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Resonances in finite-size all-dielectric metasurfaces for light trapping and propagation control
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We investigate the development and tuning of resonant optical effects in finite-size periodic arrays (metasur-
faces) of silicon nanoparticles. By applying Green’s tensor formalism and the coupled dipole approximation
while incorporating electric and magnetic dipole moments, we outline a theoretical framework to model the
optical response of such nanoparticle arrays. We consider the resonant optical response of finite-size arrays as
a function of the nanoparticle (unit cell) number in two distinct scenarios of collective resonances: the lattice
resonant Kerker effect, which is a complete suppression of the backward scattering, and the quasi-bound state
in the continuum. Our developed models and findings provide a pathway for extracting crucial details about
the lattice period and the required array size for the experimental observation of collective resonances. These
resonances are typically predicted under the assumption of an infinite periodic lattice. By bridging the theoretical
predictions with practical considerations, our results contribute to better understanding of specific conditions
needed to experimentally observe these collective resonances in finite-size arrays.
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I. INTRODUCTION

All-dielectric nanophotonics exploits subwavelength par-
ticles (nanoparticles) as building blocks (meta-atoms) of
nanophotonic planar optical devices [1]. These nanoparticles
are usually made from a dielectric or semiconductor material
with a high refractive index (n ∼ 3–4). Single nanoparticles
and complex planar arrangements provide extremely efficient
control of light at the nanoscale through an electromagnetic
response inaccessible to bulk materials. This response occurs
due to resonances sustained in these high-index dielectric
nanoparticles at visible and near-infrared wavelengths [2–5]
and associated with the excitation of multipoles [6–9] (see,
e.g., Fig. 1).

It was important to appreciate that dielectric, nonmag-
netic nanoparticles support not only electric multipoles but
also magnetic multipoles [4,5]. Interference of electric and
magnetic multipoles can be used to control the directivity
and amplitude of the scattered light. For example, at a spe-
cific wavelength, the incident linear-polarized plane wave
can induce in an isotropic spherical nanoparticle orthogonal
magnetic dipole (MD) and electric dipole (ED) moments of
equal strength that are oscillating in phase (first Kerker condi-
tion [10]). The interference between scattered fields generated
by such ED and MD leads to the suppression of scattering
in the backward direction relative to the incident light, and
it is known as the Kerker effect [2,11–13]. In the case of a
single spherical nanoparticle, ED and MD resonances do not
overlap, making the Kerker effect a nonresonant phenomenon.
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However, we note that, by changing the particle shape, an
overlap of these resonances in individual particles can be ob-
tained [14] and a resonant Kerker effect emerges for a certain
illumination direction [15].

Two-dimensional (2D) periodic arrangements of nanopar-
ticles placed at the lattice nodes, metasurfaces, bring extra
degrees of freedom to control spectral positions of multipole
resonances [2,16–24]. That is possible because the interaction
of the particles within the lattice renormalizes their optical
properties. Similar to the cases of 2D arrays of metallic
nanoparticles supporting so-called plasmonic surface lattice
resonances (SLRs) [25–35], the electromagnetic response of
a dielectric nanoparticle structure can also be determined by
collective modes, known as collective or lattice resonances,
formed by electromagnetic coupling between multipoles of
nanoparticles [36]. In this regard, the particle configuration
strongly affects the nature and strength of the multipole cou-
pling between particles. For example, it is possible to achieve
a spectral overlap of ED and MD collective resonances for
a rectangular lattice of spherical nanoparticles at a specific
wavelength by independently varying the lattice periods in
different directions. As a consequence, the resonant lattice
Kerker effect emerges, leading to the resonant suppression
of backward scattering and reflection from a subdiffraction
lattice [37]. The resonant behavior of the lattice Kerker effect
can be useful in light sources [29], narrow-band photodetec-
tors [38], and sensing [39].

Another fascinating collective phenomenon exhibited by
nanoparticle structures is the accumulation (or trapping)
of light energy in the near field of the structures. In the
ideal scenario of an infinite lattice, this effect arises due to
the presence of trapped modes that are also called bound
states in the continuum. For these resonances, the resonant
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FIG. 1. Extinction cross section σext (ECS), scattering cross sec-
tion σsca (SCS), and contributions to the SCS from electric dipole
(ED), magnetic dipole (MD), electric quadrupole (EQ), and magnetic
quadrupole (MQ) for a silicon nanoparticle illuminated by a plane
wave propagating in the medium with nS = √

εS = 1.4 (see the in-
set). The blue circle indicates the wavelength λK = 834 nm at which
the first Kerker condition is satisfied. The values of the wavelength λ

are indicated for vacuum.

frequency is embedded into the continuum of propagating
waves in the surrounding medium but without radiation into
this medium [19,40–43]. In finite-size structures, the ideal
bound states in the continuum are always converted to quasi-
bound states in the continuum (quasi-BICs). The observable
radiative quality factor (Q factor) is finite but large. The details
depend on the array size, as shown for a one-dimensional
(1D) chain of particles [44]. From a practical perspective,
quasi-BICs are even more useful than the bound states in the
continuum, being only ideal mathematical objects, since the
quasi-BICs can be excited by an external field. Much like the
BICs, the energy of quasi-BICs remains concentrated predom-
inantly within or in close proximity to a dielectric structure.
This confinement leads to a considerable enhancement of the
light at the nanoscale. That allows us to exploit quasi-BICs in
dielectric metasurfaces to enhance nonlinear effects [45], for
lasing [46], biosensing [47,48], and multiplexing [49].

Thus, collective resonances in 2D periodic structures have
demonstrated great opportunities to control light propagation
and concentration at the nanoscale. Even though these peri-
odic arrays are finite in reality, they are frequently represented
as infinitely large and perfectly periodic during theoretical
modeling. However, the response of finite-size arrays depends
on the number of particles and can be significantly different
compared to that of an infinite array, even for a sufficiently
large number of particles [22,28,29,31,34,35,44,50–56]. It
is crucial to investigate the influence of the array size on
the resonant effects. Moreover, in experiments on the opti-
cal collective effect in metasurfaces, one always deals with
finite-dimensional structures of nanoparticles, while numer-
ical simulations usually refer to infinite periodic structures.
In this regard, difficult questions arise as to what extent nu-
merical simulations can predict the properties of systems with

(a)

(b)

FIG. 2. Illustration of the considered collective resonant effects
in a periodic finite-size metasurface of subwavelength-separated Si
particles (d < λ/nS) with a square unit cell. (a) Lattice Kerker res-
onance: at the Kerker wavelength, a normally incident plane wave
can resonantly induce electric and magnetic dipoles with the same
amplitude in each particle due to the overlapping of collective ED
and MD resonances. The scattered field from these dipole moments
yields zero reflection from the metasurface. (b) Nonradiant trapped
eigenmode: dipole bound state in the continuum. For the magnetic
dipole BIC, all particles have the same MD moment with the out-of-
plane orientation m0 ‖ ez.

finite sizes and how numerical simulations can be related to
actual experimental implementations.

