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Previous investigations have suggested that the simplest spin-orbital model on the simplest frustrated lattice
can host a nematic quantum spin-orbital liquid state. Namely, the orbital degeneracy of the SU(4) Kugel-
Khomskii model tends to enhance quantum fluctuations and stabilize a quantum spin-orbital liquid exhibiting
stripy features on the triangular lattice, as revealed by the state-of-the-art method of the density matrix renor-
malization group boosted by Gutzwiller projected wave functions. In this work, using the variational quantum
Monte Carlo method, we study several spin-orbital liquid states, including a uniform π -flux state, three stripy
states, and a plaquette state, on the L × L torus up to L = 24. It turns out that one of these stripy states, called the
“stripe-II” state, is energetically favored. This ground state breaks the C6 symmetry of the lattice, resulting in a
reduced C2 symmetry and doubled unit cells while preserving the SU(4) spin-orbital rotation symmetry. Such a
nematic quantum spin-orbital liquid state can be characterized by a parton Fermi surface (FS) consisting of open
orbits in the Brillouin zone, in contrast to the circular FS of the uniform π -flux state.
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I. INTRODUCTION

The search for quantum spin liquids (QSLs) is one of the
central issues in modern condensed matter physics [1–7]. In
the 1970s, Anderson proposed a disordered ground state for
the spin-1/2 antiferromagnetic (AFM) Heisenberg model on
the triangular lattice [1], namely, the simplest spin model
on the simplest geometrically frustrated lattice, which re-
vealed the age of QSLs and resonating valence-bond states.
However, after extensive studies, the academic community
has reached a consensus that the spin-1/2 AFM Heisenberg
model on the triangular lattice hosts a 120◦ magnetically or-
dered ground state, contrary to Anderson’s original proposal
[8–10]. This means that the smallest spin quantum S = 1/2,
which gives rise to the strongest quantum spin fluctuations, is
still insufficient to completely suppress the classical magnetic
order on the triangular lattice if only the nearest-neighbor
(NN) Heisenberg spin interaction �Si · �S j is considered. There-
fore, one has to turn to other ways of enhancing quantum
fluctuations to realize a QSL ground state on the simplest
geometrically frustrated lattice.

In addition to (1) the small spin quanta S and (2) geo-
metric frustration, there are several other ways to enhance
quantum spin fluctuations [11]: (3) competing spin inter-
actions involving NN anisotropic spin couplings (e.g., the
anisotropic Ising couplings in the Kitaev honeycomb model
[12]) and isotropic (or anisotropic) spin couplings on longer
bonds, (4) charge fluctuations near a Mott transition leading
to multiple-spin interactions, and (5) additional degeneracy
due to orbital degrees of freedom. Thus, QSL states can
be achieved by stronger geometric frustration [13–16] or by
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increasing competition among mutual interactions [17–24].
In particular, orbital degeneracy [i.e., path 5 above] can sig-
nificantly enhance quantum fluctuations [25]. For instance,
in some transition metal oxides, spin and orbital degrees of
freedom may play a symmetric role, resulting in an enlarged
SU(4) symmetry rather than the SU(2) × SU(2) spin-orbital
rotational symmetry. The SU(4) Kugel-Khomskii (KK) model
is the minimal model used to describe such spin-orbital ma-
terials [26–33], in which the SU(4) symmetry can amplify
quantum fluctuations and potentially stabilize a spin-orbital
liquid ground state.

Much theoretical effort has been devoted to the study
of quantum phases in SU(4) quantum magnets. As an ex-
ample, the one-dimensional SU(4) KK model is found to
be integrable and to possess gapless excitations [34,35].
These gapless excitations are well characterized by the low-
energy effective theory, i.e., the SU(4)1 Wess-Zumino-Witten
(WZW) conformal field theory (CFT) [36–38]. The ground
state of the SU(4) KK model on the two-leg ladder is also well
known, which breaks the translational symmetry and forms an
SU(4) singlet plaquette [39,40]. This SU(4) singlet plaquette
state can even be an exact ground state on the ladder, as long
as the extra interactions have been properly chosen and added
to the model Hamiltonian [41]. Unlike one-dimensional (1D)
and ladder models, two-dimensional (2D) models are less
clear, despite extensive research. For instance, several comple-
mentary methods indicated that the ground state of the SU(4)
KK model on the honeycomb lattice is a Dirac-type spin-
orbital liquid [42–44]. For the square lattice, several candidate
ground states have been proposed for the SU(4) KK model,
such as the plaquette ordered state [27,45], the Z2 spin-orbital
liquid [46], and the dimerized and SU(4) symmetry-breaking
state [47].
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Especially, the ground state of the SU(4) KK model on the
triangular lattice was debated until very recently. In the early
days, exact diagonalization (up to 16 sites) and the variational
approach (up to 64 sites) suggested an SU(4) singlet plaque-
tte liquid ground state on which simple types of long-range
correlations are suppressed [48]. Recently, the combination
study of the density matrix renormalization group (DMRG)
calculation on cylinders (with a circumference up to Ly =
4) and field theory analysis proposed a gapless liquid state
with an emergent parton Fermi surface (FS) in the 2D limit
[49]. In contrast, another DMRG study [50] and a self-
consistent mean-field theory [51] preferred a stripe-ordered
ground state. Soon thereafter, using a state-of-the-art method,
DMRG boosted by Gutzwiller projected wave functions [52],
two of the authors and their collaborators revisited this model
[53]. The latest work revealed a nematic quantum spin-orbital
liquid state, a critical stripy state that preserves SU(4) sym-
metry but breaks translational symmetry by doubling the unit
cell along one of two primitive vectors. It was shown that the
central charge of each stripe is c = 3, which is in quantitative
agreement with the SU(4)1 WZW CFT. Moreover, it was
found that the DMRG-obtained state can be well described by
a “single” Gutzwiller projected wave function with an emer-
gent parton FS that consists of open orbits in the reciprocal
space and indicates the nematicity. Such a “unified” picture
captures all the essential physics in both quasi-1D cylinders
(with circumferences up to Ly = 8) and the 2D limit, although
the former exhibits a strong finite-size effect and even-odd
discrepancy [53]. Note that the newly proposed parton FS con-
sists of open orbits in reciprocal space, which must undergo
a Lifshitz transition from the originally proposed π -flux state,
which has a closed parton FS [49].

