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Unveiling the electronic structure of the predicted topological superconductor PbTaS2
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PbTaS2 is a metal intercalated, layered transition metal dichalcogenide compound which has recently been
predicted to be a potential topological superconductor (TSC), with a superconducting transition temperature of
2.6 K. Besides the strong interest in this class of materials, because of their high potential in quantum-computing
applications, many aspects of their phenomenology are still undisclosed. Combining angle-resolved photoe-
mission spectroscopy measurements and density functional theory calculations, we have studied the electronic
properties of the centrosymmetric type-II superconductor PbTaS2 single crystals in the metallic phase, showing
the presence of surface states, originated from the Pb-terminated surface, and of topological nodal lines, formed
by the crossing of Ta dxy/dx2−y2 and Pb px/py orbitals. The evidence of surface states connecting the nodal lines,
as already discovered on structurally similar materials to be typical features of nodal-line semimetal-like TSCs,
makes PbTaS2 a good candidate for exploring topological superconductivity.
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I. INTRODUCTION

Topological materials are at the forefront of condensed-
matter physics, since they exhibit symmetry-protected metal-
lic edge or surface modes in bulk-insulating or conducting
ground states due to a topologically nontrivial ordering of bulk
wave functions [1–3]. Within the family of topological ma-
terials, topological superconductors (TSCs) attract additional
attention because of the zero-energy Majorana bound states
present at the superconducting vortex core, which makes
this material a suitable candidate for quantum-computing ap-
plications [1,2,4–8]. Several works propose that topological
superconducting states appear at the interface between a topo-
logical insulator and a superconductor [9–13], and recent
theoretical studies have also predicted and described that a
fully gapped bulk superconductor with topological protected
gapless surface states or edge states can be considered in the
class of TSCs [14–23].

The type-II superconductor PbTaSe2, which has a non-
centrosymmetric structure, has been reported as a TSC
[24–30] exhibiting the breaking of spin degeneracy by
asymmetric spin-orbit coupling (SOC). The interplay of non-
centrosymmetric structure and large SOC has been proposed
to be important for nontrivial electronic topological states
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[31]. Angle-resolved photoemission spectroscopy (ARPES)
combined with density functional theory (DFT) calculations
has been used to observe and identify, in PbTaSe2, topological
surface states (SS), given by the Pb termination of the sur-
face, and nodal lines, caused by the conduction and valence
bands crossing in the vicinity of the Fermi level [24,25].
More recently the type-II superconductor SnTaS2, which has a
centrosymmetric structure and strong SOC, has been reported
to display topological states with SS protected by inversion
and time-reversal symmetry and nodal lines near the Fermi
energy, making it a good candidate for studying topological
superconductivity [32–36]. PbTaS2, which crystallizes in a
centrosymmetric structure (similar to SnTaS2) and exhibits
strong SOC (as SnTaS2 and PbTaSe2), has been experimen-
tally characterized as a type-II superconductor and predicted
to be a TSC [37]. However, the experimental observation of
its electronic structure, i.e., SS and nodal lines, has not been
reported so far.

In this paper, by combining ARPES measurements and
DFT calculations, we describe the presence of SS and nodal
lines of PbTaS2 and experimentally observe the existence of
SS, originated by the Pb-terminated surface, connecting nodal
lines formed by crossing bands of different orbital character.

II. METHODS

The PbTaS2 single crystals used in this work were grown
by the chemical vapor transport method [38] with lead chlo-
ride as the transport agent following the same procedure
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FIG. 1. (a) Cartoonic picture of the PbTaS2 crystal structure with isometric, top, and side views. Purple, blue, and green balls correspond
to Pb, Ta, and S atoms, respectively. (b) Surface Brillouin zone with high symmetry points. (c) XRD spectrum of a PbTaS2 single crystal with
a sample photograph (inset). (d) Normalized resistivity as a function of temperature measured with current flowing in the ab plane. The inset
shows the zoom around the superconducting transition temperature.

described by Gao and coauthors [37]. Pb, Ta, and S powders
with the mole ratio 1:1:2 were weighted and mixed with PbCl2

and placed into silicon quartz tubes. These tubes were sealed
under high vacuum and heated for 10 days in a two-zone
furnace, where the temperatures of source and growth zones
were fixed at 850 and 800 ◦C, respectively. As a result, flake
crystals were found at the cold end. By means of energy
dispersive x-ray, the actual atomic ratio in the single crystals
was found to be 0.85:1:1.96. PbTaS2 is known to crystallize in
the space group P63/mmc [39]. Single-crystal x-ray diffrac-
tion (XRD) experiments were performed by the PANalytical
X’pert diffractometer using Cu Kα1 radiation (λ = 0.154 06
nm) at room temperature. Electrical transport measurements
were carried out in a Quantum Design Physical Property Mea-
surement System.

