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Explaining the thickness-dependent dielectric permittivity of thin films
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The dielectric properties of thin films are of paramount importance in a variety of technological applications,
and of fundamental importance for solid-state research. In spite of this, there is currently no theoretical
understanding of the dependence of the dielectric permittivity on the thickness of thin films. We develop a
confinement model within the Lorentz-field framework for the microscopic Langevin-equation description of
dielectric response in terms of the atomic-scale vibrational modes of the solid. Based on this, we derive analytical
expressions for the dielectric permittivity as a function of thin-film thickness, in excellent agreement with the
experimental data of barium-strontium-titanate thin films of different stoichiometry. The theory shows that the
decrease of dielectric permittivity with decreasing thickness is directly caused by the restriction in k space of the
available eigenmodes for the field-induced alignment of ions and charged groups.
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I. INTRODUCTION

The physical properties of thin films are crucial for a
variety of technological applications, ranging from optical
mirrors to solar cells [1,2], and of fundamental interest in
physics. In particular, understanding the dielectric properties
of solid thin films is vital in optics, e.g., dielectric (Bragg)
mirrors, thin-film interference (antireflective coatings), optical
and protective coatings, microwave devices, memory devices,
and 5G wireless communication. Dielectric and electrical
properties may strongly depend on thin-film thickness, which
is a problem of both fundamental and technological interest
[3–5]. In particular, size effects give rise to changes in the
electrical performance of thin-film capacitors and field-effect
transistors, including issues such as depolarization fields in
the dielectric sandwiched between semiconductors [6], and
polarization screening in metal-dielectric-metal thin-film ca-
pacitors [7]. Finally, thin films are known to have enhanced
or ultrahigh dielectric strength, which is another important
thickness-dependent effect [8]. In spite of these tremendous
technological implications, there currently exists no quanti-
tative theoretical description of the dependence of dielectric
properties on film thickness. This is also due to the intrinsic
limitations of ab initio methods which cannot simulate thick-
nesses of more than a few nanometers [9,10]. Here we provide
a microscopic theory able to quantitatively describe this effect.

II. THEORY

A. Langevin equation framework for lattice ions

We describe the dynamics of charged groups (ions), and
of partially charged groups, in a solid material by means of
a generalized Langevin equation (GLE) [11,12]. Since we
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are interested in determining the dielectric response of the
material, we have to use a GLE that contains the appropriate
Lorentz force term due to the external oscillating electric
field, and which contains a stochastic force term that obeys a
suitable fluctuation-dissipation theorem. Denoting the mass-
rescaled tagged-particle displacement s = Q

√
M, where M is

the mass of the ion (or of the partially charged group) and Q
is the displacement vector, the resulting equation of motion
reads as [12]

s̈ = −U ′(s) −
∫ t

0
ν(t − t ′)

ds

dt ′ dt ′ + F (t ) + zE (t ), (1)

where U (s) denotes the local force field, and ν is the mi-
croscopic friction due to the long-range nonlocal anharmonic
interactions with the thermal bath represented by all other
atoms and ions present in the system. Furthermore, F (t ) is
the stochastic force representing the thermal noise, and the
last term on the right-hand side is the Lorentz force term
relating to the system’s response to the external AC electric
field, where the charge z has been redefined to be the mass-
scaled charge. In order to determine the dependence of the
polarization and of the dielectric function on the frequency of
the field in three-dimensional (3D) space, we have to describe
the displacement s of each charged particle from its own
equilibrium position under the applied AC field E(t ). Upon
treating the dynamics classically, the equation of motion for
a charge I under forces coming from interactions with other
atoms in the system and from the applied AC electric field is
given by

s̈μ
I = −

∑
Jν

Hμν
IJ sν

J −
∫ t

0
ν(t − t ′)

dsμ
I

dt ′ dt ′ + Fμ
I (t ) + zIE

μ(t ),

(2)

under the assumption of pairwise interactions, and the Greek
index μ denotes the space components of a vector.
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The next step is to take the Fourier transform,
sμ

I (t ) → s̃μ
I (ω), leading to

−ω2s̃μ
I (ω) + iων̃(ω)s̃μ

I (ω) + Hμν
IJ s̃μ

J (ω) = F̃μ
I + zI Ẽμ, (3)

where the tilde is used to indicate Fourier-transformed quan-
tities. Hence, ν̃(ω) denotes the Fourier transform of ν(t ).
Since the Hessian matrix Hμν

