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Surface structure determination by exhaustive search of asymmetric unit
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Determining surface structures is a substantial challenge due to the limitations of experimental techniques and
the complexity of theoretical models. In this work, we use a method called the exhaustive search of asymmetric
unit (ESAU), designed to identify surface structures through a detailed analysis of the asymmetric unit. This
method employs two main strategies: narrowing the research area by focusing on a smaller, unique segment rather
than the entire unit cell, and transforming the infinite possibilities of atomic positions into discrete, manageable
units. These strategies allow us to systematically enumerate all potential surface structures. Employing the
ESAU method, we have successfully replicated a variety of known surface structures, including two-dimensional
materials on substrates, and have also uncovered some previously unknown structures. Importantly, the ESAU
method shows significant promise not only in utilizing experimental data but also in predicting surface and
crystal structures without prior experimental evidence. Our results affirm that the ESAU approach provides a
comprehensive and efficient tool for uncovering material structures, paving the way for more in-depth studies on
the properties and behaviors of materials.
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I. INTRODUCTION

Surface research remains a vital field in materials science
and condensed matter physics due to its significant impact
on material behaviors and properties [1,2]. Understanding
the atomic configurations of surfaces is essential for micro-
scopic insights into material performance [3]. For instance,
the structures of catalyst surfaces and their catalytic sites
critically influence their efficiency, selectivity, and stability
[4,5]. Additionally, knowledge of surface structures at various
coverages is crucial for understanding growth mechanisms,
which is essential for preparing high-quality samples through
bottom-up approaches [6–8].

Nonetheless, determining surface structures remains a
challenging task that typically involves comparing experi-
mental data with simulations from hypothesized structural
models. The traditional approach of manually building these
models is heavily dependent on expert knowledge and sus-
ceptible to errors. For numerous surface systems, such as
Si(111)-p(7×7) [9–12], Au(111)-p(5×5)-P [13–16], Pt(111)-
p(4

√
3×4

√
3)R30◦-P [17,18], Al(111)-p(3×3)-Ge [19–21],

and Au(111)-Si [22–24], many models have been proposed
before confirming their structures. Identifying surface struc-
tures demands selecting the most stable configuration within
their phase space, a task challenging regardless of a re-
searcher’s expertise due to the continuous nature of atomic
positions, the vast number of potential structures, and the ex-
tensive computational resources required. Algorithms such as
random structure search [25], genetic algorithms, [26,27] and
particle swarm optimization [28,29] have been developed to
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identify the most stable configurations. While these methods
have pushed the field forward, they do not always guarantee
finding the absolute ground state structures, mainly because
they sample only a small portion of the phase spaces. Recent
advancements in machine learning (ML) provide promising
ways to reduce the significant computational effort needed
to evaluate structural energies [30,31], opening up possi-
bilities for more comprehensive exploration of the phase
space.

In this study, we utilize the exhaustive search of asymmet-
ric units (ESAU), a method designed for thorough structural
enumeration. It focuses on minimal asymmetric regions and
discrete atomic positioning, significantly cutting down com-
putation time by substituting intensive density functional
theory (DFT) calculations with an ML potential. The ESAU
method has successfully reconstructed known surface struc-
tures and identified others. It also shows promise in predicting
the structures of two-dimensional (2D) and three-dimensional
(3D) materials without relying on prior experimental data.
The ESAU method offers an automated and efficient ap-
proach for determining material structures, making it a
valuable tool for the development of materials with superior
properties.

II. COMPUTATIONAL METHODOLOGY

A. Training of on-the-fly machine learning force field (MLFF)

The MLFF is constructed using various structure datasets
that define the Bravais lattice, atomic positions, total energies,
forces, and stress tensors, all calculated by first-principles
simulations [32–34]. For each structure, local configurations
around each atom are identified with descriptors such as the
radial and angular distributions of neighboring atoms [35],
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utilizing a cutoff radius of 5 Å to describe the local envi-
ronment around each atom, and a 0.5 Å width for Gaussian
functions to smooth atomic distributions. The MLFF is then
fitted to these datasets and their local configurations, esti-
mating the potential energy of a structure with Na atoms by
summing the local atomic potential energies [36],

U MLFF =
Na∑
i=1

Ui =
Na∑

i=1

Nb∑
ib

wibK (Xi, Xib ),

where the linear combination of weight factors wib and kernel
functions K (Xi, Xib ) represents each Ui. The kernel function
assesses the similarity between local configurations around
atom i and the reference local configuration ib.

