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The generation of higher-order harmonic radiation originating from the interaction of intense laser pulses
with matter is typically described semiclassically: While the electronic structure and dynamics of matter is
described quantum mechanically, the intense light field is described classically—and accordingly the generated
harmonic radiation. However, pioneering experiments on quantum optical properties of high-order harmonic
generation (HHG) in atomic gases from the group of P. Tzallas [I. Gonoskov et al., Sci. Rep. 6, 32821 (2016)
and N. Tsatrafyllis et al., Nat. Commun. 8, 15170 (2017)], and theoretical investigations from the group of
M. Lewenstein [M. Lewenstein et al., Nat. Phys. 17, 1104 (2021) and P. Stammer et al., Phys. Rev. Lett. 128,
123603 (2022)] have impressively demonstrated that light’s quantum properties are observable in the strong-field
realm. In this paper, we develop a quantum optical description of HHG in a bulk semiconductor originating
from the nonlinear Bloch current. This mechanism of HHG, known as the intraband current, constitutes the
major contribution to the emission spectrum for harmonic with energies of quanta roughly below the bandgap.
Under certain approximations, employing a quantum description of both light and matter, we obtain analytical
solutions, which allow us to analyze the classical and quantum optical characteristics of the fundamental mode
of light and the harmonic modes. We find intricate but sufficiently mild modifications of the photon statistics
of the fundamental mode and coherent displacements depending on the parameters of the driving laser field.
Similar to high-harmonic generation in atoms, the fundamental and emitted harmonic field modes are entangled.
Moreover, our analytical model predicts parameter ranges where these quantum optical properties will be most
pronounced, allowing protocols for quantum information processing with high photon numbers over a large
range of frequencies.

DOI: 10.1103/PhysRevB.109.125110

I. INTRODUCTION

An increase of the intensity of a laser, interacting with a
gas or solid medium, results in the transition from conven-
tional perturbative nonlinear optics to the realm of strong field
phenomena. In particular, nonlinear optical frequency conver-
sion processes, such as the canonical process of (low-order)
harmonic generation change towards the emission of nonper-
turbative, high-order harmonic radiation. In this strong-field
regime, depending on the laser parameters (field strength and
wavelength), a plateau-like spectrum of the coherent harmonic
emission is generated that can span over multiple octaves
down to soft x-ray spectral range [1]. Naturally, this emission
forms a train of attosecond pulses in the time domain [2].
For atoms (and molecules), the mechanism of HHG can be
described via the three-step model of an electron being (1)
liberated from the atom by strong-field ionization, (2) its ac-
celeration in the laser field, and (3) its recombination with the
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parent ion under emission of the accumulated energy [1,2].
For bulk semiconductors, dielectrics, and nanoscale solids, a
similar mechanism has been established [3–10]: (1) Initially,
electrons are excited from the system’s valence band (VB) to
the conduction band (CB) by the intense laser field, thereby
creating a corresponding hole in the conduction band. (2) Sub-
sequently, the electron(s) are (nonlinearly) driven/accelerated
in the the conduction band while the hole is driven in the
valence band. This nonlinear current gives rise to HHG with
energies below the band gap (intraband mechanism). (3) The
driven electron-hole pair induces a nonlinear polarization
(recombination), which leads to the generation of higher har-
monics with energies of quanta above the band gap (interband
contribution). In all cases, the intense driving laser field is
considered to be a classical electromagnetic field.

Indeed, these classical theories were very successful in pre-
dicting the key features of HHG. Obviously, with high intense
laser pulses containing extremely high numbers of photons,
quantum corrections are negligible compared to the classical
averages [11,12] and a quantum optical treatment of light
was considered to be unnecessary. Recently, this paradigm
began to shake due to pioneering experiments demonstrating a
modification of quantum properties of the emitted high-order
harmonic radiation in gases and bulk [13,14]. It raised the
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FIG. 1. (Left) Two-band model, with the valence band being parameterized by a cosine potential, see Eq. (7). We consider parameters
that correspond to the well-examined zinc oxide (ZnO) [3,14,33]. (Right) Intensity of harmonic emission for both intraband emission Jintra

and polarization harmonics P(ω) as a function of �/ωL for the given interaction time (∼3 optical cycles at FWHM) and the given Bloch
parameter ωB/ωL = 5.7 obtained within the SMBE with a dephasing time Td = 2.7 fs. The green vertical line corresponds to the frequency of
the bandgap (Wg/h̄). The intraband current mechanism dominates for the harmonics with energies of quanta below and near the bandgap (i.e.,
fifth and seventh) by orders of magnitude.

