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Using a combination of quantum Monte Carlo simulations in adapted cluster bases, the finite-temperature
Lanczos method, and an effective Hamiltonian approach, we explore the thermodynamic properties of the
spin-1/2 Heisenberg antiferromagnet on the star lattice. We consider various parameter regimes on this strongly
frustrated Archimedean lattice, including the case of homogeneous couplings as well as the distinct parameter
regimes of dominant vs weak dimer coupling. For the latter case, we explore the quantum phase diagram in
the presence of inhomogeneous trimer couplings, preserving inversion symmetry. We compare the efficiency
of different cluster decoupling schemes for the quantum Monte Carlo simulations in terms of the sign problem,
contrast the thermodynamic properties to those of other strongly frustrated quantum magnets such as the kagome
lattice model, and comment on previous results from tensor-network calculations regarding a valence bond crys-
tal phase in the regime of weak dimer coupling. Finally, we relate our results to recently reported experimental
findings on a Cu-based quantum magnetic spin-1/2 compound with an underlying star lattice structure.
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I. INTRODUCTION

Among the 11 Archimedean lattices, i.e., periodic tes-
sellations of the plane by regular polygons such that all
edge lengths are equal and every vertex looks alike, several
cases are particularly prominent in the field of quantum mag-
netism [1-5]. These include the well-known examples of the
square, triangular, honeycomb, and kagome lattice. Various
magnetic compounds realize the topology underlying these
lattices in the form of exchange paths between the mag-
netic ions. For the cases of the triangular and the kagome
lattice in particular, antiferromagnetic exchange interactions
induce a strong degree of geometric frustration, resulting from
the triangles contained in these lattices. While the spin-1/2
Heisenberg model on the triangular lattice has been concluded
to nevertheless still exhibit a magnetically ordered ground
state (see Ref. [1] and references therein), the stronger geo-
metric frustration along with a lower coordination number of
z = 4 leads to the complete breakdown of classical long-range
order in the spin-1/2 Heisenberg model on the kagome lat-
tice, offering a promising candidate for a quantum spin liquid
ground state instead [5-9].

It is worthwhile to note that the star lattice shown in Fig. 1
has in fact the lowest coordination number, z = 3, among all
the Archimedean lattices that contain triangles. In contrast
to other Archimedean lattices, material realizations of the
star lattice structure in magnetic compounds are however
much less abundant. Indeed, only a few explicit realizations
of this lattice structure in layered magnetic materials have
been reported [10-12], and a nanographene-based design
of a spin model on the star lattice was proposed recently
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in Ref. [13]. Of particular interest here is the compound
[(CH3)2(NH2)13[Cus (u3-OH)(143-SO4)(143-SO4)3] -
0.24H,0, which realizes a Cu-based spin-1/2 system with
antiferromagnetic interactions and no magnetic order down
to 2 K [11]. We comment further on this material in the
Conclusions.

Theoretically, quantum spin models on the star lattice have
been investigated in several previous studies with respect to
the ground-state properties. Below, we summarize previous
studies of the SU(2)-symmetric Heisenberg model on the star
lattice (other works focus on quantum spin liquid phases on
the star lattice in models with strongly anisotropic, Kitaev-
model interactions [15—17]). In Refs. [1,18], the ground-state
and spectral properties of the spin-1/2 Heisenberg model on
the star lattice have been reported based on exact diagonal-
ization (ED) on finite lattices with up to 42 spins. These
studies, which considered the exchange couplings along the
bonds of the star lattice of equal strength J, reported a gapped
paramagnetic ground state with a sizable spin gap (singlet-
triplet gap) of A = 0.3809J, where this value is an estimate
obtained by finite-size extrapolation of ED data for lattices
of N = 18, 24, 30, and 36 sites. Whereas the triangles in the
kagome lattice are corner sharing, they are coupled by dimer
bonds on the star lattice (see Fig. 1). Thus, the latter is an
Archimedean lattice with two nonequivalent nearest-neighbor
bonds, namely triangular (J;) and dimer (J;) couplings. The
spin-spin correlations along these dimer bonds were found
to be more than three times larger than on the triangular
bonds (in the following, we will also denote these triangles
as trimers). In this regime, the ground state is thus strongly
dimerized on the dimer (i.e., intertrimer) bonds. Besides the
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FIG. 1. Illustration of the star lattice, also known as the truncated
hexagonal, triangle-decorated honeycomb, or T9 lattice, specified by
the Griinbaum-Shephard [14] symbol (3, 122) in terms of the set
of polygons which surround each lattice site (one triangle and two
dodecagons in this case).

kagome lattice, the star lattice thus provides another example
of an Archimedean lattice for which the interplay of geomet-
ric frustration and quantum fluctuations prevents ground-state
magnetic order to emerge.

More recently, the case that the strengths of the intratrimer
(Jy) and intertrimer (J;) couplings of the spin-1/2 Heisenberg
model on the star lattice take on different values has been
considered based on various methods [19-23]. According to
these studies, the aforementioned dimerized phase is stable
up to a ratio of J;/J; = 1.1. The infinite projected entangled
pair states (iPEPS) results from Ref. [22] indicate that for
larger values of J;, the ground state is a valence bond solid
(VBS) with a six-site unit cell, spontaneously breaking the C;
symmetry around each of the trimers.

Here, we extend these previous studies by examining the
finite-temperature thermodynamics of the spin-1/2 Heisen-
berg model on the star lattice over a wide range of the
coupling ratio J;/J;. Furthermore, we also examine this
model in the thus-far unexplored regime where the trimer
couplings are not all equal. In order to access the thermo-
dynamic properties of this system, we use a combination
of effective low-energy models derived from perturbation
theory in the regime of weak intertrimer coupling, ED,
the finite-temperature Lanczos method (FTLM) [24-26], as
well as quantum Monte Carlo (QMC) simulations using
the stochastic series expansion (SSE) framework [27-31].
In fact, a further motivation for this paper was to examine
different recently developed cluster-based SSE QMC algo-
rithms applied to this frustrated quantum magnet [32-38].
More specifically, we examine different SSE QMC algorithms
formulated in the single-spin, spin-dimer, and spin-trimer
computational basis, respectively, and compare the severe-
ness of the QMC sign problem [39,40] for these different
algorithms.