In this work, we reexamine the SU(4) KK model on the
triangular lattice by using the variational Monte Carlo (VMC)
approach. The advantage of the VMC method is to reduce
the impact of finite-size effects in 2D systems and to impose
periodic boundary conditions (PBCs) in both directions. Thus,
the previously proposed Gutzwiller projected wave function
[53] can be carefully verified at large tori, up to a lattice
size of 24 × 24. To this end, we have proposed five types
of spin-orbital liquid states: a uniform π -flux state, three
stripy states, and a plaquette state. After extensive numerical
efforts, we have gathered strong evidence pointing to a critical
stripy ground state, as revealed by the Gutzwiller-boosted
DMRG [53].

The rest of this paper is organized as follows. We revisit the
SU(4) KK model in Sec. II to make it self-contained. Then five
fermionic parton mean-field ansatzes are proposed in Sec. III.
In Sec. IV, we search for the ground state with the help of
VMC and the stochastic reconfiguration method. Section V is
devoted to a summary.

II. MODEL AND SYMMETRIES

The SU(4) KK model Hamiltonian on the triangular lattice
is defined as

H = 1

2

∑
〈i, j〉

(4�Si · �S j + 1)(4 �Ti · �Tj + 1), (1a)

where 〈i, j〉 denotes an NN bond and �Si ( �Ti) is the S = 1/2
spin (orbital) vector at site i. These spin (orbital) vectors
can be represented by introducing �Si = 1

2 {σ x
i , σ

y
i , σ z

i } ( �Ti =
1
2 {τ x

i , τ
y
i , τ z

i }), where σ x,y,z (τ x,y,z) are the standard Pauli ma-
trices acting on the twofold spin (orbital) indices. It is easy to
verify that the Hamiltonian H in Eq. (1) commutes with all
15 generators of the SU(4) Lie group, λ1, λ2, . . . , λ15, which
are linear combinations of {�σ, �τ , �σ ⊗ �τ }. Therefore, the SU(4)
symmetry is respected by the model Hamiltonian.

The SU(4) symmetry becomes more transparent from the
point of view that the 2 × 2 = 4 spin-orbital degrees of
freedom at each site can be treated as a pseudospin. To
demonstrate this, we introduce a 15-dimensional vector �λi ≡
{λ1

i , λ
2
i , . . . , λ

15
i } whose components are 15 SU(4) generators.

Then the model Hamiltonian can be rewritten in terms of �λi as

H =
∑
〈i, j〉

(
�λi · �λ j + 1

2

)
. (1b)

Note that these generators λ
μ
i have been normalized with

tr(λμ
i λν

j ) = 2δi jδμν [54]. So the Hamiltonian in Eq. (1) can be
interpreted as an SU(4) AFM Heisenberg model, which is in-
variant under the global SU(4) pseudospin-rotation symmetry.

In addition to the SU(4) symmetry, this model is also sym-
metric with respect to the spatial symmetries of the triangular
lattice, including the lattice translation symmetries T1,2, the
mirror symmetry M, and the sixfold rotation symmetry C6.
Furthermore, as a spin-orbital system, this model naturally
preserves the time-reversal symmetry.

III. PARTON CONSTRUCTION
AND MEAN-FIELD ANSATZES

In this section, we first use the Gutzwiller projection to
construct a trial wave function for solving the Hamiltonian H
in Eq. (1). Given a specific variational wave function |�trial〉,
one can calculate the ground-state energy E ,

E = 〈�trial|H |�trial〉
〈�trial|�trial〉 ,

by using the standard Monte Carlo method. This trial wave
function can then be optimized by minimizing the energy E .