The ARPES measurements were performed at the
BaDElPh beamline of the Elettra Synchrotron in Trieste [40].
PbTaS2 single crystals were cleaved in ultrahigh vacuum (bet-
ter than 2 × 10−10 mbar) at room temperature. ARPES data
were acquired using horizontal polarized light with the photon
energy ranging from 18 to 33 eV. Here, this corresponds to
p-polarized light as the electrical field vector of the incident
light lies in the photoemission plane, which is orthogonal to
the sample surface. The spectra were acquired with a SPECS
Phoibos 150 electron analyzer. The overall energy and angular
resolutions were set at 25 meV and 0.3◦, respectively. All
measurements were acquired on samples kept at 80 K and
under a pressure better than 1 × 10−10 mbar.

The first-principles calculations were based on DFT [41]
as implemented in the Vienna ab initio simulation pack-
age (VASP) [42,43]. The exchange-correlation function is
described using the generalized gradient approximation [44]
of the Perdew-Burke-Ernzerhof type. The plane-wave cut-
off energy was set to 500 eV in all calculations. The
structure was fully optimized until the total energy con-
verged to 10−6 eV. The Brillouin zone (BZ) was sampled
with 18 × 18 × 6 �-centered k mesh in all calculations
with/without SOC. Wannier functions are constructed by pro-
jecting Bloch states onto the d orbitals of the Ta atom and
the p orbitals of the Pb and S atoms through WANNIER90
code [45]. The SS were computed with the WANNIERTOOLS

package [46].

III. RESULTS AND DISCUSSION

Figure 1(a) illustrates the layered hexagonal structure of
PbTaS2 single crystal formed by the alternating stacks of TaS2

and Pb layers with the lattice parameters of a = b = 3.3 Å and
c = 17.7 Å [39]. The lattice can also be viewed as a Pb layer
intercalated into two adjacent layers of TaS2, where Ta atoms
are located at unequal positions. The corresponding surface
BZ is shown in Fig. 1(b) where �, K, and M are the high
symmetry points.

XRD and resistivity measurements acquired on the PbTaS2

single crystal are shown in Figs. 1(c) and 1(d), respectively.
The x-ray diffractogram is characterized by the presence of
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FIG. 2. ARPES band dispersion of PbTaS2 measured with 31 eV photon energy and p polarization at 80 K along �-M (a) and �-K-M
(b) directions of the surface BZ.

sharp peaks (00l), with a high signal-to-noise ratio, corre-
sponding to the preferred orientation planes of PbTaS2 and
conforming to its quasi-two-dimensional layered structure.
The typical single crystal has a large 4 × 4 × 0.5 mm3 size
with a mirrorlike surface. Figure 1(d) displays the normalized
resistivity ρ(T )/ρ(3 K) of PbTaS2 single crystals measured from
300 to 2 K with current applied in the ab plane. The overall
variation, which is typical of a metallic behavior with a large
residual resistivity ratio, and the steep drop in the resistivity
curve at Tc ∼ 2.6 K [inset of Fig. 1(d)] agree with the super-
conducting phase transition. All these results confirm the good
quality of our sample [37].

To address the electronic structure of the freshly cleaved
PbTaS2 crystal, we performed ARPES measurements along
the high symmetry directions and the results are shown in
Fig. 2. The overviews of experimental band structures mea-
sured along �-M and �-K-M with a photon energy of 31 eV
in p polarization are presented in Figs. 2(a) and 2(b), respec-
tively. In Fig. 2(a) the most intense feature is a hole-type
band crossing the Fermi level (FL) at ∼0.49 Å−1. At the
energy of ∼ − 0.47 eV, this band gradually becomes flat. At
lower energies, a flat band (at ∼ − 1.8 eV) from the � point
to ∼0.5 Å−1 is present with an adjacent parabolic dispersive
band extending to the M point (at ∼ − 2.6 eV) and some other
weaker intensity bands at lower energies. Along �-K-M, the
ARPES map shown in Fig. 2(b) allows us to identify two
intense parabolic (electronlike) bands crossing the FL both
at ∼0.47 Å−1 and then at 0.94 and 1.08 Å−1, respectively.
In addition, a parabolic band along the K-M direction of the
second BZ crosses the FL at ∼1.47 Å−1 and reaches an energy
of ∼ − 0.7 eV at the M point. At lower energies, multiple
holelike parabolic bands are detected in the vicinity of the �

and M points at ∼ − 1.8 and ∼ − 2 eV. An intense feature
is also visible at ∼0.8 Å−1 dispersing from −2 to −2.8 eV
towards K. Focusing on the energy region closer to the
Fermi level, we investigated the nature of the electronic states
to distinguish SS from bulk-derived features, by performing
photon energy-dependent ARPES measurements. Since a SS
has no dispersion as a function of the out-of-plane momentum,
which instead changes with the photon energy, SS features
appear at constant energies and parallel momentum in the

