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We investigate the magnetotransport of topological Dirac semimetals (DSMs) while taking into account the
Lifshitz transition of the Fermi arc surface states. We demonstrate that a bulk momentum-dependent gap term,
which is usually neglected in the study of bulk energy-band topology, can cause the Lifshitz transition by
developing an additional Dirac cone on the surface to prevent the Fermi arcs from connecting with the bulk
Dirac points. As a result, Weyl orbits can be turned off by the surface Dirac cone without destroying the bulk
Dirac points. In response to the surface Lifshitz transition, the Weyl-orbit mechanism for the three-dimensional
(3D) quantum Hall effect (QHE) in topological DSMs will break down. The resulting quantized Hall plateaus
can be thickness dependent, similar to those based on Weyl orbits but their widths and quantized values become
irregular. Accordingly, we propose that apart from bulk Weyl nodes and Fermi arcs, surface Lifshitz transitions
are also crucial for realizing stable Weyl orbits and 3D QHE in real materials.
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I. INTRODUCTION

Topological semimetals are novel quantum states of mat-
ter in which the conduction and valence bands cross near
the Fermi level at certain discrete momentum points or
lines [1–10]. The gap-closing points or lines are protected by
either crystalline symmetry or topological invariants [11,12].
A topological Dirac semimetal (DSM) hosts paired gap-
closing points, referred to as Dirac points, which are stabilized
by time-reversal, spatial-inversion, and crystalline symme-
tries. By breaking the time-reversal or spatial-inversion
symmetry, a single Dirac point can split into a pair of Weyl
nodes of opposite chiralities [13,14], leading to a topological
transition from a Dirac to a Weyl semimetal [15–20]. Accom-
panied with the bulk topological transition, topological states
protected by the quantized Chern flux will emerge on the
surface to connect the split Weyl nodes, known as the Fermi
arc surface states [7].

In topological DSMs, such as A3Bi (A = Na,K,Rb) [4,5]
and Cd2As3 [2,3], the Weyl nodes at the same Dirac point,
belonging to different irreducible representations, cannot be
coupled and have to seek a partner from the other Dirac
point. As a consequence, the two Dirac points including two
pairs of Weyl nodes are connected by two spin-polarized
Fermi arcs [3–7]. The Fermi arc surface states are the most
distinctive observable spectroscopic features of topological
semimetals. However, their observation is sometimes limited
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by spectroscopic resolutions. Scientists have been searching
for alternative smoking-gun features of topological semimet-
als, such as by means of transport phenomena [21–23]. Many
interesting transport properties have been revealed in topolog-
ical semimetals, including chiral-anomaly-induced negative
magnetoresistance [24–30], Weyl-orbit-related quantum os-
cillations [31,32], Berry’s phase π -related Aharonov-Bohm
effect [33,34], bulk-surface interference-induced Fano ef-
fect [35], and topological pumping effect [36].

Recently, three-dimensional (3D) quantum Hall effect
(QHE) because of the Fermi arcs was proposed in Weyl
semimetals [10] and has led to an explosion of theoreti-
cal [37–50] and experimental [51–55] activities in the field of
condensed matter physics. In a Weyl semimetal slab, the Weyl
orbit which consists of Fermi arcs from opposite surfaces
can support the electron cyclotron orbit for the QHE, making
the 3D QHE available. The 3D QHE has been observed ex-
perimentally in topological DSMs [51–55] and the one from
the Weyl-orbit mechanism is demonstrated to be thickness
dependent [53]. However, for the topological DSMs, a single
surface with two Fermi arcs can also support a complete
Fermi loop required by the QHE, which can compete with the
Weyl-orbit mechanism. The same-surface Fermi loop is not
stable and can be deformed by bulk perturbations [12,56]. In
real materials, the bulk perturbations are inevitable.

As we will show, when a bulk momentum-dependent gap
term is included, Lifshitz transition can happen for the Fermi
arc surface states, in which the double Fermi arcs on the DSM
surface can be continuously deformed into a closed Fermi
loop and separate from the bulk Dirac points. The Lifshitz
transition involves a change of the Fermi surface topology
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that is not connected with a change in the symmetry of the
lattice [57–62]. Therefore, the Lifshitz transition can take
place without destroying the topology of the bulk energy band.
A natural question in this regard is how the deformation of
the Fermi arcs influences the 3D QHE of topological DSMs,
especially when the Fermi arcs, as key ingredients for the
Weyl orbits, breaks free from the bulk Dirac points.