A Bayesian linear regression algorithm is utilized for on-
the-fly ML, facilitating the prediction of total energies and
forces [33]. This algorithm uses ab initio molecular dynam-
ics (AIMD) simulations of varied structural configurations
for learning. These configurations typically include a mix
of isolated atoms, elemental and alloy clusters, and periodic
monolayer structures (see Fig. S1) [37], ensuring a wide cov-
erage of surface atom variations. For systems in this work,
they were dynamically trained during AIMD simulations in
the NVT ensemble, keeping the temperature and pressure
through a Nose-Hoover thermostat [38]. During these MD
calculations, ab initio data generated by the Vienna ab initio
simulation package (VASP) [39,40] is collected and iteratively
used to refine the training dataset for the ML model. Our
strategy includes adding structures to the training set when
the force error threshold is exceeded, with each new structure
contributing new local configurations. Once the MLFF is ob-
tained, at every time step, a Bayesian error threshold decides
whether to perform an ab initio calculation and integrate the
data into the force field or rely on MLFF predictions and
forego further learning. As the force field accuracy improves,
less sampling is required, allowing the model to skip more
costly ab initio steps. Upon achieving a sufficiently precise
force field, it can predict various properties efficiently. The
algorithm for generating the on-the-fly force field and its
effectiveness as an active learning strategy are documented in
[33,41,42].

All first-principles calculations were carried out us-
ing DFT, as implemented in VASP [39,40]. We used the
generalized gradient approximation with the Perdew-Burke-
Ernzerhof scheme for exchange-correlation energy [43]. We
set an energy cutoff of 450 eV for the plane-wave basis set,
with a force convergence criterion of 0.02 eV/Å. We sampled
the Brillouin zone with a uniform k-point mesh spacing of
about 0.03 Å. For slab models, we included three substrate
layers in the slab, with a vacuum space of 12 Å to avoid inter-
actions between adjacent images. The bottom two substrate
layers were fixed to mimic bulk conditions. No polarization
effects were found in our studied systems, so dipole correc-
tion was omitted, as detailed in Sec. B of the Supplemental
Material [37].

B. Generation of potential structures

The ESAU method aims to systematically identify the most
stable structure by generating and evaluating all potential

configurations within set symmetry parameters. It comprises
two main stages: generation and evaluation, as illustrated in
Fig. 1. The following subsections detail the ESAU method
using the Au(111)-p(5×5)-P system as an example.

The crystal structure is defined by its lattice and the ar-
rangement of atoms. The generation stage has four steps
to enumerate all possible atomic combinations, depicted in
Figs. 1(a)–1(e).

Step 1: Identify asymmetric regions by examining surface
structure symmetry.

In crystallography, an asymmetric region is the smallest
part of a crystal structure that can replicate the entire lattice
through symmetry operations. These regions are often trian-
gular or parallelogram shaped in 2D, as detailed in Sec. C
of the Supplemental Material [37]. Techniques such as scan-
ning tunneling microscopy (STM), atomic force microscopy
(AFM), and low-energy electron diffraction (LEED) help
identify these regions, offering insights into surface periodic-
ity and symmetry. For instance, an STM image of Au(111)-P
in Fig. 1(a) reveals a reconstructed unit cell lattice approx-
imately 14.7 Å, suggesting a (5×5) supercell structure with
P6mm symmetry [44]. The corresponding asymmetric region
is a right-angled triangle, as shown in Fig. 1(b).