fundamental question to which extent quantum features
prevail in nonlinear frequency generation processes involv-
ing multiple photons of different frequencies. Moreover,
it paves the way towards promising applications such as
new measurement techniques [13,14], laser-harmonic and
harmonic-harmonic entanglement [15], and the genera-
tion of resource states for quantum information processing
[16].

However, the theoretical description of a complex quantum
system, which includes multiple degrees of freedom faces
theoretical challenges and has been only solved for a few
special cases [17–20]. For example, very recently, HHG in
atoms was considered from a quantum information theory
perspective based on positive operator valued measures [21]
and allowed for a deeper understanding of potential novel
state engineering via HHG [15,16,22–25]. Also, a theoretical
description of atomic HHG driven by quantum light has been
proposed very recently [26]. One advantage for the analysis of
the quantum properties of light produced in HHG in atoms is
given by the fact that approximate solutions can be found for
the quantum optical states [15,17]. This can be traced back to
the fact that the field operator enters the effective interaction
Hamiltonian in a linear manner via the dipole approximation
[25]. In contrast to the atomic case, for semiconductors, the
field operators enter the Hamiltonian in a nonlinear manner
according to the band dispersion. So far, there is no quan-
tum optical theoretical description of HHG in the condensed
phase.

In this paper, we introduce an analytical quantum optical
model of HHG in semiconductors, focusing on the below-
bandgap harmonics, i.e., photons generated by intraband
currents. For IR driving, the role of intraband currents is well
understood in terms of the generation of harmonics (for the
description of HHG in semiconductors from a semiclassical

perspective see e.g., see [3]). We note parenthetically that also
interband polarization contributes to the low-energy side of
the harmonic spectrum [27,28]. However, as shown in many
papers [4,29], the intraband currents constitute the dominant
contribution to lower-order harmonics with photon energies
below the band gap of the semiconductor. This will be also
the case for the laser parameters investigated in this paper, as
we have carefully checked (see also Fig. 1 below).

We here analyze the properties of the generated radia-
tion fields at the classical and quantum level. We propose
a model based on an approximate Hamiltonian that captures
the relevant mechanism for the intraband harmonics in a fully
quantum way.

To illustrate our model, we solve the corresponding time-
dependent Schrödinger equation (TDSE) for the combined
system comprised of a semiconductor. For the special case
of a cosine band structure and quantized light modes, we
found analytical solutions. In general, we find non-Gaussian
modifications of the radiation field governed by the nonlinear
interactions: all field modes are entangled. Our analytical
solution allows predicting parameter ranges (in terms of
the Bloch frequency) that maximize nonclassical properties.
However, these modifications have a rather peculiar structure,
such that expectation values of any function of the position
quadrature of the pump field are not altered.

The paper is organized as follows: We first introduce the
theoretical description of HHG in semiconductors from a
quantum perspective and discuss the related approximations
and their limitations. We then introduce our analytical method
and present approximate analytical solutions assuming a co-
sine band structure for the conduction band. We compare
our analytical solution with a numerical solution obtained
from the semiconductor-Maxwell-Bloch equations (SMBE) in
the classical regime. Finally, we investigate the nonclassical
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properties of the radiation field for higher harmonics de-
scribed within the intraband mechanism.