FIG. 2. Unit cell of the star lattice. The labeling of the sites and
the trimer couplings within the two trimers is indicated as well as the
lattice vectors and the dimer couplings.

The remainder of this paper is organized as follows:
In the following Sec. II, we introduce the Hamiltonian
of the spin-1/2 Heisenberg model on the star lattice and
review the different QMC methods considered here. We
also summarize shortly the FTLM approach as applied to
such two-dimensional quantum spin systems. In Sec. III,
we discuss the sign problem of the QMC method applied
to this model for the various computational bases. Our
numerical results for the physical properties of the star lattice
model are presented in Sec. IV, along with perturbation
theory results for the low-energy effective models in the
weak intertrimer coupling regime. Final conclusions are
given in Sec. V, along with remarks on the compound
[(CH3)2(NH2)[3[Cu3(u3-OH)(13-SO4)(143-SO4)3] -
0.24H,0.

II. MODEL AND METHODS

In the following we consider the spin-1/2 Heisenberg
model with antiferromagnetic exchange interactions on the
star lattice, shown in Fig. 1. This Archimedean lattice can be
considered as a hexagonal lattice of coupled triangles, also
referred to as trimers. We denote the left (right) trimer in
each unit cell by A (A’), where a given unit cell is specified
by its center position 7. The two lattice vectors that connect
neighboring unit cells are denoted by d; and d,, respectively.
Each unit cell contains two trimers, i.e., a total of six spins, as
illustrated in Fig. 2. In the following, we report QMC results
for finite systems with L x L such unit cells (i.e., N = 6L>
lattice sites) and with periodic boundary conditions in both
lattice directions. For the FTLM approach we use a set of finite
lattices with N = 24, 30, 36, 42 including also finite lattices
with parallelogram shapes (see Refs. [1,18]).

The three spins within each trimer are coupled by the
trimer interactions Ji, J», and Js;. These are labeled such
that the spin with index i in a given trimer is located op-
posite to the bond with coupling strength J; (see Fig. 2).
While in general a total of six different trimer couplings are
contained in each unit cell, here we consider the inversion
symmetric case (see Fig. 2), i.e., all couplings along parallel
trimer bonds are of equal strength. The trimer Hamiltonian is
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thus given by
HZ =Ji S;,A 'S;A +J Si,A 'Sg,A +J3 ST,A -SQ,A’ (1)

and the same expression applies for HZ,, after replacing A by
A’. Here, Si A denotes the spin 7 in trimer A of the unit cell
with coordinates 7. Spins in neighboring trimers are coupled
by the dimer interactions J;, also referred to as intertrimer
interactions. These dimer bonds of the star lattice assign each
spin to a unique partner to form a two-site spin dimer (see
Fig. 1). For each unit cell, one dimer bond is contained within
the unit cell. The two other dimer bonds connect trimers in
neighboring unit cells. More specifically, the full system’s
Hamiltonian is given by

H=Y Hy+Hy+1sS,-Sin
7

+ 0 ST ST 4+ 04 S - SHRE. )

In order to extract thermodynamic properties of this model
on small finite systems, one can use ED, and to access larger
system sizes one can use the FTLM approach. Here, we
provide only a brief illustration of the basic elements of the
FTLM. For a more detailed description of the FTLM we refer
the interested reader to the reviews [26,41,42] and to recent
FTLM papers on the kagome [43] and the square-kagome
Heisenberg antiferromagnets [44].

Within the FTLM approach, the sum over a set of complete
orthonormal basis states in the partition function Z is replaced
by a substantially smaller sum over R random vectors:

T dim[H RN
7~y dml WZZ w3
y=1 v=1 n=1

where |v) labels the random vectors for each orthogonal sub-
space H(y ) of the Hilbert space with y labeling the respective
symmetry. In Eq. (3), we approximate the exponential of
the Hamiltonian by its spectral representation in a Krylov
space spanned by the N; Lanczos vectors starting from the
respective random vector |v), where |n(v)) is the nth eigen-
vector of H in this Krylov space with the energy €{"). To
perform the symmetry-decomposed numerical Lanczos cal-
culations we used Schulenburg’s publicly available package
SPINPACK [45,46]. A detailed discussion of the accuracy of the
FTLM can be found in Refs. [43,47].

Another powerful approach for the theoretical study of
quantum magnetism is provided by unbiased QMC simula-
tions based, e.g., on the SSE approach [27-31]. While this
method yields highly accurate data for the thermodynamic
properties of many quantum magnetic systems, it generally
suffers from a severe sign problem in the presence of ge-
ometric frustration [39,40]. Over the recent years, several
approaches have been put forward in order to reduce, or in
specific cases even remove, the QMC sign problem in frus-
trated quantum magnets. One particular approach is based
on reformulations of the QMC sampling scheme by chang-
ing from the standard computational basis of local spin to
appropriate cluster bases, such as formed by spin dimers or
spin trimers [32-38]. More specifically, in the local spin basis,
referred to as the site basis in the following, the S* component

of each spin is diagonal, with
Silmj) =mj|m;), 4)

where the two possible states of the jth spin are denoted
by [1;) and |{;) for m; =1/2 and —1/2, respectively. For
this standard computational basis, the formulation of the SSE
QMC algorithm has been presented in several works, such as
the review in Ref. [48].

In the dimer basis, the total spin S; = S; 4 Sy of the two
spins connected by a J;-dimer bond d is considered (note that
the two spins belong to different trimers, depending on which
specific J;-dimer bond d is considered; see Fig. 2). The local
Hilbert space for the dimer d is then spanned by four states,
consisting of a singlet state

1
10,0) = E(ITN/{) — i) &)
and the three triplet states
1, 1) =11,
1
I1,0) = E(IT/‘M) + 1)),
1, =1) =) (6)

where the first (second) quantum number specifies the eigen-
value of Sfl (S3) of the total dimer spin. For an isolated J;
dimer, these four spins form the eigenstates of the Heisenberg
Hamiltonian, with the singlet being the ground state. We refer
to Ref. [33] for details of the QMC SSE algorithm in the dimer
basis.

