Z†

2 j−2(Z2 j )a and (Z2 j−1)aZ†
2 j+1 are exponentially modulated in

space.
On an open chain of length L, HE possesses two exponen-

tially modulated symmetries, generated by the operators

E1 =
∏

j

(X2 j+1)a j
, E2 =

∏
j

(X2 j )
aL− j

. (5.4)

Unlike the dipolar SPT, when a mod N 
= 1, 0 (which we
will specify to in what follows), the exponential SPT model
in (5.3) lacks a monopolar charge symmetry.

The translation symmetry of the Hamiltonian HE suggests
that one can equally well shift j → j + j0 in the definition of
the symmetry operators (5.4). Indeed, such a shift results in

E1 → (E1)a j0
, E2 → (E2)a− j0

. (5.5)

Here the equivalence relation holds among E1,2 raised to var-
ious powers, but does not involve any factor of charge or
other multipoles. As a result, the model Hamiltonian HE and
its accompanying symmetry operators E1,2 are well defined
despite the absence of charge or other multipole conservation.

For a periodic chain of length L, the exponential symmetry
operators in (5.4) are well defined only if aL − 1 = 0 mod N .
Following the discussion in Refs. [70–72], we consider three
scenarios:

(i) a and N are coprime. In this case, from Euler’s totient
theorem, there always exists a finite integer ϕ(N ) such that
aϕ(N ) − 1 = 0 mod N with ϕ(N ) being the Euler’s totient
function. The exponential symmetry operator thus displays
a periodicity under the translation by ϕ(N ) unit cells. When
the system size satisfies aL − 1 = 0 mod N , the exponential
symmetry is manifest under the periodic boundary condition
Xj+L = Xj .

(ii) a = 0 mod rad(N ) where rad(N ) is the radical of N
which is the product of the distinct prime numbers dividing
N . In this case, there exists a finite integer m such that am =
0 mod N and the exponential symmetry operators in (5.4)
reduce to

E1 =
∏

j

(X2 j−1)a j → X a
1 X a2

3 . . . X am−1

2m−1, (5.6)

by virtue of (X )am = 1 and all subsequent powers of X being
1. The exponential symmetry thus becomes a local symmetry
that only acts on a finite region of width m.8 Our discussion on
the exponential SPT phase is then not applicable to this case.

(iii) a and N are not coprime and a 
= 0 mod rad(N ). In
this case, let us define Na as the greatest divisor of N that is
coprime to a. Then, when the exponential ZN charge operator
E is raised to N th

a power, it becomes a local symmetry that
acts only on a finite region. The exponential symmetry can
then be viewed as a global symmetry that has infinite support
extended by a local symmetry that has finite support. The
exponential ZN charge operator E does not exhibit any period-
icity under lattice translations. Thus, the symmetry operator in
(5.4) cannot be defined properly for periodic boundary condi-
tions of any system size L. From Euler’s theorem, there always
exists a finite integer ϕ(Na) such that aϕ(Na ) − 1 = 0 mod Na

with ϕ(n) being the Euler’s totient function. Consequently,
the exponential ZNa charge operator (which is a subgroup of
the exponential ZN ) still exhibits periodicity under the lattice
translation.

Because of these subtleties, with periodic boundary con-
ditions one needs to again resort to the concept of a bundle
symmetry, as discussed in Sec. III D.

The ground-state wave function of HE is also a generaliza-
tion of (2.3) for the ZN cluster model:

|�E〉 = UE

⎛
⎝∑

g

|g〉
⎞
⎠,

UE |g〉 = ω
∑

j g2 j (ag2 j−1−g2 j+1 )|g〉. (5.7)

String-order operators characterizing the exponential SPT can
be defined through the following products of stabilizers:

SE1 = a2 j+1(a2 j+3)a . . . (a2 j+2m−1)am−1

= Z†
2 j

(
m∏

n=1

(X2 j+2n−1)an−1

)
(Z2 j+2m)am

,

SE2 = (a2 j )
am−1

(a2 j+2)am−2
. . . a2 j+2m−2

= Zam

2 j−1

(
m∏

n=1

X am−n

2 j+2n−2

)
Z†

2 j+2m−1. (5.8)

Physically, the string-order parameters indicate that the clock
patterns at two widely separated even (odd) sites are locked
to the total exponential charge on the odd (even) sites in-
between. Note also that as required, SE1,2 reduce to the

7For local symmetry, we mean a symmetry whose generator has
finite support. This is not to be confused with a gauge symmetry.
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string-order parameters of the cluster model (2.8) when a = 1
mod N .