II. THEORETICAL MODEL—QUANTUM DESCRIPTION
OF HIGHER HARMONICS GENERATED

BY INTRABAND CURRENT

We restrict our analysis to a two-band model, as done in
many other papers (see, for example, [3,29,30]). Of course,
this introduces certain limitations but the (numerical) intro-
duction of further bands is straightforward and would hardly
add new physics. In addition, under realistic conditions,
mainly the lowest conduction band is significantly populated;
thus, motivating our restriction to a two-band model. As we
have checked, the dominant intraband mechanism for the
considered parameters and harmonics (fifth and seventh) is
also valid in more complex calculations, including beyond
tight-binding nearest-neighbors approximation and multiband
models. We note that for very small energetic separation
to higher conduction bands or long driving wavelength to-
wards the THz regime [27], when the momenta of the excited
electrons driven in the conduction band may become high,
transitions to higher bands cannot be neglected (see, e.g.,
[4,31]).

Initially, upon laser interaction, the (lowest) conduction
band is populated by a number of electrons ne. Those electrons
are assumed to move synchronously in the strong driving field,
forming the quasiclassical intraband current (similar as in the
classical description [3]). In this case, we can approximate
the system by a single-particle Hamiltonian with respect to
the Bloch electrons of the system using the conduction band
dispersion Ec( �K ),

Ĥ = ne Ec

⎛
⎝ �̂p −

∑
j

1

c
�̂A j

⎞
⎠ +

∑
j

ω j N̂ j, (1)

where �̂p − ∑
j

1
c

�̂A j is the Bloch momentum of a single elec-

tron in the band. �̂A j is the vector potential operator of the field
mode j (atomic units are employed unless otherwise stated).
Further, �̂p is the momentum of the identical electrons. The
interaction-free part of the quantized electromagnetic field
modes j is encoded in the terms ω j N̂ j , with ω j the corre-
sponding frequency and N̂j the photon number operator. The
Hamiltonian in Eq. (1) contains the following assumptions:
We assume that all electrons with fixed, time-independent
density ne(t ) = ne = const have the same momentum. This
approximation is justified for an optical excitation as electrons
are generated mainly at one instance within the half cycle and
with almost zero momentum. Second, we employ the dipole
approximation and neglect propagation effects (considering a
relatively thin crystal). For a first analysis, we also neglect
internal losses in the material, as well as further contributions
causing decoherences (in accordance with the description
within the TDSE). A comprehensive analysis of how such de-
phasing and damping of the coupled material-radiation system
influences the photon statistics is outside the description by
the TDSE and, thus, beyond the scope of this paper. Finally,
we assume that the depletion of the driving laser field is small.

The considered assumptions allow us to evoke the so-called
parametric-connection approximation [18].

These approximations physically mean that we assume
the intraband current to be solely generated by the driving
field. However, it acts back onto the light field, changing its
quantum statistics like a parametric drive. The approximate
solution obtained from this method describes the quantum
evolution of the light field by treating the intraband-current
backreaction as a perturbation.

A. Quantum description of intraband current

Transforming into the interaction picture, the interaction
Hamiltonian reads

Ĥ = ne Ec

(
�̂p −

∑
j

1

c
�̂Aj (t )

)
, (2)

where �̂Aj (t ) = exp(i t ω j N̂ j ) �̂A j exp(−i t ω j N̂ j ) is the trans-
formed field operator. We now apply the parametric-
connection approximation, as the effect of the laser-induced
current in the conduction band back onto the initial light
field is small. In other words, the canonical momentum in the
relevant reference frame is mainly determined by the driving
radiation field, see the details in [18]. Thus, the momentum
spread �̂p of the electrons is negligible such that we are able to
solve the reduced TDSE (electron states will be averaged out)
for the light states separately.

