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Chirality-2 fermion induced anti-Klein tunneling in a two-dimensional checkerboard lattice
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The quantum tunneling effect in a two-dimensional (2D) checkerboard lattice is investigated. By analyzing
the pseudospin texture of the states in a 2D checkerboard lattice based on the low-energy effective Hamiltonian,
we find that this system has a chiral symmetry with chirality equal to 2, although compared with regular chiral
fermions, its pseudospin orientation does not vary uniformly. This suggests that the perfect reflection chiral
tunneling, also known as the anti-Klein tunneling, is expected to appear in a checkerboard lattice as well. To
verify the conjecture, we calculate the transmission probability and find that normally incident electron states
can be perfectly reflected by the barrier with hole states inside and vice versa. Furthermore, we numerically
calculate the tunneling conductance of the checkerboard nanotube using the recursive Green’s function method.
The results show that a perfect on-off ratio can be achieved by confining the energy of the incident states within
a certain range. It also suggests that, by tuning the barrier, the checkerboard nanotube can work as a perfect band
filter or tunneling field effect transistor, which transmits electrons selectively with respect to the pseudospin of
the incident electrons.
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I. INTRODUCTION

Quantum tunneling refers to the passage of particles with
finite probability through barriers that are forbidden according
to the laws of classical physics [1,2]. Nevertheless, quan-
tum tunneling may bring serious problems when the size
of transistors goes down to the nanoscale, e.g., logic errors
occur if electrons start tunneling through the barriers when the
transistor is off. Therefore, precisely controlling the quantum
tunneling effect in the nanoscale transistor is of vital impor-
tance for the next-generation electronics [3–10].

Traditional transistors were designed relying on the funda-
mental charge degree of freedom of electrons, and then the
intrinsic spin was also confirmed to modulate the electron
transport, giving rise to the study of spintronics [11–13].
Recently, two other degrees of freedom, valley and pseu-
dospin, have been widely investigated in various quantum
systems such as monolayer graphene, bilayer graphene, and
graphene-based heterojunctions, based on which several types
of band filters have been proposed [14–21]. The symmetry
consideration is significant in these designing strategies, espe-
cially the chiral symmetry in Dirac fermions, which is deeply
related to the perfect transmission and perfect reflection in
nanostructures [20–24].

In the case of systems with odd chirality, such as
monolayer graphene, the normally incident electrons can
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completely pass through a barrier of arbitrary height (known
as the Klein paradox) [16,25–27]. For systems with even chi-
rality, such as Bernal bilayer graphene [16,27,28], the chiral
nature leads to the opposite effect, where electrons are always
perfectly reflected for a sufficiently wide barrier for normal
incidence, also known as anti-Klein tunneling. However, the
perfect reflection in bilayer graphene is only achieved under
two-band approximation since an interlayer bias breaks the
pseudospin structure [29,30]; therefore, the on-off ratio is
low in these materials. Moreover, similar anti-Klein tunneling
effects have also been reported in the spin-orbit systems and
anisotropic electronic structures [31,32]. Essentially, they all
depend on the orientation of spin or pseudospin.

In this paper, we investigate quantum tunneling in a
two-dimensional (2D) checkerboard lattice [33–38], where
anisotropic chiral symmetry exists. Analyzing the pseudospin
texture based on the low-energy effective Hamiltonian, we
find that the orientations of the pseudospin and wave vector in
this system are locked, and when the angle of the wave vector
changes 2π , the angle of the pseudospin changes 2 × 2π .
Additionally, the pseudospin textures of the Fermi surface
above and below the touching point are centrosymmetric.
These behaviors indicate the existence of chiral symmetry in
this system, and the chirality is equal to 2, which suggest that
perfect reflection chiral tunneling is expected to appear in a
checkerboard lattice as well.

This conjecture of the perfect reflection in the checker-
board lattice is then confirmed by the calculation of trans-
mission probability, which shows that a perfect reflection
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FIG. 1. (a) Checkerboard lattice with nearest- and next-nearest-
neighbor hoppings. Two sublattices are labeled by solid and open
circles. (b) Schematic diagrams of the band structure and variation
of the electrostatic energy caused by the barrier. (c) The angle of
pseudospin as a function of the angle of the wave vector: red for
subband s = 1 and blue for s = −1. (d) The textures of pseudospin
at the Fermi surface with subband indexes s = −1 (blue) and s = 1
(red) are denoted by the arrows of unit vectors.

effect for normal incidence is found in the case of s �= s′,
where s and s′ are the subband indexes inside and outside
the barrier, respectively. Inspired by the perfect reflection of
normal incidence in the checkerboard lattice, we also suppose
that a band filter or tunneling field effect transistor can be
designed based on the quasi-one-dimensional checkerboard
nanotube. We numerical calculate the tunneling conductance
of the checkerboard nanotube using the recursive Green’s
function method [39,40]. The results show that the current
can be entirely blocked by the barrier potential in a certain
range. Thus, by tuning the barrier, the checkerboard nanotube
can work as a perfect band filter or tunneling field effect
transistor, which transmits electrons selectively with respect
to the pseudospin of the incident electrons.

Finally, we propose that τ -type organic conductors [41,42]
and optical crystals [43] can serve as ideal platforms for cre-
ating functional digital devices made of a checkerboard lattice
and achieving perfect reflection.

II. MODEL

We start with the tight-binding model of the checkerboard
lattice depicted in Fig. 1(a):

H = −
∑
i, j

t (a†
i, jbi, j + a†

i, jbi, j−1 + a†
i, jbi−1, j + a†

i, jbi−1, j−1)

+ t ′(a†
i, jai+1, j + b†

i, jbi, j+1) + t ′′(a†
i, jai, j+1 + b†

i, jbi+1, j )

+ H.c., (1)

where a†
i, j (b

†
i, j ) and ai, j (bi, j ) are, respectively, the single elec-

tron creation and annihilation operators on the site A(B)
of the primitive cell (i, j), with i( j) being the index along
the x(y) direction. Here, t stands for the nearest hopping,

while t ′ and t ′′ denote two types of next-nearest hopping. In
the calculations below, without loss of generality, we choose
the case with t = t ′ = −t ′′ = 1. A general analysis of param-
eter settings is provided in Appendix B.