To construct such a trial Gutzwiller projected state, we
introduce four flavors of fermionic partons at each site i, f †

iα ,
for α = 1, 2, 3, 4 ( fiα are the annihilation operators), where α

denotes the four pseudospin (spin-orbital) degrees of freedom
mentioned above. The SU(4) pseudospin operators can now
be expressed in terms of these fermionic partons as

λ
μ
i = f †

i λμ fi, μ = 1, . . . , 15, (2)

where fi ≡ ( fi1, fi2, fi3, fi4)T is a four-component vector. In-
stead of four spin-orbital states, these four flavors of fermions
will generate 24 = 16 states in Fock space at each local site.
To restore the physical Hilbert space, a single-occupancy con-
straint of

∑4
α=1 f †

iα fα = 1 was imposed on each site; e.g., the
Gutzwiller projection was implemented.

In this parton representation in Eq. (2), the inner prod-
uct of two pseudospins �λi · �λ j can be written in terms of
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four-fermion interactions:

�λi · �λ j = −2
4∑

α,β=1

(
f †
iα f jα f †

jβ fiβ + 1

4
f †
iα fiα f †

jβ f jβ

)

+
4∑

α=1

( f †
iα fiα + f †

jα f jα ). (3)

Here the identity �λab · �λcd = 2δadδbc − 1
2δabδcd is used. Thus,

the model Hamiltonian H in Eq. (1) can be recast as follows:

H =
∑
〈i j〉

⎛
⎝−

4∑
α,β=1

f †
iα f jα f †

jβ fiβ + 1

⎞
⎠. (4)

Note that the single-occupancy condition was imposed in the
derivation of the last equation. The four-fermion term can be
decoupled by introducing the mean-field parameters on NN
bonds 〈i j〉 as

χi j = χ∗
ji =

4∑
α=1

〈 f †
iα f jα〉. (5)

So we get a quadratic mean-field Hamiltonian

HMF =
∑
〈i j〉

4∑
α=1

χi j f †
jα fiα + H.c., (6)

which preserves the SU(4) symmetry and can be easily diag-
onalized now.

In fact, HMF in Eq. (6) can be treated as a “variational
Hamiltonian” or an “effective Hamiltonian” in which {χi j}
is a set of variational parameters to be determined. Taking
into account the single-occupancy constraint at the mean, i.e.,∑4

α=1〈 f †
iα fiα〉 = 1, one can find a ground state |�MF〉 for the

mean-field Hamiltonian HMF at 1/4 filling. Then the trial
wave function |�trial〉 can be constructed by performing the
Gutzwiller projection on |�MF〉:

|�trial〉 = PG|�MF〉. (7)

Here PG is the Gutzwiller projector, which removes all
components not singly occupied to locally enforce the single-
occupancy constraint.

The set of parameters {χi j}, together with the form of
HMF in Eq. (6), is called the “mean-field ansatz.” As long
as a mean-field ansatz is given, one can evaluate the energy
E ({χi j}) by using the standard VMC method and minimize
E ({χi j}) to obtain an optimal set of parameters {χi j}. Then,
all the correlation functions can be computed with such an
optimized wave function. It is worth mentioning that the
mean-field parameters χi j can be determined up to an over-
all positive factor via the ground state energy optimization.
In the remainder of this section, we discuss several typical
examples of SU(4)-symmetric mean-field ansatzes which will
be utilized to construct trial wave functions.

Uniform π -flux state. Two of the simplest mean-field
ansatzes are uniform zero-flux or π -flux states. Since the latter
always has a lower energy than the former, we will skip the
higher-energy zero-flux state and discuss only the uniform
π -flux state. The uniform π -flux state is governed by the

mean-field Hamiltonian as follows:

H�=π = −t
4∑

α=1

∑
〈i j〉

( f †
iα f jα + H.c.), (8)

which is obtained by setting χi j = −t (t > 0) on all the NN
bonds in Eq. (6). In each elementary triangle, χi j will pick up
a π flux, which gives the name to the π -flux state proposed in
Ref. [49]. The parton FS at 1/4 filling is plotted in Fig. 1(a),
which is almost a circle.

As an instability of the uniform π -flux state, a “stripy state”
was recently proposed [53]. The stripy state breaks the lattice
translational symmetry by doubling the unit cell along a cer-
tain lattice vector direction. In this work, we consider a more
generic class of valence-bond-crystal (VBC) states. These
VBC states have an enlarged 2 × 2 unit cell, as illustrated in
Fig. 2(a). One can obtain stripy states or the uniform π -flux
state by restoring the lattice translational symmetry along one
or two lattice vector directions.