We next consider the evolution of the quantized light
modes, evoking the parametric-connection approximation.
The wave function of the entire radiation field is denoted with
|G〉, encoding all modes distinguished by the j indices. The
corresponding frequency of the laser (L) driving field is ωL,
and the frequencies of the generated higher harmonics are
ω j = jωL. The TDSE for the nonaffected vacuum propaga-
tion in the interaction picture is i∂t |G〉 = 0. The TDSE, which
includes the first-order corrections due to quantum backaction
of the intraband current reads (see [18])

i
∂

∂t
|G〉 = ne Ec

(
−
∑

j

1

c
�̂Aj (t )

)
|G〉. (3)

For further analysis, we will use a position quadrature
representation [11,18]. The position and momentum quadra-
tures of the different field modes are Q̂ j = 1√

2
(â j + â†

j ) and

P̂j = 1√
2i

(â j − â†
j ), respectively. Note that we will highlight

the fundamental pump mode ( j = 1) by subscript L, e.g.,
Q̂1 ≡ Q̂L. In the position quadrature representation, we obtain

â j = 1√
2
(Qj + ∂

∂Qj
) and â†

j = 1√
2
(Qj − ∂

∂Qj
) for the annihila-

tion and creation operators, respectively.

The vector potential operator for the laser field is �̂AL(t ) =
�z
√

πc2

ωLV [âLe−iωLt + â†
LeiωLt ], where �z is the polarization di-

rection and V a quantization volume. Correspondingly, for

the harmonic modes j is given by �̂Aj (t ) = �z j

√
πc2

ω jV
[â je−iω j t +

â†
j e

iω j t ].
The initial state of the electromagnetic field is given as a

product of a coherent state (fundamental mode) and vacuum
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states (harmonic modes up to a cutoff M),

|G0〉 = |αL〉
⊗

j

|0 j〉, where j ∈ {2, · · · , M}. (4)

In the position representation, this state can be expressed
as

G0( �Q) = 〈 �Q|G0〉

= C · exp

[
−1

2
(QL − eiθ0

√
2N0)2

]
·

M∏
j=2

e−Q2
j /2,

where �Q = (QL, Q2, · · · , QM ), | �Q〉 = |QL〉⊗ j>1 |Qj〉. In the
above equation, θ0 is the internal field phase, and N0 	 1 is
the initial average photon number of the driving laser mode,
i.e., αL = eiθ0

√
N0. Without loss of generality, we choose a

reference frame in the optical phase space such that θ0 = 0
for the initial coherent laser mode. In this case, the related
amplitude of the classically described vector potential is A0 =√

4πc2

ωLV N0 .
Under the assumption that the interaction strength is com-

paratively weak and the interaction time of the intense laser
with the semiconductor is sufficiently short, the intense laser
field operator can be considered as a local operator, �zLÂL(t ) ≡
�̂AL(t ) ≈ �zL

√
2πc2

ωLV cos (ωLt )Q̂L. Furthermore, it is convenient
to separate the contributions from the fundamental laser mode
from the other radiation modes, i.e., we write the z projection
of the vector operator for the whole system Â(t ) as

Â(t ) = ÂL(t ) +
∑
j�2

Â j (t )

=
√

2πc2

ωLV
cos (ωLt )Q̂L

+
∑

j

√
πc2

ω jV
[â je

−iω j t + â†
j e

iω j t ]. (5)

For the initial field |G0〉 [Eq. (4)], the norms of the vector op-
erators from Eq. (5) fulfill the inequality ||ÂL|| 	 ||Â j ||, i.e.,
the pump field dominates the harmonic modes. This allows us
to linearize the Hamiltonian in the TDSE (3),

i
∂

∂t
|G〉 =

⎡
⎣neEc

(
1

c
ÂL(t )

)
+ ne

∑
j

1

c
Â j (t ) · ∂Ec

∂K

∣∣∣∣∣
K= 1

c ÂL

⎤
⎦

× |G〉. (6)

This is the key equation in this paper. It describes the inter-
action of light with a semiconductor as driving an intraband
in the conduction band with band dispersion Ec(�k) at a fully
quantum mechanical level. Since Eq. (6) is linear with respect
to P̂j = −i∂Qj , it can be solved analytically.