Following the Bloch theorem, the Hamiltonian in the wave
vector space reads (details shown in Appendix A)

Hk̃ = (−2 cos k̃x + 2 cos k̃y)σz − 4 cos
k̃x

2
cos

k̃y

2
σx, (2)

where σ = (σx, σy, σz ) is the Pauli matrix of the sublattice
pseudospin. The conduction and valence bands of this system
quadratically touch at (k̃x, k̃y) = (π, π ). Thus, we expand the
above Hamiltonian around the touching point by redefining
the wave vector as k̃x = π + kx and k̃y = π + ky. The low-
energy effective Hamiltonian is given by

Hk = (
k2

x − k2
y

)
σz − kxkyσx. (3)

The corresponding eigenenergy and eigenstate are

Eks = sk2
√

cos2 2θk + 1
4 sin2 2θk. (4)

and

|ψks〉 = Aks

(
1
2 sin 2θk

cos 2θk − Eks
k2

)
. (5)

Here, Aks = k2[2Eks(Eks − k2 cos 2θk )]−1/2 is the normal-
ization coefficient, k = |k| and θk = arctan(ky/kx ) are the
length and angle of k, respectively, and s = ±1 denotes dif-
ferent subbands. The pseudospin of this model occurs in
the (x-z) plane since the Hamiltonian in Eq. (3) satisfies
the anticommutation relation {Hk, σy} = 0 [44]. To describe
the orientations of the pseudospin and the wave vector in the
same plane, we perform a π

2 rotation along the x direction in
the pseudospin space and rewrite the Hamiltonian as

H ′
k = exp

(
iσx

π

4

)
Hk exp

(
− iσx

π

4

)

= k2

(
σy cos 2θk − 1

2
σx sin 2θk

)
. (6)

Therefore, the angle of pseudospin θσ is obtained by solving

cos θσ = 〈ψ ′
ks|σx|ψ ′

ks〉 = s sin 2θk√
sin2 2θk + 4 cos2 2θk

, (7)

sin θσ = 〈ψ ′
ks|σy|ψ ′

ks〉 = 2s cos 2θk√
sin2 2θk + 4 cos2 2θk

, (8)

where |ψ ′
ks〉 = exp(iσx

π
4 )|ψks〉 is the rotated pseudospin state.

It is remarkable that the pseudospin angle depends only on the
angle of the wave vector, not on the amplitude.

As shown in Figs. 1(c) and 1(d), the angle of the pseu-
dospin varies monotonically with the angle of the wave
vector and changes 2 × 2π when the wave vector orienta-
tion changes 2π . Additionally, the pseudospin textures of the
Fermi surface with energy ±E are centrosymmetric about the
touching point. These behaviors are quite similar to chiral
fermions with chirality equal to 2, such as Bernal bilayer
graphene. The difference is that, in bilayer graphene, the
change of the pseudospin angle is always twice the change
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of the wave vector angle, while in the case of a checker-
board, θσ does not uniformly change with θk. This is related
to the anisotropic Fermi surface of this model shown in
Fig. 1(d).

In the normal incidence condition where θk = 0 or π ,
this anisotropic pseudospin texture does not break the perfect
reflection, also called anti-Klein tunneling, reported in the reg-
ular 2-chiral fermion. As marked by the red and blue circles
in Figs. 1(b) and 1(d), when the states inside and outside the
barrier belong to different subbands, the wave functions across
the barrier are orthogonal due to the opposite pseudospin
orientations, which leads to a perfect reflection if the barrier
width tends to infinity, i.e., a potential step.

III. BARRIER POTENTIAL
AND TRANSMISSION PROBABILITY

Above, we infer the existence of anti-Klein tunneling in
the checkerboard lattice by analyzing the chiral symmetry
and pseudospin texture of the low-energy effective Hamilto-
nian. In the following, we calculate the tunneling transmission
probability to address this conjecture. The barrier potential
we considered is uniform along the y direction and has a
rectangular shape along the x direction:

V (x) =
{

Vs, 0 � x � D,

0, otherwise,
(9)

where Vs and D denote the height and length of the barrier,
respectively. We assume that the incident wave comes from
infinitely away (x → −∞) with wave vector k = (kx, ky) and
energy E which satisfies the dispersion relation. The wave
functions of the system with the barrier can be obtained by
solving the equation (details shown in Appendix C):

[Ĥk + V (x)]ψ (x, y) = Eψ (x, y). (10)

Here, Ĥk serves as an operator in the coordinate repre-
sentation. It is gotten by redefining the wave vector as
k = k̃ − (π, π ) in Eq. (2) followed by Fourier transfor-
mation between kx(ky) and x(y) [45]. Separating variables
in Eq. (10) results in (E − Vα )2 = 4(cos kαx − cos ky)2 +
16 sin2(kαx/2) sin2(ky/2), where the subscript α = L, M, R
denotes the incident, barrier, and transmitting regions, re-
spectively. Mathematically, this equation gives two sets of
roots, which are denoted by ±kαx and ±k′

αx and correspond
to modes exp(±ikαxx) and exp(±ik′

αxx), respectively. Thus,
without loss of generality, the solution to Eq. (10) is in the
form of

ψα (x, y) = exp(ikyy)

[
aα exp(ikαxx)√|v(kαx )|(1 + |ζα,1|2)

(
1

ζα,1

)
+ bα exp(−ikαxx)√|v(−kαx )|(1 + |ζα,2|2)