Generic 2 × 2 VBC states. Since the coordination number
is z = 6 on a triangular lattice, each unit cell in a 2 × 2
VBC state has 2 × 2 × 6/2 = 12 NN bonds, as labeled by
n = 1, 2, . . . , 12 in Fig. 2(b). Thus, a generic VBC state can
be depicted by 12 mean-field parameters χi j within one unit
cell as

χi j = −tn, (9)

such that the corresponding mean-field Hamiltonian takes the
form

HVBC = −
4∑

α=1

12∑
n=1

∑
〈i j〉n

tn( f †
iα f jα + H.c.), (10)

where 〈i j〉n denotes a type-n NN bond, as shown in Fig. 2(b).
As mentioned above, stripy states can be obtained by restor-
ing the lattice translational symmetry along either the x or y
direction.

C2-stripe states. From a symmetry point of view, a stripy
state will break the lattice translational symmetry in one di-
rection while preserving it in the other. The D6 rotational
symmetry of the lattice will be broken simultaneously. The
resulting stripy state may or may not remain a reduced C2 rota-
tional symmetry of the original D6 symmetry. In particular, we
are interested in the stripy states exhibiting the C2 rotational
symmetry, dubbed “C2-stripe states.”

Without loss of generality, we focus on stripy states that
break the translational symmetry only along the x direction
(associated with symmetry generator Tx). The unit cell is
2 × 1 and consists of six NN bonds. Therefore, there are
only two sublattices, e.g., A = C and B = D in Fig. 2(b).
The 12 values of χi j , say, tn (n = 1, 2, . . . , 12), defined ac-
cording to the labeling in Fig. 2(b) are reduced to 6 values
in such a 2 × 1 VBC state. Namely, the constraint tn = tn+6

(n = 1, 2, 3, 4, 5, 6) should be imposed on Eqs. (9) and (10).
Introducing a lattice site labeling scheme,

i = (xi, yi ) = xix̂ + yiŷ,

we find that for a 2 × 1 stripy state, χi j must satisfy, on NN
bonds,

χi,i+x̂ = −t1(4), χi,i+ŷ = −t2(5),

χi,i+x̂−ŷ = −t3(6), i ∈ A (B).
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FIG. 1. The parton energy contour plot in the first (unfolded) Brillouin zone (BZ) for (a) the uniform π -flux state [Eq. (8)], (b) the stripe-I
state [δ1 = 0.15 in Eq. (12)], (c) the stripe-II state [δ1 = 0.15 and ε = 0 in Eq. (13)], (d) the stripe-III state [δ1 = 0.15 in Eq. (14)], and (e) the
plaquette state [δ1 = δ2 = 0.22 in Eq. (15)], where the parameter t = 1 is set. The dashed lines in (b)–(e) enclose the folded BZ. At 1/4 filling,
(a) the uniform π -flux state has a closed Fermi surface (FS), and (b)–(d) stripe states allow an open FS in the BZ, while (e) the plaquette state
is a parton band insulator.

Now we go further to consider C2-stripe states that respect
the reduced C2 rotational symmetry around the x̂ − 1

2 ŷ axis,
giving rise to t1 = t3 and t4 = t6. Therefore, the mean-field
ansatz will take a simplified form on the six NN bonds in the
2 × 1 unit cell:

χi,i+x̂ = χi,i+x̂−ŷ = −t1(4), χi,i+ŷ = −t2(5), i ∈ A (B). (11)

Note that due to symmetry there are only four different values
of χi j , i.e., t1, t2, t4, and t5. Moreover, such a C2-stripe state
is characterized by at most three independent parameters up
to a positive total factor. In the following, we will discuss
three types of C2-stripe states, called stripe-I, -II, and -III
states, which were found by the VMC optimization to be local
minima in the full parameter space for 2 × 2 VBC states,
{t1, t2, . . . , t12}.

FIG. 2. For a 2 × 2 VBC on a triangular lattice, the unit cell has
been enlarged to include four sublattices denoted by A, B, C, and
D. (a) The XC torus geometry and the periodic boundary condition
(PBC) are shown by dashed lines. (b) The 12 types of NN bonds in
the enlarged unit cell.

Stripe-I state. This type of state can be achieved by setting

t2 = t4 = t5 (12a)

in Eq. (11). The mean-field ansatz for such a stripy state can
be simplified as follows:

χi j = −t (1 + ri jδ1), (12b)

where ri j = ±1 is an integer defined by

ri j = δxi,x j + (−1)xi (1 − δxi,x j ), (12c)

t = (t1 + t4)/2 serves as an overall factor, δ1 = (t4 − t1)/(t4 +
t1) is the contrast of the stripe, and xi � x j is assumed for the
NN bond 〈i j〉. Note that the stripe-I state is exactly equivalent
to the trial wave function used to initialize the DMRG calcu-
lations in Ref. [53].

Stripe-II state. Imposing the constraint

t2 = t5 (13a)

in Eq. (11) gives rise to the stripe-II state. The mean-field
ansatz for such a state reads

χi j = −t[1 + (−1)xiδ1](1 − δxi,x j ) − t (1 + ε)δxi,x j , (13b)

where t = (t1 + t4)/2 is an overall factor, δ1 = (t4 − t1)/(t4 +
t1) reflects the stripe contrast, ε = t2/t − 1, and xi � x j has
been assumed for the NN bond 〈i j〉. When ε = δ1, the stripe-II
state becomes a stripe-I state.