B. Analytical solutions within a cosine band model

To illustrate the power of Eq. (6), we represent the band
structure of the conduction band by a cosine, as it was done,
e.g., in [3,32]. As shown in [33], such approximation provides
appropriate results for lower harmonics. Thus, the conduction

band dispersion is given by

Ec(K ) = Eg[1 − cos(πK/Kc)], (7)

where Kc is the inverse lattice constant, and Eg the conduction
band half-width and corresponds to the strength of the or-
bital interactions within the semiconductor. Using this cosine
potential, it is further convenient to use the real-valued Jacobi–
Anger expansions with the Bessel functions of the first kind Jk

to analyze Eq. (6),

cos[x1 cos(x2)] = J0(x1) + 2
∞∑

n=1

(−1)n J2n(x1) cos(2n x2),

sin[x1 cos(x2)] = −2
∞∑

n=1

(−1)n J2n−1(x1) cos((2n − 1)x2).

Due to the fact that the commutator of the Hamiltonian of
the system with itself at different times is merely proportional
to a function depending on time and the quadrature operator
Q̂L, [Ĥ (t ), Ĥ (t ′)] = c(t, t ′; Q̂L), all higher-order commutators
of the Baker-Campbell-Hausdorff formula vanish when the
unitary time-evolution operator is constructed. Thus, the final
state is given by

|G〉 = ei f (t ;Q̂L ) exp

⎧⎨
⎩
∑

j

α j (t ; Q̂L)a†
j − [α j (t ; Q̂L)]†a j

⎫⎬
⎭|G0〉

(8)

where

f (t ; Q̂L) = neEg[J0(γLQ̂L) − 1](t − t0)

+ 2neEg

∞∑
n=1

(−1)nJ2n(γLQ̂L)
∫ t

t0

dτ cos(2n ωLτ )

+ 2n2
eE2

g

∑
j

∞∑
n=1

∞∑
m=1

(−1)n+mγ 2
j ×

∫ t

t0

dτ

∫ τ

t0

dτ ′

× [cos ((2n − 1)ωLτ ) cos ((2m − 1)ωLτ ′)

× sin (ω j (τ
′ − τ ))]J2n−1(γLQ̂L)J2m−1(γLQ̂L)

with abbreviation γL/ j = √
2π3/(ωL/ jV K2

c ) and

α j (t ; Q̂L) = i
√

2neEg

∞∑
n=1

(−1)nγ jJ2n−1(γLQ̂L)

×
∫ t

t0

dτ cos
(
(2n − 1)ωLτ

)
eiω jτ . (9)

The first exponential in Eq. (8) only contributes to the mod-
ification of the driving laser mode. The second exponential
function corresponds to the harmonic generation via displace-
ment operators with peaks of odd orders of ωL following the
time integral dependencies in the expression for α j (t ; Q̂L).
The generation of these modes is intertwined with further
non-Gaussian modifications of the pump field given by the
nonlinear Q̂L dependencies of the coherent displacements.
For the following investigations, it is also useful to study the
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solution in Eq. (8) in the position quadrature representation,

G = ei f (t ;QL )
∏

j

e− 1
2 ([α j (t ;QL )]2+|α j (t ;QL )|2 )e

√
2α j (t ;QL )Qj G0.

(10)

Thus, the obtained expression clearly connects the quan-
tum properties of light with the semiconductor lattice
parameters.

III. INTRABAND HARMONICS—CLASSICAL LIMIT

To analyze and discuss the properties and features of the
solution of the TDSE, see Eq. (8) or in position quadrature
representation Eq. (10), we first consider the classical field
limit for the intense nonperturbed driving laser radiation.
Following the standard procedure, we calculate the quan-
tum mechanical expectation values of the operators. Since
〈Q̂L〉G = 〈Q̂L〉G0 = √

2N0 	 1, we have γLQ̂L → γL〈Q̂L〉 =
ωB
ωL

where ωB = A0
cKc

ωL is the Bloch frequency. Typical values
of semiconductor crystals for the ratio ωB/ωL are

ωB

ωL
= A0

cKc
∼ λ

√
I0

Kc
, (11)

where I0 is the laser field’s peak intensity, λ = 2πc
ωL

is the
driving laser wavelength, and π/Kc is the lattice constant,
typically in range of 4–6 Å. For instance, ωB/ωL ≈ 1 for
I0 = 5 × 1011 W/cm2, λ = 1.44 µm, and π/Kc = 4.4 Å (for
ZnO, exemplary). In previous experiments, where high har-
monic radiation was generated from various semiconductor
targets [33,34], a typical ratio is in the range of ωB/ωL � 5;
although it can be significantly higher when going to mid- or
even far-infrared drivers [27].