IJ is real and symmetric and
its eigenvectors provide a basis set in Hilbert space, we
can apply normal-mode decomposition by projecting the 3N-
dimensional Fourier-transformed displacement vector s̃ onto
the 3N-dimensional eigenvectors of the Hessian: ˆ̃sm(ω) =
s̃(ω) · em. Here the hat is used to denote the coefficient of the
projected quantity, em represent orthonormal eigenvectors of
the Hessian matrix, and m runs from 1 to 3N . Then we obtain

−ω2 ˆ̃sm + iων̃(ω)ˆ̃sm + ω2
m

ˆ̃sm = ˆ̃Fm + (z ˆ̃E )m. (4)

The equation is solved by

ˆ̃sm(ω) = −
ˆ̃Fm + (z ˆ̃E )m

ω2 − iων̃(ω) − ω2
m

. (5)

Upon transforming back to a vector equation for the Fourier-
transformed displacement of charge I , we have

∑
I

s̃I (ω) =
∑

m

− F̃ + zẼ
ω2 − iων̃(ω) − ω2

m

, (6)

where F̃ and Ẽ are average values.

B. Polarization and dielectric function

Each charged particle contributes a moment pI = zI sI to
the moment. In order to evaluate the macroscopic polariza-
tion, we add together the averaged contributions from all
microscopic degrees of freedom in the system, P = ∑

I pI .
In order to do this analytically, we use the fact that the
ensemble average of the noise for an oscillating system van-
ishes upon averaging over many cycles, as also demonstrated
numerically in Ref. [13]. We thus employ the sum over all
contributions of the type given by Eq. (6) to obtain the aver-
aged polarization. We also perform the standard procedure of
replacing the discrete sum over the total degrees of freedom
of the solid with the continuous integral over the eigenfre-
quencies ωm,

∑
m . . . → ∫

g(ωp) . . . dωp, where g(ωp) is the
vibrational density of states (VDOS). This gives the following
sum rule for the electric polarization [14]:

P̃(ω) ∝ −
[∫ ωD

0

g(ωp)

ω2 − iων̃(ω) − ω2
p

dωp

]
Ẽ(ω). (7)

Here, ωD is the cutoff Debye frequency arising from the
normalization of the VDOS (i.e., the highest eigenfrequency
in the vibrational spectrum). Furthermore, we have defined
a 3N-dimensional vector �z such that ẑm = �z · em is a scalar
factor, arising from Eq. (6) [15], which is later going to be
absorbed into the prefactor A and therefore is no longer shown
in the above relation.

Note that we have taken an ensemble average over the
system. The complex dielectric permittivity ε is defined as
ε = 1 + 4πχe, where χe is the dielectric susceptibility, which
relates the polarization and electric field via P = χeE [16].

Within this model [14], the dielectric function is finally
expressed as a frequency integral as [14]

ε(ω) = 1 − A
∫ ωD

0

g(ωp)

ω2 − iων̃(ω) − ω2
p

dωp, (8)

where A is an arbitrary positive constant whose numerical
value has to be matched with experiments. Clearly, if g(ωp)
were given by a Dirac δ, one would recover the standard
simple-exponential Debye relaxation [14,17]. This approach
can be extended to deal with atoms and molecules that have
stronger inner polarizability by replacing the external field
field E with the local electric field Eloc, which is known as the
Lorentz cavity model or Lorentz field [17,18]. In condensed
matter, the net electric field that acts on a molecule locally is
equal to the external field only for vanishing polarizability of
the molecule. This is a well-known effect, whereby the field
in the medium is influenced (typically, diminished) by the
local alignment of the nearby polarized molecules. The simple
Lorentz cavity model works well in materials where the build-
ing blocks are not pathologically shaped or too anisotropic. In
order to keep the treatment analytical, we focus on the case of
constant friction, ν = const. The derivation of the local field
or Lorentz field can be found in many textbooks [17,18] and
gives

Eloc = E + 4π

3
P. (9)

Therefore, E is replaced with the Lorentz field Eloc, and the
equation of motion becomes

s̃′
I (ω) = zI

ω2 − iων − ω2
p

[
Ẽ(ω) + 4π

3
P̃(ω)

]
. (10)

Combining the above relations and summing over all con-
tributions from all the ions and charged groups, we obtain

P =
(∑

I

qI sI + αEloc

)
, ε(ω) = 1 + 4π

χ (ω)

1 − 4π
3 χ (ω)

,

χ (ω) =
∫ ωD

0

A g(ωp)

ω2 − ω2
p + iων

dωp + α, (11)

where α is the microscopic electronic polarizability and we
used the definition of electric displacement vector D = εE =
E + 4πP [19]. Furthermore, in the expression of χ , we have
incorporated the factor z2 into the rescaling coefficient A. This
microscopic theory of the dielectric response has been pre-
viously applied to describe experimental data of supercooled
glycerol in Ref. [14] and was able to explain the non-Debye
asymmetric excess wing of the dielectric loss ε′′(ω) as due to
the excess of low-energy vibrational modes that characterize
the vibrational spectra of supercooled liquids and glasses.