Finally, in the trimer basis the total spin of one trimer Sy =
Si.a +S2.a + S3.a is considered (here and in the following,
we suppress the position vector whenever a specific trimer is
considered). We denote the quantum numbers of S3 and S5 by
In, and mp, respectively. As a further operator to distinguish
the eight states of a trimer we use, following Ref. [37], the
operator S; » A = S1.a + S2.a, and denote by /; , the quantum
number of S7, . The basis states for the local Hilbert space
for trimer A are therefore denoted by |/; 2, [a, ma), and read
explicitly

11
0.5 2> \/_(ITNz) Nit2) ® [13),
1 1
0,5,—2>=\/_(|T1¢2> Nit2)® N3, (D

and

1 1
L, o §> = %(|T1¢2T3) + Hitats) — 211 1i12d3)),

1 1 1
'1, =, ——> = %(liﬁzia) + td2ds) —

2141d213)),
®

as well as

33
,§,§>—|T1T2T3>,

31 1
22|~/

1, —(M1t2d3) + Hatets) + [11d213)),
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3 1 1
1, > —5> = ﬁ(uwzﬁ) + [1t1d2da) + 1 t2ds),
17%5_%>= |¢/1\L2\L3)‘ (9)

The same construction applies to a right trimer A’. We
note that for an isolated isosceles trimer with J; = J,, the
eigenstates of the Heisenberg Hamiltonian consist of the two
twofold degenerate doublets Dy [Eq. (7)] with energy Ep, =
—%]3, and D, [Eq. (8)] with energy Ep, = }‘]3 — Ji, and the
fourfold degenerate quartet Q [Eq. (9)] with energy Ep =
%Jl + 41—1]3 . It therefore depends on the coupling ratio which
doublet forms the ground state. For J; = J, < J53 (J1 =J, >
J3), Do (D) has the lowest energy. For J; = J, = J3, the two
doubles Dy and D, become degenerate and the ground state
is fourfold degenerate. In all above cases, the quartet has the
highest energy. We refer to Refs. [37] for details on the QMC
SSE algorithm in the trimer basis.

III. SIGN PROBLEM ANALYSIS

For the spin-1/2 Heisenberg model on the star lattice,
QMC simulations can be performed without any sign problem
only in a few limiting cases.

(i) When J; = 0 there is no sign problem in the trimer
basis.

(ii) If at least one of the three trimer couplings vanishes,
there is no sign problem in the site basis, since the system is
bipartite under this condition.

(iii) In the limit of vanishing trimer coupling there is no
sign problem in both the site and the dimer basis.

For the generic case, however, there is a QMC sign problem
for each of the three considered computational bases, and
we therefore examine in more detail the average sign, (sign),
for the different algorithms in order to compare their perfor-
mance [38]. Namely, the value of (sign) is a direct indicator
for the severeness of the sign problem: while (sign) = 1 indi-
cates the complete absence of a sign problem, a substantially
smaller value of (sign) < 1 approaching zero means that a
much larger amount of QMC sampling is required in order
to obtain statistically accurate expectation values of physical
observables [40] [in practice, our SSE simulations remain
feasible for (sign) larger than O(1072)]. We thus performed
a detailed analysis of the behavior of (sign) in the various pa-
rameter regimes. For this purpose, it is convenient to introduce
an angular parameter ¢, in terms of which

Jy = Jcos(¢), J;=Jsin(¢), (10)

fori=1,2,3, i.e., we consider the case of equal intratrimer
couplings, and J quantifies the overall interaction scale. This
parametrization allows us to conveniently tune from the limit
of isolated J; dimers for ¢ = 0 to isolated trimers for ¢ =
/2. The values of (sign) for the different algorithms are
shown in Fig. 3 as a function of ¢ at four selected temper-
atures T, specified in units of J. For a completely sign-free
QMC simulation, the value of (sign) = 1, independently of
temperature. This behavior is observed in Fig. 3 in both of
the aforementioned limits. Beyond these limits, all methods
exhibit a sign problem, as indicated by a value of (sign) < 1.
Furthermore, upon reducing T, the averaged sign gets strongly

17  site basis T =001 T T=01J
4 dimer basis
0.751 ¥ trimer basis il
5 051 1
0.25 1 ]
0 : , : , , ;
14
0.751 -
N T=1J
& 051
0.25 1
01

0 ©/8 w/4 3r/8 7w/20 m/8 w/4 3m/8 7w/2
¢ @

FIG. 3. Average QMC sign, (sign), of the spin-1/2 Heisenberg
model on the star lattice (L = 4) as a function of ¢ for various
temperatures T, specified in units of J.

reduced, where a value below about 0.01 renders efficient
QMC sampling unfeasible due to a significant increase in
computational resources needed in order to reduce the sta-
tistical uncertainly. More relevant than the actual value of
(sign) within this inaccessible regime is in fact its behavior
as a function of ¢ for the different algorithms. In order to
discuss this in more detail, we focus on the case T = J in
Fig. 3. For dominant intratrimer couplings, i.e., for ¢ > 7 /4,
the trimer basis algorithm is seen to be favorable in terms of
the value of (sign). This is certainly expected from the limiting
behavior as ¢ approaches 7 /2, where the system decouples
into uncoupled trimers. Correspondingly, we find that upon
approaching the other limit, ¢ — 0, the average sign drops
strongly for this algorithm, while the average signs for both
the site and the dimer basis increase. Interestingly, we find that
for all values of ¢, the site-based algorithm exhibits a larger
value of (sign) than the dimer-based algorithm. Indeed, even
in the regime of dominant J; coupling, where the formation
of singlet correlations on the J; dimer bonds strongly in-
creases, finite residual interdimer correlations remain, which
apparently are described less efficiently in the dimer basis.
It furthermore turns out that for the homogeneous case with
¢ =m/4,ie., J; =J; =J, = J3, the site and the trimer basis
perform similarly in terms of the average sign, with only a
slight advantage for the site-based algorithm. In view of the
above, this is not too surprising, given that in the homoge-
neous case the ground state was found to be dominated by
the formation of singlets on the dimer bonds [1,18]. Based
on the above analysis, we therefore used the trimer-based
algorithm for the regime of dominant trimer coupling, and
otherwise used the site-based QMC algorithm for obtaining
the thermodynamic results presented below.