Using Eq. (10), with these parameters at hand, we calculate
the harmonic amplitude (m = 2n − 1, and m � 3),

E�

(
ωB

ωL

)

= neEg �
∑

m

Jm

(ωB

ωL

)

× � sin(� t ) cos(m ωL t ) − mωL cos(� t ) sin(mωL t )

�2 − m2ω2
L

,

(12)

where t is the interaction time of the laser with the semicon-
ductor and � is the frequency of the emitted radiation.

In Fig. 2, we compare the emission intensity spectrum
obtained from Eq. (12) and from the commonly employed
numerical description based on the SMBE (for details, see
[35]). The behavior of the odd-harmonic peak intensities coin-
cides very well; however, the background level and harmonic
widths differ. These differences can occur because the sim-
plified analytical model does not include a time- and Bloch
vector-dependent conduction band population ne and assumes
a monochromatic driving laser field with finite interaction
duration t . In addition, the derived analytical solution Eq. (10)
of the TDSE of the model Hamiltonian does not include
damping effects, as commonly phenomenologically inserted
into the SMBE. According to our additional calculations for
the different dephasing times (2.7 fs − 10 fs) we found that

FIG. 2. Intensity of intraband emission as a function of �/ωL

for the given interaction time (∼3 optical cycles at FWHM) and the
given Bloch parameter ωB/ωL = 5.7 obtained from our analytical
solution (red) and the SMBE (blue). � is the frequency of the emitted
radiation with clear picks around the higher-order harmonics given
by � = jωL.

(i) the dephasing time does not at all change the intraband
harmonics in the regime that is the focus of our paper. (ii)
The polarization-based interband harmonics are increased in
magnitude when longer dephasing times are chosen. At the
same time, these harmonics become extremely noisy and
not well distinguishable for longer dephasing times, as also
known from the literature. (iii) Independently of the value of
the dephasing time, the intraband current-based contribution
to the harmonic spectrum remains by far the dominant part of
the harmonic spectrum in the region of interest. As the precise
value is not known, we remain with the commonly accepted
value of 2.7 fs. We note that we have recently, together with
the experiment, identified (momentum-dependent) electron-
phonon scattering as the predominant mechanism driving
dephasing, and estimated corresponding values [36].

The good agreement of our theoretical approach with the
numerical calculations can be utilized in various related ap-
plications. For instance, we investigate the dependence of the
intensity of a certain intraband harmonic as a function of
the laser intensity, using Eq. (12). As an example, we plot the
dependence of the intensity of the fifth and seventh harmonic
on the driving field’s intensity in Fig. 3. We can identify sev-
eral regions related to the different regimes of the generation
(discussed for the fifth harmonic in the following): (1) pertur-
bative regime, for I0 � 1011 W/cm2; (2) Linear growth with
the fastest rate around I0 ∼ 1 × 1012 W/cm2; (3) the first
local maximum at I0 ∼ 1.5 × 1012 W/cm2, (4) linear decay;
and (5) the first local minimum around 3.2 × 1012 W/cm2 etc.
We consider these regimes in the context of the nonclassical
features of the output radiation after the interaction in what
follows.

IV. NONCLASSICAL PROPERTIES OF EMITTED
RADIATION

For an explorative discussion concerning the nonclassical
features of the emitted radiation, we focus on two features: (i)
noncoherent modification of the transmitted IR laser, when the
related output state of the fundamental mode is not a coherent
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FIG. 3. Intensity of the fifth and seventh harmonic as a function
of the laser intensity for λ = 5 μm and π/Kc = 4.4 Å.

state, exp(− 1
2 (QL − √

2αL)2) and (ii) entanglement between
the different modes, i.e., when the state cannot be written as a
product state, G( �Q) �= GL(QL)

∏
j G j (Qj ), see also [37].