In this paper, we investigate the emergence and de-
velopment of collective resonant effects arising from the
dipole coupling in finite-size arrays of dielectric Mie-resonant
nanoparticles with a spherical shape under the action of an
external electromagnetic field. In contrast to the previous
studies [2,22,53], we focus on other scenarios of collective
resonances in subdiffraction arrays of dielectric nanospheres,
namely, the Kerker lattice effect and quasi-BIC (Fig. 2).
The discussion above shows the high capability of these
resonances to control light behavior at the nanoscale. The ad-
vantage of incorporating spherical particles is that their optical
response to an external plane wave and the examination of
multipole coupling between them can be carried out analyt-
ically using Mie theory [6,57] and the Cartesian multipole
moments [2,9] in the framework of a Green’s tensor formal-
ism [58]. Moreover, structures of spherical nanoparticles can
be experimentally fabricated using laser ablation [59] or the
technique of laser printing [60].

The paper is organized as follows. In Sec. II, we present
an analytical system of coupled dipole equations that allows
us to calculate electric and magnetic dipole moments of elec-
tromagnetically interacting nanoparticles. Then, the obtained
dipole moments can be incorporated into expressions for the
scattered field and radiated power of the array. In Sec. III, we
investigate the properties of the lattice Kerker resonance that
can be excited by a normally incident plane wave in finite-size
nanoparticle arrays with a square unit cell [see Fig. 2(a)].
Emphasize that here we develop an approach that allows
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us to obtain and tune the resonant lattice Kerker effect in
finite-size metasurfaces with a square unit cell. In Sec. IV, we
consider the excitation of quasi-BICs [Fig. 2(b)] in finite-size
arrays by either an oblique incident plane wave or a point
electric dipole. Essentially, in Secs. III and IV, we analyze
the behavior of considered collective resonances by taking the
number of particles forming the finite-size array (unit cells) as
a degree of freedom. Additionally, we assess the applicability
of the infinite-array theory in predicting the resonant response
properties of finite-size arrays.

II. THEORETICAL MODEL

Through this work, we investigate the collective optical
response of spherical nanoparticles with a diameter of 200 nm.
The particles are made from crystalline silicon (c-Si), char-
acterized by a dispersive dielectric permittivity [61]. The
particles are arranged in periodic finite-size Ntot ≡ N × N
arrays as shown in Fig. 2. The array has a square unit cell
with the area d × d , where d is the lattice period, such that
d < λ/nS to avoid the diffraction of light. The particles are
placed on a substrate made from quartz glass characterized by
a refractive index of nS = √

εS = 1.4. The upper half space is
assumed to be filled by a polymer characterized by the same
refractive index nS = 1.4. Such polymer can protect in exper-
imental setups as the nanoparticle layer from damage [62].

The optical response of an isolated nanoparticle to a lin-
early polarized electromagnetic plane wave can be calculated
using Mie theory, as described in Appendix A. Some details
of the optical response are shown in Fig. 1. It is clear from
the figure that the optical response of the nanoparticle in
the considered spectral range (620–900 nm) is determined
almost exclusively by scattering and it is associated only with
the excitation of electric and magnetic dipoles. Therefore,
an analytical model of coupled electric and magnetic dipole
moments suffices to describe the optical response of finite-size
nanoparticle arrays to an external field and the electromag-
netic interaction between nanoparticles [2,63,64].

By employing a Green’s tensor formalism, the
electric Edip(r) = Ep(r) + Em(r) and magnetic Hdip(r) =
Hp(r) + Hm(r) fields generated (scattered) by a collection
of Ntot electric (p1, p2, p3, . . . , pNtot ) and magnetic
(m1, m2, m3, . . . , mNtot ) dipole moments (or simple dipoles)
at a point r read as

Ep(r) = k2

ε0

Ntot∑
j=1

Ĝ(r − r j, λ)p j,

Hp(r) = ck

i

Ntot∑
j=1

[g(r − r j, λ) × p j],

Em(r) = ik

cε0

Ntot∑
j=1

[g(r − r j, λ) × m j],

Hm(r) = k2
S

Ntot∑
j=1

Ĝ(r − r j, λ)m j, (1)

where {r j}Ntot
j=1 are positions of nanoparticles in the array,

c is the vacuum light speed, ε0 is the vacuum dielectric

constant, kS = nSk where k is the vacuum wave number re-
lated to the vacuum wavelength λ as k = 2π/λ, and × denotes
the cross product [2]. Note that we omit the monochromatic
time dependence e−iωt for compactness in the following text.
Ĝ(r − r j, λ) is the electromagnetic Green’s tensor for a point
dipole source located at r j while vector g is connected with
the Green’s tensor by the relationship [g(r − r j, λ) × p j] =
∇×Ĝ(r − r j, λ)p j , where the differentiation is carried out
regarding r [65,66].

In the framework of coupled dipoles, the vectors of the
electric dipole p j and magnetic dipole m j moments of spher-
ical particle j with its center at r j are determined by the
local electric Eloc(r j ) or magnetic Hloc(r j ) field acting on the
particle [2]

p j = αp(λ)Eloc(r j ), m j = αm(λ)Hloc(r j ). (2)

For a spherical nanoparticle, wavelength-dependent electric
αp and magnetic αm dipole polarizabilities are expressed as
analytical scalar functions using Mie theory [see Eq. (A3) in
Appendix A].

In the case of a single particle, the local fields in Eq. (2)
are the electric Einc(r j ) and magnetic Hinc(r j ) fields of the
incident plane wave.

For a nanoparticle in the array, the local electric Eloc(r j )
[respectively magnetic Hloc(r j )] field acting on particle j is a
superposition of three contributions:

(1) the incident electric field Einc(r j ) [respectively mag-
netic field Hinc(r j )],

(2) the electric field E′
p(r j ) [respectively magnetic field

H′
p(r j )] generated by electric dipoles of all particles except

jth one, and
(3) the electric field E′

m(r j ) [respectively magnetic field
H′

m(r j )] generated by magnetic dipoles of all particles except
jth one.