IV. RESULTS

We now discuss the thermodynamic properties of the spin-
1/2 Heisenberg model on the star lattice within the various
regimes of the interaction strengths.
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FIG. 4. Temperature dependence of the nearest-neighbor corre-
lations C; = (S; - S;)4 and C; = (S; - S;); along a dimer and trimer
bond, respectively, for the homogeneous spin-1/2 Heisenberg model
on the star lattice as obtained from QMC (N = 24, symbols) and ED
(N = 18, dashed lines). T = 0 ED values from Ref. [1] (N = 36) are
indicated by arrows.

A. QMC results for dominant dimer coupling

We first consider the case that the dimer coupling J; dom-
inates over the three trimer couplings J;, J», and J3. In this
regime, the ground state is characterized by the formation of
spin singlets on the dimer bonds. Indeed, this physics was pre-
viously established for the balanced case, where all couplings
are of equal strengths, J; = J; = J» = J3 [1,18], as quoted in
the Introduction. In the following, we will denote by J the
value of the couplings in the balanced case, and by J; the value
of the J;, i = 1, 2, 3 in cases where they are all equal—in the
balanced case, considered in Refs. [1,18], thus J; =J; =J
holds.

To illustrate the dominance of the dimer couplings in the
balanced case, we show in Fig. 4 the two nonequivalent
nearest-neighbor spin-spin correlations C; = (S; - S;); and
C: = (S; - S;); along a dimer and trimer bond, respectively.
Here, finite-T results from QMC simulations for N = 24 (L =
2) and ED for N = 18 are compared to the ground-state values
for N = 36 reported in Ref. [1] (due to the sign problem, we
cannot reach towards lower temperatures in these QMC sim-
ulations). The correlations along the dimer bonds are clearly
seen to dominate over those on the trimer bonds. Furthermore,
no significant finite-size effects are observed in these quanti-
ties, as expected from the rather strong dimerization of the
system on the dimer bonds. We note a slight nonmonotonous
behavior in the strength of the nearest-neighbor spin-spin cor-
relations along the trimer bonds upon approaching towards the
ground state: At finite temperatures, the weakening of the cor-
relations on the dimer bonds with respect to the ground state
thus leads to a slight initial enhancement of the correlations
on the trimer bonds before eventually thermal fluctuations
weaken all correlations altogether.

In Ref. [1], a large spin gap (singlet-triplet gap) of A/J =
0.3809 was identified for the balanced case. Such sizable
spin gaps relate to a correspondingly strong suppression in
thermodynamic response functions at low temperatures in

0.6 T
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0.4

003

0.2

0.1

0.25

0.2

0.15

0.1

0.05

E/J, perbond
5 s
[\S] —_—

5
w
T
|

04 —_

FIG. 5. Temperature dependence of (a) the specific heat C,
(b) the uniform susceptibility x, and (c) the energy E per bond of
the spin-1/2 Heisenberg model on the star lattice as obtained from
QMC simulations (L = 2) for different values of the trimer coupling
J; (data for isolated dimers at J, = 0 are from ED for N = 2).

the regime of dominant dimer couplings. This is exhibited
by our QMC data for the temperature dependence of both
the specific heat C and the uniform magnetic susceptibility
x shown in Fig. 5. Due to the sign problem, we can only
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access the relevant low-T regime for values of J;/J; below
about 0.5. The bottom panel of Fig. 5 also shows the temper-
ature dependence of the energy E, which approaches closer
to the single-dimer (J; = 0) behavior upon decreasing J;, as
expected. For the homogeneous case, a ground-state energy
per bond of E/J = —0.3093 was reported in Ref. [1], and our
data for varying J, /J; are in accord with an approach towards
this value, even though we certainly cannot access the low-T
regime for J; /J; beyond about 0.5, again due to the QMC sign
problem. However, overall we obtain a consistent picture that
in the regime of dominant dimer coupling the low-7' thermo-
dynamic properties are characterized by the dominant singlet
formation on the dimer bonds and an associated sizable spin
gap. Finally, we note that the data in both Figs. 5(a) and 5(b)
exhibit apparent crossing points in C(7T") and x (T) for differ-
ent ratios J; /J; at two (different) temperatures, T =~ 0.7J; and
0.4J, respectively. Such isosbestic points have been observed
and discussed for response functions in various systems [49]
and occur, e.g., also for the Hubbard model in different dimen-
sions [50]. Upon closer inspection, the crossing points seen in
Fig. 5 however actually exhibit a weak systematic drift instead
of actual isosbestic behavior.

Unfortunately, our QMC approach does not allow us to
explore the parameter regime where the trimer couplings J;
are of order but larger than J;, since in this regime, the sign
problem is rather severe in all the computational bases that
we considered. Therefore, we use the FTLM to calculate C
and y down to low temperatures for this parameter regime.
We discuss these data in the next section. In the regime of
strong trimer couplings, i.e., for weak dimer coupling, J; <
J1, J2, J3, one can explore the magnetic properties of the spin-
1/2 Heisenberg model on the star lattice based on perturbation
theory, in terms of effective Hamiltonians for the trimer total
spin degrees of freedom. We turn to discuss this approach in
Sec. IVC.