First of all, the intricate (unitary) time evolution gener-
ates non-Gaussian modifications of the fundamental mode
according to the nonquadratic dependency on Q̂L. This is in
contrast to HHG in atoms, where a depletion of the pump
mode is observed but it remains a coherent state [21,22]. This
can be traced back to the fact that the interaction Hamil-
tonian depends linearly on the field operator resulting in a
multimode displacement operator. In our case, the nonlinear
band dispersion allows for more involved properties due to
nonlinear interactions between the modes. For instance, the
unitary operator in Eq. (8) has the structure of a Q̂L-dependent
displacement operator for the harmonics. Additionally, the
pump field is altered according to a nontrivial Q̂L-dependent
phase term.

Based on the assumption that the driving laser field is
strong and negligibly perturbed, from Eq. (10) we directly
obtain that the average of Q̂L remains unchanged, 〈Q̂L〉G =√

2N0, within our approximations. In particular, this holds
for the expectation value of any function of Q̂L, 〈 f (Q̂L)〉G =
〈 f (Q̂L)〉G0

. Nevertheless, other expectation values might be
altered.

To analyze the quantum properties of the final state |G〉,
we expand the Bessel functions Jk (α) in Eq. (10). Based
on the regimes considered in the previous section, we can
identify various situations depending on the ratio ωB/ωL:
For instance, for ωB

ωL
� 1 (1), we are in the well-known

perturbative regime when I� ∼ I2n+1
ωL

since J2n+1(γLQL) ∼
(γLQL)2n+1 for γLQL = ωB√

2N0ωL
QL � 1. In this case, the non-

Gaussian modifications of the transmitted IR laser due to the
excited intraband current are very small, the field state is al-
most unaffected and remains almost a coherent state. We note,
however, that in this particular regime neglected higher-order
terms in the expansion done in Eq. (6) may become dominant
compared to the linear term in the harmonic modes. This
would then alter the photon statistics of the harmonic modes.

In the second region with the fastest linear growth (2), we
can linearize the solution Eq. (10) around QL ≈ √

2N0 and

obtain the following linear approximation of the final state:

G ∼ G0( �Q) eδ3QLQ3 eδ5QLQ5 . . . ,

with constants δ j depending on the system’ parameters. In
this regime, the complex parameters characterizing the dis-
placement of the harmonics are directly proportional to the
position quadrature of the pump field α j ∼ γ jQL: the mean
photon number of the harmonics Nj scales proportional to the
mean photon number N0 of the pump laser. Of course, HHG
is an inherent nonlinear process inducing a nonlinear relation
between the mean photon number of the higher harmonics
and the intensity of the pump mode stored in the parameter
αL, 〈N̂j〉 ∼ ∫

dQL|α j (t ; QL)|2e−(QL−√
2αL )2

. However, the non-
linear properties become subleading in this particular regime
cf. Fig. 3. Additionally, we obtain slight deviations for the
exception value of the momentum quadrature P̂L compared to
the initial state |G0〉. However, these deviations are sufficiently

small. In particular, we have 〈P̂L〉G = − 1
2 neEg

ω2
B√

2N0ω
2
L
t at low-

est order in the interaction time t , the energy of the intraband
current ∼neEg, and the dimensionless Bloch parameter ωB

ωL
.

To investigate potential entanglement between the different
frequency modes, we have to perform a conditioning on the
generation of harmonic modes. Such a conditioning can be
performed by the projection operator 1̂ − |G0〉〈G0| [21]. Its
orthogonal complement |G0〉〈G0| projects on the subspace
where no harmonic radiation has been generated via the pro-
cess. In case higher harmonic modes are excited, which is
trivially heralded by the emission of harmonic radiation, the
correspondingly projected state is given by

|GHHG〉 = (1̂ − |G0〉〈G0|)|G〉 = |G〉 − 〈G0|G〉 |G0〉
= |G〉 − 〈αL|ei f (t,Q̂L )− 1

2

∑
j α

†
j (t,Q̂L )α j (t,Q̂L )|αL〉|G0〉.