The primed fields can be obtained from Eq. (1) by exclud-
ing the terms with p j and m j . According to Eq. (2), we obtain
a linear system of 6Ntot coupled dipole equations:

p j = αpEinc(r j ) + αp
k2

ε0

Ntot∑
l=1
l �= j

Ĝ(r j − rl , λ)pl

+ αp
ik

cε0

Ntot∑
l=1
l �= j

[g(r j − rl , λ) × ml ],

m j = αmHinc(r j ) + αmk2
S

Ntot∑
l=1
l �= j

Ĝ(r j − rl , λ)ml

+ αm
ck

i

Ntot∑
l=1
l �= j

[g(r j − rl , λ) × pl ]. (3)

After the solution of this system, the total scattered field
can be calculated as a superposition of fields (1) gen-
erated by all electric and magnetic dipoles in the array.
The far-field scattered power dPsca = 〈S〉 · nr2 d� into the
solid angle d� = sin θ dθ dϕ is determined by the time-
averaged Poynting vector such that 〈S〉 = 1/2 Re[EFF ×

115436-3



USTIMENKO, ROCKSTUHL, AND EVLYUKHIN PHYSICAL REVIEW B 109, 115436 (2024)

H∗
FF] = 1/2

√
ε0εS/μ0|EFF|2n, where EFF and HFF are the

contributions of the fields in Eq. (1) in the far field.
Let us introduce the so-called radiation pattern as f (n) =
1/2

√
ε0εS/μ0r2|EFF|2, which can be written in the dipole

approximation as [67]

f (n) = 1

2

√
ε0εS

μ0

k4
S

16π2ε2
0ε

2
S

×
∣∣∣∣∣∣

Ntot∑
j=1

e−ikS (n·r j )

(
[p j − (n · p j )n] + 1

cS
m j × n

)∣∣∣∣∣∣
2

,

(4)

where n = (sin θ cos ϕ, sin θ sin ϕ, cos θ ) is a normal vector
to a spherical surface, cS = c/nS is the light speed in the
medium with nS .

A total scattered power is an integral of the radiation pat-
tern over a spherical surface:

Psca =
∫ 2π

0
dϕ

∫ π

0
dθ sin θ f (n). (5)

The scattering cross section for an incident plane wave
with intensity Iinc = 1/2

√
ε0εS/μ0|Einc|2 is defined as σsca =

Psca/Iinc, which reads as in the dipole approximation

σsca = k4
S

16π2ε2
0ε

2
S|Einc|2

∫ 2π

0
dϕ

∫ π

0
dθ sin θ

×
∣∣∣∣∣∣

Ntot∑
j=1

e−ikS (n·r j )

(
[p j − (n · p j )n] + 1

cS
m j × n

)∣∣∣∣∣∣
2

.

(6)

III. DEVELOPMENT OF RESONANT KERKER
EFFECT IN FINITE-SIZE ARRAYS

The collective effects of electromagnetic coupling between
particles can strongly modify their response compared to the
single-particle case. To numerically evaluate the optical re-
sponse of finite-size nanoparticle arrays, we apply the outlined
theoretical model based on the coupled dipole approxima-
tion (see Sec. II). However, it is natural to consider also the
collective resonances for infinite arrays, lattices, since the
analysis of the systems with ideal translational symmetry can
be carried out analytically using the lattice sum approach as
described in detail in Appendix B. This analysis can help us
obtain analytical conditions for the lattice Kerker and quasi-
BIC resonances, further verified for the finite-size arrays.
These conditions provide us with the lattice period for a given
operating wavelength to observe these resonances.

Let us obtain a condition of the resonant lattice Kerker
effect in an infinite square array and consider a nor-
mally incident (k = kSez) plane wave with field components
Einc(r) = EinceikSzex and Hinc(r) = HinceikSzey where Hinc =
Einc

√
ε0εS/μ0. According to Eq. (2), this plane wave ex-

cites in-plane components of dipole moments px = αpEinc

and my = αmHinc in a single particle. For the infinite square
array, the electric dipole (ED) and magnetic dipole (MD)
components induced in each nanoparticle can be expressed
via external fields and so-called effective polarizabilities [see

Eq. (B1) in Appendix B]:

p0,x = ε0εSEinc

ε0εS/αp − S‖
, m0,y = Hinc

1/αm − S‖
, (7)

where S‖ is the so-called lattice sum given by Eq. (B3) in
Appendix B (the subscript ‖ indicates the in-plane orientation
of dipoles). The lattice sum considers the electromagnetic
coupling between nanoparticles. Note that for a lattice of
spherical nanoparticles with a square unit cell under a nor-
mally incident plane wave illumination, electric and magnetic
dipoles of nanoparticles are uncoupled and can be considered
independently.

Moreover, a square lattice with period d < λ/nS and illu-
minated by a normally incident plane wave can radiate only in
vertical ±z directions with the amplitude and phase given by
the radiation pattern of the unit cell (spherical nanoparticle, in
our case):

farray(n = ±ez ) ∝ fparticle(n = ±ez )

∝
∣∣∣∣ex

(
p0,x ± m0,y

cS

)
+ ey

(
p0,y ∓ m0,x

cS

)∣∣∣∣2

. (8)

The amplitude fparticle(n = +ez ) gives a contribution to the
transmission of the array, while fparticle(n = −ez ) determines
the reflection. The derivation of Eq. (8) is provided in Ap-
pendix B. We would note that Eq. (8) can be extended beyond
the dipole approximation by adding components of higher-
order multipole tensors that can be excited by a transverse
electric (TE) or transverse magnetic (TM) polarized plane
wave; for the details, please see Eqs. (13)– (16) in Ref. [20].

For a single dipole nanoparticle, the Kerker condition is
αp/ε0εS = αm or a1 = b1 in Eq. (A3) [68]. Then, px = my/c
that results in the suppression of plane-wave scattering in
the backward direction, i.e., fparticle(n = −ez ) = 0 according
to Eq. (8), known as the Kerker effect. For the considered
isolated silicon nanoparticle, the nonresonant Kerker effect
can be observed for λK = 834 nm in Fig. 1.

However, with the nanosphere array, one can obtain at the
same λK = 834 nm the resonant Kerker effect, which is the
suppression of the backward-scattered waves and the overall
reflection from the array at the resonant values of electric p0

and magnetic m0 dipole moments, i.e., farray(n = −ez ) = 0
in Eq. (8) [37]. To achieve this, we developed the following
strategy. We need to adjust the spectral positions of lattice
ED and MD resonances at the wavelength λK . The collective
resonances in the array response appear when the real parts of
denominators of effective lattice polarizabilities equal zero.
For in-plane induced dipoles, the effective electric α(eff)

p and
magnetic α(eff)

m polarizabilities for particles in the infinite array
can be extracted from Eq. (7) as

α(eff)
p =

(
ε0εS

αp
− S‖

)−1

, α(eff)
m =

(
1

αm
− S‖

)−1

. (9)

The effective polarizabilities provide us with analytical
conditions for the resonant Kerker effect in the infinite array
(lattice) within the dipole approximation and they read as

α(eff)
p = α(eff)

m ,

Re
[
1/α(eff)

p

] = Re
[
1/α(eff)

m

] = 0 . (10)
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FIG. 3. Numerically evaluated lattice sum for in-plane (‖)
dipoles (blue) and the real part of the inverse single-particle dipole
polarizabilities (red) as a function of the lattice period d < λK/nS

at the Kerker wavelength λK = 834 nm (see Fig. 1). The quantities
are normalized by 6π/k3

S . The blue circle indicates the lattice period
such that the ED and MD lattice resonances overlap, and the lattice
resonant Kerker effect emerges according to Eq. (10).