In this paper, we investigate the QHE in topological DSMs,
taking into account the surface Lifshitz transition that can
be modulated by a bulk momentum-dependent gap term. It
is demonstrated that while the bulk Dirac points are robust
against the momentum-dependent gap term, an additional
two-dimensional (2D) Dirac cone can develop on the surface,
which deforms the surface Fermi arcs from a curve to discrete
points and further to a Fermi loop coexisting with the bulk
Dirac points. During this process, the bulk topological prop-
erties remain unchanged but the Weyl orbits can be turned off.
The joint effect of the Weyl orbits and surface Lifshitz transi-
tion makes the QHE quite complicated. We find that when the
Weyl orbits are broken by the surface Dirac cone, the bulk and
surface states can form Landau levels (LLs) and contribute
independently to the QHE. The resulting Hall plateaus are
sensitive to the thickness of the sample but their widths and
quantized values are irregularly distributed. The rest of this
paper is organized as follows. In Sec. II, we introduce the
model Hamiltonian and bulk spectrum. The Lifshitz transition
of the Fermi arcs and the LLs are analyzed in Sec. III and
Sec. IV, respectively. The QHE is studied in Sec. V and the
last section contains a short summary.

II. HAMILTONIAN AND BULK SPECTRUM

We begin with a low-energy effective Hamiltonian for the
topological DSMs

H(k) = εk + λ(kxσzτx − kyτy) + mkτz + �(k), (1)

with mk = m0 − m1k2
z − m2k2

‖ and εk = c0 + c1k2
z + c2k2

‖ ,

where k‖ =
√

k2
x + k2

y , and σx,y,z (τx,y,z) is the Pauli matrix

acting on the spin (orbital parity) degree of freedom. This
model has been widely adopted to capture the topological
properties of topological DSMs Cd3As2 [3] and A 3Bi (A =
Na, K, Rb) [4]. In the absence of �(k), [σz,H(k)] = 0 and the
topological DSMs characterized by Hamiltonian Eq. (1) can
be viewed as two superposed copies of a Weyl semimetal with
two Weyl nodes, which possesses two sets of surface Fermi
arcs in the surface Brillouin zone, as illustrated by Figs. 1(a)–
1(b) and 1(e)–1(f). �(k) can mix the eigenstates of opposite
spins away from the Dirac points and plays the role of a
momentum-dependent gap term whose form is determined by
crystal symmetries.

Specifically, for a DSM with fourfold rotational symmetry,
such as Cd3As2, the momentum-dependent gap term can take
the form �(k) = αkz(k2

+σ− + k2
−σ+)τx/2 with k± = kx ± iky

and σ± = σx ± iσy. Diagonalizing Hamiltonian Eq. (1) yields
the continuum bulk spectrum

E±(k) = εk ±
√

λ2k2
‖ + m2

k + α2k4
‖k2

z , (2)

from which we can determine the energy location ED = c0 +
c1k2

w and momentum locations K± = (0, 0,±kw ) of the bulk

FIG. 1. (a)–(d) The dispersion (red) by diagonalizing Hamilto-
nian Eq. (12) for (a) α = 0, c1 = c2 = 0, (b) α = 0, c1 = 3c2 = 0.15,
(c) α = 0.5, c1 = c2 = 0, and (d) α = 0.5, c1 = 3c2 = 0.15, with
kx = 0 and ED = 0 denoted by the blue dashed lines. The green
dotted curves are determined from Eq. (9), self-consistently. (e)–(h)
The k-resolved DOSs corresponding to (a)–(d) at EF = ED. The
rest of the parameters are set as λ = 0.5, kw = π/4, m0 = π 2/32,
m2 = 0.5, and Ny = 50.