photon-energy-dependent ARPES data. In Fig. 3(a) the maps
measured with photon energy in the range of 21–33 eV
are shown to visualize the characteristic electronic structure
along the �-M direction. The almost linearly dispersive band
starting from ∼ − 0.5 eV and crossing the FL at ∼0.49 Å−1

does not change with the photon energy (see Fig. S1 in the
Supplemental Material [47]); thus it is compatible with a SS
band (SS1) or a bulk state with no dispersion along kz. The
corresponding DFT calculations are presented in Fig. 3(b),
showing the difference between the bands’ projections along
the �-M direction considering only the bulk states (left plot)
and the bulk states plus the contribution of a Pb-terminated
surface state (center plot) and an S-terminated surface state
(right plot). The corresponding SS are indicated by black lines
and purple arrows. The surface states are not isolated but
always at the edge of bulk states. However, along �-M the sur-
face state of the Pb-surface termination disappears at higher
binding energy (>0.5 eV) and momentum (>0.75 Å−1) where
only bulk bands are present. The experimentally observed
dispersion is compatible with the prediction for the Pb-
terminated surface states rather than the S-terminated surface
states with the bands at higher binding energy (∼0.5 eV)
and parallel momentum position (>0.75 Å−1), which show
a varying dispersion with the photon energy, associated
with bulk states. Therefore, the observed behavior of SS1
and its comparison with the theoretical results support SS1
to be the predicted surface states of the Pb-terminated
surface.

A parallel analysis has been performed for the experimen-
tal ARPES results along the �-K-M direction. The whole
set of ARPES maps is shown in Fig. 4(a) to visualize the
characteristic electronic structure. The two parabolic bands
(SS1 and SS2) crossing the FL at momentum positions of
∼0.47 Å−1 and then at 0.94 and 1.08 Å−1, respectively, are
equally dispersing (see Fig. S1 in the Supplemental Material
[47] for the detailed momentum distribution curve (MDC)
sequence), only with some intensity changes at the different
photon energies, and are compatible with the SS calculated for
a Pb-terminated surface [center plot of Fig. 4(b)] rather than
with the linearly dispersing SS calculated for an S-terminated
surface [right plot of Fig. 4(b)].
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FIG. 3. ARPES maps along the �-M [panel (a)] direction showing the SS acquired with photon energy ranging from 21 to 33 eV and a step
of 2 eV. The position of the SS (SS1) is marked by a purple arrow in the 33-eV map. DFT + SOC calculated bands from pure bulk, including
SS from Pb-terminated or S-terminated surfaces are shown in the left, center, and right plots of panel (b), respectively. The SS are indicated by
black lines and marked with purple arrows.

The intensity modulation with photon energies can be
explained by a non-negligible contribution of bulk states
which mix together with Pb-terminated SS at almost the
same positions. Moreover, we show the measured Fermi
surface acquired at 31 eV in Fig. S2 in the Supplemental

Material [47], which again fits well with that calculated for
the Pb-terminated surface. It is worth mentioning that for
the inner parabolic band in the �-K direction, the measured
and calculated dispersions are not perfectly matching, and in
particular, the measured lower Fermi momentum has a value

FIG. 4. ARPES maps along the �-K-M (a) Direction showing the SS acquired with photon energy ranging from 21 to 33 eV and a step of
2 eV. The positions of the SS (SS1 and SS2) are marked by purple arrows in the 31-eV map. DFT + SOC calculated bands from pure bulk,
including SS from Pb-terminated or S-terminated surfaces are shown in the left, center, and right plots of panel (b), respectively. The SS are
indicated by black lines and marked with purple arrows.
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FIG. 5. (a) Orbital band calculations along the �-K-M direction.
The different orbital components are marked in different colors as
summarized in the figure legend. (b) ARPES band dispersion along
the �-K-M direction and measured with 18 eV photon energy and
p polarization at 80 K. Nodal lines (NL1 and NL2) are indicated by
black arrows and dashed circles in panels (a) and (b). The SS bands
SS1 and SS2 are highlighted by purple arrows while other bands (B1
and B2) around the nodal lines are marked by orange arrows.

of ∼0.2 Å−1 smaller than the calculated one. This momentum
shift can be due to band renormalization effects caused by
defects, like Pb and S atoms vacancies, not considered in the
DFT calculations [48,49].