Since the electric field reflection coefficient r ∝ [α(eff)
p −

α(eff)
m ] [2], the first condition in Eq. (10) guarantees the

emergence of the Kerker effect. In contrast, the second one
is the condition for the ED and MD resonances to occur in the
lattice at the same wavelength. Note that the lattice Kerker
effect conditions in Eq. (10) are valid for arrays with any
unit cell. Moreover, considering the response of higher-order
multipole moments, Eq. (10) can be modified by splitting mul-
tipole moments into two sets with opposite parity inversion
using the methodology from Ref. [69].

Let us consider Eq. (10) for square arrays of spherical
nanoparticles. According to Eq. (A4) and Fig. 11, ε0εS/αp =
1/αm ≡ 1/αK at λK = 834 nm that corresponds to the Kerker
effect for isolated particles in our case (Fig. 1). Then the
first condition in Eq. (10) is automatically satisfied at this
wavelength since the lattice sum S‖ for the electric and mag-
netic dipole subsystems coincides. Note that the value of αK

lies beyond the single-particle dipole resonances on the side
of long wavelengths. Furthermore, the second condition in
Eq. (10), using Eq. (9), transforms to the following lattice
resonant condition:

Re[1/αK ] = Re[S‖]. (11)

This condition can be used to determine the lattice period d at
which the corresponding lattice resonance coincides with the
Kerker effect at λK = 834 nm. In contrast to the imaginary
part of lattice sum Im[S‖] [see Eq. (B4)], its real part Re[S‖] is
slowly converging. Therefore, it cannot be calculated analyt-
ically but should be evaluated numerically. Here, we employ
the effective Ewald’s summation method [70] implemented in
TREAMS [71]. The results of the Re[S‖] calculation are given
in Fig. 3 as a function of the period d at the fixed λK = 834
nm. In Fig. 3, the value Re[1/αK ] is also presented. One can
find that lattice period d = 577 nm obeys the condition in
Eq. (11) for the resonant lattice Kerker effect. Indeed, for the
lattice with d = 577 nm, both α(eff)

p and α(eff)
m polarizabilities

[Eq. (9)] have a resonance at the wavelength λK = 834 nm.
This is clearly visible from the coincidence of resonances in
Fig. 4(a).

For the infinite array, we can introduce an effective scat-
tering cross section per particle σ0,eff that can be calculated
via Eq. (A5) by replacing the single-particle polarizabilities
with effective ones (9), αp → ε0εSα

(eff )
p and αm → α(eff )

m . The

(a)

(b)

FIG. 4. (a) Effective ED and MD polarizabilities of a nanoparti-
cle in the infinite square lattice for in-plane dipoles (9) as a function
of wavelength of normally incident plane wave. (b) Scattering cross
section per particle σ0 for (blue) the infinite and (red dashed) 35 × 35
particle array. The values of the wavelength λ are indicated for
vacuum.

effective cross section σ0,eff for the lattice with d = 577
nm has a resonance at the wavelength λK , indicating the
resonant lattice Kerker effect. The resonance has a quality
factor Q∞ ≈ 70. Here, the Q factor is defined as Q = λ/�λ

where λ is the resonant wavelength and �λ is the full width at
half-maximum.

Due to a lack of translational symmetry, the lattice sum
approach does not apply to a finite array to calculate the dipole
moments. Therefore, we will solve a system of coupled dipole
equations (3) numerically using MATLAB. In this model, each
nanoparticle is characterized by three components of the ED
moment (px, py, pz ) and three components of the MD moment
(mx, my, mz ), depending on the ED and MD moments of all
the other nanoparticles via the coupling in free space governed
by Green’s functions. Thus, for the array of N × N particles,
we need to solve a system of 6 × N2 linear equations. Fur-
ther, the calculated dipole moments can be incorporated into
Eq. (6) to calculate the total scattering cross section σsca. For
the finite array, we can also formally define the scattering
cross section per particle as σ0,N = σsca/N2.

The application of this approach to the arrays with a fi-
nite number of particles showed that, already for the 35 × 35
array, there is a good coincidence of the array’s resonant
response with the infinite array case [see Fig. 4(b)]. A single
exception is behavior at the wavelength of 808 nm where
the scattering of the infinite array is eliminated. This is the
wavelength of the so-called Rayleigh-Wood anomaly [72,73]
when the lattice period equals the wavelength of incident
light in the surrounding medium d = λ/nS . In our case with
d = 577 nm and nS = 1.4, this leads to λ = dnS ≈ 808 nm
in vacuum. This wavelength corresponds to the singularity of
lattice sums (B3) that occur in the denominators of induced
dipole moments (2). When it happens that p0,x = m0,y = 0,
the incident light is fully transmitted. In that case, we can
speak of an electromagnetically induced transparency (EIT),
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(a) (b)

(c) (d)

FIG. 5. (a) Scattering cross section per particle σ0,N ≡
σsca (N )/N2, where σsca (N ) is the total scattering cross section (6)
for the N × N array with lattice period d = 577 nm. The array
is illuminated by an external plane wave as shown in Fig. 3. The
green points, labeled c and d, indicate N and λ for which the radi-
ation patterns are plotted in (c) and (d), respectively. (b) The
quality factor of the collective Kerker resonance as a function of
N , which is normalized by the quality factor for the infinite lattice
Q∞ = 70 calculated via Fig. 4(b). (c) Far-field radiation pattern,
given by Eq. (4), for the 9 × 9 array with lattice period d = 577
nm at the Kerker wavelength λK = 834 nm. (d) The same but at the
wavelength λ = 900 nm, which is far from resonances. The values
of the wavelength λ are indicated for vacuum.

something that occurs exclusively because of a long-range
coupling in the infinite lattice. However, in contrast to the
lattice Kerker effect, the EIT cannot be observed in small-size
finite arrays for the resonant enhancement of transmitted light
[see Fig. 4(b)] since the interaction length in finite arrays is
limited by relatively small array boundaries.

Figure 5(a) shows the development of the resonant Kerker
effect for arrays with different numbers of particles per side
of the array. In this figure, the (N, λ) map of σ0,N is presented
for the array with period d = 577 nm predicted. One can see
that the lattice Kerker resonance becomes pronounced in the
finite array with a relatively small number of particles N ≈ 9
per side. The spectral position of the lattice Kerker effect
in the finite-size array converges to that in the infinite array
λ = 834 nm for N � 15 [see Fig. 5(a)]. As the number of
particles N increases, the resonance becomes more and more
noticeable, with the resonant value of σ0,N (λK ) approaching
the limit of the infinite array σ0,eff (λK ) = 1 µm2 for N � 30.
Note that the in-plane disorder of nanoparticle positions in-
fluences only the cross-section amplitude at the resonance,

keeping the qualitative behavior as shown in Appendix D.
Moreover, the Q factor of the resonance in the finite array QN

also saturates at the value of the infinite array Q factor for
an array larger than 29 × 29 as shown in Fig. 5(b). Thus, the
characteristics of the resonant Kerker effect converge to the
infinite array limit for about 30 × 30 particles.