We can define fractionalized edge operators for a finite
chain 1 � j � 2L as

L1 ≡ X1Za
2 , L2 ≡ (Z1)aL

,

R1 ≡ (Z2L )aL
, R2 ≡ (Z2L−1)aX2L. (5.9)

The exponential symmetries when acting on the ground states
are equivalent to the products of these edge operators

E1|�E〉 = L1R†
1|�E〉,

E2|�E〉 = L†
2R2|�E〉. (5.10)

On each edge, the symmetries are realized projectively,

L1L2 = ω−aLL2L1, R1R2 = ωaLR2R1, (5.11)

with this relation reducing to (2.10) for a = 1 mod N .
As one can see from the algebra of the fractionalized

edge operators, the way in which the projective symmetry is
realized and consequently the degeneracy of the edge states
depend crucially on the system size L, with the number of pro-
tected zero modes on each edge being N/ gcd(N, aL ). When a
and N are coprime, gcd(N, aL ) = 1 for every L and thus the
edge degeneracy is always N . When a and N are not coprime
and a 
= 0 mod rad(N ), the edge degeneracy is a nonincreas-
ing function of L that equals Na for large L. The reason why
the protected edge degeneracy varies with the system size
is related to the fact that the exponential symmetries can be
viewed as an extension of a global symmetry, that acts on the
whole system, by a local symmetry, that acts on a finite region.
This kind of ground-state degeneracy depending on the system
size is a manifestation of UV/IR mixing [85,86] and has
been documented in several lattice models in two dimensions
[38,49,71,72,87–90]. It is interesting that even an SPT phase
can exhibit such kind of UV/IR mixing, as demonstrated by
our example of exponential SPT. However, we emphasize that
the exact ground-state degeneracy is only the property of this
stabilizer Hamiltonian. For a generic exponential SPT, the
degeneracy can be lifted by finite-size effects that decay with
the system size. Therefore, only the edge degeneracy for large
L, i.e., Na, is truly robust against finite-size effects.

One can perform a nonlocal duality to map the exponential
SPT model in (5.3) to a model similar to (5.1) [70]:

Z†
2 j → Z†

2 j

∏
n=1

(X2 j+2n−1)−an−1
,

Z†
2 j+1 → Z†

2 j+1

∏
n=1

(X2 j−2n+2)−an−1
,

Xj → Xj . (5.12)

Such a nonlocal transformation attaches an exponential charge
string to the Z operator without changing the Pauli algebra.
The resultant dual Hamiltonian becomes

H = −
∑

j

(
Z−1

2 j−2Za
2 j + Za

2 j−1Z−1
2 j+1 + H.c.

)
. (5.13)

This Hamiltonian is nothing but two copies of the model
(5.1) studied in [70] in the context of exponential symmetry
breaking, defined on even and odd sites, respectively. One can

also view the model (5.13) as the undecorated version of the
exponential SPT model given in (5.3).

The string-order parameter of the exponential SPT phase in
(5.8) becomes a two-point correlation function characterizing
the long-range correlation of the exponential symmetry-
breaking phase:

S1 → C1 = Z†
2 j (Z2 j+2m)am

,

S2 → C2 = (Z†
2 j−2m+1)am

Z2 j+1. (5.14)

The operator mapping in (5.12) embellishes each charge cre-
ation and annihilation operator at even (odd) sites with a string
of exponential charges on odd (even) sites. Such embellish-
ment exactly reproduces the decorated defect pattern of the
SPT wave function.

The nonlocal duality in (5.12) establishes a connection
between SPT and long-range order and generalizes the well-
known mapping between the ZN cluster model and the N-state
quantum clock model [26] to a > 1. This kind of nonlocal
duality between SPT and symmetry-breaking states is rather
universal. For instance, [91,92] showed that a subsystem
symmetry-protected topological phase can be mapped to a
subsystem symmetry-breaking state via a similar nonlocal
duality.

In summary, the exponential SPT model is a generalization
of the ZN cluster Hamiltonian with the exponentially modu-
lated (instead of spatially uniform) charge domain walls. In
this sense, the exponential model bears more resemblance
to the charge-cluster Hamiltonian than to the dipolar or
quadrupolar SPT.