(
1

ζα,2

)
+ cα exp(ik′

αxx)√|v(k′
αx )|(1 + |ζα,3|2)

(
1

ζα,3

)

+ dα exp(−ik′
αxx)√|v(−k′

αx )|(1 + |ζα,4|2)

(
1

ζα,4

)]
, (11)

where v(kαx ) = 1
h̄

∂E
∂kx

|kx=kαx
is the x component of the quasi-

particle velocity. Then we attempt to determine the coeffi-
cients. First, bR = 0 since it corresponds to an extra incident
wave toward the barrier region. Next, attention is turned to the
wave numbers in the incident and transmitting regions. To be
specific, it is easy to see that roots kLx = kRx = kx definitely
are real, and therefore, modes exp(±ikLxx) and exp(±ikRxx)
are propagating. However, mathematically, roots k′

Lx and k′
Rx

could be either imaginary or real, which leads to some dif-
ferences in physics. For the former case, i.e., k′

Lx and k′
Rx are

imaginary just as in bilayer graphene [16], we denote positive
real values κLx = ik′

Lx, κRx = ik′
Rx, and modes exp(±κLxx),

exp(±κRxx) are therefore evanescent. The convergence of the
wave function requires coefficients dL = cR = 0. In the lat-
ter case, i.e., k′

Lx and k′
Rx are real, modes exp(±ik′

Lxx) and
exp(±ik′

Rxx) are propagating. Here, we choose the signs of k′
Lx

and k′
Rx to satisfy v(−k′

Lx ) > 0 and v(k′
Rx ) < 0, respectively,

so that we can also set dL = cR = 0 for the same reason
as bR = 0. So far, for both cases, other coefficients can be
obtained by the continuity conditions for both the wave func-
tions and their derivatives. The reflection (R) and transmission
(T ) probabilities satisfy R + T = 1 according to the particle
number conservation. To calculate them, it is worth noting

that the incident wave may be scattered into all propagat-
ing waves whose velocity components in the x direction are
away from the barrier region. Specifically speaking, if the
math gives two propagating and two evanescent modes in
the incident and transmitting regions, R = |r|2 and T = |t |2,
while if the math gives four propagating modes in the incident
and transmitting regions, R = |r|2 + |r′|2 and T = |t |2 + |t ′|2.
The settings above make sure that coefficients r = bL/aL,
r′ = cL/aL, t = aR/aL, and t ′ = dR/aL.

Figure 2 shows the transmission probability as a function
of the angle of wave vector θ = arctan(ky/kx ) in the case of
the incident holelike state with energy E = −0.1. We see that
the transmission probability is finite (even close to T = 1
at some special Vs) and insensitive to the angle for barrier
potential with holelike states (E − Vs < 0). On the contrary,
for the barrier potential with electronlike states (E − Vs > 0),
the transmission probability is almost zero for the angle θ =
0◦, which corresponds to the angle of quasiparticle velocity
φ = arctan( ∂E/∂ky

∂E/∂kx
) also being zero, i.e., normal incidence. It

should be noticed that, under low-energy conditions, these
two angles, θ and φ, are related by the identity tan φ =
tan θ 2 tan2 θ−1

2−tan2 θ
, so the range θ ∈ [−54.7◦, 54.7◦] corresponds

to the range φ ∈ [−90◦, 90◦]. As a consequence, T is strictly
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FIG. 2. The angular dependence of the transmission probability
in the checkerboard lattice. We set the barrier potential (a) Vs =
−0.50, −0.28, −0.10 and (b) Vs = 0.50, 0.28, 0.10. The incident
energy is set to be E = −0.1.

0 for |θ | ∈ (54.7◦, 90◦] since the velocity angle of the incident
wave exceeds 90◦.

For the normal incidence case (ky = 0), we get the analyti-
cal form of the transmission probability:

T =

⎧⎪⎨
⎪⎩

4k2
x q2

x

4k2
x q2

x +(k2
x −q2

x )2 sin2(qxD)
, if s = s′,

4k2
x q′2

x

4k2
x q′2

x +(k2
x +q′2

x )2 sinh2(q′
xD)

, if s �= s′,
(12)

where s = sgn(E ), s′ = sign(E − Vs), kx = arccos(1 − |E |
2 ),

qx = arccos(1 − |E−Vs|
2 ), and q′

x = arcosh(1 + |E−Vs|
2 ). When

the s index (electronlike for s = + or holelike for s = −)
of the incident state is the same as the states contained in
the barrier, Eq. (12) implies that, for certain E and Vs, the
transmission probability periodically oscillates with the bar-
rier length D, driven by the sin2(qxD) term. From the physical
perspective, constructive interference occurs when qxD = Nπ

(N ∈ Z), while destructive interference occurs when qxD =
(N + 1

2 )π (N ∈ Z). However, when the s index of the incident
state is opposite to the states contained in the barrier, the
transmission probability decays exponentially with the barrier
length D. Thus, a perfect reflection effect for the normal inci-
dence will be found in the case of s �= s′. These results further
confirm the existence of anti-Klein tunneling in this system.
Furthermore, this perfect reflection behavior can be achieved
in this model within a large window of barrier height than that
in AB-stacked bilayer graphene. Once four-band AB-stacked
bilayer graphene is considered [46–49], the perfect reflection
can only be achieved with the barrier height where the two
bands away from the Dirac point do not contribute since an
interlayer bias breaks the pseudospin structure [29,30].