Figure 5 also shows the radiation pattern f (n) for the 9 × 9
array calculated using Eq. (4). One can see in Fig. 5(c) that
the array mainly radiates in the forward direction regarding
the incident light, i.e., z > 0 direction, at the Kerker reso-
nance wavelength in contrast to the nonresonant case shown in
Fig. 5(d). However, Fig. 5(c) also demonstrates low-amplitude
radiation lobes in the array plane that appear due to the finite
size of the array. As the array size increases, their amplitude
tends to zero.

In this section, we first employed the lattice sum method
to predict the lattice period for which the resonant lattice
Kerker effect can be observed at wavelengths such that the
Kerker effect condition is satisfied for a single particle. We
also investigated this effect in finite arrays with the lattice
period obtained for the infinite lattice. Figure 5 can be used
to choose the array size to realize the resonant response of
the array to the normally incident plane wave with the desired
amplitude and quality factor. Note that, using the developed
approach, one can easily tune the resonant Kerker effect to
the desired spectral position by selecting the size of the silicon
particles or their material which control the value of λK and
determining the required lattice period by using Eq. (11).

IV. DEVELOPMENT OF QUASI-BIC RESPONSE
IN FINITE-SIZE ARRAYS

This section considers another collective effect that
emerges due to dipole coupling between nanoparticles. Ac-
cording to expressions for a spherical nanoparticle’s ED and
MD moments in the infinite lattice (B1), a normally incident
plane wave can excite only in-plane components of dipole
moments. Let us consider a case of a lattice eigenmode with
out-of-plane ED or MD moments of nanoparticles (p0,z or
m0,z) being all the moments are in phase (� point of the
Brillouin zone). According to Eq. (8), the infinite lattice in the
subdiffraction limit can radiate power into the far field only
along its normal direction, i.e., z axis. The lattice can radiate
if nanoparticles have in-plane components of their dipole mo-
ments. However, electric and magnetic dipoles do not radiate
along their axes. Therefore, a collective state polarized along
the lattice normal (z axis) is a nonradiant one. Hence, such a
state can generate fields concentrated only in the near field of
the lattice, and they are called symmetry-protected (�-point)
bound states in the continuum [19,40]. Because of the reci-
procity theorem [74], bound states in the continuum cannot be
excited by propagating plane waves. Note that, in the general
case, multipole decompositions of symmetry-protected BICs
contain only multipoles that do not radiate along the lattice
normal (z axis) [75,76].

A. Excitation from the far field

Let us focus on the magnetic dipole bound state in the con-
tinuum (BIC). Note that eigenfrequencies of BICs for the
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FIG. 6. Numerically evaluated real part of lattice sum for out-
of-plane (⊥) dipoles (red), and the real part of the inverse single-
particle MD polarizability (green) as a function of lattice period d <

λ/nS at the wavelength λ = 808 nm. The quantities are normalized
by 6π/k3

S . The blue circle indicates the lattice period such that the
lattice supports a magnetic dipole BIC according to Eq. (C1).

infinite lattice of nonabsorbing particles are real since the
states are free of radiative losses. In the considered spectral
range 620–900 nm, silicon has low absorption. This can be
seen from the results shown in Fig. 1, where the scattering
cross section nearly makes up the entire extinction cross sec-
tion. Therefore, we can select a real operating wavelength to
exploit such a mode and then find the lattice period satisfying
Eq. (C2) that enables the presence of this mode within the
corresponding array. Let us choose λ = 808 nm to spectrally
separate MD resonance in the single particle at λ ≈ 775 nm
and magnetic BIC resonance of a lattice. Please remember
that we consider silicon nanoparticles with a diameter of
200 nm, shown in Fig. 1. For the real parts of the inverse
single-particle MD polarizability and the lattice sum for the
out-of-plane dipoles [see Eq. (B3)] evaluated at this wave-
length, we need to find their crossing point according to
Eq. (C2) in Appendix C. As follows from Fig. 6, an array with
a period of d = 495 nm will support the magnetic dipole BIC
at λ = 808 nm.

In infinite lattices, the radiative losses of BICs are nul-
lified due to the interaction between an infinite number of
unit cells. Consequently, finite-size nanoparticle arrays cannot
truly support BICs with an infinitely large radiative Q factor.
However, they can support quasi-BICs characterized by nar-
row resonances of Fano type in the scattering spectrum [77].
Unlike the ideal scenario of BICs, quasi-BICs can possess
a large but finite radiative Q factor and can be excited by
external electromagnetic fields in compliance with the reci-
procity theorem [74]. To excite out-of-plane MD component
(mz) for particles in a finite-size array, we employ an oblique
incident plane wave with wave vector k = kS sin(θinc)ex +
kS cos(θinc)ez, electric field Einc(r) = Einceik·rey, and magnetic
field Hinc(r) = Hinceik·r[− cos(θinc)ex + sin(θinc)ez] as illus-
trated by the inset in Fig. 7(a). Note that, for the BIC, there is
no phase shift eikS sin(θinc )x between mz components of particles.
Therefore, we choose a relatively small angle of incidence
θinc = 2◦. On the other hand, the incident wave still con-
tains field component Hz that induces an out-of-plane (mz)
component of the MD moment in each nanoparticle. The out-
of-plane component allows us to observe a resonant response
associated with the magnetic quasi-BIC.

Figure 7(a) shows that the 13 × 13 array with lattice pe-
riod d = 495 nm, obtained for the infinite lattice, exhibits a
narrow resonance in the mean value of the out-of-plane MD

(a)

(b)

FIG. 7. Magnetic dipole quasi-BIC resonance in the finite-size
array of 13 × 13 particles with period d = 495 nm. (a) Mean values
|〈mx〉| (dashed) and |〈mz〉| (solid) of MD components [Eq. (12)]
that can be induced by an oblique incident plane wave with the
polarization shown by the inset. The components are normalized by
|αmHinc|. The angle of incidence is θinc = 2◦. (b) Total scattering
cross section (6) per particle σ0,N ≡ σsca (N )/N2 (gray solid), and
independent contributions of EDs and MDs to the scattering per par-
ticle (red dashed-dotted and green dotted, respectively). The values
of the wavelength λ are indicated for vacuum.

moment component |〈mz〉| at λ = 808 nm, and a broad reso-
nance in the mean value of the in-plane component |〈mx〉| at
λ ≈ 775 nm. The mean value of MD moments is defined as

〈m〉 = 1

Ntot

Ntot∑
j=1

m j . (12)

The broad resonance of |〈mx〉| originates from the single-
particle MD resonance. The narrow resonance of |〈mz〉|
emerges due to the excitation of collective quasi-BIC. The
latter manifests in a spectral feature in the scattering cross
section [Fig. 7(b)] that is not observed for a single particle
(Fig. 1).