Stripe-III state. Such a state can be achieved by setting

t1 = t2, t4 = t5 (14a)

in Eq. (11). The corresponding mean-field ansatz reads

χi j = −t[1 + (−1)xiδ1], (14b)

where t = (t1 + t4)/2, δ1 = (t4 − t1)/(t4 + t1), and xi � x j

has been assumed for the NN bond 〈i j〉.
Plaquette state. In addition to the uniform π -flux state

and the three C2-stripe states, we also consider the “plaquette
state,” which is given by “perfect triangle conditions”:

t1 = t2 = t3, t4 = t5 = t6,

t7 = t8 = t9, t10 = t11 = t12 (15a)

and the constraint

t1 + t10 = t4 + t7. (15b)
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TABLE I. Five types of mean-field ansatzes. Here tn > 0 on all the NN bonds 〈i j〉n=1,...,12, suggesting that π -flux states are energetically
favorable. Tx (Ty) shifts the system along the x (y) direction by a lattice constant.

Schematic bond strength Mean-field ansatz Unit cell Symmetry

Uniform π -flux state χi j = −t
[see Eq. (8)]

1 × 1 Tx, Ty, D6

Stripe-I state tn+6 = tn|(n=1,...,6),
t2 = t4 = t5 [see

Eq. (12)]

2 × 1 T 2
x , Ty, C2

Stripe-II state tn+6 = tn|(n=1,...,6),
t2 = t5 [see
Eq. (13)]

2 × 1 T 2
x , Ty, C2

Stripe-III state tn+6 = tn|(n=1,...,6),
t1 = t2,

t4 = t5 [see
Eq. (14)]

2 × 1 T 2
x , Ty, C2

Plaquette state t1 = t2 = t3,
t4 = t5 = t6,
t7 = t8 = t9,

t10 = t11 = t12,
t1 + t10 = t4 + t7

[see Eq. (15)]

2 × 2 T 2
x , T 2

y

Thus, the mean-field ansatz for such a plaquette state takes the
three-parameter form

χi j = −t[1 + (−1)xiδ1 + (−1)min{yi,y j }δ2], (15c)

where xi � x j has been assumed for the NN bond 〈i j〉, and the
three parameters t , δ1, and δ2 are determined by

t1 + t10 = t4 + t7 = 2t, t1 = t (1 + δ1 + δ2),

t4 = t (1 + δ1 − δ2). (15d)

It is worth noting that the parameter t for the five states that
are defined in Eqs. (8), (12), (13), (14), and (15) can be unified
as the average of the 12 tn in Eq. (10),

t = 1

12

12∑
n=1

tn. (16)

Before ending this section, we summarize five types of
typical parton states in Table I, including (1) the uniform
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FIG. 3. All the local energy minima can be classified into the five types of states listed in Table I. (a) The optimized ground state energy for
the five mean-field ansatzes listed in Table I. The lattice geometry is chosen to be an L × L XC torus with L = 8, 12, 16, 20, 24. (b) The linear
fit of E = E∞ + β/L3, with L = 8, 12, 16, 20, 24. The values of E∞ can be found in Table II. The energy error bar (∼10−3) is approximately
equal to the symbol size.

π -flux state, (2) the stripe-I state, (3) the stripe-II state, (4)
the stripe-III state, and (5) the plaquette state. With 1/4 parton
filling, all stripy states allow an open parton FS when the stripe
contrast exceeds a critical value, δ1 > δc (with δc ∼ 0.1), as
shown in Fig. 1. However, the plaquette state is always a band
insulator of fermionic partons.

IV. VMC CALCULATIONS AND RESULTS

We performed VMC calculations on various Lx × Ly XC
lattices up to Lx = Ly = 24 [see definition of XC lattice in
Fig. 2(a)], on which PBCs for SU(4) pseudospins were
imposed along both the x and y directions. Thus, the par-
ton boundary conditions can be either PBCs or antiperiodic
boundary conditions (APBCs). Indeed, we found that the sys-
tem always has a lower variational energy when the parton
boundary conditions were chosen to be APBCs rather than
PBCs along both the x and y directions.

First, we searched for local energy minima with generic
2 × 2 VBC states given in Eq. (10), parameterized by the set
of {t1, t2, . . . , t12}. To handle such a large parameter space, tra-
ditional methods such as steepest descent and Hessian matrix
construction are computationally expensive and inefficient for
optimizing the mean-field parameters. Therefore, a stochastic
reconfiguration (SR) method was exploited to optimize the
parameters [55,56]. In our calculations, a dynamic step length
for the variational parameters tn, ζ , was attempted during
the VMC simulations, instead of a constant step length. At
the beginning of optimization, a relatively large step length
modulation, ζ ∼ 5 × 10−2, was chosen to avoid trapping E in
local minima. Then we gradually decreased the modulation of
ζ , and in the last 102 Monte Carlo steps, the step length was
refined as ζ ∼ 10−4. More details on the SR method can be
found in Appendix A.