IV. TUNNELING CONDUCTANCE

Inspired by the perfect reflection of the normal incidence
in the checkerboard lattice, we suppose that a band filter
or tunneling field effect transistor can be designed based on
the quasi-one-dimensional checkerboard nanotube. The nan-
otube is assumed to be infinity in the x direction but finite in
the y direction with a periodic boundary condition, so ky is
discretized as ky = n 2π

M , where M is the width of nanotube
along the y direction and n = M

2 , M
2 − 1, . . . , 0, . . . ,−M

2 + 1.
Here, we consider the lattice with even widths, which makes

FIG. 3. The tunneling conductance of the checkerboard lattice
varies with the height of the barrier Vs. (a) The band structures of
the tunneling barrier. The gray regions correspond to the situation
that tunneling currents are almost entirely blocked. Incident wave
of different energies are calculated: (b) E1 = −0.1 ∈ [−�, 0] and
(c) E2 = −0.375 < −�. Other parameters M = 10, � = √

3(1 −
cos 2π

M ) ≈ 0.33, and D = 10. In (b) and (c), the blue solid lines
represent the results from the transmission probability calculation
(details shown in Appendix C) with the orthogonality assumption
of wave functions with different ky, and the red dots are results from
the recursive Green’s function.

the band structure gapless. Then we label each subband by
(n, s), as shown in Fig. 3(a). The two lowest bands with index
n = 0, which correspond to the normally incident states in
the 2D checkerboard lattice, touch at kx = 0. Based on the
band structure, we define the energy separation between the
next-lowest band (n = ±1) and the quadratic touching point
as �, and it can be calculated by the width of the lattice as
� = √

3(1 − cos 2π
M ).

Before calculating the conductance of the checkerboard
nanotube with a barrier, we would like to analyze the
orthogonality of the wave functions of different slices (as-
semblages of all primitive cells with the same x) in the
nanotube since the wave propagates slice by slice. The slice
wave function can be expressed by Eq. (5) as n,s,kx (x) =

1√
M

[ψn,s,kx (x, y1), . . . , ψn,s,kx (x, yM )]T, where ky is replaced
by n. The wave functions of the two lowest bands take

ψ0,+,kx (r) =
(

1
0

)
exp(ikxx), (13)

ψ0,−,k′
x
(r) =

(
0
1

)
exp(ik′

xx). (14)
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where ψ0,+,kx (r) only populates sublattice A and ψ0,−,k′
x
(r)

only populates sublattice B, which is like the zero-mode solu-
tion of the Dirac fermions in a magnetic field [50]. Thus, one
can get


†
0,+,kx

(x)0,−,k′
x
(x) =

∑
y

ψ
†
0,+,kx

(r)ψ0,−,k′
x
(r) = 0. (15)

Additionally, the slice wave functions with different band
index n are also orthogonal due to


†
n,s,kx

(x)n′,s′,k′
x
(x) ∝

∑
y

exp[i(ky − k′
y)y] = δky,k′

y
= δn,n′ .

(16)

Combining the relations in Eqs. (15) and (16), it is easy to see
that slice wave function 0,s,kx (x) is orthogonal to all other
slice wave functions n,s′,k′

x
(x), with s′ �= s. In other words,

slice wave functions with energies in the range E ∈ [0,�]
(E ∈ [−�, 0]) are orthogonal to those in the range E < 0
(E > 0), which implies that an incident electronlike wave
with energy E ∈ [0,�] cannot tunnel through a potential
barrier with holelike states inside, and similarly, an incident
hole wave with energy E ∈ [−�, 0] cannot tunnel through a
potential barrier with electron states inside. This is consistent
with the anti-Klein tunneling we find under the normal inci-
dence condition. Additionally, it is worth pointing out that,
for the evanescent wave, i.e., kx is imaginary, although the
state does not appear in the dispersion relation, Fig. 3(a),
orthogonality relations in Eqs. (15) and (16) still hold if the
subscript n is replaced with corresponding transverse wave
number ky = n 2π

M .
To verify the perfect reflection in the checkerboard nan-

otube, we calculate the tunneling conductance in two ways.
One is to sum transmission probabilities over all channels
obtained in the previous section, i.e., G ≈ 2e2

h

∑M/2−1
n=−M/2 Tn,

where n represents the corresponding transverse wave number
ky, as previously mentioned. The other is to use the zero-bias
Landauer formula combined with the recursive Green’s func-
tion method [39,40].

Figure 3 also reports results of the tunneling conduc-
tance G vs the height of barrier Vs with transverse width
M = 10, length D = 10, and incident energies (b) E1 =
−0.1 and (c) E2 = −0.375. In this condition, the energy
separation between the band n = ±1 and n = 0 is � ≈
0.33, so the incident state with energy E1 ∈ [−�, 0] con-
tains only contribution from band (0,−), while the incident
state with energy E2 < −� also contains contribution from
band n �= 0.

For the incident holelike state with energy E1, as shown in
Fig. 3(b), the current is almost entirely blocked by the barrier
potential when E1 − Vs > 0, in which the barrier contains
electronlike states inside, and performs resonant tunneling
in the other range. For the incident energy E2, shown in
Fig. 3(c), the current is blocked by the barrier with height
Vs ∈ (E2 − �, E2), which contains states from band (0,+),
and tunnels through the barrier resonantly in the other range.
These results are in good agreement with our predictions from
orthogonality analysis of wave functions and imply that a bar-
rier potential in the checkerboard lattice can play the role of
a band filter: When chemical potential E is tuned to be in the

range [−�, 0], the negative barrier potential blocks the elec-
tronlike states tunneling, while the positive barrier transmits
these states. In addition, the peaks and valleys in Fig. 3(b) re-
flect the transmission enhancement from the resonances due to
the constructive interference and the transmission suppression
from the antiresonances due to the destructive interference
inside the barrier, respectively. This is consistent with the
sin2(qxD) term in the case s = s′ of Eq. (12).