VI. SUMMARY AND OUTLOOK

We have introduced a family of spatially modulated 1D
symmetry-protected topological phases, with explicit exam-
ples protected by dipolar, quadrupolar, and exponentially
modulated symmetries. For each symmetry, we constructed
an exactly soluble lattice model and worked out the rele-
vant diagnostics of SPT such as edge mode degeneracies
and the symmetry fractionalization patterns. For the dipolar
SPT, we performed a thorough analysis of the soluble model’s
MPS ground state, and demonstrated the inequivalence of the
dipolar SPT to the more usual SPT protected by monopolar
symmetries.

The defining characteristic of all our models is that the
symmetries that protect their attendant SPT order are gener-
ated by operators that are spatially modulated. Understanding
how these SPT orders behave under periodic boundary con-
ditions led us to realize that the protecting symmetries are
not always globally well defined, prompting us to introduce
the concept of bundle symmetry. Strictly speaking then, the
phases considered in this work should thus be viewed as
bundle-symmetry-protected topological phases. In addition,
modulated symmetries are distinguished by being generated
by operators that do not commute with spatial translation.
Consequently, spatial symmetry defects such as dislocations
can permute different charge sectors, generating a fertile
ground for exploring the effects of lattice defects.

Many interesting questions remain open. For one, the na-
ture of phase transitions of modulated SPT states into trivial
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states and the accompanying critical theories are likely to
differ from those of well-known SPT to non-SPT transitions
studied in the past [26,27,93]. Another fruitful and related
line of inquiry is the investigation of the relationship between
modulated SPT and symmetry-breaking phases. Although the
mapping of the exponential SPT model to the symmetry-
breaking model of the same symmetry can be readily worked
out (see Sec. V), the analogous mappings for the dipolar and
quadrupolar models are less clear.

It is known that the Z2 × Z2 monopolar SPT symmetries
have a well-known physical realization in the spin-1 Haldane
chain. It is then interesting to ask whether one can construct a
realistic spin model corresponding to, for example, ZN × ZN

dipolar SPT phase and explore its physical consequences.
Lastly, our study of modulated SPT phases has led to a

generalization of global symmetries: we found that bundle
symmetries are responsible for the protection of this topolog-
ical order. It would be fascinating to explore this concept in
a broader range of circumstances, such as higher dimensions,
spontaneous symmetry breaking, gauging, and beyond.
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APPENDIX A: PARAFERMION FORMULATION
OF DIPOLAR SPT

In this Appendix, we present the parafermion mapping of
the dipolar SPT model. Generalizing the Jordan-Wigner trans-
formation [95], one can map our ZN dipolar SPT model to an
interacting parafermion chain whose boundary parafermion
mode plays the role of the edge zero modes in the dipolar SPT
phase.

Recall that the dipolar SPT Hamiltonian (3.3) is given
as a sum of stabilizers HD = −∑

j (a j + a†
j ) where a j =

Zj−1Z†
j XjZ

†
j Z j+1. We can make a parafermion representation

of HD by introducing a pair of parafermion operators

χi = Zi

⎛
⎝∏

j<i

Xj

⎞
⎠, ψi = ZiXi

⎛
⎝∏

j<i

Xj

⎞
⎠. (A1)

The χi, ψi are the parafermion operators satisfy (χi )N = 1,
(ψi )N = 1, χχ† = ψψ† = 1, and their commutation relations
are

ψiψ j =
{
ω−1ψ jψi, i > j
ωψ jψi, i < j

χiχ j =
{
ω−1χ jχi, i > j
ωχ jχi, i < j

χiψ j =
{
ω−1ψ jχi, i > j
ωψ jχi, i � j.

(A2)

Inversely, one can map

Zi−1Z†
i = ψi−1χ

†
i , Z†

i Zi+1 = χi+1ψ
†
i , Xi = χ

†
i ψi. (A3)

The dipolar SPT Hamiltonian can thus be interpreted as a
parafermion chain,

H = −
∑

j

[(Zj−1Z†
j )Xj (Z

†
j Z j+1) + H.c.]

→ −
∑

j

[ψ j−1(χ†
j )2ψ jχ j+1ψ

†
i + H.c.]