Dirac points with kw = √
m0/m1. As εk possesses the symme-

tries of mk, it does not qualitatively change the Dirac spectrum
in the bulk, but introduces an asymmetry between the positive
(electrons) and negative (holes) energy branches and, conse-
quently, breaks the particle-hole symmetry. The electron-hole
asymmetry will curve the Fermi arcs, which was demonstrated
to be crucial for the LLs around the Weyl nodes [10]. While
�(k) can profoundly change the spectrum of quasiparticles
for sufficiently large k‖, it preserves all the symmetries of the
crystal structure and vanishes at the Dirac points. Therefore,
the bulk Dirac points are robust against �(k), as seen from
Eq. (2), where both momentum and energy locations of the
Dirac points are regardless of α. For this reason, �(k) is
usually treated as a bulk perturbation that does not destroy
the bulk topology.

For states near the bulk Dirac points, the quasiparticles can
be described by linearizing Hamiltonian Eq. (1) around K±,
such that �(k) can be neglected. However, in a topological
DSM slab, the Fermi arcs, which connect the bulk Dirac
points separated far away in momentum space, can extend
to large k where the spectrum can be dramatically modified
by the momentum-dependent gap term. In the following, we
elucidate that, in response to the momentum-dependent gap
term, the surface states of topological DSMs will experience
a Lifshitz transition, during which process the Fermi arcs can
exist without connecting the bulk Dirac points.

III. LIFSHITZ TRANSITION OF THE FERMI ARCS

To better understand how the Fermi arc surface states
evolve with the momentum-dependent gap term, we consider
a topological DSM slab with open boundaries at y = ±L/2
and derive the surface states for the xz plane. For such a
finite-size system, ky in Eq. (1) is no longer a good quantum
number and should be replaced with the operator −i∂y. In
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the spirit of perturbation theory, we construct an unperturbed
surface basis using the surface wave functions without �(k),
and obtain the effective Hamiltonian for the surface states by
projecting Eq. (1) onto this unperturbed surface basis. For ease
of discussion, we assume m2 > |c2| and select ED as potential
energy zero, i.e., c0 = −c1kw.

By setting α = 0 and solving the differential equa-
tion H(kx,−i∂y, kz )
kx,kz (y) = E
kx,kz (y) with the open
boundary conditions 
kx,kz (±L/2) = 0, we can evaluate
the unperturbed surface wave functions as 


β,s
kx,kz

(y) =
( 1+s

2 , 1−s
2 )T ⊗ 
β (y), which are spin resolved, with s = ±1

being the eigenvalue of σz and


β (y) =
(

β cos ϑ
2

− sin ϑ
2

)
eκ−(βy− L

2 ) − eκ+(βy− L
2 )√

Nβ

. (3)

Here, β = ± corresponds to the surface at y = ±L/2, Nβ =∫ L
2

− L
2
|eκ−(βy− L

2 ) − eκ+(βy− L
2 )|2dy is the normalization coeffi-

cient, and

ϑ = tan−1

[
2λ(m2 − c2)(κ+ + κ−)

λ2 − (m2 − c2)2(κ+ + κ−)2

]
. (4)

Here, κ± is a solution to E±(kx,−iκ, kz ) = E reading

κ± =

√√√√k2
x + ζλ ± (

ζ 2
λ − ζ+ζ−

)1/2

m2
2 − c2

2

, (5)

with ζλ = λ2−ζ++ζ−
2 and

ζ± = (m2 ± c2)
[
(m1 ∓ c1)

(
k2
w − k2

z

) ∓ E
]
. (6)

The surface states are confined within the region defined by
Re(κ±) > 0. Subsequently, by performing the projection op-
eration

Hβ,ss′
surf = 〈



β,s
kx,kz

(y)
∣∣H(kx,−i∂y, kz )

∣∣
β,s′
kx,kz

(y)
〉
, (7)

we can obtain the effective surface Hamiltonian

Hβ

surf (kx, kz ) = ε̃k − β sin ϑ (λkxσz + α̃kzσx ), (8)

where α̃ = α(k2
x − κ+κ−), ε̃k = c̃1(k2

z − k2
w ) + c̃2(k2

x +
κ+κ−), and c̃l = cl − ml cos ϑ with l = 1, 2. The details can
be found in Ref. [63].