From the comparison of results from these two methods,
it can be seen that the tunneling conductance is insensitive
to the bands coupling, especially in the perfect reflection
region, which meets the expectation from the slice wave func-
tion analysis that 0,±,kx (x) and n,∓,k′

x
(x) are completely

orthogonal. Another remarkable behavior found in tunneling
conductance is the presence of many resonance peaks during
the change of Vs, at which the barrier is transparent to one or
more channels. These resonance peaks arise from waves that
are reflected multiple times in the barrier and then transmitted
in the same phase, which is like that taking place in the optical
Fabry-Perot resonator or in a microwave capacitively coupled
transmission-line resonator [51]. This can be proven by that,
in Fig. 3(b), the locations of resonance peaks are well matched
to the resonance condition of transmission probability for the
normal incidence, i.e., qxD = πN .

V. MATERIALS REALIZATION

So far, we have explored the perfect reflection Klein tun-
neling in the checkerboard lattice based on the tight-binding
model. Then we suggest some experimental systems where
our simulation results can be potentially observed. At first,
attention can be paid to the τ -type organic conductors, in
each conducting layer of which donor molecules form a
square lattice and anion molecules are arranged on it with
a checkerboard pattern [41,42]. The fact that the conduction
and valence bands exhibit the quadratic band touching at
the corner of the square Brillouin zone was also confirmed
by the tight-binding model and density functional theory
(DFT) calculations. Additionally, the optical checkerboard-
like lattices with cold atoms are compelling candidates to
simulate this condensed-matter problem due to the simple
tuning of the parameters [43]. Lattice constants of these ma-
terial candidates a � 1 nm. From the results shown in Fig. 3
and Appendix D, it is evident that, when the gate width is
<10 times lattice constants, the transmission in the anti-Klein
region already approaches zero to an extreme extent, indi-
cating that the contribution from evanescent waves is almost
negligible. Therefore, it is obvious that using gate widths
comparable with or even smaller than existing tunneling field
effect transistors (�10 nm) [52,53] can completely achieve
perfect reflection.

VI. CONCLUSION AND DISCUSSION

In summary, we have studied the electronic quantum tun-
neling of a checkerboard lattice through a barrier potential.
Due to the chiral nature of the quasiparticles, we find that
there exists anti-Klein tunneling, which leads to the perfect
reflection of the normally incident waves. Moreover, we have

115429-5



HUA, WANG, ZHU, AND CHEN PHYSICAL REVIEW B 109, 115429 (2024)

also shown that a barrier potential can play the role of a band
filter or tunneling field effect transistor in the checkerboard
nanotube, which transmits the electronic states according to
the selection rule. Finally, we expect that the checkerboard
lattice can be realized in materials like τ -type organic con-
ductors and optical checkerboardlike lattices.
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APPENDIX A: TIGHT-BINDING MODEL

The tight-binding model of the checkerboard lattice depicted in Fig. 1(a) is

H = −
∑
i, j

t (a†
i, jbi, j + a†

i, jbi, j−1 + a†
i, jbi−1, j + a†

i, jbi−1, j−1) + t ′(a†
i, jai+1, j + b†

i, jbi, j+1) + t ′′(a†
i, jai, j+1 + b†

i, jbi+1, j ) + H.c.,

(A1)

where a†
i, j (b

†
i, j ) and ai, j (bi, j ) are, respectively, the single electron creation and annihilation operator on the site A(B) of the

primitive cell (i, j), with i( j) being the index along the x(y) direction. Here, t stands for the nearest hopping, while t ′ and t ′′
denote two types of next-nearest hopping. To get the Hamiltonian in the wave vector space, apply the Fourier transform:

ĉi, j = 1√
V

∑
k̃

exp
(
ik̃ · rc

i, j

)
ĉk̃, (A2)

where V is the area of the lattice, and c represents either a or b, and rc
i, j is the position of the corresponding sublattice of the

primitive cell (i, j). In this paper, we take the length of the primitive translation vectors as the unit length, which is also the
distance of the next-nearest hopping. Then ra

i, j = (i, j), rb
i, j = (i + 1

2 , j + 1
2 ). Each item in Eq. (A1) is in the form:

∑
i, j

ĉ†
i, j ĉ

′
i+δi, j+δ j = 1

V
∑
i, j

∑
k̃,k̃′

exp
(−ik̃ · rc

i, j

)
ĉ†

k̃
exp

(
ik̃′ · rc′

i+δi, j+δ j

)
ĉ′

k̃′

= 1

V
∑
k̃,k̃′

∑
i, j

exp
[
i(k̃′ − k̃) · rc

i, j

]
exp(ik̃′ · δr)ĉ†

k̃
ĉ′

k̃′

=
∑

k̃

exp(ik̃ · δr)ĉ†
k̃
ĉ′

k̃, (A3)

where δr = rc′
i+δi, j+δ j − rc

i, j . Thus, Eq. (A1) becomes

Ĥ = −
∑

k̃

(
t

{
exp

[
ik̃ ·

(
1

2
,

1

2

)]
+ exp

[
ik̃ ·

(
1

2
,−1

2

)]
+ exp

[
ik̃ ·

(
−1

2
,

1

2

)]
+ exp

[
ik̃ ·

(
−1

2
,−1

2

)]}
â†

k̃
b̂k̃

+ {t ′ exp[ik̃ · (1, 0)] + t ′′ exp[ik̃ · (0, 1)]}â†
k̃
âk̃ + {t ′′ exp[ik̃ · (1, 0)] + t ′ exp[ik̃ · (0, 1)]}b̂†

k̃
b̂k̃

)
+ H.c.

= −
∑

k̃

4t cos
k̃x

2
cos

k̃y

2
(â†

k̃
b̂k̃ + H.c.) + 2(t ′ cos k̃x + t ′′ cos k̃y)â†

k̃
âk̃ + 2(t ′′ cos k̃x + t ′ cos k̃y)b̂†

k̃
b̂k̃

=
∑

k̃

ĉ†
k̃
Hk̃ĉk̃, (A4)

where ĉk̃ = (âk̃
b̂k̃

), Hk̃ = −2(t ′ cos k̃x + t ′′ cos k̃y 2t cos k̃x
2 cos

k̃y
2

2t cos k̃x
2 cos

k̃y
2 t ′′ cos k̃x + t ′ cos k̃y

).