In Fig. 5(a), we report on the calculated bands along the
�-K-M direction highlighting which orbital brings the major
contribution to the bands. In particular, the color scale and
the circle size used for the considered orbital are identify-
ing, for each band, the region where that particular orbital
becomes predominant and are expected to contribute more to
the overall intensity. The two parabolic bands crossing the FL
and marked as SS1 and SS2 are mainly contributed by the Ta
dxy/dx2−y2 orbitals with the largest dark orange color circles.
The band crossing of the surface state SS1 with the two bands
B1 and B2, derived from Pb px/py orbitals, form two nodal
lines, NL1 and NL2, at the positions of ∼0.82 Å−1, −0.5 eV
and ∼1.07 Å−1, −0.1 eV, respectively. Since the calculation
includes SOC, the nodal lines are all gapped out with gap sizes
of 40 and 75 meV for NL1 and NL2, respectively, similar to
the typical nodal line gaps reported for PbTaSe2 [24], SnTaS2

[36], and ZrB2 [50]. Experimentally, SS1 and SS2 are the
bands that we identify as Pb-SS (Fig. 4), while B1 and B2 are
not revealed with an excitation energy of 31 eV (Fig. 2). By
changing the photon energy we have found that the presence
of two weak bands, B1 and B2, as shown in Fig. 5(b), is better
visible using 18 eV due to the matrix elements effect. One
of the two bands (B1) extends from an energy of −0.4 eV
at a momentum of 0.82 Å−1 to the energy of −1.8 eV at a
momentum of 1.16 Å−1. The other one (B2) is an electron-

like parabolic band centered at the K point and crossing the
Fermi level at ∼1.1 and ∼1.4 Å−1. The experimental band
crossings are indicated by black dashed circles in Fig. 5(b).
For comparison, we locate NL1 (crossing by B1 and SS1) at
a momentum of ∼0.82 Å−1 and an energy of −0.4 eV, while
NL2 (crossing by SS1 and B2) is located at a momentum of
∼1.07 Å−1 close to the FL. This result matches with calcu-
lation in Fig. 5(a) with a FL shift of ∼0.1 eV which can be
ascribed to crystal defects. Since the Pb-SS band SS1 and the
Ta-derived bulk states are overlapping in momentum space,
although the SOC gap values cannot be resolved, our results
show that the surface band SS1 connects the two nodal line
features, thus supporting a topological nontrivial behavior in
the electronic structure of PbTaS2.

Concerning the possible relation to topological supercon-
ductivity in PbTaS2, bulk topological superconductivity in
this system seems unlikely, because the bulk have a center
inversion symmetry and non-spin-polarized states, which do
not favor the chiral superconducting pairing, e.g., unconven-
tional p-wave symmetry [51]. In addition, bulk measurements
have demonstrated PbTaS2 to be a full-gap BCS s-wave su-
perconductor [37], which further denies the possibility of
bulk topological superconductivity in this system [51]. The
potential topological superconductivity in PbTaS2 is most
likely induced on a two-dimensional topological surface state
through proximity to a conventional bulk superconductivity
[4,8,25,52–54]. In this case, it needs spin-polarized surface
states. We have therefore calculated the spin texture of the
related surface states in PbTaS2 and the results are shown in
Fig. S3 in the Supplemental Material [47]. Our calculations
show two spin-momentum-locking Fermi loops of surface
states around the � point. It is different from the cases of
the standard theory model of strong topological insulator [8]
and experimental observation of iron-based superconductor
FeTe0.55Se0.45 [19], which have only one Fermi loop of sur-
face states to be induced into topological superconducting
pair. For the two Fermi loops of surface states of PbTaS2,
two different topological superconducting pairs could be in-
duced (see schematic diagram in Fig. S3 in the Supplemental
Material [47]), which could possibly exhibit characteristics
of two superconducting energy gaps. More theoretical and
experimental investigations are needed to study the predicated
spin-polarized surface states and potential topological super-
conductivity of PbTaS2 in the future.

IV. CONCLUSION

PbTaS2 is a centrosymmetric superconductor with a tran-
sition temperature of 2.6 K and we have investigated by DFT
and ARPES its electronic structure along the high symmetry
directions of the BZ in its metallic normal phase. By utiliz-
ing photon-energy-dependent measurements, we were able to
identify two bands with no dispersion along kz (SS1 and SS2)
of the cleaved sample and show they are consistent with the
predicted SSs of the Pb-terminated surface. The topological
surface states are theoretically predicated to be spin-polarized,
which supports the potential topological superconductivity.
Previously, a Sn- or Pb-terminated surface has been reported
for SnTaS2 [36] and PbTaSe2 [25], respectively. In addition,
the measured PbTaS2 electronic structure is compatible with
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the presence of nodal lines derived from the crossing of the
Pb px/py orbitals and the Ta dxy/dx2−y2 orbitals as suggested
by first-principles calculations based on DFT including SOC.
A surface state connecting two nodal lines is a signature that
further supports nontrivial topological properties in PbTaS2

and makes it a good candidate for studying topological
superconductivity.
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