By performing extensive VMC computations initialized
with a large number of sets of random {t1, . . . , t12}, we can
draw two conclusions as follows:

Conclusion 1. All the energetically favorable states, found
at local energy minima, correspond to a π -flux configuration,
i.e., tn > 0 for all n = 1, . . . , 12 in Eq. (9).

Conclusion 2. Within the numerical error bars, each local
energy minimum found by the 12-parameter VMC optimiza-
tions can be identified as either the uniform π -flux state, one
of the three C2 stripy states, or a plaquette state (see Table I).

Based on these two results, we performed further VMC
calculations on Lx = Ly = L tori using the five promising
parton mean-field ansatzes listed in Table I. Explicitly, in
addition to the 12-parameter VMC approach, we also applied
the parameter constraints defined in Eqs. (12), (13), (14), and
(15) to our VMC calculations. Indeed, we found that all these
simulations converge to energy minima that share the same
energy with those obtained using the 12-parameter VMC opti-
mization, supporting Conclusion 2. More details can be found
in Appendix B. The main results are summarized in Fig. 3
and Table II. The optimized ground state energies are plotted
as a function of the linear size L [see Fig. 3(a)] as well as its
inverse cube 1/L3 [see Fig. 3(b)] [57–59]. Note that here the
optimizations were done with the 12 variational parameters
t1,...,12 and all the local energy minima were classified into
five types of states as listed in Table I. For all five types of
local energy minima found in the 12 variational parameter
optimization, the optimized ground state energy and corre-
sponding mean-field parameters are given in Table II.

Using the formula E (L) = E∞ + β/L3 [57–59], extrapola-
tion to the thermodynamic limit L → ∞ allows us to draw a
third conclusion:

Conclusion 3. Among all five types of ansatzes listed in
Table I, the stripe-II state has the lowest ground state energy.

Stability of variational ground states. We will now investi-
gate the energetic stability of these variational ground states.
To do this, we introduce a Gaussian noise for a given mean-
field ansatz {ti} such that tn → tn + δtn, where δtn ∼ 0.01tn
and the constraint

∑
n δtn = 0 has been imposed. We then

initialize the VMC computations with these noisy ansatzes
and allow all 12 parameters tn=1,...,12 to be optimized during
the VMC computations.

We observe that the stripe-II state and the plaquette state
are stable against noise in VMC simulations, even when a
relatively strong Gaussian noise {δti} is added. This means that
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TABLE II. The optimized ground state energy and corresponding mean-field parameters for all five types of local energy minima found in
the 12 variational parameter optimization. E24 is the optimized ground state energy on an XC(24 × 24) torus. E∞ is obtained from the linear
fit E = E∞ + β/L3, with L = 8, 12, 16, 20, 24. The variational parameters tn (n = 1, 2, . . . , 12), δ1, δ2, and ε are defined in Eqs. (10), (11),
(12), (13), and (14). Here we set the average t = 1

12

∑12
n=1 tn as the unit of tn [see Eq. (16)].

E24 E∞ tn δ1, δ2, ε

Uniform π -flux state −2.8263 ± 0.0023 −2.8292 ± 0.0025 tn|(n=1,...,12) ≈ t
[see Eq. (8)]

Stripe-I state −2.8397 ± 0.0024 −2.8409 ± 0.0023 t1/t ≈ 0.816, t4/t ≈ 1.092,
tn+6 ≈ tn|(n=1,...,6), t = (t1 + t4)/2

[see Eq. (12)]

δ1 ≈ 0.145

Stripe-II state −2.8484 ± 0.0026 −2.8500 ± 0.0026 t1/t ≈ 0.849, t4/t ≈ 1.151,
t2/t ≈ 1.0, tn+6 ≈ tn|(n=1,...,6),
t = (t1 + t4)/2 [see Eq. (13)]

δ1 ≈ 0.151 ε ≈ 0

Stripe-III state −2.8335 ± 0.0022 −2.8349 ± 0.0028 t1/t ≈ 0.854, t4/t ≈ 1.146,
tn+6 ≈ tn|(n=1,...,6), t = (t1 + t4)/2

[see Eq. (14)]

δ1 ≈ 0.146

Plaquette state −2.7673 ± 0.0023 −2.7703 ± 0.0026 t1/t ≈ 0.58, t4 ≈ t7 ≈ t2, t10/t ≈ 1.42,
t = (t1 + t10 )/2 [see Eq. (15)]

δ1 ≈ δ2 ≈ 0.210

a noisy stripe-II state converges to a stripe-II state after VMC
optimization, and so does a noisy plaquette state. In contrast,
the uniform π -flux state, the stripe-I state, and the stripe-III
state are inherently unstable to Gaussian noise. They easily
converge to a stripe-II state instead of the original state type
during VMC optimization.