B. FTLM results for (almost) balanced dimer
and trimer couplings

As discussed in Secs. III and IV A, the QMC sign problem
becomes increasingly severe upon approaching the balanced
case J; = J;. However, from a theoretical point of view it is of
particular interest to study the case J; = J; = J, i.e., the pure
Archimedean-lattice model. Namely, besides the celebrated
kagome lattice the star lattice is the only other Archimedean
lattice for which the interplay of quantum fluctuations and
frustration prevents ground-state magnetic ordering for the
spin-1/2 Heisenberg antiferromagnet. Another example of
a nonmagnetic quantum ground state, which has attracted
much attention recently, is provided by the spin-1/2 Heisen-
berg antiferromagnet on the square-kagome lattice (which
is not an Archimedean lattice) [51-58]. Several studies al-
ready examined the thermodynamic properties of the spin-1,/2
Heisenberg antiferromagnet on the kagome [43,59-63] and,
more recently, the square-kagome lattice [44,64]. In particu-
lar, Refs. [43,44] also used the FTLM. It is thus interesting to
compare our star-lattice FTLM data with those for the kagome
and square-kagome lattices.

We present the temperature dependence of the specific heat
C and the uniform susceptibility x in Fig. 6. Obviously, there

03— :
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FIG. 6. Main panels: Temperature dependence of (a) the spe-
cific heat C and (b) the uniform susceptibility x of the spin-1/2
Heisenberg model on the balanced star lattice (J;, = J, = 1) as ob-
tained by FTLM for finite lattices of N = 24, 30, 36, 42 sites and
from QMC simulations. Insets: Comparison of the temperature de-
pendence (logarithmic scale) of (a) the specific heat C and (b) the
uniform susceptibility x of the spin-1/2 Heisenberg model on the
star, kagome [43], and square-kagome (squago) [44] lattices (N =
42).

are only very weak finite-size effects, which can be attributed
to the strong dimerization that leads to a very short magnetic
correlation length. Only around the maximum in the specific
heat do the C(T') curves for different system sizes deviate
slightly from each other. In the temperature region where
reliable QMC data are available, they agree very well with
the FTLM data.

A comparison with the corresponding data for the kagome
and square-kagome lattice models (shown in the insets of
Fig. 6) demonstrates that the thermodynamics of the star-
lattice Heisenberg antiferromagnet is significantly different
from that of the kagome and square-kagome lattices. In par-
ticular, the pronounced dimerization of the star lattice model
leads to a large spin gap (singlet-triplet gap), and hence the
maximum in y(7) is located at much higher temperature
than in the other two models. Furthermore, by contrast to the
kagome and square-kagome models there are no low-lying
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FIG. 7. Temperature dependence of (a) the specific heat C and
(b) the uniform susceptibility x of the spin-1/2 Heisenberg model
on the star lattice with J; = 0.5J; and 0.8J; as obtained by FTLM for
finite lattices of N = 24, 30, 36 sites and from QMC simulations.

singlet excitations within the spin gap. Thus, the extra low-
temperature features (maximum/shoulder) in C(T) are only
present for the kagome and square-kagome lattices.

Finally, we compare FTLM and QMC data for J; = 0.5J,;
and 0.8J; in Fig. 7. The general shape of the temperature
profiles is very similar to that for J, = J,;, where the position
and height of the maxima in C(T") and y (T') naturally depend
on the ratio J; /J;. As can be seen for J, = 0.5J,; the agreement
between the QMC and the FTLM data is excellent down to
very low temperature, reconfirming the accuracy of the FTLM
approach also within this temperature range.

C. Effective Hamiltonians for weak dimer coupling

In order to describe the low-temperature physics of the
spin-1/2 Heisenberg model on the star lattice for weak dimer
coupling, an effective low-energy Hamiltonian can be derived
from first-order Brillouin-Wigner perturbation theory, analo-
gous to the triangle square lattice case [38,65]. In this section,
we first present the resulting effective models.

1. Isosceles trimer couplings

Away from the special point J; = J, = J3, which will
be detailed below, the low-energy states of each trimer are
formed by a doublet of states, forming an effective spin-
1/2 degree of freedom on each trimer, given by s, = PSaP
(where P is the projector to the lowest-energy doublet)
and sp = PSa/P. These effective trimer spins are arranged
on a honeycomb lattice (see Fig. 1), which is bipartite. A
(weak) finite dimer interaction J; leads to an antiferromag-
netic coupling between these trimers by effective Heisenberg
interactions, with strengths that depend on the orientation of
the dimer bonds, as detailed below. Due to the bipartite nature
of the honeycomb lattice, this can lead to antiferromagnetic
order among the effective trimer spins in the ground state.
However, it is also possible that a quantum disordered state
forms in case a particular effective coupling in H.¢ dominates
over the others. As shown below, both situations are indeed
realized. The form of the effective Hamiltonian is given by

s\ 40 -8l

Ha= XI5
(11)

up to a irrelevant constant term. Analgﬂcal expressions of the
effective couplings Jett , erzr)’ and ‘]e(tt will first be discussed
below for the specific case J; = J, # J3, and later the general
case will be considered.

a. The case J3 > J| = J,. In this case the ground state of
each isolated trimer consists of the doublet Dy, i.e., the two

states

2
S+ Je(ff)SA'

11\ 1
I+) = ’0, > §> = ﬁ(”l\l&) = N1t2) ®113)
o b ony_ 1
|-) —' ,5,—§>— ﬁ(lﬁiz) —HNit2)) ® 3).