C. Thin-film confinement and thickness-dependent permittivity

The above form of the dielectric function is derived for
a bulk material. In the case of a thin film, the confine-
ment along the vertical direction imposes a constraint on the
wavelength of the vibrational excitations that are allowed to
propagate [20]. As shown mathematically in Ref. [21], and
verified against MD simulations and experiments for real
thin solid films in [22], the thin-film confinement imposes a
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FIG. 1. (a) The thin-film geometry in real space (confined along
the z axis but unconfined along the x and y axis), with the maximum
wavelength that corresponds to a certain polar angle θ . (b) The
corresponding geometry of k space, where the outer Debye sphere (of
radius kD) contains two symmetric spheres of forbidden states, i.e.,
states in k space that remain unoccupied due to confinement along
the z axis. See Ref. [21] for a detailed mathematical derivation of
this result. (c) An illustrative calculation of the dielectric permittivity
using the confined model, with typical values of speed of sound (of
the order of kHz and of microscopic friction ν and Debye frequency
both of the order of 1013 Hz. (a) and (b) have been adapted from
Ref. [21] with permission.

low-frequency cutoff on the wave vector of vibrational modes
equal to kmin = 2π cos θ

L . Here, L is the film thickness and θ

is the polar angle with the vertical z axis; see Fig. 1. The
condition kmin = 2π cos θ

L identifies two spheres of forbidden
states inside the Debye sphere.

As demonstrated in Ref. [22], this lower cutoff wave
vector corresponds to a minimum frequency of the allowed
vibrational modes given by ωmin = c kmin, where c is a char-
acteristic speed of sound (independent of L). For example, c
can be taken as the average speed of sound c used in Debye’s
theory, defined as 3

c3 = 1
c3

L
+ 2

c3
T

, where cL and cT are the
longitudinal and the transverse speed of sound, respectively.
Since the minimum wave vector depends on the polar angle θ ,
we can take a spherical average over the solid angle that gives
the average minimum wave vector k̄min = π

L , and a minimum
frequency ω̄min = cπ

L . Upon implementing this confinement-
induced cutoff in the susceptibility integral, we get

ε(ω) = 1 + 4π
χ (ω)

1 − 4π
3 χ (ω)

,

χ (ω) = α +
∫ ωD

cπ
L

A g(ωp)

ω2 − ω2
p + iων

dωp. (12)

As a sanity check, we plot in Fig. 1(c) a typical behavior of
the dielectric permittivity ε′(ω) computed using Eq. (12) for
realistic values of frequencies encountered in solid materials.
The resulting curve still presents all the typical features of
dielectric permittivity as a function of frequency, with a low-
frequency plateau followed by a drop (dielectric relaxation)

in the frequency range 108–109 Hz typically measured in
dielectric spectroscopy [23].

In order to understand the effect of film thickness L on the
permittivity ε′, the integral in Eq. (12) has to evaluated. Using
a Debye law for the vibrational density of states, g(ωp) ∼ ω2

p,
as appropriate for a solid, the integral cannot be evaluated
analytically. Nevertheless, we can approximate the integral
for low-to-intermediate frequencies ω since this is the regime
of interest for measurements of dielectric permittivity of thin
solid films. Using the approximation ωp � ω, for the real part
of the integral, we obtain∫

ω4
p

ω4
p + ω2ν2

dωp ≈ ωp −
√

ν ω

2
arctan

(√
2 ωp√
ν ω

)
. (13)

With the integration limits set in Eq. (12) and neglecting
nonlinear contributions to the susceptibility, this leads to the
following expression for the thickness-dependent dielectric
permittivity:

ε′(ω) = ε∞ + A
4π

(
ωD − cπ

L

) + √
ν ω
2 arctan

( √
2√

ν ω

cπ
L

)
− B

1 − 4π
3 AωD + 4π

3 A cπ
L

,

B = A

√
ν ω

2
arctan

(√
2 ωD√
ν ω

)
. (14)

We note that in the limit L → ∞, the above expression cor-
rectly tends to a constant value independent of L, which
represents the bulk value at a given frequency ω. The above
expression (14) can be Taylor expanded in L to study the
leading terms that control the thickness-dependent dielectric
permittivity of thin films. To second order in L, we thus obtain

ε′(ω) = ε∞ + K1 L − K2 L2 + O(L3), (15)

where

K1 = 9 − 3 B

A′ , K2 ≈ 4π A2√νω ωD

A′2 , (16)

and where A′ ≡ 4π2A c has units of an inverse length, which
is reassuring because then, in Eq. (15), all terms are dimen-
sionless, as they should be.