Most stable ground state. We now discuss the most stable
ground state, the stripe-II state defined in Eq. (13). First, we
illustrate in Fig. 4 the set of all 12 variational parameters
{t1, t2, . . . , t12} for the fully optimized state on an XC(24 ×
24) torus. Note that such a state satisfies the constraints tn+6 =
tn|n=1,...,6 and t2 = t5 within the error bar, which defines a

FIG. 4. Stripe-II state on an XC(24 × 24) torus. The lowest en-
ergy state is characterized by 12 variational parameters tn=1,...,12,
which are illustrated by a gray color map. (a) A large unit cell on the
XC(24 × 24) torus for a 2 × 2 generic VBC state. The dashed lines
indicate PBCs. (b) A unit cell for the strip-II state. Here t1 + t4 = 2t2

or ε = 0 [defined in Eq. (13)] is found.

stripe-II state. Moreover, this stripe-II state reaches its lowest
energy at t1 + t4 = 2t2 or ε = 0 in Eq. (13).

Second, we focus on the stripe-II state defined in Eq. (13),
which is characterized by two independent parameters δ1

and ε. Motivated by the above result of the stripe-II state
during the 12-parameter optimization, we fix ε = 0 and ex-
plore the ground state energy by varying δ1 in Eq. (13). The
ground state energy E (δ1, ε = 0) was calculated on an L × L
torus and plotted in Fig. 5 as a function of δ1, considering
different system sizes of L = 8, 12, 16, 20, 24. Remarkably,
the minimum energy was found to be Emin = −2.8386 ±
0.0027 with δ1 = 0.15 on an L = 24 lattice, showing strong

FIG. 5. Stripe-II states on an XC(L × L) torus. Here we set ε = 0
in Eq. (13). The ground state energy E (δ1, ε = 0) is plotted as a func-
tion of δ1 for L = 8, 12, 16, 20, 24. The energy error bar (∼10−3)
is approximately equal to the symbol size. The energy minimum is
found to be Emin = −2.8386 ± 0.0027, with δ1 = 0.15 on the L = 24
lattice.
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FIG. 6. The optimized energy E (t1, . . . , t12) for different shapes
of XC(Lx × Ly) tori. Here Lx = 12 is fixed, and Ly is chosen to be
Ly = 6, 8, 12. Insets 1, 2, and 3 represent three types of states in a
gray color map. The energy error bar (∼10−3) is approximately equal
to the symbol size.

agreement with the results obtained with the 12-parameter
optimization.

Finite-size effect. Finally, we would like to examine the
finite-size effect on lattices with different aspect ratios Lx/Ly.
To do this, we fix Lx and vary Ly and then perform VMC
calculations on the XC(Lx × Ly) tori using the 12-parameter
optimization. A number of typical results are shown in
Fig. 6. We find that the stripe-II state remains the low-
est energy state as the aspect ratio Lx/Ly varies; i.e., our
conclusions remain unaffected by variations in the aspect
ratio.

It is also interesting to consider how the chosen geometry
affects the presence of stripy states. For instance, a potential
avenue is the investigation of the torus geometry with twisted
boundary conditions, which we leave for future studies.

V. SUMMARY

In summary, the VMC method was exploited to study the
SU(4)-symmetric spin-orbital model, i.e., the so-called Kugel-
Khomskii model, on the triangular lattice. Beginning with a
generic 2 × 2 valence-bond-crystal state that is characterized
by 12 variational parameters {t1, t2, . . . , t12}, we performed
extensive VMC calculations and found that (1) all the local
energy minima exhibit a π -flux configuration, (2) the op-
timized local energy minimum must belong to one of five
types of states that include the uniform π -flux state, three
C2-stripe states (dubbed the stripe-I, stripe-II, and stripe-III
states), and the plaquette state, as listed in Table I, and (3)
the stripe-II state has the lowest ground state energy with an
extrapolated value of E∞ = −2.8500 ± 0.0026 in the thermo-
dynamic limit.

This strip-II state breaks the lattice C6 rotational symmetry
to a C2 rotational symmetry and has 2 × 1 unit cells. Since the
SU(4) spin-orbital rotational symmetry is respected, such a
state is, indeed, a nematic quantum spin-orbital liquid state.
The low energy excitations on top of the ground state are

gapless and can be represented by a parton Fermi surface con-
sisting of open orbits in the Brillouin zone. All of these results
are in excellent agreement with previous results obtained from
the Gutzwiller-boosted DMRG [53].
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APPENDIX A: STOCHASTIC RECONFIGURATION
METHOD IN VMC CALCULATIONS

To perform the variational Monte Carlo (VMC) optimiza-
tion, a stochastic reconfiguration (SR) method is adopted. It
simulates the effect of the Hessian matrix with a more cost-
effective approach, which we now review briefly.