As demonstrated by Eq. (8), the surface Hamiltonian dis-
plays a 2D Dirac structure with spin-momentum locking,
resembling the surface states of 3D topological insulators.
However, unlike the 3D topological insulators, the bulk spec-
trum here is also gapless, meaning that the surface Dirac
point can coexist with the bulk Dirac points. By diagonalizing
Eq. (8), we can obtain

Eβ
η (kx, kz ) = ε̃k − ηβ sin ϑ

√
λ2k2

x + α̃2k2
z , (9)

where η = ±1 labels the conduction/valence band. It should
be noted that because κ± is energy dependent, Eq. (9) is only
a formal solution for the surface spectrum. The exact surface
dispersion involves a self-consistent calculation of Eq. (9) by
replacing E → Eβ

η (kx, kz ) in Eq. (6). The numerical results of
the surface dispersion are presented by the green dotted curves
in Figs. 1(a)–1(d).

In order to show the bulk states and surface Fermi arcs
simultaneously, we evaluate the k-resolved density of states
(DOSs) for a given energy E through

ρ(E , kx, kz ) = − 1

π
Im Tr

(
1

E + i0+ − H

)
, (10)

in which H = ∑
k c†

kHtb
k ck is the tight-binding Hamiltonian

corresponding to Eq. (1). Here, c†
k (ck) is the fermion creation

(annihilation) operator and

Htb
k = Mk + λ(sin kxσzτx − sin kyτy) − 2α sin kz

× [(cos kx − cos ky)σx − sin kx sin kyσy]τx (11)

is the single-particle Hamiltonian obtained from Eq. (1)
by the transforms ka → sin ka and k2

a → 2 − 2 cos ka, with
a = x, y, z, Mk = f1(cos kz − cos kw ) + f2(cos kx + cos ky −
2), and fl = 2(mlτz − cl ). By performing the Fourier trans-
form ck → ∑

n cne−ikyyn , we can discretize the tight-binding
Hamiltonian as [63]

H =
∑

n

c†
nh0cn +

∑
n

(c†
nhycn+1 + h.c.), (12)

where the hopping matrices are given by

h0 = f0 + f1 cos kz + f2 cos kx + fx sin kx

− ασxτx[sin (kz + kx ) + sin (kz − kx )], (13)

hy = f2 + i fy

2
+ ασxτx sin kz

+ iασyτx
cos (kz + kx ) − cos (kz − kx )

2
, (14)

with f0 = −2 f2 − f1 cos kw and fx(y) = λσz(0)τx(y).
In Fig. 1, we plot the numerical spectrum and k-resolved

DOSs for Eq. (12). As shown by the green dotted curves
in Figs. 1(a)–1(d), the self-consistent calculation of Eq. (9)
aligns with the results obtained through numerical diagonal-
ization of Eq. (12). As depicted in Figs. 1(a) and 1(e), the
surface spectrums without εk and �(k) are kz independent
and intersect at ED with a quadruply degenerate line connect-
ing the two Dirac points. The flat Fermi line can be easily
modified by perturbations, which elucidates why particle-hole
asymmetry and momentum-dependent gap terms are impor-
tant to the surface states. A nonzero εk cannot gap the surface
spectrum but will cause bending of the Fermi lines into a
parabola, as shown by Fig. 1(b). Consequently, the Fermi arcs
with opposite spin, due to the spin-dependent term in Eq. (8),
will curve in opposite direction at the Fermi level, forming a
closed loop with a discontinuous kink at the Dirac points, as
indicated by Fig. 1(f).

By contrast, when the momentum-dependent gap term is
included, the Fermi lines with opposite spin will repel each
other and remove the spin degeneracy due to the noncommu-
tation between σz and Hβ

surf (kx, kz ). Since �(k) = 0 for k‖ = 0
or kz = 0, the surface spectrums keep crossing at k = 0, K±,
as shown by Fig. 1(c). Therefore, a 2D Dirac point develops
on each surface, which coexists with the bulk Dirac points.
The surface Dirac points, similar to the bulk Dirac points, are
robust against �(k), but differently, the energy location of the
surface Dirac points can be modulated by the particle-hole
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asymmetry. In the presence of particle-hole symmetry, i.e.,
εk = 0, the energy location of the surface Dirac points is
identical to the bulk Dirac points. Thus, at EF = ED, the Fermi
line in Fig. 1(e) deforms into three Fermi points in Fig. 1(g).
When particle-hole symmetry is broken by a finite εk, the
surface Dirac points will shift away from ED, after that the
surface Fermi point around k = 0 turns to a Fermi loop, as
demonstrated by Fig. 1(h), which prevents the Fermi arcs from
connecting the bulk Dirac points.