Step 2: Exhaustively generate asymmetric units.
Asymmetric units are generated by populating the iden-

tified asymmetric region with atoms or molecules, which
together represent the full crystal structure. This process in-
cludes enumerating all possible asymmetric units by placing
potential atomic or molecular sites within the asymmetric
region. The set of all possible atom types, denoted as Atom
= {atom1, atom2, . . . , atomm}, can be assigned to these sites,
labeled as Site = {site1, site2, . . . , siten}. It is noteworthy
that not every site needs to be occupied, allowing for some
sites to remain vacant. Given atomic radii and the need for
local optimization, adjacent sites are set approximately 2 Å
apart. For the Au(111)-P system, the site set with nine evenly
spaced sites (the gray spheres) within the asymmetric region
and Atom = {Au, P} is shown in Fig. 1(c). All possible
arrangements are formulated by adding a P or Au atom or
leaving a vacancy at each site, resulting in 39 (19 683) unique
asymmetric units and surface configurations for the Au(111)-
P system.

Step 3: Derive surface configurations from asymmetric
units using symmetry operations.

Surface configurations for Au(111)-P, shown in Fig. 1(d),
are obtained by applying the symmetry operations of the
P6mm plane group to each asymmetric unit derived in step 2.
This approach systematically creates diverse surface config-
urations that reflect the underlying symmetry of the crystal
structure.

Step 4: Integrate surface configurations with the substrate
to form complete surface slab models.

The final step involves integrating the various surface con-
figurations with a substrate to produce complete surface slab
models. As shown in Fig. 1(e), a standard slab model in-
cludes three parts: a vacuum region, a reconstruction region
(the surface configuration), and a substrate region. This in-
tegration ensures that the resulting models are representative
of actual surface structures, facilitating further analysis and
evaluation.
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FIG. 1. Flowchart of the ESAU method, comprising two phases: generation and evaluation. Pink and yellow spheres represent P atoms and
surface Au atoms, respectively, while gray spheres denote the Au(111) substrate. The experimental STM image is reproduced with permission
from Ref. [44]. Copyright 2020 American Chemical Society.

C. Evaluation of structural stability

Phase diagrams are essential for depicting the stability of
surface phases in relation to the chemical potential, serving as
crucial predictive tools for understanding material behaviors
under diverse conditions. The stability of surface structures,
derived from the generation phase, is assessed using the fol-
lowing formula [45,46]:

γ = Etotal − Esub − Ns × μs − Nd × μd

A
,

where Etotal and Esub are the total energy of the system and
the energy of the clean substrate, respectively. Ns and Nd are
the numbers of substrate and deposited atoms in the surface
configuration, respectively, and μs and μd are their chemical
potentials. Notably, μs is the energy per atom in the bulk
phase, and A denotes the surface area of the computational
cell.

The ESAU method creates a wide range of potential sur-
face structures and allows for cost-effective stability checks

using ML potential. This strategy also enables efficient paral-
lel processing. To speed up stability checks for about 20 000
Au(111)-P surface structures, this study uses MLFF tech-
niques. Accurate interatomic potentials between Au and P
atoms are derived using the on-the-fly ML model [47,48].
The training dataset includes around 1000 structures from
AIMD simulations and has a root-mean-square error (RMSE)
of 1.14 meV/atom, as shown in Fig. S2(a) [37]. To verify
the reliability of MLFF, its energy predictions are compared
with DFT results for a test set of 500 structures outside the
training set. The standard deviation of the total energy across
all structures in the training and test datasets is 26.91 eV and
11.56 eV, respectively, reflecting the broad range and diversity
of our data. As shown in Fig. S2(a), the RMSE of energy for
the test set is estimated as 1.25 meV/atom, much better than
previous models for metal phosphides (9.50 meV/atom) [49].