When carrying out the VMC optimization, one key step is
the computation of the expectation value of the Hamiltonian
and its gradient with respect to the variational parameters.
Without loss of generality, the variational state |�〉 can be
constructed by the wave function |�(C)〉 in an orthonormal
basis |C〉, written as

|�〉 =
∑

C

�(C)|C〉. (A1)

Then, the variational energy is given by

E = 〈�|H |�〉
〈� | �〉 =

∑
C |�(C)|2Eloc(C)∑

C |�(C)|2 . (A2)

The local energy Eloc is sampled, and its average value is
calculated by

Eloc(C) =
∑
C′

〈C|H |C′〉�(C′)
�(C)

. (A3)

When searching for the minimum energy of E (t1, . . . , t12),
a value taking the condition

∑12
n=1 tn = 12 is imposed. For

convenience, the series of parameters in the wave function
|�(t1, t2, . . . , t12)〉 are abbreviated as {θ}. The gradient of the
variational energy with respect to the variational parameters
{θ} is given by

∇θE (θ ) = 2〈∇θ [ln�(C)]Eloc(C)〉
− 2〈Eloc(C)〉〈∇θ [ln�(C)]〉, (A4)

which is obtained by the derivative with respect to {θ} of the
following formula:

E (θ ) = 〈�(θ )|H |�(θ )〉
〈�(θ )|�(θ )〉 . (A5)

In formula (A4), the two quantities can be calculated using
standard Monte Carlo sampling on the distribution generated
by |�(θ )|2, and the quantity 〈∇θ (ln�(C))〉 will play a key role
in the calculation of the gradient.
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TABLE III. The optimized ground states for four types of Gutzwiller projected states listed in Table I. Here EL is the optimized ground
state energy per site on an XC(L × L) torus with L = 12, 16, 24. The variational parameters δ1, δ2, and ε are defined in Eqs. (10), (11), (12),
(13), and (14).

L = 12 L = 16 L = 24

EL δ1, δ2, ε EL δ1, δ2, ε EL δ1, δ2, ε

Stripe-I state −2.8091 ± 0.0014 δ1 ≈ 0.174 −2.8276 ± 0.0021 δ1 ≈ 0.156 −2.8377 ± 0.0024 δ1 ≈ 0.145

Stripe-II state −2.8174 ± 0.0015 δ1 ≈ 0.181 ε ≈ 0 −2.8369 ± 0.0021 δ1 ≈ 0.161 ε ≈ 0 −2.8462 ± 0.0024 δ1 ≈ 0.151 ε ≈ 0

Stripe-III state −2.8015 ± 0.0014 δ1 ≈ 0.177 −2.8210 ± 0.0020 δ1 ≈ 0.156 −2.8312 ± 0.0025 δ1 ≈ 0.145

Plaquette state −2.7401 ± 0.0010 δ1 ≈ 0.218 δ2 ≈ 0.217 −2.7600 ± 0.0018 δ1 ≈ δ2 ≈ 0.203 −2.7670 ± 0.0020 δ1 ≈ δ2 ≈ 0.208

To obtain the adjustment direction and the step length of
{θ}, an approximate Hessian matrix 〈�(θ )|H |�̇(θ )〉 requires
the construction

∂2

∂θ∂θ ′
〈�(θ )|�(θ ′)〉
〈�(θ )|�(θ )〉 . (A6)

As the essence of the SR method, the second derivative of the
energy with respect to parameters {θ} can be obtained with
matrix (A6). To imitate the effect of the Hessian matrix, a
positive-definite Hermitian matrix S generated from the met-
ric of the variational state in the variational space is proposed.
More specifically, the matrix element is given by

Si j = 〈∇θ [ln�(C)]i∇θ [ln�(C)] j〉
− 〈∇θ [ln�(C)]i〉〈∇θ [ln�(C)] j〉, (A7)

where the index i is with respect to the ith variational param-
eter.

Thanks to the quantity 〈∇θ [ln�(C)]〉 derived from
Eq. (A4), an approximate Hessian matrix S can be obtained
from Eq. (A7), Therefore, the direction and step length for
performing parameter optimization can be found as follows:

��θ = − 1

2κ
S−1�g. (A8)

Here κ is an empirical positive parameter which is ad-
justed manually and defines the step length of the parameter
optimization.

APPENDIX B: VMC CALCULATIONS FOR FOUR
GUTZWILLER PROJECTED STATES LISTED IN TABLE I

In the main text, using the SR method, we searched for
local energy minima on XC(L × L) tori up to L = 24 (see
Fig. 3 and Table II) with the generic 12-parameter 2 × 2 VBC
states given in Eq. (10). In this Appendix, we perform stan-
dard VMC calculations and search for local energy minima
for four Gutzwiller projected states on XC(L × L) tori with
L = 12, 16, 24. These Gutzwiller projected states are char-
acterized by one or two variational parameters, as listed in
Table I, namely, δ1 in Eqs. (12) and (14) (stripe-I and stripe-III
states), δ1 and ε in Eq. (13) (stripe-II state), and δ1 and δ2 in
Eq. (15) (plaquette state).

The optimized ground state energy and corresponding vari-
ational parameters are given in Table III and are consistent
with the 12-parameter optimization results shown in Table II
and Fig. 3 in the main text.
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