APPENDIX B: PARAMETER ANALYSIS AND τ-TYPE ORGANIC CONDUCTOR

As shown in Appendix A, the wave vector space form of the Hamiltonian in Eq. (1) with arbitrary parameters t , t ′, and t ′′ is
given by

Hk̃ = −2

(
t ′ cos k̃x + t ′′ cos k̃y 2t cos k̃x

2 cos k̃y

2

2t cos k̃x
2 cos k̃y

2 t ′′ cos k̃x + t ′ cos k̃y

)

= −(t ′ + t ′′)(cos k̃x + cos k̃y)σ0 − (t ′ − t ′′)(cos k̃x − cos k̃y)σz − 4t cos
k̃x

2
cos

k̃y

2
σx, (B1)
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FIG. 4. (a) Band structure of the Hamiltonian with parameters
obtained by density functional theory (DFT) fitting of τ -type organic
conductor. We set k̃y = π . (b) and (c) Textures of pseudospin at the
Fermi surfaces Ef = 0.03 eV (orange) and Ef = −0.01 eV (blue),
respectively.

where σ0 is the identity matrix. The corresponding dispersion
relation is

Ek̃± = −(t ′ + t ′′)(cos k̃x + cos k̃y)

±
√

(t ′ − t ′′)2(cos k̃x − cos k̃y)2 + 16t2 cos2 k̃x

2
cos2 k̃y

2
.

(B2)

The parameters t = t ′ = −t ′′ = 1 set in the main text are
a showcase without loss of generality based on following
reasons. First, since the σ0 term in the Hamiltonian in Eq. (B1)
does not affect the expression of the eigenstates, the choice
t ′ = −t ′′ does not affect the orientation of the pseudospin,
which is the essential reason for Klein and anti-Klein

tunneling. Secondly, from the dispersion relation Eq. (B2),
it is obvious that the location of the touching point k̃ =
(π, π ) is independent of the values of t , t ′, and t ′′. Thirdly,
we performed the calculation of the pseudospin texture of
the model with parameters obtained by DFT calculation of
the τ -type organic conductor reported in Ref. [42], which
gives t = 0.16 eV, t ′ = 0.13t , and t ′′ = −0.07t . As shown in
Figs. 4(b) and 4(c), we find that, when the orientation of wave
vector changes 2π in the (x-y) plane, the orientation of the
pseudospin changes 2 × 2π in the (x-z) plane. In Figs. 4(b)
and 4(c), the z axis of the pseudospin coincides with the y
axis of the wave vector. This implies that the values of t , t ′,
and t ′′ can affect the energy level of the touching point and
the shape of the Fermi surface but do not change the nature
of the system, which is a chirality-2 fermion. Finally, for the
normal incidence k̃y = π , the off-diagonal components van-
ish. Hence, the system holds two k̃x-independent orthogonal
eigenstates (0

1) and (1
0), the same as in Eq. (13), which directly

induce anti-Klein tunneling.

APPENDIX C: CALCULATION OF TRANSMISSION
PROBABILITY

1. Determining the wave modes

Before solving Eq. (10) globally, we need to determine
the modes of the wave function in each region. Without loss
of generality, we suppose the wave function as ψ (x, y) =
(ζA

ζB
) exp(λxx) exp(λyy) and substitute it into Eq. (10):

Ĥk

(
ζA

ζB

)
exp(λxx) exp(λyy) = E ′

(
ζA

ζB

)
exp(λxx) exp(λyy),

(C1)

where E ′ = E − V , and Ĥk is gotten by redefining the wave
vector as k = k̃ − (π, π ) in Eq. (2) followed by Fourier trans-
formation between kx(ky) and x(y) [45] to serve as an operator
in the coordinate representation. Therefore, we get

(
2[cos(iλx ) − cos(iλy)] −4 sin iλx

2 sin iλy

2

−4 sin iλx
2 sin iλy

2 2[− cos(iλx ) + cos(iλy)]

)(
ζA

ζB

)
exp(λxx) exp(λyy) = E ′

(
ζA

ζB

)
exp(λxx) exp(λyy). (C2)

Calculating

det

∣∣∣∣∣2[cos(iλx ) − cos(iλy)] − E ′ −4 sin iλx
2 sin iλy

2

−4 sin iλx
2 sin iλy

2 2[− cos(iλx ) + cos(iλy)] − E ′

∣∣∣∣∣ = 0 (C3)

leads to

E ′2 = 4(u − v)2 + 4(1 − u)(1 − v), (C4)

where auxiliary values

u ≡ cos(iλx ) =
{

cos kx for λx = ikx is imaginary,
cosh kx for λx = kx is real,

v ≡ cos(iλy) = cos ky for λy = iky is imaginary. (C5)

Rewriting Eq. (C4) as a quadratic equation with u as the
variable,

u2 − (1 + v)u +
(

v2 − v + 1 − E ′2

4

)
= 0. (C6)

The solution is

u± = 1 + v ±
√

E ′2 − 3(1 − v)2

2
. (C7)
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FIG. 5. The black curve is a typical Fermi surface of the checker-
board lattice for t = t ′ = −t ′′ = 1. Specifically, here, E ′ = 2.5. The
orange and blue lines correspond to ky = 3π

5 and π

5 , respectively. The
black curve and the orange line intersect at points 1′ and 2′, which
represent propagating modes of the same group. The black curve
and the blue line intersect at points 1, 2, 3, and 4, which represent
propagating modes belonging to two groups.