To derive the effective Hamiltonian, we consider two neigh-
boring trimers, and for each dimer bond evaluate the matrix
elements of the spin-spin coupling term corresponding to that
bond in the above basis. From the resulting 4 x 4 matrix, the
effective Hamiltonian corresponding to the considered inter-
trimer bond is then readily determined. We obtain Je(ff) =Jy,

while the other effective couplings vanish, Je(flf) = Je(fzf) =0,
to leading order in perturbation theory. The effective model
in this case thus describes decoupled dimers of the effective
trimer spins. Since this effective dimer coupling is positive,
the ground state consists of a product state of effective dimer
singlets. The fact that the effective coupling vanishes for the
two bonds along the directions of @; and d, can be understood
by examining the ground states of the uncoupled trimer. These

consist of a product of the singlet state |S) = f(|T1¢2)
[4112)) resulting from the coupling between the spins S;
and S A, with either the |13) or the ||3) state for the third
spin Sz a. The two states |[+) and |—) therefore differ only by
a flip of the third spin. The off-diagonal matrix elements of the
effective Hamiltonian therefore vanish because (13 | J3) = 0.
The diagonal elements also vanish along the bonds in the @,
and d, directions, since from the antisymmetry of the singlet
states it follows that (S| Sg. A - Sk.a' |S) = 0 for both k = 1,2
(see Fig. 8 for an explicit illustration for the case k = 1).
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FIG. 8. Illustration for the determination of the effective Hamil-
tonian along an intertrimer bond in the d, direction for J5 > J; = J,.
In each trimer, the ground state consists of a direct product of the
singlets among the two spins interacting via J3 and an [1); or || )3
state of the third spin.

b. The case J; < J, = J,. In this case the ground state of
each isolated trimer consists of the doublet Dy, i.e., the two
states

11 1
Lo §> = %(lTlizTﬂ + 1t21s) — 211t 112ds),

‘1, 3-3)= Z200itadah + 1 al) = 21Lidat,
and from first-order perturbation theory we now obtain J (flf) =
Je(fzf) = 4J and J e(?f) = 1Jd. Hence, in this case all the effective
couphngs along the bonds of the honeycomb lattice formed by
the effective trimer spins are positive, and the ground state is a
long-range ordered antiferromagnet of effective trimer spins.

1

2. Equal trimer couplings

In the case of equal intratrimer couplings, J; = J, = J3,
the lowest-energy subspace consists of two degenerate SU(2)
doublets. In addition to an effective spin-1/2 degree of
freedom, an additional pseudospin degree of freedom distin-
guishes these two doublets. Namely, the four ground states can
be expressed [65,66] in the eigenbasis of the chirality operator

V3

TR = _TSI,A - (S2,a X S3.A)
‘+1> L (1t 1h2d3) + @ [114a1s) + 0% 11 hahah),
T~ = w a)
> 7 11243 142713 112713
1 1
‘ +, 2> = 3(|¢1¢2T3) +o[L112d3) + 0" [T1l2d3),
1 1
‘ ,2>= 3(|T1T2¢3)+w [T1d213) + @ [{11213)),
1 1
‘— —§> %(|\L1\L2T3) +ollit2d3) +o" [11l2d3),
with @ = €27/3_i.e., these states are chirality eigenstates with
7% |£, m) = £ |£, m), for both m = :I:%, as well as spin-S%

eigenstates with S% |£, m) = m |4, m). The same chirality
operator and spin-chirality basis can be constructed for the
right timers A’. From the 16 x 16 matrix of the intertrimer

interactions calculated in this basis, we obtain the effective
Hamiltonian

J, -
Heff — 3‘1 ZA(I)AS,) FA’ . r+al +A(2)A(2) r . rA+a2

+AQDAQST - s, (12)

where the operators Ag) act on the chirality degree of freedom
on each trimer A, and read

AV =1 - 20 t] — 2wty

AQ =120t} — 20"},

AQ =1 -2t} — 21}, (13)
where 7t = |+)(—| and v~ = (1)’ = |—)(+|, and likewise
for A’. In the following, we do not consider further the chi-
rality degree of freedom that emerges in the case of equal
intratrimer couplings. It would certainly be interesting to
address also possible chirality orders at this special high sym-
metry point in future work (however, an unbiased analysis of
the effective model is unfeasible by QMC methods due to the
sign problem [38]).

3. General trimer couplings

We can conveniently present the results from the pertur-
bative calculation of the effective coupling strengths between
the trimer spins in the parameter space of the intertrimer cou-
plings Ji, J», and J3 using barycentric coordinates. These are
defined as j; = J;/(J1 + J» + J3), such that j; + jo + jz = 1.
In the following, we denote the sum of the three intertrimer
couplings by Ja = J; + J» + J3, such that Jji=Ji/Ja. The
values of the three effective couplings J are shown in Fig. 9
using the above defined barycentric coordlnates

We observe that over large regions of parameter space a
single effective coupling domlnates For example, for strong
J3, the effective coupling Jeff dominates, and similarly for
strong J; (J»), it is Jéf]f) (Je(?f)) that is the largest. In terms of
the effective total trimer spins, which reside on the effective
honeycomb lattice, this leads to a strong tendency to form a
quantum disordered ground state in the presence of a weak
Ju. Indeed, if one of the three effective couplings dominates,
there is a strong tendency to form singlets between pairs of
trimer spins that are connected by those strongest effective
couplings. Since each trimer spin is connected to a single other
trimer spin by one of these couplings, the original spin system
becomes effectively dimerized on the level of the effective
trimer spins.

We will further detail the resulting phase diagram of the
spin-1/2 Heisenberg model on the star lattice in the weak-J,;
regime after we compare, in the following section, the thermo-
dynamic predictions from the above effective Hamiltonians to
the QMC data in the weak intertrimer coupling regime, based
on the trimer basis.

D. QMC results for weak dimer coupling

In order to compare the effective Hamiltonian description
to the thermodynamics of the underlying star lattice model
in the weak-J; regime, we performed QMC simulations
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FIG. 9. Dependence of the strength of the three effective Heisen-
berg couplings J<, J?, and J$' on the intratrimer couplings of
the spin-1/2 Heisenberg model on the star lattice, as derived from
perturbation theory in the weak intertrimer coupling (J;) limit.

for different parameter values, fixing J; = 0.05Jo. This
value of J; indeed corresponds to the ratio of the
dimer and trimer couplings estimated for the compound
[(CH3)2(NH2)[3[Cu3(u3-OH)(13-SO4)(123-SO4)3] -
0.24H,0 in Ref. [11]. Defining j; = J;/Ja, this means
that we consider j; = 0.05 in the following.