Figure 8 shows the amplitude of the mean value |〈mz〉| as a
function of particle number N and wavelength λ for an oblique
incident plane wave. One can see that the spectral position of
the |〈mz〉| resonance converges to that for the infinite lattice at
λ = 808 nm as particle number N increases. The appearance
of the maximum of the resonant value of |〈mz〉|/|αmHinc| ≈
1.2 for N ≈ 21 testifies about the constructive interference
between the incident and the scattered fields. Although the
resonant value of |〈mz〉| has a nonmonotonic dependence on
N , the Q factor of the quasi-BIC resonance rather increases
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FIG. 8. Mean value |〈mz〉| of the out-of-plane MD component,
given by Eq. (12), that is induced by an oblique incident plane wave
with the polarization as shown by the inset in Fig. 7(a). The angle of
incidence is θinc = 2◦. The N × N array has a lattice period of d =
495 nm. The resonant phenomenon is associated with the excitation
of magnetic dipole quasi-BIC in the finite array of nanoparticles. The
values of the wavelength λ are indicated for vacuum.

with N and saturates for N � 30 as shown in Fig. 13(a) (de-
tails on the calculation of the Q factor of the quasi-BIC are
presented in Appendix E). Indeed, the inverse total Q factor
of the quasi-BIC can be written as Q−1

tot = Q−1
rad + Q−1

abs where
Qrad and Qabs are the radiative and nonradiative contributions
to the Q factor. Although, Q−1

rad → 0 for N → ∞, the total Q
factor is limited by Qabs for finite and infinite arrays due to
the presence of intrinsic absorption losses in particles. The
value of Qabs can be approximated as Re(ε)/Im(ε) where the
silicon dielectric permitivitty ε should be taken at the reso-
nance wavelength λ = 808 nm [55]. If we artificially nullify
the material losses by setting Im(ε) ≡ 0, the Q factor will be
larger and increase with N as shown in Fig. 13(a). Moreover,
the calculations show that, in the absence of material losses,
the resonant value of |〈mz〉|/|αmHinc| increases with N and
reaches ≈6 for N = 35. Thus, engineering of material losses,
as, e.g., in Ref. [78], is important for reaching large Q factors
of quasi-BICs.

Taking back the material losses of silicon, we also cal-
culate the Q factor for various angles of incidence θinc of
an external plane wave. As the angle increases, the phase
shift eikS sin(θinc )x between induced magnetic dipole moments
in particles becomes larger resulting in the fast reduction of
Q factor [see Fig. 13(b)], being in agreement with the results
for BIC in infinite arrays [55,79]. Moreover, one can observe
the oscillations of Q factor caused by the interference between
incident and scattered fields.

As mentioned above, high-Q quasi-BICs weakly radiate
into the far field, resulting in a concentration of electromag-
netic fields near the structure. Figure 9 shows distributions
of the normalized magnetic energy density determined by the
total magnetic field H(r) = Hinc(r) + Hp(r) + Hm(r), where
Hp(r) and Hm(r) are the magnetic fields generated by electric
and magnetic dipoles of nanoparticles in the array, respec-
tively [Eq. (1)]. The fields are calculated in the z = 110 nm
plane, where the particle radius is 100 nm. It can be seen

(a)

(b)

FIG. 9. Normalized magnetic energy density determined by the
total magnetic field in the xy plane at position z = 110 nm above the
array. The array has (a) 35 × 35 particles and (b) 21 × 21 particles.
An oblique incident plane wave, shown by the inset in Fig. 7(a), has
a wavelength of the resonant magnetic dipole quasi-BIC excitation
λ = 808 nm.

that the magnetic field in the near field is significantly en-
hanced compared to the incident field at the wavelength of
magnetic dipole quasi-BIC resonance. Moreover, the array
with N = 21 provides a more homogeneous distribution of
the near magnetic field than the array with N = 35, but with a
lower amplitude. As discussed above, this is observed due to
the boundary effects.

B. Excitation from the near field

The above approach can also be applied to excite an
electric dipole quasi-BIC in a finite-size array from the far
field using an oblique incident plane wave with Ez com-
ponent. However, we additionally consider here the electric
dipole quasi-BIC excitation from the near field employing
an electric dipole pinc, which generates incident electric field
Einc(r) = k2/ε0Ĝ(r − r′, λ)pinc and magnetic field Hinc(r) =
−ickg(r − r′, λ) × pinc. As shown by the inset in Fig. 10(a),
the electric dipole is placed above the array at the position
r′ = gez where we put g = 150 nm. Unlike a plane wave, an
electric dipole generates a strong electric near field that can
couple to an electric field of the electric dipole quasi-BIC

115436-8



RESONANCES IN FINITE-SIZE ALL-DIELECTRIC … PHYSICAL REVIEW B 109, 115436 (2024)

(a)

(b)

FIG. 10. (a) Mean value |〈pz〉| of the out-of-plane ED component
induced from the near field by an electric dipole pinc as shown in the
inset. The electric dipole is placed at g = 150 nm above the 13 × 13
array. The pink markers indicate the pairs of parameters (d, λ), which
obey Eq. (C1) corresponding to the electric dipole BIC observation
in the infinite array. (b) Total scattered power (5) for the N × N array
with lattice period d = 423 nm as a function of N and wavelength
of incident dipole radiation. The power Psca is normalized by the
power of the incident dipole radiation Pinc = 4π3|pinc|2

3ε2
0 cSμ0λ4 where μ0 is

the vacuum magnetic permeability [9]. The values of the wavelength
λ are indicated for vacuum.

that is primarily localized in the near field. As a result, the
electric quasi-BIC can be effectively excited by an electric
dipole. Figure 10(a) shows the mean value of the out-of-plane
ED component (pz) as a function of the lattice period (d)
and wavelength of the dipole radiation (λ). The maximum
of the mean value of pz corresponds to the electric dipole
quasi-BIC excitation. We can see that the wavelength of the
quasi-BIC resonance can be tuned in a broad spectral range by
varying the lattice period. Moreover, for a given wavelength, a
lattice period corresponding to the excitation of a quasi-BIC is
perfectly predicted by Eq. (C1) in Appendix C. In particular,
the lattice with d = 423 nm supports an electric dipole BIC at
a wavelength of λ = 700 nm. Moreover, this BIC resonance

is well pronounced for finite-size N × N arrays, as shown in
Fig. 10(b). One can see that the wavelength of the quasi-BIC
resonance reaches the value of 700 nm for N � 17, which
is very close to the value of the resonant wavelength for the
corresponding BIC in the infinite array.