Consequently, although the surface spectrums remain in-
tersecting with the bulk Dirac points, the surface states will
experience a Lifshitz transition with the Fermi arcs changing
from a curve to discrete gap-closing points and further to a
Fermi loop coexisting with the bulk Dirac points. Throughout
this process, the Weyl orbits can be deactivated without com-
promising the topological properties of the bulk energy band.

IV. LLS AND PROBABILITY DENSITY DISTRIBUTION

Upon the application of an external magnetic field, a
Peierls phase should be added to the hopping matrices as
electrons jump from position rn to rm, i.e., tmn → tmne−iϕmn

with ϕmn = 2π
�0

∫ rn

rm
A · dl and �0 = h/e being the unit-flux

quantum. When the magnetic field is applied in the y direction,
we can choose the Landau gauge A = (0, 0,−Bx). To include
the magnetic field, we further discretize Eq. (12) in direction
x as [63]

H =
∑
mn

c†
m,n(Tmcm,n + Tm,xcm+1,n + Tm,ycm,n+1

+ Tm,αcm+1,n−1 − Tm,αcm+1,n+1) + h.c., (15)

where the Fourier transform cn → ∑
m cm,ne−ikxxm has been

adopted and the hopping matrices are given by

Tm = f0 + f1 cos
(
kz − m/�2

B

)
2

, (16)

Tm,α = α

2
σyτx sin

(
kz − m + 1/2

�2
B

)
, (17)

Tm,y = f2 + i fy

2
+ ασxτx sin

(
kz − m

/
�2

B

)
, (18)

Tm,x = f2 − i fx

2
− ασxτx sin

(
kz − m + 1/2

�2
B

)
, (19)

with �B = √
h̄/(eB) being the magnetic length.

After introducing the magnetic field, we continue to
demonstrate the relation between Eq. (11) and Eq. (15). By
performing an inverse Fourier transform on Eq. (15), we can
derive

H̃k = f1(cos κz − cos kw ) + f2(cos kx + cos ky − 2)

+ λ(sin kxτxσz − sin kyτy) − ατx

[(
sin κ+

z − sin κ−
z

2

− cos ky sin κz

)
σx − sin ky

cos κ+
z − cos κ−

z

2
σy

]
, (20)

with κz = kz − x/�2
B and κ±

z = ±κz + kx. Here, we have
used the Baker-Campbell-Hausdorff formula, i.e., eÂ+B̂ =
eÂeB̂e− 1

2 [Â,B̂]. It is clear that H̃k = Htb
k→k+eA/h̄ follows the

FIG. 2. The LLs for (a) α = 0, c1 = c2 = 0, (b) α = 0, c1 =
3c2 = 0.15, (c) α = 0.5, c1 = c2 = 0, and (d) α = 0.5, c1 = 3c2 =
0.15. (e)–(h) The probability density |ψkz ,μ|2 for the blue LLs in
(a)–(d), in which ψkz ,μ is the μth LL’s wavefunction. Here, we set
2π�2

B = Nx , kz = π , kw = π/2, Nx = 40 and other parameters the
same as Fig. 1.

Peierls substitution. However, for α �= 0, one should be very
careful when using direct Peierls substitution because of the
cross-momentum term in �(k). For example, as we transform
Eq. (20) to the lattice form for numerical calculation, there
will emerge an additional phase �−2

B /2 such as in Eqs. (17)
and (19). The underlying physics for the additional phase
is that after Peierls substitution, different momentum com-
ponents can be noncommutative, e.g., [kx, κz] = i�−2