A quantitative comparison of the thermodynamic proper-
ties of the star lattice model with the effective honeycomb
lattice model requires us to probe the thermodynamic prop-
erties of the star lattice model on temperature scales of the
order and below the strength of the dimer coupling J,, since
the effective couplings on the honeycomb lattice scale with J,;.
QMC simulations at such low temperatures are not feasible

0.4 T
@ j, =05

03 7,

0.2 Ty 1
%ﬁt i
‘#
0. \\
0 I | |
0.2 0.4 0.6 0.8
T/ J,
2.5 T T
L (b) .
— star lattice
2 «— eff. model
\ --J,=0

. . | . .
0 0.1 0.2 0.3 0.4
T/J,

FIG. 10. Temperature dependence of (a) the specific heat C and
(b) the uniform susceptibility x of the spin-1/2 Heisenberg model
on the star lattice (black symbols) and for the effective low-energy
spin-1/2 Heisenberg model on the honeycomb lattice (red symbols)
for the parameter choice (i), with L = 16. Dashed blue lines show
the results for isolated trimers (J; = 0), obtained from ED.

in those regimes where the simulations are plagued by the
sign problem. In order to test the accuracy of the effective
model for the low-temperature properties, we thus consider
the star lattice model in specific parameter regimes, where
the sign problem can be completely avoided. This is granted
in particular along the outer borders of the triangles of the
barycentric plots in Fig. 9, corresponding to the cases where
one of the trimer couplings J; vanishes. Indeed, the star lattice
model becomes bipartite in these limits. More specifically, we
consider the following two cases: (i) j; = j» = 0.5, j3 =0
and (ii) j; = 0.25, j» = 0.75, jz = 0. With the above choice

of j; = 0.05, we obtain for the effective couplings (i) Jérlr) =

J0'=0.02, j3 =0.005 and (i) j¥ = 0.0463949, j& =
0.002 1496, and ]S;f) = 0.0014555, respectively, where we
defined je(lf% = Je(;g /Ja. We performed QMC simulations for
both the original star lattice model as well as the effective
spin-1/2 model on the honeycomb lattice in order to compare
their thermodynamic properties. Such comparisons are shown
for both parameter cases for the uniform susceptibility x and
the specific heat C in Figs. 10 [case (i)] and 11 [case (ii)].
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FIG. 11. Temperature dependence of (a) the specific heat C and
(b) the uniform susceptibility x of the spin-1/2 Heisenberg model
on the star lattice (black symbols) and for the effective low-energy
spin-1/2 Heisenberg model on the honeycomb lattice (red symbols)
for the parameter choice (ii), with L = 16. Dashed blue lines show
the results for isolated trimers (J; = 0), obtained from ED.

Here, both intensive quantities have been normalized per site
of the original star lattice model, and the simulations were per-
formed on L = 16 lattices. We find that the low-temperature
behavior of the star lattice model is rather well described by
the effective model—in particular, the latter captures well the
low-T behavior in both quantities. The specific heat of the
star lattice model exhibits in both cases a two-peak structure:
The low-T peak relates to the onset of intertrimer correla-
tions, which are captured by the effective honeycomb model,
while the second peak stems from the release of entropy
upon increasing 7 by suppressing intratrimer spin correla-
tions, as seem from comparing to the corresponding results
for C for J; = 0, which are included in both figures. There-
fore, this second peak falls beyond the scope of the effective
model and instead relates to the intratrimer physics. From
the low-T behavior of the susceptibility we can furthermore
infer ground-state properties: In the parameter case (i), the
susceptibility approaches towards a finite ground-state value,
indicative of antiferromagnetic order, while in the second case

0.0 0.1

02 03 04 05 06

J2

FIG. 12. Phase diagram of the star lattice model in the weak
Jq limit, in dependence on the trimer couplings. Within the narrow
red regions, the effective trimer spins form a long-range antifer-
romagnetically ordered ground state. Beyond the antiferromagnetic
domain (red), the predominance of a single effective coupling in each
unit cell leads to the formation of three distinct quantum disordered
regions (green) with dominant singlets forming along the intertrimer
bonds with the strongest effective coupling, indicated by D", D®,
and D®, respectively.

(ii), the susceptibility is strongly suppressed towards zero
temperature, indicating a finite magnetic excitation gap such
as in a quantum disordered ground state. These findings are
indeed in accord with the overall phase diagram that we ex-
tract from the effective honeycomb lattice model, as detailed
in the following section.

E. Phase diagram for weak dimer coupling

Based on the effective honeycomb models derived above,
we can construct the phase diagram of the spin-1/2 Heisen-
berg model on the star lattice within the weak dimer coupling
regime. To do so, we use recent results for the ground-state
phase diagram of the spin-1/2 Heisenberg model on the hon-
eycomb lattice with three different coupling strengths along
the three bond directions [67]. This allows us to extract the
nature of the ground state in the weak-J; region based on
the values of the effective couplings Je(tif) expressed in terms
of ji, jo, and j3. The resulting phase diagram is shown in
Fig. 12, where we identify four distinct regions: For most
parameter values, the predominance of one of the three ef-
fective couplings Jél';g, i=1,2, or 3 leads to the formation of
a quantum disordered ground state, denoted by D, with a
strong formation of singlets among neighboring trimer spins
in the respective lattice direction. Only within a rather narrow
range of parameter values where at least two of the trimer cou-
plings are of similar strength there exists a ground state with
long-range antiferromagnetic ordering of the trimer spins.