The surface phase diagram of Au(111)-P, constructed using
the ESAU method, highlights the most energetically favor-
able structures, as shown in Fig. 1(f). It identifies two main
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structures that form the surface energy convex hull, marked
by a blue line. For �μP � −0.42 eV, the Au(111) struc-
ture is preferred, while phosphorus-rich conditions (�μP �
−0.21 eV) lead to surface phosphides, forming an Au-
P network. As shown in Fig. 1(g), this network consists
of two triangular blue phosphorene islands with nine P
atoms each, connected by three Au atoms. Finally, to
align simulations with experimental results, the study con-
firms the most stable structure through simulated STM
image, matching well with experimental data, as shown in
Fig. 1(h). These findings agree well with previous stud-
ies on phosphorus deposition onto Au(111) surfaces [16].
Additionally, Table S2 summarizes the computational re-
sources required to evaluate the numerous phases generated
by ESAU across different systems [37], offering insights
into the computational demands and efficiencies of our
approach.

III. RESULTS AND DISCUSSION

A. Surface oxides on Ag(111)

In addition to the Au(111)-P system, the Ag(111)-O system
is another example of how well the ESAU method works.
This system is extensively studied due to the widespread
use of silver catalysts in industrial processes, particularly
for converting methanol into various chemicals and for syn-
thesizing epoxides from propylene [50,51]. High oxygen
coverage is known to prompt the formation of the c(4×8)
phase [52,53], identifiable through the matrix

(3 1
1 3

)
. Despite

previous studies identifying this structure, they often required
significant computational resources [54,55]. By using the
ESAU method, we have made finding this surface phase more
efficient.

Generation. The STM image in Fig. 2(a) shows the pattern
of the Ag(111)-O surface, which is about 7.76 Å across and
has a P4mm symmetry [52,53]. Its asymmetric region is a
right-angled triangle that takes up 1/8 of the total area, as
you can see in Fig. S4 [37]. So, we focus on a smaller right
triangle with sides of 3.88 Å and a hypotenuse of 5.49 Å, as
shown in Fig. 2(a). In this region, we identify eight possible
spots for atoms, called Site = {site 1, site2, . . ., site8}. We
then mix and match these spots with O or Ag atoms or leave
them empty to create 38 (6561) different asymmetric units.
Through symmetrical operations of the P4mm planar group,
various surface configurations are created and combined with
a clean substrate to model the surface accurately.

Evaluation. Because the Ag(111)-O surface cell is quite
small, we could use DFT calculations for all the models to
create a surface energy phase diagram that shows how the
stability changes with the chemical potential of oxygen, as
seen in Fig. 2(b). This diagram has three important parts:
(i) The clean Ag surface is stable for �μO � −0.56 eV. (ii)
Surface oxides form between −0.56 eV � �μO � −0.31 eV.
(iii) When �μO � −0.31 eV, the surface oxides turn into the
bulk phase, forming Ag2O. Notably, only one stable surface
phase emerges throughout this oxidation process.

Figure 2(c) shows the atomic arrangement of this stable
phase, which has a repeating pattern of Ag4O4 units (marked
in yellow) linking Ag atoms. This phase, labeled Ag5O4,

FIG. 2. Establishing the structure of the Ag(111)-
(3 1

1 3

)
-O

surface. (a) STM image of the Ag(111)-
(3 1

1 3

)
-O, alongside a dis-

tribution diagram of symmetric elements in the P4mm space group.
(b) Surface phase diagram depicting the oxidation of the Ag(111)
surface as a function of oxygen chemical potential. (c) Preferred
atomic configuration superimposed on the experimental image (left)
compared with the simulated image (right). The spheres in red and
blue represent O atoms and surface Ag atoms, respectively. The
experimental STM image is reproduced with permission [52]. Copy-
right 2009 American Physical Society.

exhibits O and Ag coverages of 0.50 and 0.62 atomic layers
(AL), respectively, consistent with the known c(4×8) struc-
ture on Ag(111) [52,53]. Furthermore, the simulated STM
images match very well with the actual experimental observa-
tions, as shown in Fig. 2(c). These findings confirm the ability
of ESAU to accurately identify the most stable phase on the
oxidized Ag surface.

B. Antimony deposited on Pt(111)

The success of graphene has sparked intensive research
into 2D materials [56–58]. Beyond exfoliation, scientists are
particularly interested in synthesizing 2D materials on sub-
strates [6–8]. However, recent studies have raised questions
about the feasibility of forming pure layers of these materials
on metal substrates [16,18,21,24], and some surface structures
also remain unclear at the atomic level. We use the ESAU
method to investigate the complex Pt(111)-Sb surface struc-
ture.