V. CONCLUSION

We investigated the collective resonant effects for finite-
size 2D arrays of spherical silicon nanoparticles, known as
metasurfaces, arising from their dipole coupling. Orienting
our theoretical research to experiments, we believed from
the very beginning that the particles and metasurfaces were
embedded in a homogeneous medium with a refractive in-
dex of 1.4. Initially, we outlined the main aspects of an
analytical coupled dipole model, which describes the elec-
tromagnetic interactions and optical responses in finite and
infinite nanoparticle arrays. It is important to mention here
that the developed approach of analyzing collective effects
in finite and infinite periodic arrays can be extended beyond
the dipole approximation [66]. In this case, the emergence of
the resonances and array response will be determined by a
superposition of multipoles of opposite inversion parities [69].

Subsequently, we demonstrated the utility of the dipole ap-
proximation for extracting information about the array period,
enabling the observation of resonant phenomena such as the
collective Kerker effect and bound state in the continuum for
infinite nanoparticle arrays. We note that the conditions of the
resonances, namely, Eqs. (10) and (C2), are universal for all
geometries of two-dimensional arrays. The main differences
will be the change in values of the lattice sums for infinite
arrays and the corresponding change of the required lattice
period. Additionally, we established the efficient excitation
of collective Kerker resonance for finite-size square arrays
of nanoparticles by a normally incident plane wave. Notably,
the spectral position of this resonance can be finely tuned by
adjusting the particle’s size or refractive index. Furthermore,
we developed a model for the resonance of bound states in
the continuum within finite-size arrays of spherical nanopar-
ticles excited by oblique incident plane waves or point dipole
sources. Intriguingly, we revealed substantial tunability of the
resonance’s spectral position across a wide range of wave-
lengths by altering the array period.

Moreover, for finite-size arrays of N × N spherical sili-
con nanoparticles, the development of collective resonances,
encompassing lattice Kerker and quasi-BIC resonances, was
presented as a function of the N . It was demonstrated that the
lattice Kerker resonance emerges in the scattering spectrum of
a normally incident plane wave for N � 9 while its character-
istics (amplitude, Q factor, and resonant wavelength) saturate
for N � 30 even in the presence of the in-plane disorder
of nanoparticle positions. The quasi-BIC resonance can be
excited by a plane wave with a nonzero angle of incidence
θinc �= 0 because it owns an out-of-plane component of the
electric or magnetic fields. In this case, the resonance emerges
for N � 11, and its total Q factor saturates at N � 30 due to
the absorption losses in silicon. Moreover, it was shown that
as θinc increases, the Q factor of the resonance in a finite-
size array decreases as for an infinite array. Considering the
excitation of the quasi-BIC with a point dipole source, the
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resonance emerges for N � 7 while its resonant wavelength
saturates at N � 17.

We believe that our results will be essential for designing
and optimizing functional photonic structures, whose sizes are
always limited in real practical implementations, and motivate
experimental demonstration of the considered effects.
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APPENDIX A: OPTICAL CROSS SECTIONS AND DIPOLE
POLARIZABILITIES OF A SPHERICAL NANOPARTICLE

The extinction and scattering cross sections of a spherical
particle illuminated by a linearly polarized, monochromatic
plane wave can be expressed analytically via the Mie coeffi-
cients [2]

σ0,ext (λ) = λ2

2πεS

+∞∑
l=1

(2l + 1)Re[al + bl ], (A1)

σ0,sca (λ) = λ2

2πεS

+∞∑
l=1

(2l + 1)(|al |2 + |bl |2), (A2)

where l is the order of multipole mode such that l = 1 is a
dipole, l = 2 is a quadrupole, etc.

The ED and MD polarizabilities of a spherical nanoparticle
are also analytical scalar functions [2]:

αp(λ) = i
6πε0εS

k3
S

a1, αm(λ) = i
6π

k3
S

b1. (A3)

Figure 11 shows the inverse polarizabilities used to determine
the spectral positions of the collective resonances. One can see
that the imaginary parts of the inverse dipole polarizabilities
remain almost constant. Indeed, for a dielectric nonabsorb-
ing spherical particle, we can find from the optical theorem
that [19]

Im

[
1

αm

]
= Im

[
ε0εS

αp

]
= − k3

S

6π
. (A4)

Figure 11 justifies the use of Eq. (A4) as a good approximation
for the imaginary parts of the inverse dipole polarizabilities for
a silicon particle since the absorption of c-Si is low.

After comparison of Eqs. (A2) and (A3), one can write the
scattering cross section of a single spherical particle in the
dipole approximation

σ0,sca (λ) = k4
S

6πε2
0ε

2
S

|αp(λ)|2 + k4
S

6π
|αm(λ)|2. (A5)

FIG. 11. Inverse normalized (multiplied by factor k3
S ) dipole

polarizabilities (A3) for the considered spherical particle. Their
imaginary parts are Im[(k3

Sα)−1] = 1/(6π ), where α = αp/(ε0εS )
or α = αm, in the considered spectral range. The blue circle in-
dicates wavelength λK = 834 nm when the first Kerker condition
αp/(ε0εS ) = αm is satisfied; see Sec. III. The values of the wave-
length λ are indicated for vacuum.

APPENDIX B: OPTICAL RESPONSE OF A
NANOPARTICLE IN INFINITE PERIODIC 2D ARRAYS

In this section, we present the analytical description of the
optical response of a nanoparticle in the infinite square array
(lattice).

In-plane translational symmetry of the infinite lattice im-
plies the Bloch theorem for the particles’ dipole moments:
p j = p0eik‖·r j , m j = m0eik‖·r j , where p0 and m0 are dipole
moments of the particle placed at the coordinate system origin
r0 = 0 and k‖ = (kx, ky, 0) is the in-plane wave vector. Let
us further consider k‖ = 0, which implies that all nanoparti-
cle dipole moments are in phase, corresponding to � point
of the Brillouin zone. A square periodic lattice of spheri-
cal nanoparticles does not support ED-MD coupling under
a normal incident plane wave [17,66]. In this case, Eqs. (2)
become [2,80]

p0 = ε0εS

[
ε0εS

αp
Î − Ŝ

]−1

︸ ︷︷ ︸
α̂

(eff )
p

Einc(r),

m0 =
[

1

αm
Î − Ŝ

]−1

︸ ︷︷ ︸
α̂

(eff )
m

Hinc(r), (B1)

where α̂(eff )
p and α̂(eff )

m are the ED and MD effective polariz-
abilities of a nanoparticle in the infinite lattice, and Î is the
3 × 3 identity matrix. The lattice sum tensor Ŝ considers the
electromagnetic ED-ED or MD-MD coupling between parti-
cles being a diagonal matrix and for a periodic lattice with a
square cell it has the following diagonal form [2]

Ŝ =
⎛
⎝S‖ 0 0

0 S‖ 0
0 0 S⊥

⎞
⎠. (B2)
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(a)

(b)

FIG. 12. (a) An array with in-plane disorder of nanoparticle po-
sitions. The largest shift of nanoparticle position �r j is randomly
selected from range [0, �rmax], where the angle ϕ j is randomly
selected from 0 to 2π . Here, integer j runs from 1 to Ntot . (b) Av-
eraged scattering cross-section per particle 〈σ0,N 〉 ≡ 〈σsca (N )〉/N2

where 〈σsca (N )〉 is the averaged total scattering cross section (6) for
the N × N array with period d = 577 nm and �rmax = 70 nm. The
array is illuminated by an external plane wave, as shown in Fig. 3.
The averaging procedure is performed for Niter = 10 configurations
of the array. The values of the wavelength λ are indicated for vacuum.