We can compare the predicted ground-state phase diagram
with QMC results by concentrating again on the edges of
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FIG. 13. Scan of the staggered structure factor Syr of the trimer
spins of the star lattice model along the parameter line with j; =
0, and j;, = 0.05 as a function of the difference j, — j,. The two
vertical lines indicate the borders of the antiferromagnetic regime as
derived from the effective honeycomb lattice model. For these QMC
simulations, the temperature was chosen sufficiently low in order to
access ground-state correlations on these finite systems.

the phase diagram, along which one of the couplings J; van-
ishes, leading to a bipartite model and the absence of a sign
problem. More specifically, we focus on the line j3 = 0, such
that j; + j» = 1. In Fig. 13 the value of the low-temperature
antiferromagnetic structure factor Sar of the trimer spins, as
measured for star lattices of increasing size L, is shown as a
function of the difference j; — j,. We find that only within
a rather restricted regime around the point j; = j, does the
structure factor grow with increasing system size, indicative of
antiferromagnetic long-range order in the ground state, while
it becomes rapidly suppressed at finite differences between
j1 and j, beyond about 0.0125. The dashed vertical lines
in Fig. 13 display the border lines of the antiferromagnetic
regime taken from the overall phase diagram (Fig. 12), and
they again demonstrate a remarkably good agreement between
the star lattice model QMC results and the effective honey-
comb lattice model for the low-energy properties.

Finally, we shall relate the above phase diagram to previous
iPEPS results for the isotropic case, J; = J, = J3 [22] in the
weak-J,; region: The VBS ground-state manifold identified in
Ref. [22] is characterized by a six-site unit cell and a pre-
dominant singlet forming on a single bond within each trimer.
In Ref. [22], this VBS ground-state manifold is reported to
be threefold degenerate. However, a closer inspection of the
three degenerate VBS states illustrated in Fig. 12 of Ref. [22]
shows that this count is incomplete. For example, the VBS
state shown in Fig. 12(a) of Ref. [22] is characterized by
the predominant formation of singlets along one of the three
parallel trimer bond directions, e.g., those corresponding to
Ji in our notation. Apparently then there must be two further,
equivalent such states with predominant singlet formation on
the trimer bonds corresponding to J, and J3, respectively.
Similarly, the patterns illustrated in Figs. 12(b) and 12(c) of
Ref. [22] can be locally rotated to give rise to four additional
states and hence in total the six-site unit-cell VBS ground state
is ninefold degenerate: In terms of dominant singlets, each
of these nine states corresponds to picking one trimer bond

from each of the two trimers A and A’ within each unit cell.
Such a ground-state manifold can be perturbed upon breaking
explicitly the symmetry among the trimer bonds. In particular,
enhancing the strength of, e.g., all J; trimer bonds leads to
the preference within the VBS ground-state manifold of the
single specific state wherein the predominant singlets reside
on the J; bonds, and similarly for J, and J3. Thus, we arrive
at the following simple picture: Starting from the VBS ground
state for the isotropic limit, the presence of a single dominant
trimer coupling J; leads into the corresponding regime D (i),
in accord with the above phase diagram. Certainly, a similar
stabilization of any other remaining six VBS ground state
would require us to break up the symmetry among the trimer
bonds even further (i.e., by picking a strong bond J; on the left
trimer and a strong bond J; with i # j on the right trimer in
each unit cell). Such explicitly symmetry-broken states how-
ever reside beyond the inversion symmetric case considered
here and therefore are not contained within the above phase
diagram.

V. CONCLUSIONS

In summary, we used a combination of ED, QMC, FTLM,
and effective Hamiltonian approaches to study the thermody-
namic properties of the spin-1/2 Heisenberg model on the star
lattice. Besides the Heisenberg model on the kagome lattice,
this system is the only other SU(2)-symmetric Archimedean
lattice model that features a nonmagnetic, quantum disordered
ground state. Due to the strong geometric frustration in this
system, QMC simulations suffer from a severe sign problem,
restricting efficient QMC calculations to the regime of strong
dimer coupling (using the dimer or local site basis) or weak
dimer coupling (using the trimer basis).

However, from our combined analysis we were able to ob-
tain the thermodynamic properties in the regime of dominant
dimer coupling, including the special point of balanced dimer
and trimer couplings (J; = J;), where the system is character-
ized by a nonmagnetic, quantum disordered ground state with
a strong dimerization on the dimer bonds and a sizable spin
gap (singlet-triplet gap). This leads to a pronounced activated
behavior in the thermodynamic response at low temperatures,
and in contrast to other strongly frustrated quantum spin mod-
els no low-energy singlet excitations reside below the spin
gap.

In the regime of weak dimer coupling, we derived effective
low-energy Hamiltonians on the honeycomb lattice of trimers
by considering the general case with three different trimer
couplings Ji, J>, and J3 and inversion symmetry. From explicit
QMC simulations, we found that the low-temperature thermo-
dynamics of the weakly coupled trimer system is indeed well
described by these effective Hamiltonians. The ground-state
phase diagram in the regime of weak dimer coupling is dom-
inated by three extended quantum disordered regimes, each
being characterized by the dimerization of the effective trimer
spins along a specific lattice direction of the honeycomb
lattice. Only within three rather narrow regimes, in which
two of the trimer couplings come close, such as for J; = J,
does the system exhibit an ordered ground state of antiferro-
magnetically aligned trimer spins. The VBS state identified
from iPEPS calculations in Ref. [22] for the isotropic case,
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J1 = J, = Ji, also fits well into this picture, once its full de-
generacy is accounted for. It would nevertheless be interesting
to examine in future studies whether the VBS ground state is
obtained also from the effective Hamiltonian, including the
additional chirality degree of freedom, that we derived for the
case of equal trimer couplings.

As mentioned in the introduction, recently a Cu-based
spin-1/2 quantum spin system with an underlying star
lattice geometry was reported for the layered compound
[(CH3)2(NH2)13[Cus (uu3-OH)(143-SO4)(143-SO4)3] -
0.24H,0 in Ref. [11]. Based on ab initio calculations,
the ratio of the trimer and dimer coupling strength was
estimated to be of order 20, such that the quantum spin
system resides well in the regime of weak dimer couplings.
From our analysis, combined with the iPEPS results of
Ref. [22], the reported absence of magnetic order in this
compound can indeed be expected in this parameter regime.
Furthermore, our results suggest that upon applying uniaxial
pressure, it might be feasible to drive the material across the

phase boundary of the antiferromagnetic regions, in case the
trimer couplings are sufficiently affected by the corresponding
lattice distortions. Certainly, further ab initio analysis would
be required in order to explore this possibility for this specific
compound.
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