B , and
the Baker-Campbell-Hausdorff formula must be adopted. For
instance, when transforming Eq. (12) to Eq. (15), one should
express the trigonometric functions in the exponential form
and then introduce Peierls phase via the transforms eikz → eiκz

and ei(kx±kz ) → eiκ±
z = e±i(κz−�−2

B /2)eikx .
By numerically diagonalizing Hamiltonian Eq. (15), we

can obtain the LLs and spatial distribution of the electron
probability density, as shown in Fig. 2. Through analyzing the
spatial distribution of the probability density, we can easily
determine whether or not the LLs are formed by the Weyl
orbits. From Figs. 2(a) and 2(e), it is evident that the LLs can
be formed from the Weyl-orbit mechanism, even when there is
no curvature in the Fermi arcs. In the Weyl-orbit mechanism,
the surface fermions driven by the magnetic field will move
along the Fermi arcs from one Dirac valley to the other and
tunnel to opposite surfaces at Dirac points via bulk states.
As a result, the probability density exhibits a closed loop
with two bright stripes crossing the bulk and connecting the
surface states, observed in Fig. 2(e). The width of the bright
stripes ∼2�B corresponds to the cyclotron radius of the bulk
Dirac fermions, while their separation encodes the momen-
tum distance between the Dirac points. The cyclotron center
xc = �2

Bkz of the fermions in different Dirac valleys differs by
�xc = 2�2

Bkw, which is exactly the distance between the two
bright stripes.

A finite εk that curves the Fermi arcs in the surface Bril-
louin zone will shift the LLs integrally by modifying the
magnetic flux enclosed by the Weyl orbits, as demonstrated
by Figs. 2(b) and 2(f). In this case, the Weyl orbits will not
be destroyed, so the LLs remain evenly spaced. As expected,
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FIG. 3. The Hall conductivity (left axis) and DOS (right axis) for
a given kz with (a) α = 0, (b) α = 0.1, and (c) α = 0.3. (d) The Fermi
surface for EF = 0 and α = 0.3 in the absence of magnetic field. The
parameters are the same as Fig. 2.

the LLs will respond dramatically to �(k), as seen from
Figs. 2(c) and 2(d), where the LLs are irregularly distributed
due to turning off of the Weyl-orbit mechanism by the surface
Dirac cone. The probability densities displayed in Figs. 2(g)
and 2(h), as well as Fig. 4(c), illustrate that the bulk and
surface states can support the cyclotron orbit and form the

FIG. 4. (a)–(b) Evolution of the Hall conductivity with the sam-
ple thickness, i.e., Ny = (30, 40, 50), for (a) α = 0 with the inset
showing that the LLs are from the Weyl-orbit mechanism, and
(b) α = 0.3 with the red lines marked by A–D denoting the LLs
for Ny = 40. (c) The probability density of the LLs marked in (b),
which indicates that the surface and bulk states are disconnected, i.e.,
the Weyl orbits have been turned off. The parameters are chosen the
same as Fig. 3.

LLs, independently. The complicated LLs in Figs. 2(c) and
2(d) are results of the superposition of bulk and surface LLs.

The surface LLs are similar to those on the surfaces of
3D topological insulators, as implied by the surface effective
Hamiltonian. However, since the effective Fermi velocity α̃

in Eq. (8) depends on momentum, the surface LLs are more
complicated compared to those observed on the surfaces of
3D topological insulators. For finite Fermi energies, the closed
bulk Fermi surface in each Dirac valley can form a cyclotron
orbit, giving rise to the bulk LLs. Without boundaries, the bulk
LLs disperse along the magnetic field direction and prevent
the quantization of the Hall conductivity. Here, due to the open
boundaries, the Dirac fermions are confined in the y direction,
and as a result, these bulk LLs become discretized, similar to a
one-dimensional infinite potential well. The quantized levels
are not evenly spaced, and as demonstrated below, the bulk
LLs will contribute to irregular QHE.