= −
∑

j

[ωψ j−1(χ†
j )2χ j+1 + H.c.]. (A4)

After some algebra, we find that there exist two sets of
parafermion operators that commute with the Hamiltonian:

L1 = χ1, R1 = χL

∏
j<L

(ψ†
j χ j ),

L2 = χ2, R2 = χL−1

∏
j<L−1

(ψ†
j χ j )χ

†
LψL. (A5)

These operators exactly match the edge operators of the dipo-
lar SPT chain in (3.12).

APPENDIX B: PRECISE DEFINITION
OF BUNDLE SYMMETRIES

This Appendix is devoted to formulating a mathematically
precise definition of the bundle symmetries introduced in
Sec. III D of the main text.

Consider a local Hamiltonian H which acts on a col-
lection of d-dimensional qudits placed on the vertices of a
D-dimensional spatial lattice M. Let {Aα} denote a collection
of contractible9 subregions which together provide an open
cover for M (so that all of the intersections Aα ∩ Aβ are
themselves contractible). A bundle symmetry EG over M is
defined by a projection π : EG → M and a certain collection of
operators defined on the Aα which we will define momentarily.
On each patch Aα , these operators are defined using local
inverses of π , which identify the preimage of Aα under π with
the product space Aα × F , where the fiber F = U (d ) is the

9Since our Hamiltonians are defined on lattices, this use of the word
“contractible” is a bit colloquial. More precisely, we will actually
think of ourselves as working on a CW complex, the 0-cells of which
constitute the lattice M. We then call a collection of points in M
contractible if the D-manifold defined by the union of all D-cells
whose boundary 0-cells are all contained in M is contractible.
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d-dimensional unitary group (d being the local Hilbert space
dimension). We will write these local inverses as π−1

g , where
for now g is a formal symbol indexing the different inverses.
For each π−1

g and each patch Aα , we define the symmetry
section ϕgα as

ϕgα ≡
∏
j∈Aα

π−1
g ( j)F , (B1)

where π−1
g ( j)F denotes the restriction of π−1

g ( j) to the fiber
F = U (d ), and where for all Aα we require that ϕgα behave
like an internal symmetry of H on the interior of Aα , meaning
that H |Aα

, the restriction of the Hamiltonian H to Aα , com-
mutes with ϕgα:

[H |Aα
, ϕgα] = 0. (B2)

Note that the set of operators satisfying (B2) are closed under
matrix multiplication and taking inverses. The ϕgα thus form
a group, explaining our choice to index them by the symbol
g (and allowing us to write, e.g., ϕgαϕhα ≡ ϕghα and ϕg−1α ≡
ϕ†

gα). Finally, for each pair of patches Aα, Aβ with Aα ∩ Aβ 
=
∅, we define the transition operators

tgα,hβ ≡ (ϕ†
gαϕhβ )|Aα∩Aβ

. (B3)

Note that tgα,hβ is itself a symmetry section on Aα ∩ Aβ . Also
note that on triple overlaps of subsystems Aα ∩ Aβ ∩ Aγ 
= ∅,
we have a “cocycle condition” tgα,hβthβ,kγ tkγ ,gα = 1.

In the language of bundle symmetries, an ordinary internal
global symmetry is simply a global section of EG, viz., a sym-
metry section ϕg which admits an extension of its range from
the collection of patches Aα to the entire spatial manifold M,
with [ϕg(M ), H] = 0. More precisely, a global symmetry is a
symmetry section characterized by the property that tgα,gβ = 1
for all patches Aα, Aβ with nonzero intersection. For sections
ϕg which do not admit an extension to M, the associated
“symmetry” can only be defined patch by patch, as was shown
to be the case for the ZN dipole symmetry considered above.
If choosing tgα,gβ = 1 is obstructed for any g, we will call the
bundle symmetry “nontrivial.”

One-dimensional systems with spatially modulated sym-
metries [59] provide the simplest examples of nontrivial
bundle symmetries. When the spatial manifold is a line,
the bundle symmetries that arise are always trivial since a
single patch Aα suffices to cover all of space. A circle re-
quires at least three patches, however, and nontrivial bundles
are possible. Consider a translation-invariant system with a
local symmetry section ϕgα = ∏

j∈Aα
U g( j)

j , where Uj is a
given unitary and g( j) is some function of the spatial coor-
dinate. Translation invariance means that different sections
ϕgα can be chosen by replacing g( j) with g( j + jα ) for
any integer jα; this gives transition operators of the form
tgα,gβ = ∏

j∈Aα∩Aβ
U g( j+ jα )−g( j+ jβ )

j .
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