III. COMPARISON WITH EXPERIMENTAL DATA

For thin-film oxides at low to intermediate frequencies,
ω = 1–10 kHz, one has ε′ ∼ 10–100 from experimental mea-
surements. Then it is clear that the rescaling constant A,
which, in the above, multiplies the Debye frequency ωD ∼
1013 Hz, must be of the order of A ∼ 10−12, and hence, in
general, a small number. From the first one of Eqs. (16), it
follows that K1 > 0 always, provided that 9

A > 3B
A = 3

√
νω.

This is always true because, for realistic values of experimen-
tal systems, one has

√
νω ∼ 108–109 Hz, which is orders of

magnitude smaller than 3
A ∼ 1012 Hz. We thus conclude that

K1 is always positive and therefore the leading term in the ex-
pansion is such that the dielectric permittivity increases with
increasing L. This means that, overall, the confinement acts
as to lower the dielectric permittivity. The above microscopic
theory explains that physically, this is due to the cutting off of
low-frequency vibration eigenmodes at the atomic level due
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FIG. 2. Comparison between the theoretical prediction given by
Eq. (15), continuous line, and experimental data (circles). The latter
are in arbitrary physical units, as customary for dielectric spec-
troscopy measurements. The upper curve refers to experimental data
of the dielectric permittivity of (Ba0.7, Sr0.3)TiO3 (BST) thin films
measured at ω = 4 kHz from Ref. [3], fitted by Eq. (15) with K1 =
1.5 and K2 = 0.001, and ε∞ = 100. The lower curve refers to exper-
imental data of the dielectric permittivity of (Ba0.5, Sr0.5)TiO3 thin
films averaged between ω = 400 Hz and ω = 10 kHz from Ref. [24],
fitted by Eq. (15) with K1 = 1.2 and K2 = 0.0015, and ε∞ = 10. All
experimental measures were made at room temperature.

to the confinement, which, in turn, leads to more limited pos-
sibilities for the ions and charged groups to spatially rearrange
(“align”) in response to the local electric field.

The second term in the expansion is, instead, negative
and acts as to level off the initial increase as a function of
thickness L. Furthermore, with realistic values of the physical
parameters as declared above, we have that K2 ∼ 107 since√

νω ∼ 108 Hz and c ∼ 104 m/s, while K1 ∼ 1010 and thus
K2/K1 ∼ 0.001.

This observation then leaves just one nontrivial fitting
parameter in the comparison between Eq. (15) and the experi-
mental data, which is reported in Fig. 2. The nontrivial fitting
parameter is ε∞, which represents the infinite-frequency limit
of the dielectric permittivity and is thus controlled by the
atomic-scale physics.

Furthermore, the value of ε∞ is also constrained to be
reasonable and much smaller than the bulk value at kHz

frequencies, which is indeed the case in the fitting shown
in Fig. 2. This further consideration reflects the fact that the
above fitting is physically meaningful and reliable.

IV. CONCLUSION

In summary, we have developed a microscopic theory of
dielectric response of thin solid films starting from a Langevin
equation for the motion of charged and partially charged
atoms in the solid layer. Using a recent wave-confinement
model, we have adapted the theory to the case of thin films, by
implementing a cutoff in momentum space reflecting the fact
that a significant population of large-wavelength vibrational
modes becomes forbidden due to the thin-film confine-
ment. In turn, this reduces the possibilities for atomic-scale
rearrangements/alignments under the applied field, leading to
a lower permittivity for thinner films. The theory leads to an
analytical expression for the dielectric permittivity as a func-
tion of applied field frequency and film thickness, in excellent
agreement with experimental data with just one nontrivial
fitting parameter (ε∞), which, however, is constrained to be in
a reasonable range by the material physics. In future work, this
theory can be extended to nanoconfined liquid films, including
nanoconfined water [25,26]. To this aim, it may be useful to
also provide a formulation of the above theory for off-diagonal
tensor components [27]. It can also be extended to ultrathin
films (with thickness of the order of few nanometers or lower),
where the vibrational density of states features a low-energy
ω3 behavior, instead of Debye’s ω2 law [22]. In the future,
this theory can open up different ways to tune and optimize
the electrical performance of thin-film devices, ranging from
photovoltaics to 5G technology, and to understand and model
the ultrahigh dielectric strength of thin films [8].
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