V. EVOLUTION OF THE QHE WITH THE SURFACE
LIFSHITZ TRANSITION

As discussed above, in the presence of the momentum-
dependent gap term, the Weyl orbit near the Dirac points will
disappear. However, the LLs remain discrete, indicating that
the QHE can occur in topological DSMs without involving
the Weyl-orbit mechanism. Since kz is a good quantum num-
ber, we can calculate the Hall conductivity using the Kubo
formula [10,37–40]

σxz = ih̄e2

LxLz

∑
kz,μ �=ν

(
fν,kz − fμ,kz

)

× 〈ψkz,μ|υ̂x|ψkz,ν〉〈ψkz,ν |υ̂z|ψkz,μ〉(
εkz,μ − εkz,ν

)2 , (21)

where εμ,kz denote respectively the μth energy of
Eq. (15), and the velocity operators are defined as
υ̂x = ih̄−1 ∑

mn[H, c†
m,nxmcm,n] and υ̂z = ∂H/(h̄∂kz ). Here,

fμ,kz = [1 + exp( εμ,kz −EF

kBT )]−1 is the Fermi-Dirac distribution
function, with kB and T being the Boltzmann’s constant and
temperature, respectively.

In Fig. 3, we present the numerical results for the Hall
conductivity near the bulk Dirac points. As can be seen, the
Hall conductivity exhibits a step-wise structure and jumps
whenever the Fermi level crosses a LL. The Hall plateaus
for α = 0 are quantized as 2ne2/h, with n being an integer
and the factor 2 owing to the spin degeneracy of the LLs.
The spin degeneracy of the LLs can be characterized by the
kz-resolved DOS plotted on the right axis of Fig. 3. In the
absence of the momentum-dependent gap term, the LLs are
evenly spaced and therefore, all Hall plateaus have identical
widths, as shown in Fig. 3(a). With increasing α, the Weyl
orbits near the bulk Dirac points will be broken gradually, and
as a result, the LLs become complicated and the widths of the
Hall plateaus turn to be irregular, as observed in Figs. 3(b) and
3(c). With the Weyl orbits destroyed, the spin degeneracy of
the LLs will be removed, leading to the emergence of odd Hall
plateaus in Figs. 3(b) and 3(c).

The thickness dependence of the quantized Hall plateaus
is one of the characteristic signals for 3D QHE [53]. The
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Weyl-orbit-mediated 3D QHE is dependent on thickness, as
shown in Fig. 4(a), where the width of the Hall plateaus
increases as Ny decreases. However, from Fig. 4(b), we see
that even when the Weyl orbits are turned off by the surface
Dirac cone, the Hall plateaus can still be sensitive to sample
thickness. The thickness-dependent QHE in the absence of
Weyl orbits can be attributed to the bulk LLs, as a result
of the energy quantization due to confinement in direction
y, as illustrated by Fig. 4(c), where the probability density
exhibits a standing-wave configuration. In contrast to the bulk
LLs, the surface LLs are less sensitive to the thickness, as
shown by the LL marked by C in Fig. 4(b). While the surface
LLs are independent of thickness, the Hall plateau close to
them can display thickness dependence because the surface
LLs are surrounded by bulk LLs. We estimate the impact of
disorder on the QHE in Fig. 5. It is evident that disorder will
broaden the LLs, and as a result, the narrow Hall plateaus
are heavily destroyed, while the wider ones remain relatively
robust against disorder.

VI. CONCLUSION

In summary, we have investigated the QHE in topological
DSMs, taking into consideration the surface Lifshitz transi-
tion modulated by a bulk momentum-dependent gap term. It
is found that the bulk momentum-dependent gap term, as a
higher-order momentum term, can be neglected when study-
ing the bulk topological properties. However, it significantly
deforms the Fermi arcs and leads to the surface Lifshitz tran-
sition. During the surface Lifshitz transition, a 2D Dirac cone
develops for the surface states, which prevents the Fermi arcs
from connecting the bulk Dirac points. As a result, the Weyl
orbits can be turned off without breaking the topology of the
bulk energy band. In response to the Lifshitz transition, the
3D QHE, because of the Weyl orbits, will break down, along
with that the quantized Hall plateaus turn to be irregular. As a
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FIG. 5. Impact of Anderson disorder on the 3D QHE with the
disorder strength W = (0, 0.1, 0.2) for (a) α = 0 and (b) α = 0.3.
Other parameters are the same as Fig. 4(c).

bulk perturbation, the momentum-dependent gap term is quite
common in real materials. The Lifshitz transition of surface
states also plays an important role in realizing stable Weyl
orbits alongside bulk Weyl nodes and surface Fermi arcs.
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