Additionally, Eq. (C4) leads to that the necessary and suffi-
cient condition for ∂E ′2

∂u > 0 is u > 1+v
2 . As a consequence,

mathematically, for a certain v, E ′2 is monotonically de-
creasing for u ∈ (−∞, v+1

2 ) and monotonically increasing
for u ∈ ( v+1

2 ,+∞). Thus, E ′2 achieves a minimum value
3(1 − v)2 when u = v+1

2 . Additionally, E ′2 = 4(1 − v)2 for
u = 1. These result in, physically, for |E ′| <

√
12 and a fixed

v ∈ [−1, 1]:
(1) If |E ′| <

√
3(1 − v), there is not any mode.

(2) If
√

3(1 − v) < |E ′| < 2(1 − v), just shown as the
blue line in the Fig. 5, there are four modes with

λx = ±ikx = ±i arccos (u−), propagating,

λx = ±ikx = ±i arccos (u+), propagating, (C8)

and the transmission probability is easy to be calculated, as
introduced in Appendix C 3.

(3) If |E ′| > 2(1 − v), just shown as the orange line in the
Fig. 5, there are four modes with

FIG. 6. The zero temperature linear tunneling conductance of the
checkerboard lattice varies with the height Vs and width D of the bar-
rier. Incident wave energy E = −0.1 ∈ [−�, 0]. Other parameters
M = 10, � = √

3(1 − cos 2π

M ) ≈ 0.33, D = 8 (top panel), D = 16
(middle panel), and D = 24 (bottom panel).

λx = ±ikx = ±i arccos (u−), propagating,

λx = ±kx = ± arcosh (u+), evanescent, (C9)

and the transmission probability is easy to be calculated, as
introduced in Appendix C 2.

So far, for certain E ′ = E − V and ky, Eq. (10) gives two
sets of roots in each region, which are denoted by ±kαx and
±k′

αx and correspond to modes exp(±ikαxx) and exp(±ik′
αxx),

respectively. The subscript α = L, M, R denotes the incident,
barrier, and transmitting regions, respectively. Next, we dis-
cuss the instances of Eq. (11) in different scenarios. As we
will show later that modes in the barrier do not affect the way
of solving the wave function, we classify the scenarios by
the modes (mathematically) in the incident and transmitting
regions.

2. Scenario of two propagating modes and two evanescent modes

In the scenario that two propagating modes and two evanescent modes (mathematically) exist in both sides of the barrier, the
wave function Eq. (11) becomes

ψ (x, y) = eikyy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1
ζ L

1

)
exp

(
λL

1 x
) + r

(
1
ζ L

2

)
exp

(
λL

2 x
) + c′

(
1
ζ L

3

)
exp

(
λL

3 x
)
, x < 0,

a

(
1

ζ M
1

)
exp

(
λM

1 x
) + b

(
1

ζ M
2

)
exp

(
λM

2 x
) + c

(
1

ζ M
3

)
exp

(
λM

3 x
) + d

(
1

ζ M
4

)
exp

(
λM

4 x
)
, 0 � x � D,

t

(
1
ζ L

1

)
exp

)
λL

1 x
) + d ′

(
1
ζ L

4

)
exp

(
λL

4 x
)
, D < x.

(C10)
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where the superscripts L, M, R denote the incident (left), bar-
rier (medial), and transmitting (right) regions, respectively.
Note, since V (x) has the same value for the incident (L)
and transmitting (R) regions, the pseudospin states in the
transmitting (R) region have been represented by ones in the

incident (L) region. For pseudospin states ( 1
ζ L

1/2/3/4
), subscript

1(2) corresponds to the propagating wave with a positive
(negative) component of velocity in the x direction vx ≡
1
h̄

∂E
∂kx

, while 3(4) corresponds to the evanescent wave with
a positive (negative) wave number λx in the x direction,
respectively.

Considering the continuity of both the wave function
in Eq. (C10) and its partial derivative ∂xψ (x, y) respec-
tively at x = 0, we have [ψ (x, y)]x→0− = [ψ (x, y)]x→0+ and
[∂xψ (x, y)]x→0− = [∂xψ (x, y)]x→0+ . Similarly, at x = D, we

have [ψ (x, y)]x→D− = [ψ (x, y)]x→D+ and [∂xψ (x, y)]x→D− =
[∂xψ (x, y)]x→D+ . These four equations can be simplified
to be

P

⎛
⎝1

r
c′

⎞
⎠ = M

⎛
⎜⎜⎝

a
b
c
d

⎞
⎟⎟⎠, (C11)

and

M�

⎛
⎜⎜⎝

a
b
c
d

⎞
⎟⎟⎠ = Q

(
t
d ′

)
, (C12)

where

P ≡

⎛
⎜⎜⎜⎜⎝

1 1 1

ζ L
1 ζ L

2 ζ L
3

λL
1 λL

2 λL
3

ζ L
1 λL

1 ζ L
2 λL

2 ζ L
3 λL

3

⎞
⎟⎟⎟⎟⎠, M ≡

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 1

ζ M
1 ζ M

2 ζ M
3 ζ M

4

λM
1 λM

2 λM
3 λM

4

ζ M
1 λM

1 ζ M
2 λM

2 ζ M
3 λM

3 ζ M
4 λM

4

⎞
⎟⎟⎟⎟⎟⎠, � ≡

⎛
⎜⎜⎜⎜⎜⎜⎝

eλM
1 D 0 0 0

0 eλM
2 D 0 0

0 0 eλM
3 D 0

0 0 0 eλM
4 D

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Q ≡

⎛
⎜⎜⎜⎜⎜⎝

eλL
1 D eλL

4 D

ζ L
1 eλL

1 D ζ L
4 eλL

4 D

λL
1 eλL

1 D λL
4 eλL

4 D

ζ L
1 λL

1 eλL
1 D ζ L

4 λL
4 eλL

4 D

⎞
⎟⎟⎟⎟⎟⎠.