Generation. After depositing Sb onto the Pt(111) substrate,
a p(5

√
3×5

√
3)R30◦ pattern emerges, distinct from the under-

lying metal lattice [59]. The STM image in Fig. 3(a) reveals
clear protrusions, suggesting a P6mm symmetry. The recon-
structed unit cell, spanning approximately 24.30 Å, features
an asymmetric region forming a right triangle, occupying
1/12 of the cell, as highlighted in Fig. 3(b). To thoroughly
explore potential surface configurations, we identify 20 sites
for Sb, Pt atoms, or vacancies, leading to a staggering 320
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FIG. 3. Determination of the Pt(111)-p(5
√

3×5
√

3)R30◦-Sb surface structure. (a) Experimental and simulated STM images of the Pt(111)-
p(5

√
3×5

√
3)R30◦-Sb structure. (b) The asymmetric region and potential addition sites on Pt(111)-p(5

√
3×5

√
3)R30◦-Sb. (c) Surface phase

diagram for Pt(111)-Sb as a function of antimony chemical potential. (d) Most stable atomic configuration of the Pt(111)-Sb surface under
Sb-rich conditions. The white and dark green spheres denote Sb and surface Pt atoms, respectively. The experimental STM image is reproduced
with permission [59].

unique configurations. By focusing on the most symmetrical
configurations, we reduce the asymmetric region, narrowing
down the potential sites to 9 (39), detailed in Sec. D of the
Supplemental Material [37]. These 39 asymmetric units are
transformed through symmetry operations to generate various
surface models.

Evaluation. With over 225 atoms in the superstructure, it
is costly to optimize each model using conventional methods.
Therefore, we employ the MLFF method to decrease com-
putational costs and accelerate the optimization process. The
ML potential, trained on approximately 1000 structures, show
good agreement between the training and test data, as visually
confirmed in Fig. S2(b) [37]. For the Pt(111)-Sb system, the
total energy standard deviation for all structures in the training
and test datasets is 36.25 eV and 25.24 eV, respectively. The
calculated RMSEs for the energy of the training and test sets
are 1.02 and 4.37 meV/atom, respectively, suggesting that
the ML potential performs well in energy prediction and its
feasibility as an alternative to DFT.

We construct a surface energy phase diagram to assess the
models, showing the chemical potential energy variation with
Sb, as shown in Fig. 3(c). The diagram identifies three distinct
regions based on �μSb. For �μSb � −2.20 eV, the clean
Pt(111) surface remains stable. From −2.20 eV � �μSb �
−0.71 eV, surface antimonides emerge. Above �μSb �
−0.71 eV, the Pt substrate undergoes a phase transition
into Sb2Pt. Within the surface alloys, two distinct structures
constitute the surface energy convex hull. For −2.20 eV �
�μSb � −1.53 eV, 12 Sb atoms occupy hollow sites, creating
phase A, detailed in Fig. S6(a) [37]. In Sb-rich conditions
(�μSb � −1.53 eV), phase B forms a continuous surface
alloy layer, composed of Pt60Sb37, as seen in Figs. 3(d) and
S6(b). This phase features edge-sharing Pt4Sb motifs with
Sb atoms on the substrate. Each Pt4Sb motif, highlighted in

Fig. 3(d), presents four Pt atoms in a square, with an Sb
atom at Pt4-hollow sites, resembling structures found with
VA group elements like P on Pt(111) [18]. Additionally, an
Sb atom sits at the center of a ring formed by six Pt4Sb
motifs.

The experimental data and simulations of the Pt60Sb37

model align closely, predicting an Sb atom coverage of
0.49 AL, which closely matches the experimental measure-
ment of 0.5 AL [59]. The simulated STM image, depicted in
Fig. 3(a), corresponding well with experimental observations,
features 30 unit cell protrusions indicative of Sb atoms in
Pt4Sb motifs. To verify the thermal stability of the Pt60Sb37

model, MD simulations were conducted at 700 K, just above
the experimental annealing temperature of 380 ◦C [59]. As
shown in Fig. S7 [37], the Pt60Sb37 model maintains its
structure without significant changes after 50 ps, affirming its
energetic and thermodynamic stability.