(13)

Note that this conditioning is necessary as the initial and
final state have nontrivial overlap 〈G0|G〉 �= 0 as the coherent
states form an overcomplete basis and, thus, are not orthog-
onal in general. This also implies that the resulting state
conditioned on HHG |GHHG〉 is massively entangled between
all optical modes, which can again be conveniently explored
in the position representation

〈 �Q|GHHG〉 = 〈 �Q| ei f (t ;QL )|αL〉 ⊗ j |α j (t ; QL)〉

− 〈 �Q|
∫

dQL ei f (t ;QL )|〈QL|αL〉|2|αL〉 ⊗ j |0 j〉.
(14)

Equation (14) clearly demonstrates that the state conditioned
on HHG cannot be written as a simple product of wave
functions and is nonseparable. Therefore, the generation of
higher harmonics via the interaction of the pump field with
the nonlinear intraband structure of a semiconductor naturally
produces an entanglement between all present field modes. In
our specific case, the entangled state 〈 �Q|GHHG〉 is on struc-
tural grounds similar to the entangled state produced in HHG
in atoms [23] or recently in solids within a Wannier-Bloch
picture [38].

In general, it is not surprising that a highly nonlinear
process as HHG produces entanglement. But, apart from the
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different modification of the pump field, the higher-order har-
monics allow for a multipartite entangled coherent state. Such
states can provide a powerful resource for general quantum in-
formation processing [39], e.g., for improved phase estimation
[40], violations of Bell inequalities for continuous variables
[41], and quantum state engineering [42]. The main advan-
tage of the HHG process is that harmonics can be produced
over a broad spectral range from infrared to ultraviolet. The
complex numbers α j characterizing the displacements gener-
ally depend in a nonlinear way on the position quadrature of
the fundamental mode allowing for large photon numbers in
the harmonic modes. Already in the regime dominated by the
minimum of the intraband potential, we obtain |α j |2 ∼ N0. Of
course our analytical approach only provides a first evidence.
Based on our analytical results, further investigations will
allow to quantify the degree of entanglement.

V. SUMMARY AND CONCLUSIONS

To summarize, we have provided an analytical theory to
describe the quantum optical properties of high-order har-
monic generation (HHG) in a bulk semiconductor. We have
focused on the the lower part of harmonics with energies
of quanta below the semiconductor’s bandgap, which are
mechanistically dominated by a nonlinear intraband current
in the conduction band, driven by the intense laser field. Under
the assumption that the effect of the induced current back on
the initial laser field is small (parametric-connection approx-
imation), we have derived equations describing the evolution
of multimode light-induced intraband excitations within a full
quantum description.

Within a first-order approximation, we have analyzed clas-
sical and nonclassical properties of the emitted radiation.

In particular, HHG in semiconductors leads to entanglement
between all optical modes in a natural way. On structural
grounds, this is similar to HHG in atoms. A crucial difference
arises due to the stronger dependence of the harmonics on the
properties of the fundamental mode due to nonlinear back-
interactions induced via the band dispersion. We showed that
nonclassical effects like harmonic entanglement or noncoher-
ent driving-laser state correction could arise. The analytical
model allows identifying the key parameter responsible for the
nonclassicality and discussing specific regions where the con-
sidered nonclassical features may become most pronounced.
Further extension of the model to the second-order approxi-
mation analog of the Eq. (6) could demonstrate the generation
of harmonics with noncoherent wavefunction and possible
harmonic-harmonic entanglement.

In future studies, further contributions need to be addressed
and taken into account, including the impact of the restriction
to a single band, field depletion, dephasing, and etc. Our
results and subsequent studies might open possibilities for the
engineering of complex photonic resource states for quantum
information processing.
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