The combination of Eqs. (C11) and (C12):

M−1P

⎛
⎝1

r
c′

⎞
⎠ =

⎛
⎜⎜⎝

a
b
c
d

⎞
⎟⎟⎠ = �−1M−1Q

(
t
d ′

)
, (C13)

is a linear relation from which we can easily get parameters r, t . Thus, the reflection (R) and transmission (T ) probabilities can
be calculated as R = |r|2 and T = |t |2.

3. Scenario of four propagating modes

In the scenario that four propagating modes exist in both sides of the barrier, the scattering happening between modes with
different magnitudes of velocities should be considered. To change the algorithm as little as possible, we denote λL

1 = ikx,
λL

2 = −ikx, λL
3 = ik′

x, and λL
4 = −ik′

x. The wave function in Eq. (11) becomes

ψ (x, y) = exp(ikyy)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
|vx|

α1,2

(
1
ζ L

1

)
exp

(
λL

1 x
) + r√

|vx|
α1,2

(
1
ζ L

2

)
exp

(
λL

2 x
) + r′√|v′

x|
α3,4

(
1
ζ L

4

)
exp

(
λL

4 x
)
, x < 0,

a′
(

1
ζ M

1

)
exp

(
λM

1 x
) + b′

(
1

ζ M
2

)
exp

(
λM

2 x
) + c′

(
1

ζ M
3

)
exp

(
λM

3 x
) + d ′

(
1

ζ M
4

)
exp

(
λM

4 x
)
, 0 � x � D,

t√
|vx|

α1,2

(
1
ζ L

1

)
exp

(
λL

1 x
) + t ′√|v′

x|
α3,4

(
1
ζ L

3

)
exp

(
λL

3 x
)
, D < x.

(C14)
where α1,2 = 1√

1+|ζ L
1 |2 = 1√

1+|ζ L
2 |2 and α3,4 = 1√

1+|ζ L
3 |2 = 1√

1+|ζ L
4 |2 are normalization constants. Comparing with Eq. (C10), ( 1

ζ L
3/4

)

here are propagating modes, and subscript 3(4) corresponds to the positive (negative) component of velocity in the x direction.
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To simplify the calculation, we rescale the incident wave, resulting in Eq. (C14) being

ψ (x, y) = exp(ikyy)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1

ζI,1

)
exp(λI,1x) + r

(
1

ζI,2

)
exp(λI,2x) + γ r′

(
1

ζI,4

)
exp(λI,4x), x < 0,

a

(
1

ζII,1

)
exp(λII,1x) + b

(
1

ζII,2

)
exp(λII,2x) + c

(
1

ζII,3

)
exp(λII,3x) + d

(
1

ζII,4

)
exp(λII,4x), 0 � x � D,

t

(
1

ζI,1

)
exp(λI,1x) + γ t ′

(
1

ζI,3

)
exp(λI,3x), D < x.

(C15)

where γ =
√

| vg,x

v′
g,x

| α3,4

α1,2
=

√
| vg,x

v′
g,x

| · 1+|ζI,1|2
1+|ζI,3|2 . The only difference with Eq. (C10), mathematically, is that c′ and d ′ are replaced by

γ r′ and γ t ′, respectively. It indicates that following the same approach of solving Eq. (C10), we can easily get parameters r, r′,
t , and t ′. Thus, the reflection (R) and transmission (T ) probabilities can be calculated as R = |r|2 + |r′|2 and T = |t |2 + |t ′|2.

4. Scenario of normal incidence

The normal incidence requires vy ≡ 1
h̄

∂E
∂ky

to be 0. A sufficient condition is ky = 0, which corresponds to the zeroth mode of
energy bands. Denote s = sign(E − V ), then the eigenstate and corresponding wave modes are

ζ1,2 =
(

ζA

ζB

)
= 1

2

(
1 − s
1 + s

)
, λx1,2 = ±i arccos

(
1 − |E − V |

2

)
, propagating,

ζ3,4 =
(

ζA

ζB

)
= 1

2

(
1 + s
1 − s

)
, λx3,4 = ± arcosh

(
1 + |E − V |

2

)
, evanescent. (C16)

The wave function in Eq. (11) now is like Eq. (C10) as

ψ (x, y) = exp(ikyy)

2
×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 − s
1 + s

)
exp

(
λL

1 x
) + r

(
1 − s
1 + s

)
exp

(
λL

2 x
) + c′

(
1 + s
1 − s

)
exp

(
λL

3 x
)
, x < 0,

a

(
1 − s′

1 + s′

)
exp

(
λM

1 x
) + b

(
1 − s′

1 + s′

)
exp

(
λM

2 x
) + c

(
1 + s′

1 − s′

)
exp

(
λM

3 x
) + d

(
1 + s′

1 − s′

)
exp

(
λM

4 x
)
, 0 � x � D,

t

(
1 − s
1 + s

)
exp

(
λL

1 x
) + d ′

(
1 + s
1 − s

)
exp

(
λL

4 x
)
, D < x.

(C17)
where s = sign(E ) and s′ = sign(E − Vs). Following the same approach, one can get parameters r, t and Eq. (12).

APPENDIX D: THE TUNNELING CONDUCTANCE VARIES WITH THE WIDTH OF THE BARRIER

Figure 6 shows how the relation between tunneling conductance G and the height of the barrier Vs varies as a function of
the width of the barrier D. For positive Vs, the tunneling conductance has significant oscillation with respect to Vs, and the
frequency is approximately in direct proportion to D, as does Fig. 3(b). This phenomenon indicates that the oscillation arises
from the resonances and antiresonances between opposite propagating waves inside the barrier. For negative Vs, the tunneling
conductance decreases exponentially no matter the value of D, which indicates the reflection is due to the opposite pseudospin
orientations between incident and transmitted states.
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