C. Unveiling 3D structures and predicting potential structures

The ESAU method is not just for surfaces and it
also helps us understand freestanding 2D materials and
3D bulk materials. For freestanding 2D materials, we
bypass the final step in the generation phase to di-
rectly examine the stability of surface configurations.
For 3D materials, we incorporate an additional dimen-
sion to identify potential sites within the asymmetric
region, a step crucial for 3D regions. For instance, the asym-
metric region for the space groups P63/mmc (No. 194) and
P4/mmm (No. 99) is both a triangular prism, as shown in
Figs. 4(a) and 4(b).

We apply the ESAU method to investigate the structures
of the Na-Bi binary alloy. The stable compounds found in the
Na-Bi system through experiments are Na3Bi (P63/mmc) and
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FIG. 4. Structure identification of the Na-Bi alloy with the P63/mmc and P4/mmm space group. The asymmetric region within the
(a) P63/mmc and (b) P4/mmm space group. (c) An asymmetric region of 2 Å in both length and height. (c) The convex hull diagram of
Na-Bi alloys.

NaBi (P4/mmm), as reported in previous studies [49,60]. As
shown in Figs. 4(a) and 4(b), the asymmetric regions of these
space groups form regular and right-angled triangular prisms,
covering 1/24 and 1/16 of the unit cell volume, respectively.
We start with a simple asymmetric region with six potential
sites at the apex, as depicted in Fig. 4(c). By introducing a
Na atom, a Bi atom, or a vacancy at each site, we generate 36

(729) crystal structures for each space group.
To evaluate the stability of these alloys, we construct

a convex hull diagram using calculated formation energies
as follows: Eform = (Etotal − NNa×ENa − NBi×EBi)/(NNa +
NBi), where Etotal, ENa, and EBi are the energies of the entire
system, single Na atom, and single Bi atom in their respective
bulks. NNa and NBi represent the numbers of Na atoms and Bi
atoms in the alloy, respectively. Structures on the convex hull
are thermodynamically stable, as shown in Fig. 4(c), with two
structures (Na3Bi and NaBi) identified and detailed in Fig.
S8 [37]. Notably, NaBi is recognized as a bulk superconduc-
tor [61], and Na3Bi is of interest as a 3D topological Dirac
semimetal, promising for potential applications [62–64]. Our
ESAU method has confirmed two thermodynamically stable
structures, in excellent agreement with previous experimental
reports [49,60].

The ESAU method, based on experimental data like lat-
tice parameters and symmetry, is effective in identifying the
ground state phase. It also holds promise for predicting new
structures without prior experimental data. To thoroughly ex-
plore a new system, we need to generate all possible structures
with various lattices, prioritizing those with higher symme-
try since they are more likely to be lower in energy. For

unexplored lattices, we start with smaller asymmetric re-
gions, expanding gradually. While exploring new structures
without experimental references increases computational re-
quirements, advancements in computational methods and
resources are anticipated to facilitate the prediction of new
structures across a wide range of materials.

IV. CONCLUSION

In this work, we introduce the ESAU method for identify-
ing surface structures. This method characterized by its focus
on the detailed examination of asymmetric regions and the
discretization of atomic positions, facilitates a comprehensive
exploration of potential surface configurations. Additionally,
we employ reliable ML potentials to speed up the stability
analysis. The versatility of the ESAU method makes it incred-
ibly useful for surface science research. Its generation and
evaluation steps are flexible and can be adapted to various
systems. As shown through examples in this work, the ESAU
method is not only good at replicating already known struc-
tures but also excellent at unveiling others, thereby expanding
our understanding of material surfaces. It represents a sig-
nificant improvement over traditional, intuition-based manual
methods, offering a deeper insight into the microscopic prop-
erties of materials.
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