Components of the tensor for in-plane (‖) and out-of-plane
(⊥) dipole orientations follow from the expression for the
dyadic Green’s function:

S‖ = k2
S

∑
jx, jy �=0

eikSr j

4πr j

×
[(

1+ i

kSr j
− 1

k2
Sr2

j

)
+

(
−1− i3

kSr j
+ 3

k2
Sr2

j

)
d2 j2

x

r2
j

]
,

S⊥ = k2
S

∑
jx, jy �=0

eikSr j

4πr j

(
1 + i

kSr j
− 1

k2
Sr2

j

)
, (B3)

where r j = d
√

j2
x + j2

y . The summation indices jx and jy run

over all integers excluding zero. These dipole sums depend
on the lattice period d , and the wavelength λ/nS in the sur-
rounding medium Ŝ = Ŝ(d, λ/nS ) but they are independent of
particle characteristics and properties. The latter are incorpo-
rated into the single-particle polarizabilities αp and αm.

For subdiffraction square lattices (d < λ/nS), imaginary
parts of these lattice sums can be calculated analyti-
cally [41,81]:

Im[S‖] = kS

2d2
− k3

S

6π
, Im[S⊥] = − k3

S

6π
. (B4)

The nanoparticle coupling in the lattice affects only the am-
plitudes and phases of their dipole moments (p0 and m0)
but not their radiation patterns of single particles. When

nanoparticles are organized into a periodic structure, their
radiation properties resemble those of an individual particle.
However, the radiation from the lattice occurs only in the
direction of open diffraction channels [76]. Indeed, for an in-
finite array, the summation over particle coordinates r j for the
radiation pattern (4) can be converted to the sum over recipro-
cal lattice vectors qm determining open diffraction channels:∑+∞

j=0 e−ikS (n·r j ) = ( 2π
d )2 ∑

m δ(kSn‖ − qm), where δ(. . . ) is
the Dirac delta function. Here, n‖ is the projection of n on
the xy-plane. For subwavelength lattice periods d < λ/ns,
only the zeroth diffraction channel qm = 0 is open since, for
m �= 0, the waves with |qm| > 2πλ/nS are evanescent in the
surrounding medium. Hence, we immediately obtain Eq. (8)
of the main text.

APPENDIX C: ANALYTICAL CONDITION OF BICS FOR
PERIODIC METASURFACES IN THE

DIPOLE APPROXIMATION

The BIC in a dipole lattice can be defined as a nontriv-
ial solution of Eq. (B1) in the absence of external fields,
corresponding to a pole of the effective polarizability or, more

(a)

(b) ×

FIG. 13. Development of the total quality factor of the magnetic
dipole quasi-BIC in finite-size arrays as a function of N for (a) differ-
ent values of absorption losses in particles, and (b) different angles
of incidence. The inset shows the spectrum of the normalized (by a
maximal value for certain N) mean z component of MD moments for
N = 35 at θinc = 2◦ and with material losses.
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general, S matrix of the system [82]. The condition is the
following [19,41]:

1 − αS⊥ = 0, (C1)

where α = αp

ε0εS
for electric and α = αm for magnetic dipole

BICs, S⊥ is given by Eq. (B3). Equations (A4) and (B4) on
the imaginary parts imply that Eq. (C1) can be simplified to

Re

[
1

α

]
= Re[S⊥] (C2)

for subdiffraction lattices.

APPENDIX D: INFLUENCE OF THE DISORDER
ON THE COLLECTIVE KERKER RESONANCE

In this Appendix, we investigate the influence of the in-
plane disorder of nanoparticle positions on the collective
Kerker resonance described in Sec. III of the main text. To do
this, we draw around the particle j a circle with an arbitrary
radius �r j ∈ [0,�rmax] and a center at the point r j = (x j, y j )
as shown in Fig. 12(a). Further, the angle ϕ j ∈ [0, 2π ) is
randomly selected. Thus, a new position for the particle j is
given by the radius vector (x j + �r j cos ϕ j, y j + �r j sin ϕ j ),
in Fig. 12(a) the solid black arrows point new positions of
the nanoparticles. For each configuration of the array with
disorder, one can calculate the scattering cross section per par-
ticle σ0,N as well as in Sec. III. Repeating this procedure Niter

times, one can obtain the averaged σ0,N shown in Fig. 12(b)

for �rmax = 70 nm and Niter = 10. The disorder affects only
the magnitude of the cross section, but not the qualitative
behavior.

APPENDIX E: QUALITY FACTOR OF THE QUASI-BIC
IN FINITE-SIZE ARRAYS

To calculate the quality factor of the quasi-BIC (Q factor)
as a function of the particle number N per side, investigated in
Sec. IV, we consider the (N, λ) map of the mean out-of-plane
magnetic dipole component |〈mz〉| such as shown in Fig. 8 for
θinc = 2◦. For each N , we calculate the normalized function
of λ, |〈m̃z〉| = |〈mz〉|/ maxλ |〈mz〉|, which takes values from 0
to 1; see inset in Fig. 13(a). Further, we compute the Q factor
as λ0/�λ where λ0 is the wavelength of |〈m̃z〉| peak and �λ

is the peak’s full width at half-maximum. The red solid curve
in Fig. 13(a) shows the resulting function Q(N ) along with
a similar function (blue dashed curve) but for arrays without
absorption losses. Figure 13(b) also shows the functions Q(N )
for arrays with absorption but at different angles of incidences
of external plane waves. Moreover, Fig. 13 also shows (black
dashed line) the estimated limitation for the Q factor of the
quasi-BIC, i.e., Q(N ) � Qabs for any N , being roughly Qabs =
ε′/ε′′ [55]. The values of the material parameters ε′ ≡ Re(ε)
and ε′′ ≡ Im(ε) are taken for crystalline silicon at vacuum
wavelength λ = 808 nm of the BIC resonance in the infinite
array, that results in Qabs = 370. The actual value of the max-
imal Q factor is less than Qabs because, to be more precise,
Qmax = Qabs/C where C is the fraction of electric energy
stored inside the particles [56].
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